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Abstract
The objective of this work is to reconstruct the 3D surfaces of sculptures from one or more images using a view-dependent
representation. To this end, we train a network, SiDeNet, to predict the Silhouette and Depth of the surface given a variable
number of images; the silhouette is predicted at a different viewpoint from the inputs (e.g. from the side), while the depth is
predicted at the viewpoint of the input images. This has three benefits. First, the network learns a representation of shape beyond
that of a single viewpoint, as the silhouette forces it to respect the visual hull, and the depth image forces it to predict concavities
(which don’t appear on the visual hull). Second, as the network learns about 3D using the proxy tasks of predicting depth and
silhouette images, it is not limited by the resolution of the 3D representation. Finally, using a view-dependent representation
(e.g. additionally encoding the viewpoint with the input image) improves the network’s generalisability to unseen objects.
Additionally, the network is able to handle the input views in a flexible manner. First, it can ingest a different number of views
during training and testing, and it is shown that the reconstruction performance improves as additional views are added at
test-time. Second, the additional views do not need to be photometrically consistent. The network is trained and evaluated
on two synthetic datasets—a realistic sculpture dataset (SketchFab), and ShapeNet. The design of the network is validated
by comparing to state of the art methods for a set of tasks. It is shown that (i) passing the input viewpoint (i.e. using a
view-dependent representation) improves the network’s generalisability at test time. (ii) Predicting depth/silhouette images
allows for higher quality predictions in 2D, as the network is not limited by the chosen latent 3D representation. (iii) On both
datasets the method of combining views in a global manner performs better than a local method. Finally, we show that the
trained network generalizes to real images, and probe how the network has encoded the latent 3D shape.

Keywords Visual hull · Generative model · Silhouette prediction · Depth prediction · Convolutional neural networks ·
Sculpture dataset

1 Introduction

Learning to infer the 3D shape of complex objects given only
a few images is one of the grand challenges of computer
vision. Another of the many benefits of deep learning has
been a resurgence of interest in this task. Many recent works
have developed the idea of inferring 3D shape given a set
of classes (e.g. cars, chairs, rooms). This modern treatment
of class based reconstruction follows on from the pre-deep
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learning classic work of Blanz and Vetter (1999) for faces
and later for other classes such as semantic categories (Kar
et al. 2015; Cashman and Fitzgibbon 2013) or cuboidal room
structures (Fouhey 2015; Hedau et al. 2009).

This work extends this area in two directions: first, it con-
siders 3D shape inference frommultiple images rather than a
single one (though this is considered as well); second, it con-
siders the quite generic class of piecewise smooth textured
sculptures and the associated challenges.

To achieve this, a deep learning architecture is introduced
which can take into account a variable number of views in
order to predict depth for the given views and the silhouette
at a new view (see Fig. 1 for an overview). This approach has
a number of benefits: first the network learns how to com-
bine the given views—it is an architectural solution—without
using multi view stereo. As a result, the views need not be
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Fig. 1 An overview of SiDeNet. First, images of an object are taken
at various viewpoints θ1 · · · θN by rotating the object about the vertical
axis. Given a set of these views (the number of which may vary at test
time), SiDeNet predicts the depth of the sculpture at the given views and
the silhouette at a new view θ ′. Here, renderings of the predicted depth

at two of the given views and silhouette predictions at new viewpoints
are visualised. The depth predictions are rendered using the depth value
for the colour (e.g. dark red is further away and yellow/white nearer)
(Color figure online)

photometrically consistent. This is useful if the views exhibit
changes in exposure/lighting/texture or are taken in different
contexts (so one may be damaged), etc. By enforcing that the
samenetworkmust be able to predict 3D fromsingle andmul-
tiple views, the network must be able to infer 3D shape using
global information from one view and combine this informa-
tion given multiple views; this is a different approach from
building up depth locally using correspondences as would be
done in a traditional multi view stereo approach.

Second, using a view-dependent representationmeans that
the model makes few assumptions about the distribution of
input shapes or their orientation. This is especially bene-
ficial if there is no canonical frame or natural orientation
over the input objects (e.g. a chair facing front and upright
is at 0◦). This generalisation power is demonstrated by train-
ing/evaluating SiDeNet on a dataset of sculptures which have
a wide variety of shapes and textures. SiDeNet generalises
to new unseen shapes without requiring any changes.

Finally, as only image representations are used, the quality
of the 3Dmodel is not limited by the 3D resolution of a voxel
grid or a finite set of points but by the image resolution.

