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Abstract
This paper proposes a learning-based quality evaluation framework for inpainted results that does not require any subjectively
annotated training data. Image inpainting, which removes and restores unwanted regions in images, is widely acknowledged
as a task whose results are quite difficult to evaluate objectively. Thus, existing learning-based image quality assessment
(IQA) methods for inpainting require subjectively annotated data for training. However, subjective annotation requires huge
cost and subjects’ judgment occasionally differs from person to person in accordance with the judgment criteria. To overcome
these difficulties, the proposed framework generates and uses simulated failure results of inpainted images whose subjective
qualities are controlled as the training data. We also propose a masking method for generating training data towards fully
automated training data generation. These approaches make it possible to successfully estimate better inpainted images, even
though the task is quite subjective. To demonstrate the effectiveness of our approach, we test our algorithm with various
datasets and show it outperforms existing IQA methods for inpainting.

Keywords Image inpainting · Image quality assessment (IQA) · Learning to rank

1 Introduction

Photos sometimes include unwanted regions such as a per-
son walking in front of a filming target or a trash can on a
beautiful beach. Image inpainting is a technique for automat-
ically removing such areas (“damaged regions” in this paper)
and restoring them (Criminisi et al. 2004; He and Sun 2014;
Huang et al. 2014; Isogawa et al. 2017b; Bertalmio et al.
2003; Barnes et al. 2009; Darabi et al. 2012; Xu and Sun
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2010; Yu et al. 2018). Although many effective algorithms
have been proposed, it is known that inpainting results vary
largely with the method used and the parameters set. In a typ-
ical use case, users iteratively repeat parameter tuning and
result observation until desired results are obtained. Since
this is time-consuming and requires special knowledge, a
way to automatically select the best results is needed.

To achieve such automatic selection, we have identified
two main issues. The first is that evaluating “correctness” of
inpainted results is a task that requires subjective judgment.
The second is that even with human judgment, providing
absolute scores in a stable manner for inpainted images is
a difficult task. Due to these issues, no definitive way has
previously been found to estimate subjective quality on the
basis of objectively measurable features.

Figure 1 explains these two issues with examples. In the
figure, Fig. 1c–e show inpainted results obtained with differ-
ent parameters. These depend on the original image and the
original image with the damaged regions respectively shown
in Fig. 1a, b. The former issue is explained by the results seen
in Fig. 1c, d. Although neither of these results are different
from the original one shown in Fig. 1a, both of them are per-
ceptually natural. Results such as these are considered to be
“correct” as long as they are perceptually natural for humans,
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Fig. 1 An example that explains difficulty of evaluating inpainted
images objectively. a Original image. b Original image with damaged
region. c Inpainted image 1. d Inpainted image 2. e Inpainted image 3

even if they differ from the original one (He and Sun 2014;
Huang et al. 2014; Isogawa et al. 2017b). The difficulty in
defining this kind of “correctness” means human judgment
must be relied on in many cases.

The latter issue is explained by the results seen in Fig. 1d,
e. Although differences in quality can be seen between these
images, it is quite difficult to stably give absolute scores to
thembecause personal judgment plays such an important role
in giving them. Because of these two difficulties, estimating
inpainting quality has long been considered a challenging
task.

To address the former issue, existing image quality assess-
ment (IQA) methods have tried to find a way to represent
subjective quality by means of objectively measurable indi-
cators. Venkatesh and Cheung used observed gaze density
inside and outside the damaged region in inpainted images
(Venkatesh and Cheung 2010). Instead of observed gaze,
many IQA methods using a computational visual saliency
map, which simulates human gaze density, have also been
proposed (Ardis and Singhal 2009; Oncu et al. 2012; Trung
et al. 2013; Frantc et al. 2014; Voronin et al. 2015). However,
actual human gazes vary by viewer and viewing context and
their correspondencewith saliencymaps is quite limited. Iso-
gawa et al. (2016) revealed that the pixel-wise unnaturalness
that occurs in inpainted images is not suitable for saliency
basedmethods because the resolution of visual saliencymaps
is coarse. They also proposed perceptually-aware image fea-
tures focusing on the border area of mask regions where
human gazes tend to gather.

To address the latter issue, let us look once more at the
Fig. 1d, e results. In this case, although it is not easy to
give stable scores, it is comparatively easy to choose which
results are better. Current IQAmethods mainly focus on pro-
viding absolute scores despite the difficulties involved in
doing so Frantc et al. (2014), Voronin et al. (2015). They
include support vector regression (SVR) based methods and
require absolute scores for learning, which is difficult and
tends to become unstable. Unlike these methods, that pro-

posed by Isogawa et al. (2016) involves an ordering approach,
which estimates the preference order of inpainted images.
Therefore, to use the method for learning purposes it is only
necessary to ascertain the preference order, which is a com-
paratively easy task. The method uses a learning-to-rank
approach and accurately estimates the subjective quality of
inpainted images by dividing problems into a set of pairwise
preference order estimation tasks. Learning based methods
such as these commonly require a subjective annotation step
before the training step, which is considered essential. This
labor-intensive annotation leads to both huge annotation cost
and, what is worse, fluctuation of evaluation criteria.

Consequently, this paper proposes a new framework
for estimating learning-to-rank based preference order with
automatically generated training data. Such data is referred
to as “auto-generated” data in the paper. The method simu-
lates “failed” inpainting and assumes that a simulated sample
has worse subjective quality than themethod’s best inpainted
image. Thus, it generates training pairs automaticallywithout
any user intervention.

This paper is based on conference proceedings we pre-
viously published (Isogawa et al. 2017a) but also includes
descriptions of novel techniques to further reduce interven-
tion, including masking that leads to fully labor cost-free
ranking function learning. We also describe an investigation
we conducted to determine how well the method works for
test images with unknown inpainting methods.

Contribution Themain contribution we show in this paper
is that the proposed method achieves learning based pref-
erence estimation of inpainted images without annotated
training data. To the best of our knowledge, this is the
first study that tackles learning based estimation of sub-
jective attributes without manually annotated training data.
The other contributions include a way to generate degraded
inpainted results and a way to generate masked regions as
means to fully generate automated training data.

