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Abstract
The use of human-level semantic information to aid robotic tasks has recently become an important area for both Computer
Vision and Robotics. This has been enabled by advances in Deep Learning that allow consistent and robust semantic under-
standing. Leveraging this semantic vision of the world has allowed human-level understanding to naturally emerge frommany
different approaches. Particularly, the use of semantic information to aid in localisation and reconstruction has been at the
forefront of both fields. Like robots, humans also require the ability to localise within a structure. To aid this, humans have
designed high-level semantic maps of our structures called floorplans. We are extremely good at localising in them, even with
limited access to the depth information used by robots. This is because we focus on the distribution of semantic elements,
rather than geometric ones. Evidence of this is that humans are normally able to localise in a floorplan that has not been
scaled properly. In order to grant this ability to robots, it is necessary to use localisation approaches that leverage the same
semantic information humans use. In this paper, we present a novel method for semantically enabled global localisation. Our
approach relies on the semantic labels present in the floorplan. Deep Learning is leveraged to extract semantic labels from
RGB images, which are compared to the floorplan for localisation. While our approach is able to use range measurements if
available, we demonstrate that they are unnecessary as we can achieve results comparable to state-of-the-art without them.

Keywords Robotics · Localisation · Deep Learning · Semantic · MCL · Monte-Carlo · Turtlebot · ROS · Human-level ·
Segmentation · Indoor

1 Introduction

Localisation, the process of finding a robot’s pose within
a pre-existing map, is one of the most important aspects
of both Computer Vision and Robotic systems. A globally
consistent, well localised sensor can substantially reduce
the complexity of problems like Multi-View Stereo (MVS)
(Agarwal et al. 2011;Mendez et al. 2016), AutonomousNav-
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igation (von Stumberg et al. 2016), 3D Reconstruction (Dai
et al. 2017; Mendez et al. 2017) and even Deep Learning
(Kendall et al. 2015). While all of these problems can esti-
mate their own sensor poses, such as MVS using a Bundle
Adjustment (BA) and Autonomous Navigation using Simul-
taneous Localisation and Mapping (SLAM). Unfortunately,
both BA and SLAM suffer from the same limitation: they can
only ever guarantee global pose consistency internally. This
means that while pose estimates are globally consistent, they
are only valid within the context of the localisation system.
There are no guarantees, at least in vision-only systems, that
the reconstruction can be directly mapped to the real world,
or between agents (without explicit alignment). This paper
will attempt to address these limitations with a localisation
approach that is efficient, accurate and, most importantly,
globally consistent with the real-world.

For a robotic system, it should be clear that offline batch
approaches are of limited use (Furukawa and Ponce 2010;
Galliani and Schindler 2015). This leaves traditional SLAM
systems as the only viable approach for localisation. How-
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ever, SLAM systems are liable to drift in terms of both pose
and scale. They can also become globally inconsistent (even
internally) in the case of failed loop closures.

This problem is normally addressed by having a local-
isation system that can relate the pose of the robot to a
pre-existing map. Examples of global localisation frame-
works include the Global Positioning System (GPS) and
traditional Monte-Carlo Localisation (MCL). MCL has the
ability to localise within an existing floorplan (which can be
safely assumed to be available for most indoor scenarios).
This is a highly desirable trait, as it implicitly eliminates
drift, is globally consistent and provides a way for the 3D
reconstructions to be related to the real world without having
to perform expensive post-hoc optimisations. Traditionally,
the range-based scans required by MCL have been produced
by expensive sensors such as Light Detection And Ranging
(LiDAR). These sensors are capable of producing high den-
sity measurements at high rates with low noise, making them
ideal for range-based MCL. However, as a sensor they are
expensive, are physically large and have high power require-
ments which is an issue for small mobile platforms.

As a response to this, modern low-budget robotic plat-
forms have used RGB-D cameras as a cheap and low-
footprint alternative. This has made vision-based floorplan
localisation an active topic in the literature. However, while
many approaches have been proposed, they normally use
heuristics to lift the 2D plan into the 3D coordinate system
of SLAM. These heuristics include techniques like assuming
the height of doors and walls (Liu et al. 2015; Winterhalter
et al. 2015). Making assumptions about the world allows
full 6-Degrees of Freedom (DoF) pose estimations to be
computed (by using the assumed geometry). However, this
also increases the computational cost and makes algorithms
unsuitable for environments that do not conform to these
assumptions. Other examples include (Liu et al. 2015), who
use visual cues such as Vanishing Points (VPs) or (Chu et al.
2015) who perform piecemeal 3D reconstructions that can
then befitted back to an extrudedfloorplan. These approaches
use innovative ways to extract 3D information from images,
however, the data extracted from the image is normally not
contained in the floorplan that the sensor is meant to localise
in. Fundamentally, this means assumptions must be made
about the floorplan. More explicitly, assumptions are made
about information not present in the floorplan (e.g. ceiling
and door height). It also does not fully exploit the floor-
plan, ignoring the semantic information that humans use to
localise.

In order to find a robust solution to MCL, inspiration can
be drawn from the way humans localise within a floorplan.
People do not explicitly measure depths to every visible sur-
face and try to match them against different pose estimates
in the floorplan. However, this is exactly how most robotic
scan-matching algorithms operate. Similarly, humans do not

extrude the 2D geometry present in the floorplan into 3D,
as is done in most vision-based approaches. Humans do the
exact opposite. Instead of depth, people use high level seman-
tic cues. Instead of extruding the floorplan up into the third
dimension, humans collapse the 3Dworld into a 2D represen-
tation. Evidence of this is that many of the floorplans used
in everyday life are not strictly accurate or in 3D. Instead,
floorplans designed for people opt instead for high levels of
discriminative landmarks on a 2D map.

Therefore, this paper proposes a fundamentally different
approach that is inspired by how humans perform the task.
Instead of discarding valuable semantic information, a Con-
volutional Neural Network (CNN) based encoder-decoder is
used to extract high-level semantic information. All seman-
tic information is then collapsed into 2D, in order to reduce
the assumptions about the environment. A state-of-the-art
sensing and localisation framework is then introduced,which
uses these labels (alongwith image geometry and, optionally,
depth) to localise within a semantically labelled floorplan. It
is important to note that this paper explicitly avoids the 3D
case because the information necessary for indoor navigation
is present in the 2D representation. Therefore, we aim for a
fast and efficient localisation approach that does not require
3D information.

Semantic Detection and Ranging (SeDAR) is an innova-
tive human-inspired framework that combines new semantic
sensing capabilities with a novel semantic Monte-Carlo
Localisation (MCL) approach. As an example, Fig. 1 shows
a sample SeDAR scan localised in the floorplan. SeDAR
has the ability to surpass LiDAR-based MCL approaches.
SeDAR also has the ability to perform drift-free local,
as well as global, localisation. Furthermore, experimental
results show that the semantic labels are sufficiently strong
visual cues that depth estimates are no longer needed. Not
only does this vision-only approach perform comparably to
depth-based methods, it is also capable of coping with floor-
plan inaccuracies more gracefully than strictly depth-based
approaches. Furthermore, this approach relies on high-level
semantic cues making it robust to repetitive and texture-less
regions.

This paper presents several important extensions to our
preliminary work (Mendez et al. 2018) presented at the Inter-
national Conference on Robotics and Automation (ICRA).
Firstly, we extend our method to operate on all SUN3D
labels (rather than wall, door and window) and add the
ability to create semantic floorplans from a known pose
and a SeDAR scan. Secondly, to assist in reproducing the
work, we add a significant amount of detail to the method-
ology, including a complete formalisation of MCL and the
SeDAR sensing modality. Thirdly, we create an expansive
new dataset for semantic localisation, make it publicly avail-
able and add comparison against state-of-the-art SLAM
algorithms. Fourthly, we use this extended dataset to explore
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newproperties of the proposed algorithm including results on
a hand-drawnmap. Finally, an evaluation on the TUM_RGB-
D dataset is performed. This evaluation includes the creation
of new semantic floorplans and a comparison against state-
of-the-art SLAM (2D and 3D) and MCL algorithms

This paper describes the process by which SeDAR is used
as a human-inspired sensing and localisation framework. To
do this, a generic definition and formalisation ofMCL is pre-
sented first. Following this, the semantically salient elements
are extracted from a floorplan and an RGB image is parsed
into a SeDAR scan. The threemain novelties of this paper are
then presented. In the first, the semantic information present
in the floorplan is used to define a new motion model. In
the second, the SeDAR scan is used to define a novel sensor
model using a combination of range and label information.
In the third, an additional sensor model is presented that only
depends on label information (an RGB image). Finally, we
present localisation results on several datasets and modali-
ties.

2 Literature Review

The field of SLAM is predicated on the simple idea that
the pose of a sensor and the reconstructed landmarks are
conditioned on each other (Durrant-Whyte 1988; Smith and
Cheeseman 1987). This idea is not limited to raw features,
but can also be done at the level of objects, as shown by
McCormac et al. (2018). However, if one of them is known a
priori, it is possible to marginalise the other (Murphy 2000).
In the same way that independent reconstruction algorithms
(Furukawa and Ponce 2010; Galliani and Schindler 2015)
can provide more robust representations of the world, inde-
pendent localisation algorithms can also provide more robust
and consistent pose estimates. In fact, recent work by Schnei-
der et al. (2018) explore the idea that a pre-existing SLAM
map is an extremely useful asset for further mapping ses-
sions. However, in each of these cases the environment must
be navigated a-priori. Instead we propose to use pre-existing,
human-readable (and therefore innacurate) 2D floorplans to
localise, requiring no initial mapping session.

It is clear that an accurate map will yield an accurate
localisation, and scan-matching localisation approaches (Fox
et al. 1999; Dellaert et al. 1999) use this fact success-
fully. However, independent localisation algorithms can also
be extremely useful when only inaccurate maps are avail-
able. A clear example of this is the way humans localise
within “theme-park”-like maps that encode coarse infor-
mation using high-level landmarks. While it might not be
possible to localise within these maps with millimetre accu-
racy, these maps (and the techniques that use them) are ideal
for solving problems such as loop closure, global localisa-
tion, etc. This paper attempts to use this idea by combining

pre-existing floorplans with image-based semantic segmen-
tation to provide high-accuracy localisation in 2D.

While it might be desirable to estimate full 3D poses,
recent work by Sattler et al. (2017) demonstrates that large-
scale 3D models are not strictly necessary for accurate
vision-based localisation. Sattler et al. further conclude that
2D-based localisation approaches using coarse maps can be
a good first step towards highly accurate localisation. This
insight is important to this paper, where the aim is to localise
within a 2D floorplan without making assumptions about the
3D structure of the building.