Contributions This work brings the following contributions.
First, a fully convolutional architecture and loss function,
termed SiDeNet (Sects. 3, 4) is introduced for understand-
ing 3D shape. It can incorporate additional views at test
time, and the predictions improve as additional views are
incorporated when both using 2D convolutions to predict
depth/silhouettes as well as 3D convolutions to latently infer
the 3D shape. Further, this is true without assuming that the
objects have a canonical representation unlike many con-
temporary methods. Second, a dataset of complex sculptures
which are augmented in 3D (Sect. 5). This dataset demon-
strates that the learned 3D representation is sufficient for
silhouette prediction as well as new view synthesis for a
set of unseen objects with complex shapes and textures.
Third, a thorough evaluation that demonstrates how incor-
porating additional views improves results and the benefits

of the data augmentation scheme (Sect. 6) as well as that
SiDeNet can be used directly on real images. This evalua-
tion also demonstrates howSiDeNet can incorporatemultiple
viewswithout requiring photometric consistency and demon-
strates that SiDeNet is competitive or better than comparable
state-of-the-art methods for 3D prediction and at leverag-
ing multiple views on both the Sculptures and ShapeNet
datasets.Finally, the architecture is investigated to determine
how information is encoded and aggregated across views in
Sect. 8.1

This work is an extension of that described in Wiles and
Zisserman (2017). The original architecture is referred to
as SilNet, and the improved architecture (the subject of this
work) SiDeNet. SilNet learns about the visual hull of the
object and is trained on images of a small resolution size to
predict the silhouette of the object at again a small resolu-
tion size. This is improved in this work, SiDeNet. The loss
function is improved by adding an additional term for depth
that enforces that the network should learn to predict concav-
ities on the 3D shape (Sect. 3). The architecture is improved
by increasing the resolution of the input and predicted image
(Sect. 4). The dataset acquisition phase is improvedby adding
data augmentation in 3D (Sect. 5). These changes are anal-
ysed in Sect. 6.

2 RelatedWork

Inferring 3D shape from one or more images has a long
history in computer vision. However, single vs multi-image
approaches have largely taken divergent routes. Multi-image
approaches typically enforce geometric constraints such that
the estimated model satisfies the silhouette and photometric
constraints imposed by the given viewswhereas single image
approaches typically impose priors in order to constrain the

1 Data and resources are available at http://www.robots.ox.ac.uk/~vgg/
data/SilNet/.
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problem. However, recent deep learning approaches have
started to tackle these problems within the same model. This
section is divided into three areas: multi-image approaches
and single image approaches without deep learning, and
newer deep learning approaches which attempt to combine
these two problems into one model.

2.1 Multi-image

Traditionally, given multiple images of an object, 3D can be
estimated by tracking feature points across multiple views;
these constraints are then used to infer the 3D at the fea-
ture points using structure-from-motion (SfM), as explained
inHartley andZisserman (2004).Additional photometric and
silhouette constraints can also be imposed on the estimated
shape of the object. Silhouette based approaches that attempt
to learn the visual hull (introduced by Laurentini 1994) using
a set of silhouettes with known camera positions can be done
in 3D using voxels (or another 3D representation) or in the
image domain by interpolating between views (e.g. the work
ofMatusik et al. 2000). This is improved by other approaches
which attempt to construct the latent shape subject to the sil-
houette as well as photometric constraints; they differ in how
they represent the shape and how they enforce the geometric
and photometric constraints (Boyer and Franco 2003; Kolev
et al. 2009; Vogiatzis et al. 2003—see Seitz et al. 2006 for a
thorough review). The limitation of these approaches is that
they require multiple views of the object at test time in order
to impose constraints on the generated shape and they cannot
extrapolate to unseen portions of the object.

2.2 Single Image

When given a single image, then correspondences cannot be
used to derive the 3D shape of the model. As a result, single-
image approaches must impose priors in order to recover 3D
information. The prior may be based on the class by mod-
elling the deviation from a mean shape. This approach was
introduced in the seminal work of Blanz and Vetter (1999).
The class based reconstruction approach has continued to be
developed for semantic categories (Cashman and Fitzgibbon
2013; Prasad et al. 2010; Vicente et al. 2014; Xiang et al.
2014; Kar et al. 2015; Rock et al. 2015; Kong et al. 2017) or
cuboidal room structures (Fouhey 2015; Hedau et al. 2009).
Another direction is to use priors on shading, texture, or illu-
mination to infer aspects of 3D shape (Zhang et al. 1999;
Blake and Marinos 1990; Barron and Malik 2015; Witkin
1981).

2.3 Deep Learning Approaches

Newer deep learning approaches have traditionally built on
the single image philosophy of learning a prior distribution

of shapes for a given object class. However, in these cases
the distribution is implicitly learned for a specific object class
from a single image using a neural network. These methods
rely on a large number of images of a given object class that
are usually synthetic. The distribution may be learned by
predicting the corresponding 3D shape from a given image
for a given object class using a voxel, point cloud, or surface
representation (Girdhar et al. 2016; Wu et al. 2016; Fan et al.
2016; Sinha et al. 2017; Yan et al. 2016; Tulsiani et al. 2017;
Rezende et al. 2016; Wu et al. 2017). These methods differ
in whether they are supervised or use a weak-supervision
(e.g. the silhouette or photometric consistency as in Yan et al.
2016; Tulsiani et al. 2017). A second set of methods learn
a latent representation by attempting to generate new views
conditioned on a given view. This approachwas introduced in
the seminal work of Tatarchenko et al. (2016) and improved
on by Zhou et al. (2016), Park et al. (2017).

While demonstrating impressive results, these deep learn-
ing methods methods are trained/evaluated on a single or
small number of object classes and often do not consider
the additional benefits of multiple views. The following
approaches consider how to generalise to multiple views
and/or the real domain.