The rest of this paper is organized as follows. In Sect. 2
we review related work. Section 3 describes the learning
based rankingmethodwepropose,which is trainedwith auto-
generated data. Section 4 proposes a way to generate masked
regions with the aim of generating fully automated train-
ing data. Section 5 verifies the effectiveness of the proposed
method and Sect. 6 concludes the paper with a summary of
key points and describes the subjects for future work.

2 RelatedWork

This section introduces relatedwork. First, Sect. 2.1 overviews
existing IQA methods for image inpainting. In Sect. 2.2 we
focus on machine learning, especially as a means to prepare
training data. Studies on automatic generation or augmenta-
tion of training data are introduced.
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2.1 Learning Based IQAMethods for Inpainted
Image

With the aim of selecting the best one from a plurality of
results among varied inpainted images, many IQA methods
have been proposed (Ardis and Singhal 2009; Oncu et al.
2012; Trung et al. 2013; Frantc et al. 2014; Voronin et al.
2015; Isogawa et al. 2016). Among these methods, learning
based approaches have demonstrated effective performance
(Frantc et al. 2014; Voronin et al. 2015; Isogawa et al. 2016).
Frantc et al. (2014) and Voronin et al. (2015) proposed SVR
based IQA methods. These approaches estimate an absolute
subjective score for each test image. For training regression
models, subjectively annotated rating scores are essential.
Thus, they used data annotated by subjects who were asked
to provide scores on a 5-point scale.

Another learning based approach to tackle this problem
is the learning-to-rank approach. It learns and estimates rank
order on the basis of a trained ranking function.The important
advantage of this approach is that it can learn only on the basis
of rank order. Because of this advantage, this approach has
been the focus of considerable attention, especially when it
is applied to tasks where it is difficult to estimate subjective
preference objectively Chang and Chen (2015), Yan et al.
(2014), Abe et al. (2012), Khosla et al. (2012). Isogawa et al.
(2016) proposed a learning-to-rank based IQA method by
pairwise preference estimation. This method focuses on the
premise that the preference order, rather than absolute scores,
is good for selecting the best one from a plurality of results,
which is the method’s primary goal. For training data, the
method requires image pairswith annotated preference order.

As described above, one difficulty that commonly exists
in learning based methods is the need for a labor-intensive
annotation step for obtaining training data. These man-
ual annotations require huge annotation cost. In addition,
the judgment criteria of subjects fluctuate occasionally. To
overcome these problems, the proposed method enables
automatic generation of training data. It generates pair-
wise training data automatically and applies a learning-
to-rank based algorithm to the preference order estima-
tion.

2.2 Learning with Auto-generated Training Set

Larger amounts of training data generally lead to higher per-
formance in learning-based methods. Therefore, in recent
years some studies have improved learning accuracy by
augmenting the learning data with automatic generation
(Pishchulin et al. 2012; Ros et al. 2016). Pishchulin et al.
(2012) proposed a human detection and pose estimation by
using automatically generated training sets. Themain advan-
tage of their method is that it enables human poses and
shapes to be controlled explicitly on the basis of existing

training sets. They also combine various background images
to increase training data. Ros et al. (2016) proposed learning
based pixel-wise semantic segmentation that uses automati-
cally generated training data. Since annotation data for this
task must be provided on a pixel-by-pixel basis, having
humans provide the data is labor-intensive. To overcome the
problem, they use realistic synthetic images of urban views
in a virtual world that can provide annotation data on a pixel-
by-pixel basis.

In these tasks, it is apparent that an image generation
model can be obtained from annotation data. Thus, genera-
tion of training examples, i.e., a set of annotated data and the
generated images, is rather easy. In contrast, modeling the
relationship between inpainted images and their annotated
subjective quality is quite difficult. The reason is shown in
Fig. 1, where both inpainted images have subjectively good
quality. This makes it difficult to create the auto-generated
training data. To the best of our knowledge, this study is the
first trial of making auto-generated training data for subjec-
tively assessing inpainted image quality.

3 ProposedMethod

3.1 Overview

Figure 2 shows the overview of the proposed preference
ordering framework with automatic generation of training
data. Our framework consists of training and estimation
phases.

In the training phase, the proposed method first gen-
erates a simulated training set. Then, a ranking model is
trained with these auto-generated images. As the ranking
model, we utilize the pairwise learning-to-rank basedmethod
previously used by Isogawa et al. (2016). This is because
unlike SVR-based methods (Frantc et al. 2014; Voronin et al.
2015), a pairwise method only requires a set of preference
orders between two images and does not require absolute
scores of subjective quality. The learning process is detailed
in Sect. 3.2. Because the proposed method uses pairwise
learning-to-rank, the proposed generation of training data
yields inpainted image pairs with known preference orders.
This is described in more detail in Sect. 3.3.

The estimation phase procedure is fairly clear. With
inpainted image pair input, the method extracts feature vec-
tors that focus on the unnaturalness produced by color or
structural discontinuity around the inpainted region contours.
Then, the ranking function’s scalar output values are calcu-
lated. The magnitude relationship between pairs of images
shows their preference order.
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Fig. 2 Overview of our proposed learning framework

3.2 Model Learning with Auto-generated Training
Data

This subsection describes a learning-to-rank based learn-
ing algorithm for ordering pairwise images. The method is
trained with auto-generated simulation images that represent
degraded inpainted results.

This algorithm premises a ranking function f (xi ) that
projects feature vector xi , which is obtained by xi = g(I i )
from image I i , to a one-dimensional axis in accordance with
the subjective quality of inpainted results, where g(·) is a
feature extraction function. For simplicity, we use “I i � I j”
to express that “I i is preferred to I j”.

For easy understanding, before we describe the ranking
algorithm trained with auto-generated training data, let us
briefly explain the training algorithm for f (x). We define the
function h(xi , x j ) that denotes preference order as follows.

h(xi , x j ) =

⎧
⎪⎨

⎪⎩

+1 (I i � I j )

0 (no preferences)

−1 (I j � I i ),

(1)

The f (x) is trained so that the difference of outputs f (xi )−
f (x j ) has the same sign as h(xi , x j ). In a word, the function
f should satisfy the following formula:

sign(h(xi , x j )) = sign ( f (xi ) − f (x j )). (2)

The goal is to learn f , which is concordant with the training
samples. We modeled f with the linear function f (x) =
ω�x . Then Eq. 2 can be rewritten as

sign (h(xi , x j )) = sign (ω�(xi − x j )). (3)

The error function is defined on the basis of Eq. 3 and is
optimized with respect to ω. This is the same problem as that
of binary classification. We use a pairwise learning-to-rank
algorithm calledRankingSVM(Herbrich et al. 2000) to solve
it.