2.1 Monte-Carlo Localisation

MCL can be considered the state-of-the-art for mobile robot
localisation today. Introduced by Dellaert et al. (1999), MCL
is a form of Particle Filter (PF) where each particle is a pose
estimate (and the map is known). It uses a motion model
to propagate particles which in turn causes the weights to
become the observation likelihood given the pose (Thrun
et al. 2006). Re-sampling based on the weights then focuses
computation in areas with more probable pose estimates.

Monte-Carlo Localisation (MCL) was made possible by
the arrival of accurate range-based sensors such as Sound
Navigation And Ranging (SoNAR) and LiDAR. These
Range-BasedMonte-CarloLocalisation (RMCL) approaches
are robust, reliable and still considered state-of-the-art in
many robotic applications. As such, they will be discussed
first below.

Recent advances in computer vision have made vision-
based approaches possible. These approaches, called Vision-
Based Monte-Carlo Localisation (VMCL), typically use
RGB cameras to avoid expensive sensors and will be dis-
cussed second.

Finally, the recent rise in Deep Learning has made
semantic-based approaches possible. These approaches rely
on neural networks to extract semantic information from the
world, and use it to localise. Semantic sensing modalities,
such as the one presented in this paper, have the ability to
revolutionise MCL.

2.1.1 Range-Based Monte-Carlo Localisation (RMCL)

RMCL was first introduced by Fox et al. (1999) and Del-
laert et al. (1999). RMCL improved the Kalman Filter based
state-of-the-art by allowing multi-modal distributions to be
represented. It also solved the computational complexity
of grid-based Markov approaches. More recent approaches,
such as those proposed byKanai et al. (2015), havemoved the
focus of RMCL into 3D. Kanai et al. focus on a pre-existing
3D reconstruction and simulate 3D depth readings at each
particle. In what is probably the closest approach to ours,
Bedkowski and Röhling (2017) use a 3D LiDAR scanner,
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extract normals and use them to segment floors, walls, doors
and edges between labels. They then use an approach based
on Iterative Closest Point (ICP), with added label constraints,
to estimate the observation likelihood. While this seems like
a very promising approach, Bedowski et al. use very sim-
ple heuristics to classify their points (surface normals, point
height, etc.). This work differs from these approaches by
using techniques based on Deep Learning to provide bet-
ter estimates of semantic labels and more robust observation
likelihoods.

2.1.2 Vision-Based Monte-Carlo Localisation (VMCL)

RMCL-based approaches require expensive LiDAR and/or
SoNAR sensors to operate reliably. Instead, Dellaert et al.
(1999) extended their approach to operate using vision-based
sensor models.

VMCLallowed the use of rich visual features and low-cost
sensors, but had limited performance compared to the more
robust LiDAR-based systems. However, with the rising pop-
ularity of RGB-D sensors, more robust vision-based MCL
approaches became possible. Fallon et al. (2012) presented
a robust MCL approach that used a low fidelity a priori map
to localise, but required the space to be traversed by a depth
sensor beforehand. Brubaker et al. (2013) removed the need
to traverse amapwith a sensor, and instead used visual odom-
etry, pre-existing roadmaps and a joint MCL/closed-form
approach in order to localise a moving car. More recently,
visual approaches began to resemble traditional MCL by
localising in an extruded floorplan. Winterhalter et al. (2015)
performed MCL using an RGB-D camera, basing the obser-
vation likelihood on the normals of an extruded floorplan.
Chu et al. (2015) removed the RGB-D requirement, by cre-
ating piecemeal reconstructions and basing the observation
likelihood on direct ICP between these reconstructions and
the extruded floorplan. Similar work by Neubert et al. (2017)
also removed the RGB-D requirement, using synthesised
depth images from the floorplan and comparing the gra-
dient information against an RGB image, allowing purely
monocular localisation. However, these approaches all rely
on geometric information to provide an observation likeli-
hood.

MCL-based approaches tend to be robust, but they operate
entirely on thegeometric informationpresent in thefloorplan.
Therefore, they require depth images directly from sensors
and/or local SLAM-based reconstructions. By contrast, our
approach aims to use non-geometric semantic information
present in the floorplan in order to perform the localisation.

The use of semantic information for indoor localisation
has been enabled by advances in Deep Learning, such as
the approaches of Badrinarayanan et al. (2015), Kendall
et al. (2015) and Shelhamer et al. (2017). More importantly,
approaches like that of Holder et al. (2016) have begun to

take these approaches outdoors. Poschmann et al. (2017),
and the work presented in this paper, attempt to use semantic
information in an MCL context. Poschmann et al. follow a
very similar approach toNeurbert et al. but synthesise seman-
tic images (rather than depth ones) and base the observation
likelihood on photometric consistency with a CNN-based
segmentation method (on an RGB image). However, the
work presented in this paper does not synthesise seman-
tic images but rather uses the semantic segmentation of the
real observation to augment traditional LiDAR-like sensors.
Furthermore, we make no assumptions about the 3D envi-
ronment, and instead rely on RGB observations and a 2D
floorplan.

2.2 Closed-Form Localisation Approaches

While the field of MCL evolved in the robotics commu-
nity, non-MCL-based approaches became more popular in
the vision community. Shotton et al. (2013) used regression
forests to predict the correspondences of every pixel in the
image to a known 3D scene, they then combined this in a
RANdom SAmple and Consensus (RANSAC) approach in
order to solve the camera pose. Melbouci et al. (2016) used
extruded floorplans, but performed local bundle adjustments
instead ofMCL. Caselitz et al. (2016) use a local SLAM sys-
tem to create reconstructions that are then aligned using ICP
to a LiDAR-built 3D map. However, instead of MCL they
optimise the correspondences with a non-linear least squares
approach.

More recent approaches have begun to also look at seman-
tic information. Wang et al. (2015) use text detection from
shop fronts as semantic cues to localise in the floorplan
of a shopping centre. Liu et al. (2015) who use floorplans
as a source of geometric and semantic information, com-
bined with vanishing points, to localise monocular cameras.
These vision-based approaches tend to use more of the non-
geometric information present in the floorplan. However, a
common trend is that assumptionsmust bemade about geom-
etry not present in the floorplan (e.g. ceiling height). The
floorplan is then extruded out into the 3rd dimension to allow
approaches to use the information present in the image.

The proposed approach differs from the approach of
Poschmann et al. (2017), Wang et al. (2015) and Liu et al.
(2015) in two important ways. Firstly, it does not require
an extruded floorplan, opting instead to project the sensory
information down to 2D and localise there. This makes our
approach be able to run in real time. Secondly, it has the
capability of augmenting traditional LiDAR sensors making
it a more generic solution.

We use a CNN-based semantic segmentation (that is
understandable to humans) in order to extract labels that
are inherently present in human-readable floorplans. This
allows us to take all that information and collapse it into
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Fig. 1 a RGB image, b CNN-based semantic labelling and c sample
SeDAR scan within floorplan

a 3-DoF problem, making our approach more tractable
than competing 6-DoF approaches while avoiding additional
assumptions.

3 ProblemDefinition

While there exist many approaches to performMCL, Range-
Based Monte-Carlo Localisation (RMCL) (Winterhalter
et al. 2015; Chu et al. 2015) is widely considered to be the
state-of-the-art localisation method for pre-existing maps.
RMCL is a scan-matching algorithm, it assumes the presence
of a sensor that provides range and bearing tuples across a
scanline. The problem then becomes one of finding the pose
of the robot that makes the sensor observations match the
floorplan. Figure 2a shows a case of the scan being correctly
matched for a correctly localised robot. Conversely, Fig. 2b
shows an incorrectly matched scan for an incorrect pose.

State-of-the-art localisation performs this matching in a
Sequential Monte-Carlo (SMC) (Dellaert et al. 1999) frame-
work, which can be broadly summarised as follows. Firstly,
there is a prediction stage where particles are propagated
using a motion-model, which is normally odometry from
the robot (with Gaussian noise). Secondly, an update phase
where each particle is weighted according to how accurately
the observations align to the map. Finally, a re-sampling step
is performed proportional to the weight of each particle and
the process is then repeated.

More formally, the current pose xt ∈ Xt ⊂ SE(2)
can be estimated as a set of possible pose samples St ={
sit ; i = 1..N

}
given odometry measurements Ut ={

u j ; j = 1..t
}
, sensor measurements Zt =

{
z j ; j = 1..t

}

and a 2D map V. Under the assumption that all odometry
measurements are equally likely, the posterior is calculated
as

(a) Correct (b) Incorrect

Fig. 2 Laser scan matching, the robot is correctly localised when the
observations match the geometry of the map (Thrun 2002)
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which implies that only the most recent odometry and obser-
vations are used (Dellaert et al. 1999). This means that at
each iteration the particles from Pr

(
sit−1

∣∣Zt−1, Ut−1

)
are:

propagatedusing amotionmodel Pr
(
si ′t

∣∣ut , s
i
t−1

)
,weighted

using a sensor model Pr
(
zt

∣∣ si ′t , V
)
and resampled accord-

ing to the posterior Pr
(
sit

∣∣Zt , Ut

)
. Algorithm 1 describes

this process in more detail.

1: function MCL(St−1,ut , zt )
2: St = S

′
t = ∅

3: for i = 1 → N do
4: si ′t ← motion_model(ut , s

i
t−1)

5: wi
t ← sensor_update( zt , s

i ′
t , V)

6: S
′
t ← S

′
t + 〈

si ′t , wi
t

〉

7: end for
8: for i = 1 → N do
9: st ← weighted_sample(S′

t )
10: St ← St + st
11: end for
12: S̄t ← mean(St )
13: return S̄t
14: end function

Algorithm 1: Sequential Monte-Carlo Localisation in a
known floorplan.

As stated previously, in an MCL context the prediction
stage is performed using a motion model. The motion model
is defined by the odometry received from the robot (ut ).
This odometry can be used to “shift” the particles, assigning
a likelihood based on the probability of the final position
given the measured odometry. More formally, particles are
propagated according to ut with Gaussian noise applied such
that

Pr
(
si ′t

∣∣∣ut , s
i
t−1

)
∼ N

(
ut + sit−1, ϒ t

)
(2)
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(a) Original (b) Likelihood Field (c) Semantic

Fig. 3 Original floorplan compared to the likelihood field and the
labelled floorplan

where ϒ t is the covariance of the odometry, and the symbol
∼ impliesPr

(
si ′t

∣∣ut , s
i
t−1

)
is distributed asN (

ut + sit−1, ϒ t

)

meaning Gaussian noise is applied to the linear and angu-
lar components of the odometry. This means the motion
model allows MCL-based approaches to reason about the
noise characteristics of their odometry. While it would be
impossible to fully account for noise in the odometry (due
to wheel slippage, changing model parameters, etc.), a well
tunedmotionmodel allows for a robust estimate. In Sect. 6.1,
the traditional definition of a motion-model is augmented to
include a “ghost factor” that uses semantic information to
influence how particles move through occupied space.