The approaches that consider the multi-view case are the
following. Choy et al. (2016) use a recurrent neural network
on the predicted voxels given a sequence of images to recon-
struct the model. Kar et al. (2017) use the known camera
position to impose geometric constraints on how the views
are combined in the voxel representation. Finally, Soltani
et al. (2017) pre-determine a fixed set of viewpoints of the
object and then train a network for silhouette/depth from
these known viewpoints. However, changing any of the input
viewpoints or output viewpointswould require training a new
network.

More recent approaches such as the works of Zhu et al.
(2017), Wu et al. (2017) have attempted to fine-tune the
model trained on synthetic data on real images using the
silhouette or another constraint, but they only extend to
semantic classes that have been seen in the synthetic data.
Novotny et al. (2017) directly learn on real data using 3D
reconstructions generated by a SfM pipeline. However, they
require many views of the same object and enough corre-
spondences at train time in order to make use of the SfM
pipeline.

This paper improves on previous work in three ways.First
an image based approach is used for predicting the silhou-
ette and depth, thereby enforcing that the latent model learns
about 3D shape without having to explicitly model the full
3D shape. Second our method of combining multiple views
using a latent embedding acts globally as opposed to locally
(e.g.Choyet al. 2016 combine information for subsets of vox-
els and Kar et al. 2017 combine information along projection
rays). Additionally, our method does not require photometric
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consistency or geometric modelling of the camera move-
ment and intrinsic parameters—it is an architectural solution.
In spirit, our method of combining multiple views is more
similar to multi-view classification/recognition architectures
such as the works of Su et al. (2015), Qi et al. (2016). Third
a new Sculptures dataset is curated from SketchFab (2018)
which exhibits a wide variety of shapes from many semantic
classes. Many contemporary methods train/test on ShapeNet
core which contains a set of semantic classes. Training on
class-specific datasets raises the question: towhat extent have
these architectures actually learnt about shape and how well
will they generalise to unseen objects that vary widely from
the given class (e.g. as an extremehowaccuratelywould these
models reconstruct a tree when trained on beds/bookcases).
We investigate this on the Sculptures dataset.

3 Silhouette and Depth: AMulti-task Loss

The loss function used enforces two principles: first that the
network learns about the visual hull, and second that it learns
to predict the surface (and thus also concavities) at the given
view. This is done by predicting, for a given image (or set
of images), the silhouette in a new view and the depth at the
given views.We expand on these two points in the following.

3.1 Silhouette

The first task considered is how to predict the silhouette at
a new view given a set of views of an object. The network
can do well at this task only if it has learned about the 3D
shape of the object. To predict the silhouette at a new angle
θ ′, the networkmust at least encode the visual hull (the visual
hull is the volume swept out by the intersection of the back-
projected silhouettes of an object as the viewpoint varies).
Using a silhouette image has desirable properties: first, it is
a 2D representation and so is limited by the 2D image size
(e.g. as opposed to the size of a 3D voxel grid). Second, pixel
intensities do not have to be modelled.

3.2 Depth

However, using the silhouette and thereby enforcing the
visual hull has the limitation that the network is not forced to
predict concavities on the object, as they never appear on the
visual hull. The proposed solution to this is to use a multi-
task approach. Instead of having the learned representation
describe only the silhouette in the new view, the representa-
tion must learn additionally to predict the depth of the object
in the given views. This enforces that the representation must
have a richer understanding of the object, as it must model
the concavities on the object as opposed to just the visual
hull (which using a silhouette loss imposes). Using a depth

image is also a 2D representation, so as with using an image
for the silhouette, it is limited by the 2D image size.

4 Implementation

In order to actually implement the proposed approach, the
problem is formulated as described in Sects. 4.1 and 4.2 and
a fully convolutional CNN architecture is used, as described
in Sect. 4.3.

4.1 Loss Function

The loss function is implemented as follows. Given a set
of images with their corresponding viewpoints (I1, θ1), . . . ,
(IN , θN ) a representation x is learned such that x can be used
to not only predict the depth in the given views d1, . . . , dN but
also predict the silhouette S at a new viewpoint θ ′. Moreover,
the number of input views (e.g. N ) should be changeable
at test time such that as N increases then the predictions
d1, . . . dN , S improve.

To do this, the images and their corresponding view-
points are first encoded using a convolutional encoder f
to give a latent representation f vi . The same encoder is
used for all viewpoints giving f (I1, θ1), . . . , f (IN , θN ) =
f v1, . . . , f vN . These are then combined to give the latent
view-dependent representation x . x is then decoded using a
convolutional decoder hsil conditioned on the new viewpoint
θ ′ to predict the silhouette S in the new view. Option-
ally, x is also decoded via another convolutional decoder
hdepth , which is conditioned on the given image and view-
points to predict the depth at the given viewpoints—di =
hdepth(x, Ii , θi ). Finally, the binary cross entropy loss is used
to compare S to the ground truth Sgt and the L1 loss to com-
pare di to the ground truth digt .

4.2 Improved Loss Functions

Implementing the loss functions naively as described in
Sect. 4.1 is problematic. First, the depth being predicted is
the absolute depth, which means the model must guess the
absolute position of the object in the scene. This is inher-
ently ambiguous. Second, the silhouette prediction decoder
struggles to model the finer detail on the silhouette, instead
focusing on the middle of the object which is usually filled.