Nowwe are ready to introduce auto-generated training set
into the ranking algorithm. Let I lsim be a simulated inpainted
image with l degraded level, with which larger l indicates
more degradation. In accordance with degraded level, the
preference order among such images is

l1 < l2 → I l1sim � I l2sim . (4)

Such auto-generated images are used to train the ranking
function. The way to generate degraded images Isim is
described in the next subsection.

3.3 Automatic Training Data Generation

The proposed method relies on existing inpainting methods
and devices for them to obtain degraded inpainted images
that well simulate inpainting failures. Section 3.3.1 briefly
reviews typical inpainting algorithms and then Sect. 3.3.2
describes how degraded data are generated on the basis of
the existing inpainting algorithms.

3.3.1 Patch Based Image Inpainting Algorithms

Among various inpainting methods, patch-based algorithms
are widely acknowledged as promising approaches. Typi-
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(b) (c) (d)(a)

Fig. 3 Typical patch-based approach for image inpainting

cally they comprise three steps, which we will explain by
using Fig. 3. For the damaged region masked with red in
Fig. 3a, (1) a patch that includes both the source and the dam-
aged region is set as a target, the blue rectangle in Fig. 3b,
(2) a similar patch for the target patch, the green rectangle
in Fig. 3b, is retrieved in the source region, and (3) the dam-
aged region in the target patch is replaced in accordance with
similar patches as in Fig. 3c. The resultant restored image is
shown in Fig. 3d.

For proposing our method in subsequent part, we will
introduce the following notation for the above patch-based
inpainting concept. Here, P(p) is a target patch whose center
pixel is p, and P̂ N

p denotes the N th most similar patch from
P(p). Since total inpainting quality highly depends on the
quality of retrieved patches, it is basically acknowledged that
themore similar the retrieved patch is, the better the inpainted
quality becomes. That is, for “fine” inpainted results, themost
similar patch (i.e., with N = 1) from P(p), which is denoted
as P̂1

p , is used as in Eq. 5 to restore a missing region.

P̂1
p = P(q ′) = arg min

P(q)

dist(P(p), P(q)) (5)

dist(·) represents distance function. The proposed method
uses the assumption in an inverse way, i.e., dissimilar patches
generate unnatural inpainted images.

3.3.2 Auto-generated Inpainted Images as a Training Set

In simulating failed inpainted images, we found that if we
selected the N th most similar patch P̂ N having larger N ,
it would apparently correspond to the cases in which good
patches for inpainting cannot be found. This is a typical case
of inpainting failure. Therefore, as the value N gets larger,
the patches become dissimilar and the inpainting results
get worse. That is, simulated inpainted images are gener-
ated so that their relationships depend on the level of patch
similarity as I l1sim � I l2sim when l1 < l2, where I Nsim repre-
sents a simulated image inpainted with N th similar patches.
We propose incorporating this patch retrieval into existing
inpainting algorithms. The following shows our simulated
image generation with two types of algorithms as exam-
ples.

With Patch-Retrieval Based Method Here we explain our
data simulation for patch retrieval based inpainting methods

(a) (b) 

(i) (ii) (i) (ii)

(c) 

P̂p
1

P̂p
L

P(p) P(p)

Fig. 4 Patch based degraded inpainted image generation. a Original
image with masked region. b Method’s best. c Lth degraded

with Criminisi et al.’s method (2004) as a base algorithm.
This simulation can also be applied to other patch-based
algorithms. The original method uses simple patch retrieval
as shown in Eq. 5. Our method can be easily incorporated
into this patch retrieval; instead of retrieving the most simi-
lar patches P̂1

p , we obtain P̂ L
p with L > 1. Figure 4 illustrates

this in more detail. The original image with damaged region
is shown in (a). The resultant inpainted images are shown in
(b) and (c). Here, (b) is the method’s best result and (c) is
a simulated deteriorated result obtained using our proposed
method. As the typical procedure of patch-based inpainting,
target patch P(p) is determined in (i), and then a similar
patch is retrieved and used for filling in the hole. In case
(b), the most similar patch is used. Unlike this, the pro-
posedmethod uses a dissimilar patch depending on degraded
level L and obtains the degraded result as shown in (c-
ii).

With Image-Retrieval BasedMethod Some current studies
extend the basic algorithms by using patch retrieval indi-
rectly. Our training data simulation method can also be
applied to such methods without loss of generality. Here
we explain an extension using He and Sun’s method (He
and Sun 2014) as the base algorithm. He and Sun improve
the basic algorithm on the basis of two ideas; extension of
the patch P to the whole image I , and treating an inpaint-
ing task as a Photomontage problem (Agarwala et al. 2004).
Figure 5 illustrates this in more detail. The original image
with damaged region and the target region to be inpainted
are shown in Fig. 5a, b. The resultant inpainted images
are shown in Fig. 5c, d. Figure 5c is the method’s best
result and Fig. 5d is a simulated deteriorated result obtained
using our proposed method. Let Î N be the N th most similar
image for damaged image I . To generate the method’s best
inpainting result, they retrieve the K most similar images
ÎK = { Î 1, Î 2, . . . , Î K } and the missing region is filled by
combining a stack of these images. Our method modifies this
image retrieval part; instead of retrieving the K most simi-
lar images, we obtain ÎαL that excludes Îα(L−1). That is, we
obtain ÎαL − Îα(L−1) = { Î α(L−1)+1, Î α(L−1)+2, . . . , Î αL} to
generate an Lth level of a degraded image.

123



1756 International Journal of Computer Vision (2019) 127:1751–1766

Fig. 5 Image retrieval based degraded inpainted image generation. a
Original image with masked region. b Target image to be filled in. c
Method’s best. d Lth degraded

4 Towards Completely Automatic Training
Data Generation: Masked Region
Generation

The previous section focuses only on the labor cost involved
in annotating preference orders. Since training data gen-
eration requires huge annotation cost, our approach with
auto-generated data can significantly reduce the cost. How-
ever, there is still a process that must be donemanually in this
method. That is to designate the region to be inpainted as a
masked region. This operation requires manual intervention
and hinders larger training set generation.