The sensor model is defined by each range-scanner obser-
vation. The probability of each full range-scan ( zt ) can be
estimated under the assumption that each measurement in
the scan is independent of each other. That is,

Pr
(
zt

∣∣∣ si ′t , V
)

=
K∏

k=1

Pr
(
zkt

∣∣∣ si ′t , V
)

(3)

is the likelihood of the putative particle si ′t , where

zt =
{〈

θkt , r
k
t

〉
; k = 1..K

}
(4)

is the set of range and bearing tuples that make up each scan.
Calculating the likelihood can be done two ways, using a
beam model (Thrun et al. 2001) or a likelihood field model
(Thrun 2001).

In the beam model, a raycasting operation is performed.
Starting from the pose of the current particle, a ray is cast
along the bearing angle θkt . The raycasting operation termi-
nates when an occupied cell is reached and the likelihood is
estimated as

Pr
(
zkt

∣∣∣ si ′t , V
)

= e
− (

rkt − rk∗t
)2

2 σ 2
o (5)

where rkt is the range obtained from the sensor and rk∗t is the
distance travelled by the ray.

In the likelihood field model, a distance map is used in
order to avoid the expensive raycasting operation. The dis-
tance map is a Lookup Table (LUT) of the same size as the
floorplan, where each cell contains the distance to the near-
est geometry. This map is estimated similar to a Chamfer
distance (Borgefors 1986), where a search is performed in
a window around each cell and the distance to the closest
occupied cell in the floorplan is stored. When queried, this
distance is converted into a likelihood using Eq. 5. Figure 3
shows the estimated distancemap for a floorplan, the creation
of which will be explored further in Sect. 6.2. This distance
map is only estimated once during initialisation. During run-
time, the endpoint of each measurement can be estimated
directly from the pose, bearing and range. The probability is
then simply related to the distance reported by the LUT.

The raycasting method is (strictly speaking) more closely
related to the sensing modality, as the closest geometry may
not lie along the ray. However, in practice, most robotics
systems use the likelihood field model as it is both faster and
tends to provide better results. This is because the raycasting
operation can report incorrect measurements due to small
pose errors. An example of this is when looking through an
open door, an error of a few centimetres can make the rays
miss the door. This makes the distribution inherently less
smooth.

4 Methodology

Theproblemwith state-of-the-art approaches is that theyonly
use the range information from the sensor, fundamentally
limiting how discriminative each reading can be.

Instead, this paper presents a semantic sensing and local-
isation framework called SeDAR. SeDAR introduces a
likelihood field model that incorporates semantically salient
information into the traditional range-enabled approach. In
an alternative approach, SeDAR combines the raycasting and
likelihood field approaches in a novel formulation which
allows localisationwithout rangemeasurements. Experimen-
tal evaluation shows that SeDAR outperforms traditional
RMCL when using both semantic and depth measure-
ments.When using semantic-onlymeasurements, it is shown
that SeDAR can perform comparably to depth-enabled
approaches.

5 Semantic Labelling and Sensing

Before using the semantic labels to aid in floorplan localisa-
tion, it is necessary to extract them. To do this, a floorplan
is labelled in order to identify semantically salient elements.
These salient elements are then identified in the camera of
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the robot by using a state-of-the-art CNN-based semantic
segmentation algorithm (Kendall et al. 2015).

5.1 Floorplan

RMCL requires a floorplan and/or previously created range-
scan map that is accurate in scale and globally consistent,
this presents a number of challenges. A previously created
range-scan map requires a robust SLAM algorithm such as
GMapping (Grisetti et al. 2007) to be run.This is not ideal as it
forces the robot to perform an initial exploration to construct
a map before localisation can be performed. Moreover, the
SLAM algorithm is also sensitive to noise and the resulting
map is difficult to interpret by humans. Instead of using a
metric-accurate reconstruction, a more flexible and feasible
alternative is using a human-readable floorplan.

RMCL is not robust to differences between the floorplan
andwhat the robot can observe (e.g. inaccuracies, scale varia-
tion and furniture). To overcome these issues, the localisation
is augmented with semantic labels extracted from an existing
floorplan. For the remainder of this section, and without loss
of generality, the labels will be limited to walls, doors and
windows. The reason for this limitation is twofold. Firstly,
they are salient pieces of information that humans naturally
use to localise and are therefore easy to discuss. Secondly,
they are simple to automatically extract from a floorplan
using image processing. In practice, we use simple image
processing techniques along with manual labeling to create
a labeled floorplan. As can be seen in Fig. 3c, these semanti-
cally salient elements have been colour coded to highlight the
different labels. It should be noted, that this limitation will
be lifted in Sect. 7.4, where all the labels in the CNN-based
semantic segmentation algorithm (Kendall et al. 2015) are
used to both construct the floorplan and localise within it.

In order tomake a labelled floorplan readable by the robot,
it must first be converted into an occupancy grid. An occu-
pancy grid is a 2D representation of the world, in which each
cell in the grid has an occupancy probability attached to it.
Any cell that is above a threshold is then considered as being
occupied. Estimating the occupancy of an existing floorplan
is done by taking the normalised greyscale value from the
floorplan image.

The map can then be defined as a set of voxels

V =
{

v m ; m ∈ M

}
(6)

where M is a set of integer 2D positions. Assuming L =
{a, d, w} is the set of possible cell labels (wall, door, win-
dow), each cell is defined as

v m =
〈
vo

m , vw

m , vd
m , va

m

〉
(7)

where vo
m is the occupancy likelihood and v

�

m , where � ∈ L,
denotes the label likelihood. The semantic floorplans pre-
sented in thisworkmaintain occupancy and label likelihoods,
which can then be either thresholded (as in Eq. 14) or used
directly.

Having incorporated the semantic labels into the standard
occupancy grid, it is now necessary to use them in sensing.

5.2 SeDAR Sensor

Extracting semantic labels from a robot-mounted sensor is
one of the most important parts of SeDAR. It is theoretically
possible to directly label range-scans from a LiDAR-based
scanner. In fact, there is a wide range of landmark-based
SLAM systems that use range sensors (Durrant-Whyte et al.
1999). However, there are limitations on the amount of infor-
mation that can be extracted from a range-scan.

Beyond the structure of the environment, the additional
information contained in floorplans pertains to important
architectural features (such as doors and windows). These
architectural features are well defined in terms of their
appearance. Therefore, they are ideally suited to semantic
segmentation of the image.

In SeDAR, labels are extracted from the RGB image only.
This is by design, as it allows the use of cameras that cannot
sense depth. In the following sections, this sensing modality
will be used in a novel MCL framework that does not require
range-based measurements. However, it should be noted that
SeDAR is capable of using range measurements, should they
be available.

If they are used, SeDAR is completely agnostic to the
source of the depth measurements. They can come from a
deep learning-based depth estimation (Laina et al. 2016) or
a dense Structure from Motion (SfM) system (Engel et al.
2013). However, for the purposes of this paper, a simple
RGB-D sensor is used. Either way, the method for parsing
an RGB-D image into a SeDAR scan is the same.

5.2.1 RGB-D to SeDAR

For a low-cost robotic system that uses an RGB-D image as
a proxy for a more expensive LiDAR scanner, a horizontal
depth scanline is typically extracted from the depth image as

zt =
{〈

θkt , r
k
t

〉
; k = 1..K

}
, (8)

where θkt is the angle around the vertical axis and rkt is the
corresponding range. This can be accomplished by looking
exclusively at the depth image.
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(a) RGB Image. (b) Label Image (�kt ).

(c) Depth Image (rkt ). (d) SeDAR Scan.

Fig. 4 Visualisation: sensor input, semantic segmentation and the
resulting SeDAR scan

The angle around the vertical axis, θkt , can be calculated
by

θkt = atan2

(
u − cx

fx

)
(9)

where (u, v), (cx , cy), ( fx , fy) are the pixel coordinates,
principal point and focal length, respectively, of the cam-
era. While it is possible to estimate a second angle along
the vertical axis, this is unnecessary in the case of floorplan
localisation. More importantly, incorporating this informa-
tion into the localisation framework requires assumptions to
be made about the floorplan (e.g. ceiling height). The under-
lying assumption is that the centre scanline corresponds to
casting rays parallel to the floorplan. This implies the cam-
era must be parallel to the ground plane. However, cameras
mounted at an arbitrary Special Orthogonal Space (SO(3))
orientation can still be used assuming that an appropriate
scanline is used. In practice, small errors in the orientation
of the camera are negligible.

The range measurement rkt can be calculated as

rkt =
√√√√

(
dkt (u − cx )

fx

)2

+
(
dkt

(
v − cy

)

fy

)2

+ (
dkt

)2

(10)

where dkt is the current depth measurement at pixel k. At this
point, a traditional range-scan can be emulated. Notice that
in a standard range-scan, all the visible information present
in the RGB image is being discarded.

On the other hand, a SeDAR-scan consists of a set of
bearing, range and label tuples,

zt =
{〈

θkt , r
k
t , �kt

〉
; k = 1..K

}
, (11)

where �kt is the semantic label. While the scanline still dis-
cards a large amount of information in the RGB image, it
is important to note that the methods used to estimate the
label have already used the context the image provides. It
would also possible to look at wider scanlines and provide
likelihoods for each label (rather than a single label). In our
experiments, this has been unnecessary.

In order to estimate the labels, a CNN-based encoder-
decoder network is used, trained on the SUN3D (Xiao et al.
2013) dataset, that can reliably detect doors, walls, floors,
ceilings, furniture and windows. This state-of-the-art seman-
tic segmentation runs at frame-rate on an NVIDIA Titan Xp,
which allows images to be parsed into a SeDAR-scan with
negligible latency. The label �kt is then simply the label at
pixel k.

It is important to note that theCNNhas not been fine-tuned
to any specific task. In fact, this is an important limitation
of the approach presented in this paper. When the seman-
tic segmentation fails, the observations become unreliable.
This means that correct particles can given low scores and
removed from the filter. However, in practice, the CNN
appears to generalise well to most indoor environments.

Figure 4 shows the input images and the resulting SeDAR
scan. Figure 4a shows the RGB image from which the label
image in Fig. 4b is extracted. Figure 4c shows the depth
image. In all of these, the scanline shown in the middle of
the image denotes specific pixel locations where �kt and rkt
are extracted from the label and depth image, respectively.
Finally, Fig. 4d shows the resulting SeDAR scan, where the
scanline can be seen localised within a floorplan. A localised
range-less SeDAR scanline would look similar to this, as
every (

〈
θkt , �kt

〉
) tuple would perform ray-tracing until it hit

an obstacle. Without ray-tracing, the scanline would simply
have no depth. Now that the semantic labels are added into
the map and the sensor, they can be used in a novel MCL
algorithm.