As a result, both losses are modified. For the depth predic-
tion, the mean of both the ground truth and predicted depth
are moved to 0.

The silhouette loss is weighted at a given pixel wi, j based
on the Euclidean distance at that point to the silhouette
(denoted as disti, j ):
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Fig. 2 Adiagrammatic explanation of themulti-task loss function used.
Given the input images, the images are combined to give a feature
vector x which is used by both decoders (denoted in green—depth—
and orange—silhouette) to generate the depth predictions for the given
views and the silhouette prediction in a new view (Color figure online)

wi, j =
{
disti, j , if disti, j ≤ T

c otherwise.
(1)

In practice T = 20, c = 5. The rationale for the fall-off
when disti, j > T is due to the fact that most of the objects
are centred and have few holes, so modelling the pixels far
from the silhouette is easy. Using the fall-off incentivises
SiDeNet to correctly model the pixels near the silhouette.
Weighting based on the distance to the silhouette models the
fact that it is ambiguous whether pixels on the silhouette are
part of the background or foreground.

In summary, the complete loss functions are

Lsil =
∑
i, j

wi, j

(
Sgti, j log(Si, j ) +

(
1 − Sgti, j

)
log(1 − Si, j )

)
;

(2)

Ldepth =
N∑
i=1

|di − digt |1. (3)

The loss function is visualised in Fig. 2. Note that in this
example the network’s prediction exhibits a concavity in the
groove of the sculpture’s folded arms.

4.3 Architecture

This section describes the various components of SiDeNet,
which are visualised in Fig. 3 and described in detail in
Table 10. This architecture takes as input a set of images
of size 256 × 256 and corresponding viewpoints (encoded
as [sin θi , cos θi ] so that 0◦, 360◦ map to the same value)
and generates depth and silhouette images at a resolution of
size 256 × 256. SiDeNet takes the input image viewpoints
as additional inputs because there is no implicit coordinate
frame that is true for all objects. For example, a bust may
be oriented along the z-axis for one object and the x-axis
for another and there is no natural mapping from a bust to a

sword. Explicitly modelling the coordinate frame using the
input/output viewpoints removes these ambiguities.

SiDeNet is modified to produce a latent 3D representation
in SideNet3D, which is visualised in Fig. 4 and described in
Sect. 4.4. This architecture is useful for two reasons. First, it
demonstrates that the method of combining multiple views
is useful in this scenario as well. Second, it is used to eval-
uate whether the image representation does indeed allow for
more accurate predictions, as the 3D representation necessi-
tates using fewer convolutional transposes and so generates
a smaller 57 × 57 silhouette image.

Encoder The encoder f takes the given image Ii and theta θi
and encodes it to a latent representation f vi . In the case of
all architectures, this is implemented using a convolutional
encoder, which is illustrated in Fig. 3. The layer parameters
and design are based on the encoder portion of the pix2pix
architecture by Isola et al. (2017) which is based on the UNet
architecture of Ronneberger et al. (2015).

Combination functionTo combine the feature vectors of each
encoder, any function that satisfies the following property
could be considered: given a set of feature vectors f vi , the
combination function should combine them into a single
latent vector x such that for any number of feature vectors,
x always has the same number of elements. In particular,
an element-wise max pool over the feature vectors and an
element-wise average pool are considered.This vector x must
encode properties of 3D shape useful for both depth predic-
tion and silhouette prediction in a new view.

Decoder (depth) The depth branch predicts the depth of a
given image using skip connections (taken from the corre-
sponding input branch) to propagate the higher details. The
exact filter sizes are modelled on the pix2pix and UNet net-
works.

Decoder (silhouette) The silhouette branch predicts the sil-
houette of a given image at a new viewpoint θ ′. The layers
are the same as the decoder (depth) branch without the skip
connections (as there is no corresponding input view).

4.4 3D Decoder

For SiDeNet3D, the silhouette decoder is modified to gen-
erate a latent 3D representation encoded using a voxel
occupancy grid. Using a projection layer this grid is projected
to 2D, which allows the silhouette loss to be used to train the
network in an end-end manner. This is done as follows. First,
the decoder is encoded as a sequence of 3D convolutional
transposes which generate a voxel of size V = 57× 57× 57
(please refer to appendix A.1 for the precise details). This
box is then transformed to the desired output θ ′ to give V ′
using a nearest neighbour sampler as described by Jaderberg
et al. (2015). The box is projected to generate the silhouette
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Fig. 3 A diagrammatic overview of the architecture used in SiDeNet.
Weights are shared across encoders and decoders (e.g. portions of
the architecture having the same colour indicate shared weights). The
blue, orange, and purple arrows denote concatenation. The input angles
θ1 · · · θN are broadcast over the feature channels as illustrated by the
orange arrows. The feature vectors are combined to form x (indicated

by the yellow block and arrows). This value is then used to predict the
depth at the given views θ1 · · · θN and the silhouette at a new view θ ′.
The size of x is invariant to the number of input views N , so an extra
view θi can be added at test time without any increase in the number
of parameters. Please see Table 10 for the precise details (Color figure
online)

Fig. 4 A diagrammatic overview of the projection in SiDeNet3D. A set
of 3D convolutional transposes up-sample from the combined feature
vector x to generate the 57× 57× 57 voxel (V ). This is then projected
using amax-operation over each pixel location to generate the silhouette
in a new view. Please see Table 10 for a thorough description of the three
different architectures

in a new view using the max function. As the max function
is differentiable, the silhouette loss can be back propagated
through this layer and the entire network trained end-to-end.