To improve our method, we also propose a method to gen-
erate masked regions for effective auto-generated data by
utilizing semantic segmentation. By additionally using this
automatic designation of mask regions, the method elimi-
nates any manual work needed to generate training data. In
other words, it makes it possible to increase the amount of
training data with no labor cost.

However, it is known that the quality of inpainted results
varies largely depending on their masked region. Since our
training data generation method assumes that simulated
image pairs with multi-levels of degradation have orders in
terms of quality, the method’s best inpainted images with
no degradation should have good enough quality with its
masked region. In case the method’s best inpainting results
with degradation level L = 0 do not have good enough qual-
ity, the quality of all degraded image is biased toward poor
directions and thus it might break our assumption.

Thus, we consider that desirablemasked regions for effec-
tive auto-generated data should satisfy the following three
requirements; (1) the images for training data include varied
scenes for high versatility training sets, (2) other objects are
not adjacent to the contours of the masked regions, and (3)

(a)

(b)

(c)

Original image 
with masked region

L=0
Close-up view of automatically generated training images with degraded level L

L=1 L=2

Fig. 6 Example of auto-generated data quality depending on masked
region; a desirable multi-degraded auto-generated data, b, c undesir-
able auto-generated data with masked region that do not satisfy the
requirements

the region of the object to be inpainted does not protrude
from the masked region.

Figure 6 explains how requirements (2) and (3) affect auto-
generated data. In the figure, (a) shows themasked region that
satisfies the requirement and its auto-generated data with
degradation level 0 to 2. Multi-levels of degraded images
become worse if degradation level L increases, as expected.
Fig. 6b, c respectively show failure cases in which require-
ments (2) or (3) are not satisfied. In Fig. 6b another object
touches a masked human region, and in Fig. 6c the people’s
region to be inpainted is revealed from the masked region.
In both cases, unnatural inpainted results are generated in
all degradation stages and there are no definitive preferences
between them. This is due to the fact that the designated
masked region makes it difficult to find the source region to
be used for filling the hole. Restoring missing objects such as
adjacent humans or revealed human regions is rather difficult.

To satisfy the requirements described above, we use peo-
ple’s regions in images found by semantic segmentation.
Humans appear in a lot of images and they are less likely
to be adjacent to other objects compared to other objects
such as desks in a classroom. Therefore, using such regions
makes it possible to meet the first and second requirements.
In order to meet the second point better, we use regions that
do not have any adjacency with other objects. To satisfy the
third requirement, we dilate the extracted region since the
human region extracted by semantic segmentation is often
smaller than that of an actual human region.

The detailed process of masked region generation is
described below (see Fig. 7). With original image Iorig
obtained from a dataset, the Internet, etc (see Fig. 7a), seman-
tic segmentation results are calculated as shown in Fig. 7b.
We use Mask R-CNN (He et al. 2017) as a semantic seg-
mentation method. If the detected people’s region has no
overlap with any other object and its size is 1–20% of Iorig ,
the initial masked image I ini tmask is generated with the seg-
mented region (see Fig. 7c). For Iorig with multiple people’s
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Fig. 7 Proposed masked region generation. The method first detects
people’s regions as shown in a and dilates initial masked region b–c so
that the region satisfies the mask requirements

regions, only the region having the largest area is adopted.
The final masked image Imask shown in Fig. 7d is calculated
by dilating the masked region in I ini tmask .

5 Experiment

This section reports the efficacy of the proposed method.
In Sect. 5.1 we will show the experimental setup we used,
including training data preparation. In Sect. 5.2 we will show
the efficacy of our auto-generated data as a training set.
In Sect. 5.3 we will demonstrate the efficacy of the proposed
masked region generation.

5.1 Experimental Setup

5.1.1 Ranking Learning

The proposed method uses Isogawa et al.’s rank learning
framework (Isogawa et al. 2016). The characteristics and
advantage of the framework are as follows. The frame-
work uses RankingSVM, implemented using SVM Rank
(Tsochantaridis et al. 2005)with a radial basis function (RBF)
kernel, whose parameters are well tuned. For training and
testing, it uses ten-dimensional image features that focus
on the unnaturalness around the contours of the inpainted
regions produced by color or structural discontinuity. Since
the features are normalized for the size of the masked region
contour, the rank learning is relatively robust for the shape
complexity of the masked region or non-uniformity of the
texture (see Fig. 9 for image pairs, the preference orders of
which were correctly estimated).

5.1.2 Preparing Manually Annotated Data

Manually annotated data were basically used for test data
with ground-truth preference annotation. They were also
used as training data for comparing the estimation accuracy

obtained with an auto-generation data based model to that
obtained with a manual annotation data based one.

Subjective Annotation We prepared 100 publicly avail-
able images obtained from the Web. Damaged regions in
these images were manually masked. For each masked
image, we generated a fixed number of inpainted results
with different parameters. The number differed depending
on the experiments we conducted. The experiments dis-
cussed in Sects. 5.2.1 and 5.2.2 and the first experiment
discussed in Sect. 5.2.3 involved generating six inpainted
results by a combination of three options of patch size and
two options of number of similar images to be retrieved. The
second experiment discussed in Sect. 5.2.3 involved prepar-
ing three inpainted results by changing the pre-trained model
for inpainting. The third experiment discussed in Sect. 5.2.3
also involved preparing three inpainted results by changing
the inpainting method.

The quality of the images was evaluated by eight subjects
(four males and four females) with normal vision. To make
the users’ judgment easy, we randomly displayed a pair of
inpainted images side-by-side. Subjectswere asked to choose
one of three options: right image is better, left image is bet-
ter, and no preference order (i.e., it is hard to decide which
one is better or which one is worse). As inpainting methods,
we basically used He and Sun’s method (He and Sun 2014)
throughout this section, but in Sect. 5.2.3 we add Huang et
al.’s method (2014), Herling et al.’s method (2014), and Yu
et al.’s method (2018).

Notation and Reliability of Annotated Data We used
T (M,S)
a to denote annotated datasets with inpainted method
M , for which a consensus was obtained for at least S sub-
jects. For example, T (He,8)

a indicates the dataset with He et
al.’s inpainting method, which got a unanimous answer from
all eight subjects. With the dataset T (He,5)

a consensus was
obtained for from five to eight subjects. Thus, more than half
of the subjects gave the same preference order to pairs in
T (He,5)
a . This indicates that S reflects the difficulty humans

have in making judgments in such cases.