6 Semantic Monte-Carlo Localisation

It has been shown that there is a large amount of easily-
attainable semantic information present in both the floorplan
and the image. This information has been largely ignored in
the MCL literature in favour of range-based approaches.

In this Section, this semantic information is combined into
a novel semantic MCL approach. In the motion model, the
semantic information is used to inform collision models. In
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the sensor model two approaches are presented. The first
introduces a likelihood field model that incorporates seman-
tically salient information into the traditional approach. The
second approach combines the raycasting and likelihoodfield
approaches into a method which allows localisation without
range measurements.

6.1 MotionModel

Equation 2 formalised themotionmodel as Pr
(
si ′t

∣∣ut , s
i
t−1

)
.

However, it is well understood in the literature that the actual
distribution being approximated is Pr

(
si ′t

∣∣ut , s
i
t−1, V

)
. This

encodes the idea that certain motions are more or less likely
depending on the map (e.g. through walls).

Under the assumption that themotion of the robot is small,
it can be shown that

Pr
(
si ′t

∣∣∣ut , s
i
t−1, V

)
= κ Pr

(
si ′t

∣∣∣ut , s
i
t−1

)
Pr

(
si ′t

∣∣∣V
)

(12)

(see e.g. (Thrun 2002)) where κ is a normalising factor and
V is the set containing every cell in the map. This allows the
two likelihoods to be treated independently.

In an occupancy map, the motion Pr
(
si ′t

∣∣ut , s
i
t−1

)
is

defined in the same way as Eq. 2. The prior Pr
(
si ′t

∣∣V
)
is

simply the occupancy likelihood of the cell that contains si ′t ,
that is

Pr
(
si ′t

∣∣∣V
)

= 1 − Pr
(
vo

si ′t

)
(13)

which is an elegant solution in the case where the “floorplan”
was previously built by the robot.

However, this approach becomes problematic when using
human-made floorplans. Human-made floorplans typically
have binary edges (when they are made on a computer) or
edges with image artefacts (when they are scanned into a
computer). This does not reflect what the robot can observe
and can cause issues with localisation. Therefore, most
approaches tend to assumeabinary interpretation of the occu-
pancy. This is done by setting the probability to

Pr
(
vo

si ′t

)
=

{
1 if vo

si ′t
≥ τ o

0 otherwise
(14)

where τ o is a user defined threshold. This thresholding oper-
ation is necessary when the floorplan is not created by the
robot (e.g. using scan-matching). While this makes depth-
based methods perform reliably, it is a crude estimate of
reality. For instance, most humans would not even notice
if a door is a few centimetres away from where it should be.
Issues like this present real problems when particles propa-

gate though doors, as it is possible that the filter will discard
particles as they collide with the edge of the door frame.

Instead, the motion model presented here uses semantic
information to augment this with a ghost factor that allows
particles more leeway in these scenarios. Therefore the pro-
posed prior is

Pr
(
si ′t

∣∣∣V
)

=
(
1 − Pr

(
vo

si ′t

))
e−εg δd (15)

where δd is the distance to the nearest door. While other
labels such as windows can be used, in the case of a ground-
based robot doors are sufficient. The distance, δd , can be
efficiently estimated using a lookup table as defined in
Sect. 6.2.

More importantly, εg is a user defined factor that deter-
mines how harshly this penalty is applied. Setting εg = 0
allows particles to navigate through walls with no penalty,
while very high values approximate Eq. 14. The effects of εg

will be explored in Sect. 7.1.1. This motion model is more
probabilistically accurate than the occupancy model used in
most RMCL approaches, and has the added advantage of
leveraging the high-level semantic information present in the
map.

Having presented a semantically enabledmotionmodel, it
is nownecessary to give the sensormodel the same treatment.

6.2 Sensor Model

The naïve way of incorporating semantic measurements into
the sensor model would be to use the beam model. In this
modality, the raycasting operation would provide not only
the distance travelled by the ray, but also the label of the cell
the ray hit. If the label of the cell and the observation match,
the likelihood of that particle being correct is increased.How-
ever, this approach suffers from the same limitations as the
traditional beam model: it has a distinct lack of smoothness.
On the other hand, the likelihood field model is significantly
smoother, as it provides a gradient between each of the cells.
By contrast, the approach presented here uses a joint method
that can use likelihood fields to incorporate semantic infor-
mation in the presence of semantic labels. More importantly,
it can also use raycasting within a likelihood field in order to
operate without range measurements.

As described in Sect. 3, the likelihood field model calcu-
lates a distance map. For each cell v m , the distance to the
nearest occupied cell

δo
(

m
) = min

m′
∥∥m − m′∥∥ , vo

m′ > τ o (16)

is calculated and stored. When a measurement zkt = 〈
θkt , r

k
t

〉

is received, the endpoint is estimated and used as an index
to the distance map. Assuming a Gaussian error distribution,
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(a) Semantic Floorplan (b) Wall Likelihood Field

(c) Door Likelihood Field (d) Window Likelihood
Field

Fig. 5 Original floorplan compared to the likelihood field for each label

the weight of each particle si ′t can then be estimated as

Prrng
(
zkt

∣∣∣ si ′t , V
)

= e
− δ2o

2 σ 2
o (17)

where δo is the value obtained from the distance map and σ o
is dictated by the noise characteristics of the sensor.However,
this model has three main limitations. Firstly, it makes no use
of the semantic information present in themap. Secondly, the
parameter σ o must be estimated by the user and assumes all
measurements within a scan have the same noise parameters.
Thirdly, it is incapable of operating in the absence of range
measurements.

Instead, as mentioned in Sect. 5.1, this work uses the
semantic labels present in the map to create multiple likeli-
hood fields. For each label present in the floorplan, a distance
map is calculated. This distance map stores the shortest dis-
tance to a cell with the same label.

Formally, for each map cell v m the distance to the nearest
cell of each label is estimated as

δ
�

(
m

) = min
m′

∥∥m − m′∥∥ , v
�

m′ > τ o (18)

where δ
�

∈ {
δa, δd , δw

}
are distances to the nearest wall,

door and window, respectively. Figure 5 shows the distance

maps for each label. For clarity, the argument (m), is omitted
for the remainder of the paper.

This approach overcomes the three limitations of the state-
of-the-art. Firstly, the use of semantic information (Chu et al.
2015; Dellaert et al. 1999; Kanai et al. 2015; Liu et al. 2015;
Winterhalter et al. 2015). Secondly, adapting the sensor noise
parameters to themap (Dellaert et al. 1999; Kanai et al. 2015;
Winterhalter et al. 2015). Thirdly, operation in the absence of
rangemeasurements (Bedkowski andRöhling 2017;Dellaert
et al. 1999; Kanai et al. 2015;Winterhalter et al. 2015). These
points will now be discussed.

6.2.1 Semantic Information

Most localisation approaches (Chu et al. 2015; Dellaert et al.
1999; Kanai et al. 2015; Liu et al. 2015; Winterhalter et al.
2015) do not use any semantic information present in the
map. While approaches such as that of Bedkowski and Röh-
ling (2017) and Poschmann et al. (2017) have begun to use
this information, they either rely on geometric primitives for
their semantic segmentation approach (Bedkowski and Röh-
ling 2017) or rely on synthetic 3D reconstructions of the map
(Poschmann et al. 2017). Contrary to this, SeDAR uses the
semantic information present in the map. When an observa-
tion zkt = 〈

θkt , r
k
t , �kt

〉
is received, the bearing θkt and range

rkt information are used to estimate the endpoint of the scan.
The label �kt is then used to decidewhich semantic likelihood
field to use. Using the endpoint from the previous step, the
label-likelihood can be estimated similarly to Eq. 17,

Prlbl
(
zkt

∣∣∣ si ′t , V
)

= e

− δ2
�

2 σ 2
�

(19)

where δ
�
is the distance to the nearest cell of the relevant

label and σ
�
is the standard deviation (which will be defined

using the label prior). The probability of an observation given
the map and pose can then be estimated as

Pr
(
zkt

∣∣∣ si ′t , V
)

= εo Prrng
(
zkt

∣∣∣ si ′t , V
)
+ε � Prlbl

(
zkt

∣∣∣ si ′t , V
)

(20)

where εo and ε � are user defined weights. When ε � = 0 the
likelihood is the same as standard RMCL. On the other hand,
when εo = 0 the approach uses only the semantic informa-
tion present in the floorplan. These weights are explored and
defined in Sect. 7.1.1. Unlike range scanners, σ

�
cannot be

related to the physical properties of the sensor. Instead, this
standard deviation is estimated directly from the prior of each
label on the map. Defining σ

�
this way has the benefit of not

requiring tuning. However, there is a much more important
effect that must be discussed.
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6.2.2 Semantically Adaptive Standard Deviation

Most approaches (Dellaert et al. 1999;Kanai et al. 2015;Win-
terhalter et al. 2015) rely on hand-tuned parameters for the
standard deviation of the observation likelihood σ o. How-
ever, when a human reads a floorplan, unique landmarks are
the most discriminative features. The more unique a land-
mark, the easier it is to localise using it (because there are
not many areas in the map that contain it). It then follows
that the more rare a landmark, the more discriminative it is
for the purpose of localisation. Indeed, it is easier for a per-
son to localise in a floorplan by the configuration of doors
and windows than it is by the configuration of walls. This
translates into the simple insight: lower priors are more dis-
criminative. Therefore, σ

�
is tied to the prior of each label

not only because it is one less parameter to tune, but because
it implicitly makes observing rare landmarks more beneficial
than common landmarks.

Relating σ
�
to the label prior Pr

(
�
)
controls how

smoothly the distribution decays w.r.t. distance from the cell.
We make the likelihoods more spatially lenient on sparser
labels: the smaller Pr

(
�
)
is, the smoother the decay. In

essence, this allows more discriminative landmarks to con-
tribute towards the localisation from further away.

6.2.3 Range-Less Semantic Scan-Matching

The final, and most important, strength of this approach is
the ability to perform all of the previously described method-
ology in the complete absence of range measurements. Most
approaches (Bedkowski and Röhling 2017; Dellaert et al.
1999; Kanai et al. 2015; Winterhalter et al. 2015) are inca-
pable of operating without the use of range measurements.
Those that are capable of range-less performance (Chu et al.
2015; Liu et al. 2015), rely on strong assumptions about
the geometry (Liu et al. 2015) and/or estimate a proxy for
depth measurements (Chu et al. 2015). Both these cases have
important limitations that are avoided by our semantic scan-
matching.