The idea of using a differentiable projection layer was
also considered by Yan et al. (2016), Tulsiani et al. (2017),

Table 1 Overview of the datasets. Gives the number of sculptures in
the train/val/test set as well as the number of views per object

Dataset Train Val Test # of views

SketchFab 372 20 33 5

SynthSculptures 77 – – 5

ShapeNet 4744 678 1356 24

Gadelha et al. (2016), Rezende et al. (2016). (However, we
can incorporate additional views at test time.)

5 Dataset

Three datasets are used in this work: a large sculpture dataset
of scanned objects which is downloaded from SketchFab
(2018), a set of scanned sculptures, and a subset of the syn-
thetic ShapeNet objects (Chang et al. 2015). An overview of
the datasets are given in Table 1. Note that unlike our dataset,
ShapeNet consists of object categories for which one can
impose a canonical view (e.g. that 0◦ corresponds to a chair
facing the viewer). This allows for methods trained on this
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Fig. 5 Sample renderings of the three different datasets. Zoom in for
more details. Best viewed in colour. a SketchFab dataset. Two sample
renderings of seven objects. The first three fall into the train set, the rest
into the test set. b SynthSculpture dataset. Sample renderings of eight

objects. These samples demonstrate the variety of objects, e.g. toys,
animals, etc. c ShapeNet. Seven sample renderings of the chair subset
(Color figure online)

dataset to make use of rotations or transformations relative
to the canonical view. However, for the sculpture dataset,
this property does not exist, necessitating the need of a view-
dependent representation for SiDeNet.

Performing data augmentation in 3D is also investigated
and shown to increase performance in Sect. 6.2.

5.1 Sculpture Datasets

SketchFab: sculptures fromSketchFabAset of realistic sculp-
tures are downloaded fromSketchFab (the same sculptures as
used in Wiles and Zisserman 2017 but different renderings).
These are accurate reconstructions of the original sculptures
generated by users using photogrammetry and come with
realistic textures. Some examples are given in Fig. 5a.

SynthSculptures This dataset includes an additional set of 77
sculptures downloaded from TurboSquid2 using the query
sculpture. These objects have a variety of realism and come
from a range of object classes. For example the sculptures
range from low quality meshes that are clearly polygonized
to high quality, highly realistic meshes. The object classes
range from abstract sculptures to jewellery to animals. Some
examples are given in Fig. 5b.

Rendering The sculptures and their associated material (if
it exists) are rendered in Blender (Blender Online Commu-
nity 2017). The sculptures are first resized to be within a
uniform range (this is necessary for the depth prediction com-
ponent of the model). Then, for each sculpture, five images

2 https://www.turbosquid.com/3d-model/.
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Fig. 6 Seven sample augmentations of three models in the SynthSculp-
ture dataset using the 3D augmentation setup described in Sect. 5.1.
These samples demonstrate the variety of materials, sizes and view-
points for a given 3D model using the 3D data augmentation method

of the sculpture are rendered from uniformly randomly cho-
sen viewpoints between 0◦ and 120◦ as the object is rotated
about the vertical axis. Three light sources are added to
the scene and translated randomly with each render. Some
sample sculptures (and renders) for SketchFab and Synth-
Sculptures are given in Fig. 5.

3D augmentation 3D data augmentation is used to augment
the two sculpture datasets by modifying the dimensions and
material of a given 3D model. The x ,y,z dimensions of a
model are each randomly scaled from between [0.5, 1.4] of
the original dimension. Then a material is randomly chosen
from a set of standard blender materials.3 These materials
include varieties of wood, stone, and marble. Finally, the
resulting model is rendered from five viewpoints exactly as
described above. The whole process is repeated 20 times for
each model. Some example renderings using data augmen-
tation for a selection of models from SynthScultpures are
illustrated in Fig. 6.

Dataset split The sculptures from SketchFab are divided
at the sculpture level into train, val, test so that there are
372/20/33 sculptures respectively. All sculptures from Synth-
Sculptures are used for training. For a given iteration during
train/val/test, a sculpture is randomly chosen from which a
subset of the 5 rendered views is selected.

5.2 ShapeNet

ShapeNet (Chang et al. 2015) is a dataset of synthetic objects
divided into a set of semantic classes. To compare this work
to that of Yan et al. (2016), their subdivision, train/val/test
split and renderings of the ShapeNet chair subset are used.
Their rendered synthetic objects are rendered under simple
lighting conditions at fixed 15◦ intervals about the verti-
cal axis for each object to give a total of 24 views per
object. We additionally collect depth maps for each render
using the extrinsic/intrinsic parameters of Yan et al. (2016).

3 https://www.blendswap.com/blends/view/4867.

Some example renderings are given in Fig. 5c. Again at
train/val/test time, a sculpture is randomly chosen and a sub-
set of this sculpture’s 24 renders is chosen.