5.1.3 Auto-generated Training Data

This subsection describes how we got an auto-generated
training set.

Degraded Image SimulationWegathered the same images
of annotated data. But, please note that we excluded auto-
generated data simulated with identical images as test data.
Damaged regions in these images were manually masked.
Since the position, size, and shape of the damaged region
are normalized during the learning-to-rank process, we were
able to set the damaged regions arbitrarily regardless of the
objects in the target images. We set five degradation levels
for simulating inpainted images I Lsim , i.e., L = 0, 1, 2, 3, and
4, where L = 0 indicates an image without any intentional
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(a) L=0 (b)  L=1 L=2 L=3 L=4

Fig. 8 Simulated inpainted images. aOriginal imagewithmasked region. bClose-up view of automatically generated training imageswith degraded
level L

degradation, i.e., the method’s best inpainted image. These
five image levels are generated from one original image. By
combining these five images,we generated 5C2 = 10 pairs of
training data, with preference orders I xsim � I ysim (∀x < y),
i.e., the inverse of degradation level.

Figure 8b shows degraded images depending on the
degraded level L (L = 0, 1, 2, 3, and4). All degraded images
are inpainted with the masked region shown in (a). Figure 8
shows that our method simulates degraded images well; each
degraded image gets worse quality as L increases. Though
the deterioration is subjective, it well simulates the failures
that typically occur in ordinary inpainting methods having
inappropriate parameters such as patch size.

Notation We denote the auto-generated degraded images
with inpainting method M for training T M

d . For example,
auto-generated data with He et al.’s inpainting method is
denoted as T He

d .

5.2 Investigation to Ascertain Effectiveness of
Auto-generated Training Data

5.2.1 Comparison with Existing IQAMethods

We conducted experiments comparing our method to other
IQA methods for image inpainting, i.e., ASV S and DN by
Ardis and Singhal (2009), GDin by Venkatesh and Cheung
(2010), Bor Sal, Struct Bor Sal byOncu et al. (2012) as non
learning-based methods, and Isogawa et al.’s method (2016)
as a learning-based method. We also verified RankIQA (Liu
et al. 2017), the rank-learning-based IQA method with a
deep neural network (DNN). Although the method is not
for IQA of inpainting, we argue that the comparison with the
DNN-based IQA method is informative. Note that although
the GDin originally uses measured human gaze, we used a
saliency map instead. This is the same evaluation approach

used in Oncu et al. (2012). For training with Isogawa et al.’s
method we used the annotation data of T (He,8)

a . Our pro-
posed learning method trained with auto-generated data T He

d
is denoted as Ours(T He

d ).
Table 1 shows the prediction accuracy for all test data

T (He,S)
a (5 ≤ S ≤ 8) obtained for each metric. Exclud-

ing inpainted images with extremely poor quality, the
amounts of test data |T S

a | of T S
a with S = 5 to 8 were

(|T 5
a |, |T 6

a |, |T 7
a |, |T 8

a |) = (184, 136, 71, 38). Our method
Ours(T He

d ) correctly estimated the preference order within
imagepairwith the highest score for all test data; the improve-
ment our method achieved over Isogawa et al.’s method was
6.52, 8.09, 4.23, and 2.63 points for test data T (He,5)

a , T (He,6)
a ,

T (He,7)
a , and T (He,8)

a .
Figure 9 shows examples of image pairs, the preference

orders of which were correctly estimated even with non-
uniformity texture (see (a)) and shape complexity of masked
region (see (b)). Please refer our supplemental material for
more results.

5.2.2 Verifying Effectiveness of Auto-generated Training
Data Depending on Varied Conditions

This subsection describes three more investigations we con-
ducted to verify the validity of the auto-generated data. The
first one investigates the effects of the volume of auto-
generated data on estimation accuracy, which is the ratio
of estimation success of preference order among annotated
pairs. Figure 10 shows the estimation accuracy obtained
when the amount of auto-generated data is increased from
50 to 990 in 50 increments. Training data are randomly
selected from T He

d . As shown in the graphs in the figure,
estimation accuracy increased as the amount of training
data increased. In addition, to investigate whether auto-
generated data can be used as a substitute for annotated
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Table 1 Prediction accuracy
comparison with existing image
quality assessment metrics (%)

T (He,5)
a T (He,6)

a T (He,7)
a T (He,8)

a

ASVS (Ardis and Singhal 2009) 45.11 44.85 43.66 44.74

DN (Ardis and Singhal 2009) 53.26 53.68 56.34 57.89

GDin (Venkatesh and Cheung 2010) 43.48 44.85 40.85 39.47

BorSal (Oncu et al. 2012) 42.39 43.38 42.25 44.74

StructBorSal (Oncu et al. 2012) 46.74 45.59 42.25 52.63

RankIQA (Liu et al. 2017) 65.79 60.53 63.16 42.11

Isogawa et al. (2016) 60.33 62.5 71.83 76.32

Ours(T He
d ) 66.85 70.59 76.06 78.95

Ours(T He
d + T He

a ) 65.22 68.38 76.06 78.95

The highest scores are underlined

Inpainted images and close-up view
(the left preferred by subjects)

Original image 
with damaged region

(a)

(b)

Fig. 9 Inpainted image pairs, the preference orders of which were cor-
rectly estimatedwith ourmodel evenwith a non-uniformity background
textures, and b complex shape of masked region

data, the performances depending on the proportion of auto-
generated data were tested. Figure 11 shows performances
depending on the proportion of auto-generated data with
T (He,5)
a . Here, the number of training data was fixed to

990 in all cases; only the proportion of annotated and
auto-generated data was changed. The amount of annotated
data was decreased from 180 to 0 in 10 decrements. Even
though the amount of subjectively annotated training data
was changed, the estimation accuracies were almost con-
stant in all cases. These results suggested that auto-generated

Fig. 10 Prediction accuracy with each T He
a depending on the amount

of T He
d

training data could be a substitute for manually annotated
data.