The approachhas so far been formalisedon the assumption
of either

〈
θkt , r

k
t

〉
tuples (existing approaches) or

〈
θkt , r

k
t , �kt

〉

tuples (SeDAR-based approach). However, our approach is
capable of operating directly on

〈
θkt , �kt

〉
tuples. In other

words, depth measurements are explicitly not added or used.
Incorporating range-less measurements is simple. The

beam and likelihood field models are combined in a novel
approach that avoids the degeneracies that would happen in
traditional RMCL approaches. In Eq. 5, the likelihood of a
ray is estimated using the difference between the range (rkt )
obtained from the sensor and the range (rk∗t ) obtained from
the raycasting operation. Unfortunately, in the absence of a
range-based measurement (rkt ) this is impossible. Using the
standard distance map is also impossible, since the endpoint

of the ray cannot be estimated. Using raycasting in the dis-
tance map also fails similarly: the raycasting terminates on
an occupied cell, implying δo = 0 for every ray cast.

On the other hand, the semantic likelihood fields can still
be used as δ

�
will still have a meaningful and discriminative

value. This operation is called semantic raycasting. For every
zkt = 〈

θkt , �kt
〉
, the raycasting is performed as described in

Sect. 3. However, instead of comparing rkt and rk∗t or using
δo, the label �kt is used to decide what likelihood field to use.
The cost can then be estimated as

Pr
(
zkt

∣∣∣ si ′t , V
)

= Prlbl
(
zkt

∣∣∣ si ′t , V
)

(21)

where Prlbl
(
zkt

∣∣ si ′t , V
)
is defined in equation 19. This

method is essentially a combination of the beam-model and
the likelihood field model. More explicitly, a ray is cast along
the bearing of every observation zkt = 〈

θkt , �kt
〉
tuple. Once

the raycasting hits an occupied cell, we use the occupied
cell’s location to perform a lookup into the likelihood field
corresponding to the observation’s label. This gives us a dis-
tance to the nearest cell with the same label. If the sensor is
correctly localised, every distance should be zero. If it isn’t,
the likelihood fields provide a smooth cost-function towards
the correct pose.

It would be possible to assign binary values (i.e. label
matches or not) to Eq. 21. This approach would make the
observation likelihood directly proportional to the series
of labels along the scanline (i.e. how closely the bear-
ing/label tuplesmatchwhat is observable fromeach particle’s
pose). However, this would be a naïve solution that pro-
vides no smooth gradient to the correct solution. Instead,
this approach uses the angular distribution of labels, com-
bined with distances from the likelihood field, to provide a
smooth cost-function that converges reliably.

The previous Sections have presented a series of methods
to localise a ground-based robot on a pre-existing floorplan.
In the following Section, it will be shown that these methods
are capable of outperforming standard RMCL approaches
when using range-measurements. Moreover, it will be shown
that they provide comparable performance when operating
exclusively on bearing/label tuples from RGB images with-
out range information.

7 Evaluation

This sectionwill evaluate the strengths of the approach.As an
initial step, an evaluation and parameter exploration will be
performed on a dataset consisting of a robot driving around a
building.As a second step, our approachwill be benchmarked
on the popular TUM-RGBD dataset (Sturm et al. 2012).
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(a) Ground Truth (b) Overlay to Floorplan

Fig. 6 Sample trajectory used for evaluation

7.1 Human-Readable Floorplans

Evaluation onour thefirst dataset,whichwill be relased along
with the paper, will focus on three main experiments. Firstly,
a thorough evaluation of the performance of the system for a
single trajectory is performed along with a parameter explo-
ration of SeDAR. This is done in order to give an insight into
the intrinsic characteristics of SeDAR mentioned in Sect. 4.
Secondly, a repeatability experiment is undertaken, where
the performance of multiple similar trajectories is evalu-
ated. This is done in order to demonstrate the robustness and
performance of SeDAR. Finally, an evaluation on a more
challenging hand-drawn map is performed. This experiment
allows us to demonstrate that SeDAR can localise in geomet-
rically inaccurate maps.

In order to evaluate the approach, a dataset will ideally
have several important characteristics. The dataset should
consist of a robot navigating within a human-readable floor-
plan. Human-readability is required to ensure semantic
information is present. The trajectory should be captured
with an RGB-D camera. This is in order to easily extract all
the possible tuple combinations (range, bearing and label).
Finally, the trajectory of the robot should be on the same
plane as the floorplan.

To satisfy these constraints, we created a new dataset
to evaluate our approach on. The floorplan in Fig. 3a is
used because it is large enough for meaningful tests and
has human-readable floorplans available. The dataset was
collected using the popular TurtleBot platform http://www.
turtlebot.com/, as it has a front-facingKinect that can be used
for emulating both LiDAR and SeDAR. The dataset, will be
released along with the publication of this paper.

Normally, the ground-truth trajectory for floorplan local-
isation is either manually estimated [as in Winterhalter et al.
(2015)] or estimated using externalMotionCapture (MoCap)
systems [as in Sturm et al. (2012)]. However, both of these
approaches are limited in scope.Manual ground-truth estima-
tion is time-consuming and impractical. MoCap is expensive
and difficult to calibrate, especially over the large public areas

required for floorplan localisation. In order to overcome these
limitations, a well established RGB-D SLAM system (Labbe
andMichaud 2014) is used to provide an initial estimate. This
estimate is then manually refined, using both a computa-
tionally expensive global optimisation and judicious manual
intervention. While it does not localise within a floorplan, it
does provide an accurate reconstruction and trajectory for the
robot, which can then be registered with the floorplan. Fig-
ure 6a shows a sample trajectory andmap estimated byLabbe
and Michaud (2014), while Fig. 6b shows them overlaid on
the floorplan.

To quantitatively evaluate SeDAR against ground truth,
the Absolute Trajectory Error (ATE) metric presented by
Sturm et al. (2012) is used. ATE is estimated by first reg-
istering the two trajectories using the closed form solution
of Horn (1987), who find a rigid transformation GT

X
that

registers the trajectory Xt to the ground truth Gt . At every
time step t , the ATE can then be estimated as

e g = g−1t GT
X

xt (22)

where gt ∈ Gt and xt ∈ Xt are the current time-aligned
poses of the ground truth and estimated trajectory, respec-
tively. The Root Mean Square Error (RMSE), mean and
median values of this error metric are reported, as these are
indicative of performance over coarse room-level initialisa-
tion. In order to visualise the global localisation process, the
error of each successive pose is shown (error as it varies with
time). Thesemetrics are sufficient to objectively demonstrate
the systems ability to globally localise in a floorplan, while
also being able to measure room-level initialisation perfor-
mance.

Theworkpresentedhere is compared against the extremely
popular MCL approach present in the Robot Operating
System (ROS), called Adaptive Monte Carlo Localisation
(AMCL) (Dellaert et al. 1999). AMCL is the standard MCL
approach used in the robotics community.Any improvements
over this approach are therefore extremely valuable. Further-
more, AdaptiveMonte Carlo Localisation (AMCL) (Dellaert
et al. 1999) is considered to be the state-of-the-art and is
representative of the expected performance of the RMCL
approaches detailed in Sect. 2.1, such as Kanai et al. (2015),
Bedkowski and Röhling (2017), Winterhalter et al. (2015)
and Chu et al. (2015). To demonstrate that our algorithm
can outperform SLAM, we also compare against 2D scan-
matching (Grisetti et al. 2007), monocular (Mur-Artal et al.
2015) and RGB-D (Mur-Artal and Tardós 2017) approaches
in the coarse (room-level) scenario.

In all experiments, any common parameters (such as σ o)
are kept the same. The only parameters varied are ε � , εo and
εg.
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Fig. 7 Semantic floorplan localisation, room-level initialisation (Color
figure online)

7.1.1 Detailed Analysis of a Single Trajectory

In order to establish a baseline of performance, and to explore
the characteristics of SeDAR discussed in this paper, we first
present a thorough evaluation of a single trajectory on a clean
floorplan. This trajectory, seen in Fig. 6, covers multiple
rooms and corridors and is therefore a representative sam-
ple to evaluate on.

As a first experiment, a room-level initialisation is given
to both AMCL and the proposed approach. This means that
the uncertainty of the pose estimate, roughly corresponds to
telling the robot what room in the floorplan it is in. More
explicitly, the standard deviations on the pose estimate are of
2.0m in (x, y) and 2.0 rad in θ . The systems then ran with a
maximum of 1000 particles (minimum 250) placed around
the covariance ellipse. The error is recorded as each new
image in the dataset is added. For the SLAM approaches, it is
not necessary to define an initialisation. However, it was nec-
essary to increase the number of features onORB-SLAM2 so
that the tracking could be perfomed successfully. Apart from
this, all SLAM algorithms ran with their default parameters.

Figure 7 compares four distinct scenarios against AMCL.
Of these four scenarios, two use the range measurements
from the Microsoft Kinect (blue lines) and two use only the
RGB image (red lines).

The first range-enabled scenario uses the range measure-
ments to estimate the endpoint of the measurement (and
therefore the index in the distance map) and sets the range
and label weights to (εo = 0.0 and ε � = 1.0), respectively.
Thismeans that while the range information is used to inform
the lookup in the distance map, the costs are only computed
using the labels. The second range-enabled scenario performs
a weighted combination (εo = 0.25, ε � = 0.75) of both

the semantic and traditional approaches. It is interesting to
note that this performs slightly worse than the label-only
approach, likely because the geometric cues in a hallway
environment are relatively weak compared to semantic cues.

In terms of the ray-based version of this approach, Eq. 21
is used. This means there are no parameters to set. Instead, a
mild ghost factor (εg = 3.0) and a harsh one (εg = 7.0) are
shown.

Since coarse room-level initialisation is an easier problem
than global initialisation, the advantages of the range-enabled
version of this approach are harder to see compared to state-
of-the-art. However, it is important to note how closely the
ray-based version of the approach performs to the rest of the
scenarios despite using no depth data. Apart from a couple
of peaks, the ray-based method essentially performs at the
same level as AMCL. This becomes even more noticeable
in Table 1, where it is clear that range-based semantic MCL
(using only the labels) outperforms state of the art, while the
ray-based εg = 3.0 version lags closely behind. The reason
εg = 3.0 performs better than εg = 7.0 is because small
errors in the pose can cause the robot to “clip” a wall as it
goes through the door. Since εg = 3.0 ismore lenient on these
scenarios, it is able to outperform the harsher ghost factors.

Table 1 also shows comparison against three SLAM algo-
rithms. It is clear that monocular SLAM does not perform
well in this scenario. This is because there are large areas
of plain textureless regions where tracking is lost. RGB-D
SLAMperforms better in this scenario, as it can rely on depth
cues to maintain tracking. Finally, 2D SLAM also performs
well (although slightly worse than RGB-D). However, in all
cases, SeDAR outperforms the performance of SLAM algo-
rithms.Not only does the range-enabled SeDARsignificantly
outperform SLAM, but the ray-based approach also man-
ages to outperform both 2D and 3D depth-enabled SLAM.
These results present a clear indication that SeDAR-based
localisation approaches are capable of outperforming SLAM
methods.