6 Experiments

This section first evaluates the design choices: the utility
of using the data augmentation scheme is demonstrated in
Sect. 6.2, the effect of the different architectures in Sect. 6.3,
the multi-task loss in Sect. 6.4, and the effect of the choice
of θ ′ in Sect. 6.8. Second it evaluates the method of com-
bining multiple views: Sect.s 6.5 and 6.6 demonstrate how
increasing the number of views at test time improves per-
formance on the Sculpture dataset irrespective of whether
the input/output views are photometrically consistent. Sec-
tion 6.7 demonstrates that the approach works on ShapeNet
and Sect. 6.9 evaluates the approach in 3D. SiDeNet’s abil-
ity to perform new view synthesis is exhibited in Sect. 7 as
well as its generalisation capability to real images. Finally,
the method by which SiDeNet can encode a joint embedding
of shape and viewpoint is investigated in Sect. 8.

6.1 Training Setup

The networks are written in pytorch (Paszke et al. 2017) and
trained with SGD with a learning rate of 0.001, momentum
of 0.9 and a batch size of 16. They are trained until the loss on
the validation set stops improving or for a maximum of 200
iterations, whichever happens first. The tradeoff between the
two losses – L = λdepthLdepth + λsilLsil—is set such that
λdepth = 1 and λsil = 1.

6.1.1 Evaluation Measure

The evaluation measure used is the intersection over union
(IoU) error for the silhouette, L1 error for the depth error,
and chamfer distance for the error when evaluating in 3D.
The IoU for a given predicted silhouette S and ground truth

silhouette S̄ is evaluated as
∑

x,y(I (S)∩I (S̄))∑
x,y(I (S)∪I (S̄))

where I is an

indicator function and equals 1 if the pixel is a foreground
pixel, else 0. This is then averaged over all images to give
the mean IoU.

The L1 loss is simply the average over all foreground pix-
els: L1 = 1

N

∑
px |d pred

px − dgtpx |1 where px is a foreground
pixel and N the number of foreground pixels. Note that the
predicted and ground truth depth are first normalised by sub-
tracting off the mean depth. This is then averaged over the
batch. When there are multiple input views, the depth error
is only computed for the first view, so the comparison across
increasing numbers of views is valid.
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Table 2 Effect of data augmentation. This table demonstrates the utility
of using 3D data augmentation to effectively enlarge the number of
sculptures being trained with. SketchFab is always used and sometimes
augmented (denoted by Augment). SynthSculpture is sometimes used
(denoted byUsed) and sometimes augmented. Themodels are evaluated
on the test set of SketchFab. Lower is better for L1 and higher is better
for IoU

SketchFab SynthSculpture L1 Depth error Silhouette IoU

Augment? Used? Augment?

✗ ✗ – 0.210 0.643

✓ ✗ – 0.202 0.719

✗ ✓ ✗ 0.209 0.678

✓ ✓ ✓ 0.201 0.724

The chamfer distance used is the symmetrized version.
Given the ground truth point cloud g and the predicted one
p, then the error is CD = 1

N

∑N
i=1 min j |gi − p j |2 +

1
M

∑M
i=1 min j |g j − pi |2.

6.1.2 Evaluation Setup

Unless otherwise stated, the results are for the max-pooling
version of SiDeNet, with input/output view size 256 × 256,
trained with 2 distinct views, data augmentation of both
datasets (Sect. 6.2), λdepth = 1 and λsil = 1, and the
improved losses described in Sect. 4.2.

6.2 The Effect of the Data Augmentation

First, the effect of the 3D data augmentation scheme is con-
sidered. The results for four methods trained with varying
amounts of data augmentation (described in section 5.1) are
reported in Table 2 and demonstrate the benefit of using the
3D data augmentation scheme. (These are trained with the
non-improved losses.)Using only 2Dmodificationswas tried
but not found to improve performance.

6.3 Ablation Study of the Different Architectures

This section compares the performance of SiDeNet57×57,
SiDeNet3D, and SiDeNet on the silhouette/depth prediction
tasks, as well as using average vs max-pooling. SiDeNet/
SiDeNet3D are described in Sect. 4.3. SiDeNet57×57 modi-
fies SiDeNet to generate a 57× 57 silhouette (for the details
for all architectures please refer to “Appendix A.1”). It addi-
tionally compares the simple version of the loss functions,
described in Sect. 4.1 to the improved version described in
Sect. 4.2. Finally the performance of predicting the mean
depth value is given as a baseline. See Table 3 for the results.

These results demonstrate that while the difference in
the pooling function in terms of results is minimal, our
improved loss functions improve performance. Weighting
more strongly the more difficult parts of the silhouette (e.g.
around the boundary) can encourage the model to learn a
better representation.

Finally, SiDeNet57×57 does worse than SiDeNet for both
the L1 loss and the silhouette IoU loss. While in this case the
difference is small, as more data is introduced and the predic-
tions become more and more accurate, the benefit of using a
larger image/representation is clear. This is demonstrated by
the chairs on ShapeNet in Sect. 6.7.