We also investigated how the amount of auto-generated
data affected estimation accuracy. Figure 12 shows estima-
tion accuracy for each T S

a when the auto-generated training
data levels L were changed between L = 1 to 4. The avail-
able training data amounts were respectively 99, 297, 594,
and 990 for L = 1, 2, 3, and 4. However, to focus on the
affect of data levels, we set it to the smallest number 99,
i.e., that for L = 1. Note that the results are average per-
formances with 10 trial runs and that training data for each
trial are randomly selected. As the figure shows, the estima-
tion accuracy increases as L increases, which suggests that
multi-levels of auto-generated data work effectively. These
two kinds of investigations suggest that the auto-generated
data works as expected and using multi-levels of data works
effectively.

The third one verifies the performance when subjectively
annotated data is added to auto-generated data. We added
T (He,S)
a to T He

d for further verification of auto-generated data
performance. Hereafter, in this section we denote these two
data as T S

a and Td for simplify the explanation. We denote
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Fig. 11 Prediction accuracy depending on the proportion of T He
d

Fig. 12 Prediction accuracy depending on the levels of T He
d

Table 2 Prediction accuracy with or without subjectively annotated
data (%)

T 5
a T 6

a T 7
a T 8

a

Ours(Td ) 66.85 70.59 76.06 78.95

Ours(Td + Ta) 65.22 68.38 76.06 78.95

The higher scores are underlined

our learning method with such data as Ours(Td + Ta). The
comparison between Ours(Td) and Ours(Td + Ta) with all
test data T S

a with S = 5, 6, 7, and 8 is shown in Table 2.
With this table, we found that the use of annotated training

data does not show significant changes on prediction accu-
racies of for all cases (T 5

a , T 6
a , T 7

a , and T 8
a ). However, in

case of low consensus data such as S = 5 and 6, the use of
annotated training data deteriorated the prediction accuracy.
“Low consensus” means the subjective judgement varies by
the subject and may not suit for machine learning. To verify
this consideration, we conducted the next experiment.

We divide the auto-generated data, Td into two groups;
reliable data set consisted by auto-generated data of L = 1
and 4, T re

d ; unreliable data set consisted by that of L = 2
and 3, T un

d . We subjectively confirmed that T un
d have small

difference in subjective quality and are difficult to be judged

Table 3 Prediction accuracy with or without unreliable data (%)

T 5
a T 6

a T 7
a T 8

a

Ours(T re
d ) 66.30 69.85 76.06 81.58

Ours(T un
d ) 63.04 67.65 73.24 78.95

The higher scores are underlined

by a largemargin compare to T re
d , as in Fig. 8. The prediction

accuracy is shown in Table 3. For all test data, Ours(T re
d )

excels Ours(T un
d ). It also suggests that subjectively similar

data like T un
d is not a good data for training. Thus, we should

consider the balance between the number of auto-generated
data and the quality of them as a future work.

5.2.3 Effectiveness for Test Image with Unknown Inpainting
Method

Up to the preceding sections, we have examined the effect
of auto-generated training data under the condition that the
inpainting method used for test and training data generation
is same. However, since inpainted results vary depending
on their inpainting method, auto-generated training data are
also varied by their inpainting methods. Thus, this section
investigates how ranking function trained with a certain
method works for the test data generated by another method.
Hereafter, we define “pre-trained” and “re-trained” rank-
ing functions as that are trained without/with auto-generated
training data inpainted with same method as test data. We
also denote test data whose inpainting method is not used
for pre-training as “unknown test data” or “test data with
unknown method”, and its inpainting method as “unknown
inpainting method”.

With Patch-Based Inpainting Methods For investiga-
tion, we used Huang et al.’s (2014) and Herling et al.’s
(2014) methods as unknown patch-based inpainting meth-
ods. Since these two are patch-retrieval based methods, our
patch-retrieval based simulation method is applied for auto-
generated data preparation. Such auto-generated data with
these twomethodswere not used for pre-training andwe used
He et al.’s method (2014) for pre-training same as previous
section. From here we denote auto-generated training data
with these three inpainting methods as T He

d , T Sc
d , and T Pix

d .
Samely, we denote test data with new two methods as T Sc

a
and T Pix

a . As a ground truth, preference orders for T Sc
a and

T Pix
a are annotated by 8 subjects. T Sc

a , T Pix
a with at least S

subject’s consensus is denoted as T (Sc,S)
a and T (Pix,S)

a . The
amounts of test data of T (Sc,S)

a and T (Pix,S)
a with S = 5

to 8 were (321, 199, 108, 47) and (712, 602, 461, 317),
respectively. Same as previous section, 100 original images
for auto-generated training data were prepared for five lev-
els of degraded images. Each of T He

d , T Sc
d , T Pix

d includes

5C2 × 100 = 1000 pairs of training data.
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(a) (b)

Fig. 13 Prediction accuracy for T Sc
a with a pre-trainedmodel with T He

d

and b re-trained model with T He+Sc
d

(a) (b)

Fig. 14 Prediction accuracy for T Pix
a with a pre-trained model with

T He
d and b re-trained model with T He+Pix

d

Table 4 Prediction accuracy with or without auto-generated data
inpainted with unknown Huang et al.’s method (%)

T (Sc,5)
a T (Sc,6)

a T (Sc,7)
a T (Sc,8)

a

Ours(T He
d ) 71.03 74.37 81.48 82.98

Ours(T He+Sc
d ) 69.16 71.86 77.78 82.98

Table 5 Prediction accuracy with or without auto-generated data
inpainted with unknown Herling et al.’s method (%)

T (Pix,5)
a T (Pix,6)

a T (Pix,7)
a T (Pix,8)

a

Ours(T He
d ) 66.41 67.61 70.28 72.87

Ours(T He+Pix
d ) 62.92 63.46 68.11 71.29

Test data with unknown inpainted method T Sc
a , T Pix

a are
evaluated under two conditions; one is with pre-trained rank-
ing model with T He

d , and the other is re-trained model with
same inpainting method as test data, i.e., mixture training
data includes T He

d and T Sc
d , or T He

d and T Pix
d . We call such

adjacent data as “mixture training data” and denote them as
T He+Sc
d and T He+Pix

d , respectively. These mixture training
data have twice samples of each training data, i.e., 2000 pairs.