In order to give further context to these results, the results
of state-of-the-art approaches by Winterhalter et al. (2015)
and Chu et al. (2015) are mentioned here. These approaches
are chosen as they present the most comparable methods
in the literature. Although direct comparison is not possi-
ble (due to differences in the approach, and the availability
of code and datasets) an effort has been made to present
meaningful metrics.Winterhalter et al. (2015) report (in their
paper) an error of 0.2–0.5m. Winterhalter et al. are estimat-
ing a 6-DoF pose, which might make this seem like an unfair
comparison. However, they do this on a much smaller room-
sized dataset meaning the error is relatively large.While they
perform experiments on larger floorplan-level datasets, the
errors reported aremuch noisier ranging between 0.2 and 2m
on the coarse initialisation and 0.2–8m on the global initiali-
sation. Chu et al. (2015) report (in their paper) amean error of
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Table 1 Room-level initialisation

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 0.24 0.21 0.20 0.11 0.04 0.95

GMapping Grisetti et al. (2007) 0.71 0.63 0.57 0.31 0.32 1.43

ORB_SLAM2 (Mono) Mur-Artal et al. (2015) 8.67 7.90 6.48 3.58 2.48 15.47

ORB_SLAM2 (RGB-D) Mur-Artal and Tardós (2017) 0.43 0.40 0.38 0.16 0.09 0.73

Range (label only) 0.19 0.16 0.14 0.10 0.02 0.55

Range (combined) 0.22 0.19 0.17 0.11 0.04 0.62

Rays (εg = 3.0) 0.40 0.34 0.27 0.22 0.07 1.51

Rays (εg = 7.0) 0.58 0.45 0.38 0.37 0.02 2.23

Bold values indicate best performance

(a) Room-Level Initialisation (b) AMCL [10]

(c) SeDAR (Range-Based) (d) SeDAR (Ray-Based)

Fig. 8 Qualitative view of Localisation in different modalities

0.53mon the TUMindoor dataset (Huitl et al. 2012), which is
similar to the one presented here. These results present fur-
ther evidence that the SeDAR-based localisation approach
can outperform the state-of-the-art localisation approaches.

In terms of qualitative evaluation, both the convergence
behaviour and the estimated path of MCL-based approaches
is shown.

The convergence behaviour can be seen in Fig. 8. Here,
Fig. 8a shows how the filter is initialised to roughly corre-
spond to the room the robot is in. As the robot starts moving,
it can be seen that AMCL (Fig. 8b), the range-based ver-
sion of SeDAR (Fig. 8c) and the ray-based version (Fig. 8d)
converge. Notice that while the ray-based approach has a
predictably larger variance on the particles, the filter has suc-
cessfully localised. This can be seen from the fact that the
Kinect point cloud is properly aligned with the floorplan. It

(a) AMCL [10]

(b) SeDAR (Range-Based) Path (c) SeDAR (Ray-Based) Path

Fig. 9 Estimated path from coarse room-level initialisations (Color
figure online)

is important to note that although the Kinect point cloud is
present for visualisation in the ray-based method, the depth
is not used.

The estimated paths can be seen in Fig. 9, where the red
path is the estimated path and green is the ground truth.
Figure 9a shows the state-of-the-art, which struggles to con-
verge at the beginning of the sequence (marked by a blue
circle). It can be seen that the range-based approach in Fig. 9b
(combined label and range), converges more quickly and
maintains a similar performance to AMCL. It only slightly
deviates from the path at the end of the ambiguous corri-
dor on the left, which also happens to AMCL. It can also be
seen that the ray-based approach performs very well. While
it takes longer to converge, as can be seen by the estimated
trajectory in Fig. 9c, it corrects itself and only deviates from
the path in areas of large uncertainty (like long corridors).
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Fig. 10 Semantic floorplan localisation, global initialisation

These experiments show that SeDAR-basedMCL is capa-
ble of operating when initialised at the coarse room-level. It
is now important to discuss how discriminative SeDAR is
when there is no initial pose estimate provided to the system.

Having evaluated against SLAM-based approaches in a
local initialisation scenario, the focus will now be on the abil-
ity of SeDAR-based MCL to perform global localisation. In
these experiments, the system is given no indication of where
in the map the robot is. Instead, a maximum of 50, 000 parti-
cles (minimum 15, 000) are placed over the entire floorplan.
Figure 10 shows the same four scenarios as in the previ-
ous section. The thin line is the state-of-the-art method, the
two lines above it represent range-based methods, while the
two below represent ray-based methods. For the range-based
scenarios (blue, bottom two lines) it can be seen that using
only the label information (εo = 0.0, ε � = 1.00) con-
sistently outperforms the state of the art, both in terms of
how quickly the values converge to a final result and the
actual error on convergence. This shows that SeDAR used
in an MCL context is more discriminative than the standard
occupancy maps in RMCL. The second range-based mea-
surement (εo = 0.25, ε � = 0.75) significantly outperforms
all other approaches. In this case, the strong geometric cues
present in the dataset are helping the particle filter converge
faster (therefore skewing the result in favour of the combined
method).

In terms of the ray-based version of the approach (red
lines), two scenarios are compared. A mild ghost factor
(εg = 3.0) and a harsh one (εg = 7.0). These versions
of the approach both provide comparable performance to
the state-of-the-art. It is important to emphasise that this
approach uses absolutely no range and/or depth measure-
ments. As such, comparing against depth-based systems is
inherently unfair. Still, SeDAR ray-based approaches com-

pare favourably to AMCL. In terms of convergence, the mild
ghost factor εg = 3.0 gets to within several meters accuracy
even quicker than AMCL, at which point the convergence
rate slows down and is overtaken by AMCL. The steady state
performance is also comparable.While the performance tem-
porarily degrades, it manages to recover and keep a steady
error rate throughout the whole run. On the other hand, the
harsher ghost factor εg = 7.0 takes longer to converge, but
remains steady and eventually outperforms the milder ghost
factor. Table 2 shows the RMSE, error along with other
statistics. In this case, the combined range and label method
performs best.

As before, qualitative analysis can be provided by looking
at the convergence behaviour and the estimated paths.

In order to visualise the convergence behaviour, Fig. 11a
shows a series of time steps during the initialisation of the
filters. On the first image, the particles have been spread over
the ground floor of a (49m×49m) office area. In this dataset,
the robot is looking directly at a door during the beginning
of the sequence. Therefore, in Fig. 11b the filter converges
with particles looking at doors that are a similar distance
away. The robot then proceeds to move through the doors.
Going through the door means the filter converges signifi-
cantly faster as it implicitly uses the ghost factor in themotion
model. It also gives the robot a more unique distribution of
doors (on a corner), which makes the filter converge quickly.
This is shown in Fig. 11c.

The estimated and ground truth paths can be seen in
Fig. 12, where the circled part of the trajectory denotes the
point of convergence. It can be seen that AMCL takes longer
to converge (further away from the corner room) than the
range-based approach. More importantly, it can be seen that
the range-based approach suffers no noticeable degradation
in the estimated trajectory over the room-level initialisation.
On the other hand, the performance of the ray-based method
degradesmore noticeably. This is because the filter converges
in a long corridor with ambiguous label distributions (doors
left and right are similarly spaced). However, once the robot
turns around the system recovers and performs comparably
to the range-based approach.

As mentioned previously, entering or exiting rooms helps
the filter converge because it can use the ghost factor in the
motion model. The following experiments, evaluate how the
ghost factor affects the performance of the approach.

The effect of the ghost factor can be measured in a similar
way to the overall filter performance. Results show that the
ghost factor provides more discriminative information when
it is not defined in a binary fashion. This is shown in the
label-only scenario for both the range-based and ray-based
approaches, in both the global and coarse room-level initiali-
sation. Figure 13 shows the effect of varying the ghost factor
during global initialisation. It can be seen that not penalis-
ing particles going through walls, (εg = 0), is not a good
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Table 2 Global initialisation Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 7.31 2.26 0.20 6.95 0.028 35.45

Range (label only) 6.71 2.59 1.31 6.20 1.15 38.60

Range (combined) 4.78 1.69 0.69 4.47 0.43 31.19

Rays (εg = 3.0) 7.74 4.36 2.46 6.40 1.07 27.55

Rays (εg = 7.0) 8.09 4.49 2.22 6.73 1.61 28.47

Bold values indicate best performance

(a) Global Initialisation (b) Looking at Doors (c) Converged

Fig. 11 Qualitative view of localisation in different modalities

(a) AMCL Path (b) SeDAR (Range-Based) Path (c) SeDAR (Ray-Based) Path

Fig. 12 Estimated path from global initialisations

0 50 100 150 200

Time (s)

0

1

2

3

4

5

6

E
rr

or
 (

m
)

Range Ghost Factors: o = 0, = 1.0

G = 0.0
G = 3.0
G = 5.0
G = 7.0

(a) Range-Based

0 50 100 150 200

Time (s)

0

5

10

15

20

25

30

E
rr

or
 (

m
)

Ray Ghost Factors: o = 0, = 1.0

G = 0.0
G = 3.0
G = 5.0
G = 7.0

(b) Ray-Based

Fig. 13 Different ghost factors (εg), global initialisation

choice. This makes sense, as there is very little to be gained
fromallowing particles to traverse occupied cellswithout any
consequence. It follows that the ghost factor should be set as

Table 3 Global ATE for different ghost factors

Ghost factor (εg) Range (labels) Range (weighted) Rays

Average trajectory error (RMSE)

0.0 10.88 10.13 11.71

3.0 6.71 4.78 7.74

5.0 6.97 6.30 9.54

7.0 7.19 6.10 8.09

Bold values indicate best performance

high as possible. However, setting the ghost factor to a large
value (εg = 7.0), which corresponds to reducing the proba-
bility by 95% at 0.43m, does not provide the best results.
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Table 4 Room-level ATE for different ghost factors

Ghost factor (εg) Range (labels) Range (weighted) Rays

Average trajectory error (RMSE)

0.0 0.25 0.27 1.20

3.0 0.24 0.25 0.40

5.0 0.22 0.24 0.70

7.0 0.19 0.22 0.58

Bold values indicate best performance
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Fig. 14 Different ghost factors (εg), coarse room-level initialisation

While it might seem intuitive to assume that a higher εg

will always be better, this is not the case. High values of the
ghost factor correspond to a binary interpretation of occu-
pancy which makes MCL systems unstable in the presence
of discrepancies between the map and the environment. This
happens because otherwise correct particles can clip door
edges and be completely eliminated from the system.A harsh
ghost factor also exacerbates problemswith a limited number
of particles. In fact, εg = 3.0, corresponding to a 95% reduc-
tion at 1.0m, consistently showed the best results in all of the
global initialisation experiments, as can be seen in Table 3.

In terms of room-level initialisation, having an aggressive
ghost factor is more in line with the initial intuition. Table 4
shows that for both of the range-based scenarios, εg = 7.0
provides the best results. This is because coarse room-level
initialisation in the presence of range-based measurements
is a much easier problem to solve. As such, the problem of
particles “clipping” edges of doors is less of an issue.