6.4 The effect of usingLdepth andLsil

Second, the effect of the individual components of the multi-
task loss is considered. The multi-task loss enforces that
the network learns a richer 3D representation; the network
must predict concavities in order to perform well at pre-
dicting depth and it must learn about the visual hull of the
object in order to predict silhouettes at new viewpoints. As
demonstrated in Table 4, using the multi-task loss does not
negatively affect the prediction accuracy as compared to pre-
dicting each component separately. This demonstrates that
the model is able to represent both aspects of shape at the
same time.

Table 3 Ablation study of the different architectures, which vary in
size and complexity. basic refers to using the standard L1 and binary
cross entropy loss without the improvements described in Sect. 4.2.
The models are evaluated on the test set of SketchFab. Lower is better

for L1 and higher is better for IoU. The sizes denote the size of the
corresponding images (e.g. 256 × 256 corresponds to an output image
of this resolution)

Model Input size Output size Pooling? Improved loss? Depth L1256×256 error Silhouette IoU256×256

SiDeNetbasic 256 × 256 256 × 256 Max ✗ 0.201 0.724

SiDeNet 256 × 256 256 × 256 Max � 0.181 0.739

SiDeNet 256 × 256 256 × 256 Avg � 0.189 0.734

SiDeNet57×57basic 256 × 256 57 × 57 Max ✗ – 0.723

SiDeNet57×57 256 × 256 57 × 57 Max � 0.195 0.734

SiDeNet3D 256 × 256 57 × 57 Max � 0.182 0.733

Baseline: z = c – – – – 0.223 –
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Table 4 Effect of the multi-task loss. This table demonstrates the effect
of the multi-task loss. As can be seen, using both losses does not neg-
atively affect the performance of either task. The models are evaluated
on the test set of SketchFab. Lower is better for L1 and higher is better
for IoU

Loss function λdepth λsil Depth L1 error Silhouette IoU

Silhouette and depth 1 1 0.181 0.739

Silhouette – – – 0.734

Depth – – 0.178 –

Table 5 Effect of incorporating additional views at test time. This
architecture was trained with one, two, or three views. These results
demonstrate how additional views can be dynamically incorporated at
test time and results on both depth and silhouette measures improve.
The models are evaluated on the test set of SketchFab. Lower is better
for L1 and higher is better for IoU

Pooling? # Views (train) # Views (test) L1 Depth
error

Silhouette
IoU

Max 1 1 0.206 0.702

Max 1 2 0.210 0.712

Max 1 3 0.209 0.716

Max 2 1 0.204 0.694

Max 2 2 0.181 0.739

Max 2 3 0.170 0.751

Avg 2 1 0.197 0.715

Avg 2 2 0.192 0.725

Avg 2 3 0.189 0.732

Max 3 1 0.198 0.706

Max 3 2 0.172 0.753

Max 3 3 0.162 0.766

Some visual results are given in Figs. 11 and 12. Example
(b) in Fig. 12 demonstrates how the model has learned to
predict concavities, as it is able to predict grooves in the
relief.

6.5 The effect of increasing the number of views

Next, the effect of increasing the number of input views is
investigated with interesting results.

For SiDeNet, as with SilNet, increasing the number of
views improves results over all errormetrics in Table 5. Some
qualitative results are given in Fig. 7. It is interesting to note
that not only does the silhouette performance improve given
additional input views but so does the depth evaluation met-
ric. So incorporating additional views improves the depth
prediction for a given view using only the latent vector x .

A second interesting point is that training with more
views can predict better than training with fewer numbers
of views—e.g. training with three views and testing on one
or two views does better than training on two views and test-

ing on two or training on one view and testing on one view.
It seems that when training with additional views and testing
with a smaller number, the network can make use of infor-
mation learned from the additional views. This demonstrates
the generalisability of the SiDeNet architecture.

6.6 The Effect of Non-photometrically Consistent
Inputs

A major benefit of SiDeNet is it does not require photo-
metrically consistent views: provided the object is of the
same shape, then the views may vary in lighting or material.
While the sculpture renderings used already vary in lighting
conditions across different views (Sect. 5), this section con-
siders the extreme case: how does SiDeNet perform when
the texture is modified in the input views. To perform this
comparison, SiDeNet is tested on the sculpture dataset with
a randomly chosen texture for each view (see Fig. 6 for some
sample textures demonstrating the variety of the 20 textures).
It is then tested again on the same test set but with the tex-
ture fixed across all input views. The results are reported in
Table 6.

Surprisingly, with no additional training, SiDeNet per-
forms nearly as well when the input/output views have
randomly chosen textures. Moreover, performance improves
given additional views. The network appears to have learned
to combine input views with varying textures without being
explicitly trained for this. This demonstrates a real benefit
of SiDeNet over traditional approaches—the ability to com-
bine multiple views of an object for shape prediction without
requiring photometric consistency.

6.7 Comparison on ShapeNet

SiDeNet is compared toPerspectiveTransformerNets byYan
et al. (2016) by training and testing on the chair subset of
the ShapeNet dataset. The comparison demonstrates three
benefits of our approach: the ability to incorporate multi-
ple views, the benefit of our 3D data augmentation scheme,
and the benefits of staying in 2D. This is done by compar-
ing the accuracy of SiDeNet’s predicted silhouettes to those
of Yan et al. (2016). Their model is trained with the inten-
tion of using it for 3D shape prediction, but we focus on the
2D case here to demonstrate that using an image represen-
tation means that, with the same data, we can achieve better
prediction performance in the image domain, as we are not
limited by the latent voxel resolution. To compare the gen-
erated silhouettes, their implementation of the IoU metric is

used:
∑

x,y I (Sx,y)×S̄x,y∑
x,y(I (Sx,y)+S̄x,y)>0.9

.