Figures 13 and 14 show estimation accuracy for each T S
a

where S = 5, 6, 7, and 8 with pre-trained ranking function
with T He

d (see (a)) and re-trained it with mixture training
data T He+Sc

d or T He+Pix
d (see (b)). In the figures, vertical

axis shows estimation accuracy and horizontal axis shows
amount of training data, which is auto-generated. That are
increased from 100 to 1000 in 100 increments for (a) and
from 100 to 2000 in 100 increments for (b). The training data
are randomly selected and the plotted accuracy is an average

of 10 runs with these standard deviations. Tables 4 and 5
show the estimation accuracy value we obtained for each
T S
a , where S = 5, 6, 7, and 8 with the pre-trained ranking

function with T He
d with 1000 data elements and re-trained

it with mixture training set T He+Sc
d or T He+Pix

d with 2000
data.

As the results show, it was possible to estimate preference
orders with high accuracy, i.e., 82.97% for T Sc

a and 72.87%
for T Pix

a even for these unknown test data. In addition,
regarding result with T He+Sc

d , although estimation accuracy
was slightly decreased with mixture training data, significant
differences could not be observed. These results show that
our method has a certain amount of robustness against the
patch-based inpainting method used.

With GAN-Based Inpainting Methods So far, we have
used specific types of inpainting methods, i.e., image
retrieval based and patch based. However, in addition to
these effective conventional methods, generative adversar-
ial network (GAN) based inpainting methods have achieved
remarkable progress in recent years.Weverifiedhowour IQA
method trained with auto-generated data works for GAN-
based inpainting methods that may have different types of
degradation.

We used Yu et al.’s (2018) GAN-based inpainting method
as the unknown method. The method was trained with the
three database, i.e., places2 (Zhou et al. 2018), CelebA
(Liu et al. 2015), and imageNet (Deng et al. 2009). As in
Sects. 5.2.1 and 5.2.2, we used He et al.’s method (2014)
for training our preference-ordering model. The denotation
for auto-generated data is the same as previous one; T He

d .
Test data with Yu et al.’s GAN-based inpainting method
are denoted as T GAN

a , and T GAN
a with the consensus of at

least S participants are denoted as T (GAN ,S)
a . The amount

of T (GAN ,S)
a with S = 5 to 8 was (212, 204, 151, 139). As

discussed in the previous section, 100 original images for
auto-generated training data were prepared for five levels of
degraded images; thus, T He

d includes 5C2 × 100 = 1000
pairs of training data.

Figure 15a shows the estimation accuracy for each
T (GAN ,S)
a , where S = 5, 6, 7, and 8with the pre-trained rank-

ing function with T He
d . The vertical axis shows estimation

(a) (b)

Fig. 15 Prediction accuracy for a T GAN
a and b T Multi

a . T He
d was used

as trained model
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Table 6 Prediction accuracy for test sets generated with unknown
inpainted methods, i.e., Yu et al.’s GAN-based inpainting method (%)

T (GAN ,5)
a T (GAN ,6)

a T (GAN ,7)
a T (GAN ,8)

a

Ours(T He
d ) 76.42 76.96 82.78 82.73

Table 7 Prediction accuracy for test sets generated with multiple
unknown inpainted methods, i.e., Yu et al.’s GAN-based, He et al.’s
image retrieval based, and Huang et al.’s patch based methods (%)

T (Multi,5)
a T (Multi,6)

a T (Multi,7)
a T (Multi,8)

a

Ours(T He
d ) 68.02 68.04 71.63 71.43

accuracy and the horizontal axis shows the amount of train-
ing data, which were auto-generated. The amount of training
data were increased from 100 to 1000 in 100 increments.
The training data were randomly selected, and the plotted
accuracy is an average of 10 runs with these standard devia-
tions. Table 6 shows the estimation accuracy score for each
T (GAN ,S)
a , where S = 5, 6, 7, and 8with the pre-trained rank-

ing function with T He
d . Even with the GAN-based inpainted

images, it was possible to estimate preference orders with
high accuracy, i.e., 82.73%. The results also indicate that
our method can handle test images with different types of
inpainting methods with a certain amount of robustness.

WithMultiple Types of InpaintingMethods for Test Images
So far, we have focused on one inpainting algorithm for one
experiment to generate test images. That is, our ranking algo-
rithm estimates preference orders of images inpainted with
the same algorithms. However, there may be situations in
which users want to find the orders between images inpainted
with different algorithms.To generate test images, this exper-
iment uses three different types of inpainted algorithms, i.e.,
patch based (Huang et al. 2014), image retrieval based (He
and Sun 2014), and GAN based (Yu et al. 2018), trained with
the places2 dataset (Zhou et al. 2018). As in the previous
experiments, we used He et al.’s method (2014) for auto-
generated training data. The auto-generated training and test
sets consisting of images with the three different inpaint-
ing methods are respectively denoted as T He

d and T Multi
a .

The T Multi
a with the consensus of at least S participants is

denoted as T (Multi,S)
a . The amount of test data of T (Multi,S)

a

with S = 5 to 8 was (197, 194, 141, 140). Training data
consisted of 5C2 × 100 = 1000 pairs, as in the previous
experiments.

Figure 15b shows the estimation accuracy for each
T (Multi,S)
a where S = 5, 6, 7, and 8. The vertical axis

shows estimation accuracy and the horizontal axis shows the
amount of training data, whichwere auto-generated. That are
increased from 100 to 1000 in 100 increments. The training
data were randomly selected, and the plotted accuracy is an

average of 10 runs with these standard deviations. Table 7
shows the estimation accuracy score for each T (Multi,S)

a ,
where S = 5, 6, 7, and 8. Despite the task’s difficulty in esti-
mating preference orders between images generated using
different inpaintingmethods, our proposedmethod estimated
the orders with 71.43%. Note that the test images contained
inpainted results with two unknown and fundamentally dif-
ferent algorithms from that for training-data generation. The
results also indicate that our method can work well even for
a test data set consisting of images inpainted using different
types of methods.

5.3 Effectiveness Investigation for Masked Region
Generation

This section investigates the effectiveness of proposed
masked region creation towards completely human labor-
free training data generation. Note that our main proposal is
a training-data-generationmethodwith the degraded inpaint-
ing introduced thus far. It is not restricted to fully automatic
masking, which is introduced in this section.

Experimental Setup For experiments, we additionally
gathered new images from ImageNet (Deng et al. 2009). The
mask type, i.e., the masked images of the proposed method
and comparison targets, are as follows.

1. The proposed method is denoted by I peoplemask , which uses
automatically segmented people regionswithout contact-
ing other objects (proposed in Sect. 4).

2. The first method for comparison is denoted by I rectmask ,
which is masked by rectangle of 200× 200 (pixels) cen-
tered at the original image.