On the other hand, the ray-based scenario still prefers a
milder ghost factor of εg = 3.0. In this scenario, inaccuracies
in both the map and the sensing modalities allow for other-
wise correct particles to be heavily penalised by an aggressive
ghost factor. Both of these results are reflected in Figs. 14a
and 14b.

These results allow a single conclusion. The ghost factor
must be tuned to the expected amount of noise in the map
and sensing modality. Aggressive ghost factors can be used
in cases where the pre-existing map is accurate and densely
sampled, such as the case where the map was collected by
the same sensor being used to localise (i.e. SLAM). On the

Fig. 15 Same trajectory repeated five times

other hand, in the case where there are expected differences
betweenwhat the robot is able to observe (e.g. furniture, scale
errors, etc.), it is more beneficial to provide a milder ghost
factor in order to be more lenient on small pose errors.

7.2 Cross-Trajectory Performance

In the previous section, we used a single trajectory to
showcase the performance characteristics of SeDAR. It
allowed us to gain important insights into the way it operates.
In this section, we will aim to demonstrate that the perfor-
mance is not limited to a single trajectory.

We do this by evaluating our performance on five different
trajectories. In a global initialisation scenario, the stochastic
nature of MCL approaches creates large variability in the
ATE during initialisation. Therefore, using the room-level
initialisation allows us to more meaningfully assess the per-
formance on multiple trajectories.

The trajectories, shown in Fig. 15, are captured on a sim-
ilar route to allow for direct comparison. However, they are
captured at very different times, meaning they contain large
variability in the visual domain. These trajectories include
static and dynamic obstacles, people, changing geometry
and other difficulties. They therefore present a challenge
for state-of-the-art MCL and SLAM approaches, which nor-
mally assume a static map.

In Table 5we show the localisation performance of several
methods accumulated over all five trajectories. The average
value for each metric is presented, with its standard devia-
tion shown in parenthesis. It can be seen that range-based
SeDAR outperforms all competing approaches by a signif-
icant margin. More importantly, the ray-based version of
SeDAR also significantly outperforms AMCL and monoc-
ular SLAM while performing comparably to RGB-D and
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Table 5 Coarse room-level initialisation (multiple trajectories)

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 3.66 (6.38) 2.86 (5.12) 1.93 (3.38) 2.25 (3.83) 0.77 (1.50) 11.53 (17.55)

GMapping Grisetti et al. (2007) 0.57 (0.38) 0.51 (0.35) 0.50 (0.40) 0.22 (0.17) 0.25 (0.23) 0.84 (0.54)

ORB_SLAM2 (Mono) Mur-Artal et al. (2015) 10.41 (0.69) 9.35 (0.54) 8.14 (1.07) 4.55 (0.63) 2.64 (0.68) 20.85 (1.97)

ORB_SLAM2 (RGB-D) Mur-Artal and Tardós (2017) 0.57 (0.27) 0.49 (0.20) 0.44 (0.09) 0.29 (0.20) 0.13 (0.03) 1.22 (0.78)

PoseNet Kendall et al. (2015) 6.78 (0.54) 5.04 (0.53) 3.45 (0.44) 4.53 (0.36) 0.55 (0.23) 23.00 (1.66)

PoseLSTM Walch et al. (2017) 6.76 (0.46) 4.85 (0.58) 3.36 (0.61) 4.68 (0.42) 0.53 (0.25) 24.72 (1.49)

Range (label only) 0.33 (0.04) 0.29 (0.04) 0.27 (0.04) 0.15 (0.01) 0.04 (0.03) 0.96 (0.11)

Range (combined) 0.38 (0.05) 0.33 (0.06) 0.29 (0.08) 0.18 (0.03) 0.06 (0.07) 1.09 (0.19)

Rays (εg = 3.0) 0.85 (0.21) 0.72 (0.18) 0.65 (0.14) 0.44 (0.11) 0.09 (0.05) 2.27 (0.55)

Rays (εg = 7.0) 1.65 (0.83) 1.42 (0.74) 1.26 (0.62) 0.83 (0.41) 0.26 (0.33) 3.92 (2.05)

Bold values indicate best performance

(a) AMCL Path 1 (b) AMCL Path 2 (c) AMCL Path 3 (d) AMCL Path 4 (e) AMCL Path 5

Fig. 16 Estimated paths from coarse room-level initialisations

(a) SeDAR Range Path 1 (b) SeDAR Range Path 2 (c) SeDAR Range Path 3 (d) SeDAR Range Path 4 (e) SeDAR Range Path 5

Fig. 17 Estimated path from coarse room-level initialisations

(a) SeDAR Ray Path 1 (b) SeDAR Ray Path 2 (c) SeDAR Ray Path 3 (d) SeDAR Ray Path 4 (e) SeDAR Ray Path 5

Fig. 18 Estimated path from coarse room-level initialisations
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scan-matching SLAM. Fundamentally, this means that there
exist scenarios where geometric measurements are inferior
to semantic understanding without depth.

Wealso compare against a several learning-based approach
(PoseNet (Kendall et al. 2015) and PoseLSTM (Walch et al.
2017)). To enable us to perform a meaningful comparison,
we evaluate the ATE of PoseNet and PoseLSTM trained
on the original trajectory consisting of 1128 images with
ground truth pose. The algorithms are then tested on each of
the 5 unseen pose trajectories. The results shown in Table 5
demonstrate that SeDAR (Range and Ray) can outperform
PoseNet and PoseLSTM. This can be explained by the fact
that PoseNet andPoseLSTMmaintain a single estimate of the
pose, while SeDAR-based approaches can maintain multi-
nomial distributions. However, it would be interesting to
explore hybrid approaches where PoseNet-like localisation
approaches can be used to initialise an MCL-like approach.

As seen in Fig. 16, AMCL does not perform well in this
scenario because it struggles to initialise properly in sev-
eral of the trajectories. This happens due to AMCL’s naïve
use of the floorplan. In SeDAR, the semantic information is
inherently leveraged, as shown in Fig. 12b, in order to aid
initialisation. By contrast, AMCL can only reason about the
geometry of the scene which causes it to fall into local min-
ima (as in Fig. 16b).

It is clear that correctly initialised AMCL should out-
perform ray-based SeDAR (but not range-based). However,
ray-based SeDAR can offer more consistently correct initial-
isations despite the lack of depth information. Qualitatively,
both range (Fig. 17) and ray-based (Fig. 18) SeDAR have
much more consistent trajectories. While ray-based SeDAR
is liable to noisier paths, it is still capable of accuratelyfinding
the correct path in all five trajectories. This implies that the
semantic cues present in the floorplan are inherently more
discriminative than the traditional geometric cues used by
AMCL.

SLAM approaches do not suffer with incorrect localisa-
tion problems in the same way that AMCL does. However,
monocular SLAMagain struggles tomaintain tracking in dif-
ficult indoor trajectories that include texture-less regions. On
the the hand, RGB-D and scan-matching SLAM algorithms
suffer with problems due to loop closure which means their
trajectory estimates drift and introduce errors.Bycomparison
both range and ray based SeDAR do not suffer with problems
due to tracking or loop closures. This highlights an impor-
tant strength of 2D localisation algorithms: they can leverage
pre-existingmaps.Our approach does not need to traverse the
environment once before it can localise reliably within it.

7.3 Inaccurate Hand-DrawnMap

The semantic cues in the floorplan are so discriminative,
that it is possible to use them for localisation even when

Fig. 19 Crude, hand-drawn floorplan

the geometric characteristics are severely compromised. To
demonstrate this, we use a crudely hand-drawn version of the
floorplan in the same multi-trajectory benchmark.

This inaccurate version of the world, seen in Fig. 19,
presents a scenario where the geometry of the scene is com-
promised but the semantic elements are not. To us, the image
might look similar to the original floorplan because we focus
on the unaltered semantic elements. To a robot, this image
presents an important deviation from the geometrically accu-
rate floorplan used in previous experiments. This effect is
reflected in the performance of the strictly-geometricAMCL.

In the previous section, we used a coarse initialisation in
order to benchmark the trajectories. In this case, we are inter-
ested in benchmarking the localisation performance within
the hand-drawnmap.As such, a global localisationwill allow
us to explore how discriminative semantic and geometric
cues are. Furthermore, since themap is inherently inaccurate,
any detail in the ground truth will be lost (due to ambiguity
with the map).

In Table 6, it is again shown that range-based SeDAR
outperforms the state-of-the-art by a significant margin. On
the other hand, the ray-based version performs comparably
(although with much tighter margins) which implies a more
consistent behaviour. The reason range-based approaches
performbetter, and ray-based approaches aremore consistent
is the same. As mentioned before, the geometric elements in
this map are simply not enough for accurate localisation. The
semantic elements must be used in order to achieve reason-
able performance.

Qualitatively, the performance of these methods can be
more closely evaluated. Figures 20, 21 and22 show the global
localisation trajectory once it has converged. In Fig. 20, it
can be seen that AMCL never actually converges to the right
location. This means that AMCL has correctly localised in
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Table 6 Global initialisation (drawn map)

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 11.18 (4.29) 8.57 (4.86) 7.31 (5.12) 6.69 (1.23) 0.98 (0.71) 30.39 (3.64)

Range (label only) 7.26 (4.06) 4.63 (4.30) 3.76 (4.76) 5.18 (1.57) 0.78 (0.80) 30.00(2.55)

Range (combined) 4.64 (1.95) 2.48 (1.43) 1.39 (0.65) 3.86 (1.49) 0.33 (0.17) 27.08 (5.96)

Rays (εg = 3.0) 11.39 (1.65) 9.72 (2.30) 8.30 (3.21) 5.67 (0.77) 2.09 (0.32) 25.83 (4.38)

Rays(εg = 7.0) 11.24 (2.22) 8.97 (2.74) 7.40 (3.75) 6.57 (0.35) 1.32 (0.95) 28.91 (2.08)

Bold values indicate best performance

(a) AMCL Path 1
Incorrect Localisation

(b) AMCL Path 2:
Initialisation Fail

(c) AMCL Path 3:
Incorrect Localisation

(d) AMCL Path 4:
Initialisation Fail

(e) AMCL Path 5:
Initialisation Fail

Fig. 20 Estimated AMCL path from global initialisations

(a) SeDAR Range Path 1:
Initialisation Fail

(b) SeDAR Range Path 2:
Initialisation Fail

(c) SeDAR Range Path 3:
Correct

(d) SeDAR Range Path 4:
Correct

(e) SeDAR Range Path 5:
Correct

Fig. 21 Estimated SeDAR Range path from global initialisations

(a) SeDAR Ray Path 1:
Correct

(b) SeDAR Ray Path 2:
Noisy Path

(c) SeDAR Ray Path 3:
Correct

(d) SeDAR Ray Path 4:
Correct

(e) SeDAR Ray Path 5:
Correct

Fig. 22 Estimated SeDAR Ray path from global initialisations

zero of the five trajectories. In fact, the reason its accuracy
is even comparable to ray-based SeDAR is due to the reg-
istration step in ATE. More explicitly, AMCL finds a local
minima early and relies on the odometry to provide an “accu-

rate” trajectory in the wrong location. By contrast, SeDAR
takes longer to converge but generally finds the correct loca-
tion. Figure 21 shows that range-based SeDAR correctly
localises in three out of five trajectories. Finally, Fig. 22
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(a) Occupancy Map (b) Semantic Map

Fig. 23 Maps created using ground truth poses and scan data

correctly localises in four out of five trajectories (and is
extremely close in the fifth). It is important to stress that ray-
based SeDAR actually finds the correct position of the robot
more accurately and consistently than both range-enabled
approaches.

This type of behaviour implies that SeDAR has a higher
level of understanding than AMCL. Our approach is capa-
ble of ignoring geometrically local minima because the
semantic elements do not support it. This higher-level rea-
soning is an important step towards localisation on a human
level.

7.4 Benchmark Evaluation

So far, SeDAR-based localisation has been demonstrated
to outperform both MCL and SLAM state-of-the-art algo-
rithms on a custom dataset. In this section, we will aim to
evaluate SeDARonawell-knownSLAMdataset (Sturmet al.
2012). The evaluation will be performed against the same
algorithms (Dellaert et al. 1999; Grisetti et al. 2007; Mur-
Artal et al. 2015; Mur-Artal and Tardós 2017) as used in the
previous dataset.

The TUM-RGBD (Sturm et al. 2012) dataset is a well
established benchmark that contains many different trajecto-
ries. As part of this dataset, a Robot SLAMcategory captured
on a Pioneer2 is included. Since our algorithm requires pla-
nar trajectories and a horizontal camera, we use this subset
of the benchmark in our evaluation. The trajectories used are
known as Pioneer_360, Pioneer_Slam, Pioneer_Slam2 and
Pioneer_Slam3. An occupancy and semantic floorplan of the
area the robot navigates were also created in order to enable
evaluation. These maps can be seen in Fig. 23. It should be
noted that SeDAR, AMCL (Dellaert et al. 1999) and GMap-
ping (Grisetti et al. 2007) all exploit the planar constraint
present in the dataset. ORB_SLAM2 (Mono and RGBD)
(Mur-Artal et al. 2015; Mur-Artal and Tardós 2017) does
not have this constraint. It should also be noted that SLAM
approaches (Grisetti et al. 2007; Mur-Artal et al. 2015; Mur-
Artal and Tardós 2017) do not have prior knowledge of the
environment.

Tables 7, 8, 9 and 10 show the results on Pioneer_360,
Pioneer_Slam, Pioneer_Slam2 and Pioneer_Slam3, respec-
tively. In Pioneer_360, Pioneer_Slam, Pioneer_Slam3, it
is clear that range-based SeDAR outperforms all other
approaches. It is also important to notice that ray-based
SeDAR also outperforms monocular SLAM and performs
similar to the depth-based approaches such as AMCL. The
only exception to this is during Pioneer_Slam2, where
monocular SLAMoutperforms ray-based SeDAR. However,
this is an extremely challenging sequence for monocular
SLAM the system constantly looses tracking due to motion
blur and low textures. In order to get these numbers, only
partial trajectories were used (as it was impossible to obtain
full sequences on monocular slam). Even then, the system
required constant monitoring to ensure tracking was not lost.
On the other hand, SeDAR reports a position for every pose in
the trajectory. This means that SeDAR performs much better
than monocular SLAM.

Similarly, in Pioneer_Slam2 AMCL outperforms overall.
This is due to the fact that errors in the semantic segmen-
tation network make the label estimates in SeDAR noisy.
Comparably, the depth estimates from an RGB-D camera
are less noisy. This is a known limitation of this approach,
as we do not fine-tune the network to any scenario. This is
further evidenced by the much-higher error on the ray-based
approach in this sequence, where the labels are the only cue
available for localisation. However, semantic segmentation
is a fast moving field, and improvements to the segmenta-
tion would quickly translate to increased performance for
SeDAR.

7.5 Timing

The approach presented here makes the conscious decision
to collapse the 3D world into a 2D representation. This has
very noticeable effects to the computational complexity, and
therefore speed, of the approach.

The speed of this approach was evaluated on a machine
equipped with an Intel Xeon X5550 (2.67GHz) and an
NVidia Titan X (Maxwell). OpenMP was used for threading
expensive for-loops (such as the raycasting). During room-
level initialisation, or once the system has converged, the
approach can run with 250 particles in 10ms, leaving more
than enough time to process the images from the Kinect into
a SeDAR scan. Transforming the RGB images into seman-
tic labels is the most extensive operation, taking on average
120ms. Thismeans that a converged filter can run at 8–10 fps.
When performing global localisation, the approach can inte-
grate a new sensor update, using 50, 000 particles, in 2.25 s.
This delay does not impact the ability of the system to con-
verge, asmostMCLapproaches requiremotion between each
sensor integration, meaning the effective rate is much lower
than the sensor output.

123



International Journal of Computer Vision (2020) 128:1286–1310 1307

Table 7 TUM-RGBD Pioneer_360

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 0.313 0.207 0.108 0.235 0.020 1.179

GMapping Grisetti et al. (2007) 0.917 0.817 0.738 0.418 0.121 1.960

ORB_SLAM2 (Mono) Mur-Artal et al. (2015) 0.756 0.673 0.566 0.343 0.200 1.579

ORB_SLAM2 (RGB-D) Mur-Artal and Tardós (2017) 0.161 0.135 0.123 0.088 0.011 0.472

Range (depth only) 0.384 0.170 0.078 0.345 0.014 2.113

Range (label only) 0.154 0.133 0.120 0.079 0.014 0.414

Range (combined) 0.115 0.088 0.060 0.074 0.016 0.349

Rays ((εg = 3.0)) 0.436 0.340 0.274 0.272 0.045 1.522

Rays ((εg = 5.0)) 0.256 0.191 0.148 0.170 0.012 1.007

Bold values indicate best performance

Table 8 TUM-RGBD Pioneer_Slam

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 0.162 0.145 0.140 0.073 0.020 0.383

GMapping Grisetti et al. (2007) 0.900 0.717 0.581 0.544 0.024 2.433

ORB_SLAM2 (Mono) Mur-Artal et al. (2015) 2.076 1.948 1.969 0.717 0.168 3.645

ORB_SLAM2 (RGB-D) Mur-Artal and Tardós (2017) 0.287 0.269 0.262 0.100 0.018 0.718

Range (depth only) 0.157 0.137 0.122 0.076 0.017 0.424

Range (label only) 0.181 0.161 0.147 0.084 0.016 0.388

Range (combined) 0.150 0.129 0.118 0.077 0.002 0.344

Rays ((εg = 3.0)) 0.783 0.595 0.423 0.508 0.109 2.222

Rays ((εg = 5.0)) 0.911 0.782 0.651 0.468 0.021 1.977

Bold values indicate best performance

Table 9 TUM-RGBD Pioneer_Slam2

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 0.147 0.123 0.110 0.080 0.007 0.373

GMapping Grisetti et al. (2007) 1.063 0.857 0.635 0.629 0.118 2.703

ORB_SLAM2 (Mono) Mur-Artal et al. (2015) 1.442 1.317 1.157 0.586 0.326 2.194

ORB_SLAM2 (RGB-D) Mur-Artal and Tardós (2017) 0.166 0.150 0.125 0.071 0.070 0.345

Range (depth only) 0.175 0.166 0.165 0.055 0.036 0.357

Range (label only) 0.287 0.244 0.228 0.151 0.061 1.651

Range (combined) 0.160 0.145 0.130 0.068 0.008 0.338

Rays ((εg = 3.0)) 1.707 1.465 1.184 0.877 0.040 3.817

Rays ((εg = 5.0)) 1.571 1.318 1.004 0.855 0.024 3.643

Bold values indicate best performance
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Table 10 TUM-RGBD Pioneer_Slam3

Approach RMSE Mean Median SD Min Max

Average trajectory error (m)

AMCL Dellaert et al. (1999) 0.163 0.132 0.105 0.095 0.003 0.440

GMapping Grisetti et al. (2007) 0.967 0.851 0.758 0.460 0.019 1.762

ORB_SLAM2 (Mono) Mur-Artal et al. (2015) 2.036 1.886 1.978 0.767 0.240 3.379

ORB_SLAM2 (RGB-D) Mur-Artal and Tardós (2017) 0.164 0.134 0.101 0.094 0.033 0.404

Range (depth only) 0.118 0.096 0.082 0.068 0.005 0.346

Range (label only) 0.163 0.145 0.127 0.073 0.027 0.419

Range (combined) 0.143 0.121 0.122 0.077 0.010 0.397

Rays ((εg = 3.0)) 1.394 1.236 1.359 0.645 0.109 2.980

Rays ((εg = 5.0)) 3.717 3.581 3.754 0.998 1.699 5.131

Bold values indicate best performance

8 Conclusion

In conclusion, this work has presented a novel approach
that is capable of localising a robotic platform within a
known floorplan using human-inspired techniques. First, the
semantic information that is naturally present and salient in
a floorplan was extracted. The first novelty was using the
semantic information present in a standard RGB image to
extract labels and present them as a new sensing modality
called SeDAR.The semantic information present in the floor-
plan and the SeDAR scan were then used in a SeDAR-based
MCL approach. This approach then presented three main
novelties. In the first, the semantic information present in the
floorplan was used to define a novel motion model for MCL.
In the second, the SeDAR scanwas used to localise in a floor-
plan using a combination of range and label information. In
the third, SeDAR was used in the absence of range data to
localise in the floorplan using only an RGB image.

These novelties present an important step forward for
the state-of-the-art of MCL, and therefore localisation in
general. Not only is this work capable of removing the
requirement of expensive depth sensors (Dellaert et al. 1999;
Fox et al. 1999), it also has the ability to improve the per-
formance of localisation approaches that use depth sensors
(Winterhalter et al. 2015). When compared against the state-
of-the-art monocular approaches (Chu et al. 2015; Neubert
et al. 2017), leveraging the semantic information present in an
RGB image allows less accurate maps to be used by utilising
other information present in the map. Taken together, these
contributions open the door for the usage of maps designed
for human use. This implies that localisation as a discrete
process to reconstruction becomes a viable alternative, as
pre-existing floorplans can be used to localise while the 3D
structure is reconstructed. The advances presented in this
paper make it clear that the use of semantic information to
aid localisation is the next step for the field.
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