3. The second method for comparison is denoted by
I people(ad)
mask , which is similar to the proposed method but
includes images that are adjacent to other objects.

4. The third method for comparison is denoted by I allmask ,
which is also similar to the proposed method. Although
the proposed method only used people’s region, it uses
all kinds of objects that are automatically tagged.

Training Data Generation Inpainted images of five levels
of degradation with use of He et al.’s method were generated
for each mask type. These training data that corresponds to
I peoplemask , I rectmask , I

people(ad)
mask , and I allmask are denoted by T

people
d ,

T rect
d , T people(ad)

d , and T all
d respectively. The amount of orig-

inal images used for auto-generated data were 900 for each
type of mask and thus each auto-generated training set con-
sisted of 5C2 × 900 = 9000 pairs of training data. Examples
of training data T people

d with degraded levels L are shown
in Fig. 16. As these examples show, degraded inpainting
images as training data are appropriately generated. Exam-
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Original image  
with damaged region

L=0
Close-up view of automatically generated training images with degraded level L

L=1 L=2 L=3 L=4(a)
(b)

Fig. 16 Auto-generated training data with proposed masked region generation; a generated I peoplemask , b close-up view of multi levels of simulated
inpainted images

ples of other training set, i.e., I rectmask , I
people(ad)
mask , and I allmask ,

are shown in Fig. 17.
Results Figure 18 shows estimation accuracy for each T S

a
with He et al.’s method where S = 5, 6, 7, and 8 with each
dataset T people

d , T rect
d , T people(ad)

d , and T all
d . In all of these

graphs, vertical axis shows estimation accuracy and hori-
zontal axis shows amount of data used for training, that are
increased from 100 to 9000 in 100 increments. The train-
ing data are randomly selected and the plotted accuracy is
an average of 10 runs with standard deviation. As reference,
black dotted lines indicate estimation accuracy with auto-
generated data withmanually designatedmasked region, i.e.,
T He
d , which is considered to be the most effective training

data proposed in Sect. 3.3. Table 8 compares estimation accu-
racy for each T S

a with four types of training sets.
As shown in the graphs in Fig. 18 and Table 8, estimation

accuracy with T people
d was 79.47%. Although this training

set requires no human labor for both masked region desig-
nation nor training data generation, the estimation accuracy
was rather higher than that of T He

d described in Sect. 5.2.1,
which requires annotated masked regions. Regarding other
types ofmasked regions, i.e., T rect

d , T people(ad)
d , and T all

d , the
estimation accuracies were 59.74 to 74.47, which were far
below the accuracy with T people

d . These results support our

assumption that designation of the masked region is impor-
tant to generate effective auto-generated training data.

Figure 17 explains possible reasons for the accuracy with
T rect
d , T people(ad)

d , and T all
d did not reach that of T people

d
with failure examples of auto-generated data. The failure case
in (b) shows an example where the masked people’s region
is adjacent to another people’s region, and the failure case
shown in (c) shows an example where the object’s region to
be inpainted is revealed from the mask. In either case, since
the masked regions are not appropriate for inpainting, auto-
generated data results with degradation level L = 0 have
lower quality, even though ideally they should not include
any degradation. Therefore, we consider that the effective-
ness of training data might be reduced because the quality of
each level of simulated data was biased towards the worse
quality direction and it was difficult to get definitive prefer-
ence relationships between them.

In addition, although auto-generated training set T people
d

with proposed masked region showed higher accuracy than
T He
d , which requires annotated masked regions, we consider

that there is still room for improvement. Our masked region
generation strategy avoids adjacency with other objects in
images and protruding object regions. However, we found
that it was not always satisfied. Figure 19 shows examples of
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Original image  
with damaged region

L=0
Close-up view of automatically generated training images with degraded level L

L=1 L=2 L=3 L=4

(a)

(b)

(c)

Fig. 17 Success or failure case of auto-generated training data with automatically generated masked region (a) I rectmask , b I people(ad)
mask , and a I allmask

(a) (b) (c) (d)

Fig. 18 Prediction accuracy for each T S
a (S = 5, 6, 7, 8) with a T people

d , b T rect
d , c T people(ad)

d , and d T all
d

failure cases of our mask generation. The masked people’s
region is protruded from the masked region and degraded
inpainted images are biased towards worse quality direction.
This is the current limitation of our proposed method. We
are planning to optimize the masked region towards effective
inpainting as a subject for future work.

6 Conclusion

This paper describes a learning-based ranking framework for
image inpainting. Unlike existing learning-based IQA meth-
ods, our method trains without using subjectively annotated
data byusing auto-generated data;weused simulated “failed”
inpainted images by focusing on inpainting algorithms. In
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Table 8 Prediction accuracy comparison for auto-generated training sets with different types of masked regions (%)

T (He,5)
a T (He,6)

a T (He,7)
a T (He,8)

a

Ours(T people
d ) 64.35 66.84 72.96 79.47

Ours(T rect
d ) 58.80 59.41 60.70 61.84

Ours(T people(ad)
d ) 57.72 57.35 58.31 59.74

Ours(T all
d ) 61.96 63.60 67.75 74.47

The highest scores are underlined

Original image  
with damaged region

L=0
Close-up view of automatically generated training images with degraded level L

L=1 L=2 L=3 L=4

Fig. 19 Failure case of our masked region generation. Since the people’s region is protruded from masked region, multi levels of auto-generated
data are biased towards worse quality direction

addition, we also proposed an automatic masked region gen-
eration method for auto-generated data, with the aim of
generating completely effortless training data. Preference
order estimation experiment results suggest themethod’s effi-
cacy and several investigations suggest the validity of using
auto-generated data instead of subjectively annotated data.

In future work we will optimize the balance between the
amount of auto-generated data and their quality for our pro-
posed system and optimize masked region towards more
effective masked region generation. Applying neural net-
work (NN)-based rank learning is also for our future work.
Since our proposed data-generation method can increase the
amount of training data, we argue that the NN-based rank-
ing algorithm has a high affinity with our method. Also, we
believe that the idea of generating training data by daringly
generating failed images can be widely applied to other tasks
requiring subjective evaluations such as image colorization
(Levin et al. 2004) or image transfer (Hertzmann et al. 2001).
Investigating the efficacy for these other tasks is also a subject
for our future work.
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