Multiple setups for SiDeNet are considered: fine-tuning
from the model trained on the sculptures with data augmen-
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(a)

(b)

(c)

Fig. 7 (a–c)Qualitative results for increasing the number of input views
on SiDeNet for three different sculptures. SiDeNet’s depth and silhou-
ette predictions are visualised as the number of input views is increased.
To the left are the input views, the centre gives the depth prediction for
the first input view, and the right gives the predicted silhouette for each
set of input views. The silhouette in the red box gives the ground truth

silhouette. The scale on the side gives the error in depth—blue means
the depth prediction is perfectly accurate and red that the prediction is
off by 1 unit. (The depth error is clamped between 0 and 1 for visualisa-
tion purposes.) As can be seen, performance improves with additional
views. This is most clearly seen for the ram in (c) (Color figure online)
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Table 6 The effect of using non-photometrically consistent inputs.
These results demonstrate that SiDeNet trained with views of an object
with the same texture generalises at runtime to incorporating views
of an object with differing textures. Additional views can be dynami-
cally incorporated at test time and results on both depth and silhouette
measures improve. The model is trained with 2 views. The models are
evaluated on the test set of SketchFab. Lower is better for L1 and higher
is better for IoU

Views have the same texture? # Views (test) L1 Depth
error

Silhouette
IoU

� 1 0.165 0.739

� 2 0.142 0.778

� 3 0.139 0.785

✗ 1 0.164 0.738

✗ 2 0.143 0.777

✗ 3 0.139 0.785

Table 7 Comparison to Perspective Transformer Nets (PTNs) (Yan
et al. 2016) on the silhouette prediction task on the chair subset of
ShapeNet. Their model is first trained on multiple ShapeNet categories
and fine-tuned on the chair subset. SiDeNet is optionally first trained on
the Sculpture dataset or trained directly on the chair subset. As can be
seen, SiDeNet outperforms PTN given one view and improves further
given additional views. These results also demonstrate the utility of
various components of SiDeNet: using a larger 256 × 256 image to
train the silhouette prediction task and using the improved, weighted
loss function. It is also interesting to note that pre-training with the
complex sculpture class gives a small boost in performance (e.g. it
generalises to this very different domain of chairs). The value reported
is the mean IoU metric for the silhouette; higher is better

Pre-training Number of views tested with

1 2 3 4 5

Yan et al. (2016) ShapeNet 0.797 – – – –

SiDeNet Sculptures 0.831 0.845 0.850 0.852 0.853

SiDeNet – 0.826 0.843 0.848 0.850 0.851

SiDeNet256×256basic – 0.814 0.831 0.835 0.837 0.837

SiDeNet57×57basic – 0.775 0.791 0.795 0.796 0.795

tation (e.g. both in Table 1), with/without the improved loss
function and for multiple output sizes. To demonstrate the
benefits of the SiDeNet architecture, SiDeNet is trained only
with the silhouette loss, so both models are trained with the
exact same information. The model from Yan et al. (2016)
is fine-tuned from a model trained for multiple ShapeNet
categories. The results are reported in Table 7.

These results demonstrate the benefits of various compo-
nents of SiDeNet, which outperformsYan et al. (2016).First,
using a 2D resolution means a much larger image segmen-
tation can be used to train the network. As a result, much
better performance can be obtained (e.g. SiDeNet256×256basic
has much better performance than SiDeNet57×57basic ). Sec-
ond, the improved, weighted loss function for the silhouette
(Sect. 4.2) improves performance further. Third, fine-tuning

Fig. 8 The effect of varying the range of θ ′ used at train time on the
IoU error at test time (Color figure online)

a model trained with the 3D sculpture augmentation scheme
gives an additional small boost in performance.Finally, using
additional views improves results for all versions of SiDeNet.
Some qualitative results are given in Fig. 10.

6.8 The Effect of Varying�′

In order to see how well SiDeNet can extrapolate to new
angles (and there by howmuch it has learned about the visual
hull), the following experiment is performed on ShapeNet.
SiDeNet is first trained with various ranges of θ ′, θi . For
example if the range is [15◦ · · · 120◦], then all randomly
selected input angles θi and θ ′ are constrained to be within
this range during training. At test time, a random chair is
chosen and the silhouette IoU error evaluated for each target
viewpoint θ ′ in the full range (e.g. [15◦ · · · 360◦]), but the
input angles θi are still constrained to be in the constrained
range (e.g. [15◦ · · · 120◦]). This evaluates howwell themodel
extrapolates to unseen viewpoints at test time and how well
it has learned about shape. If the model was perfect, then
there would be no performance degradation as θ ′ moved out
of the constrained range used to train the model. The results
are given in Fig. 8. As can be seen (and would be expected),
for various training ranges the performance degrades as a
function of how much θ ′ differs from the range used to train
the model. The model is able to extrapolate outside of the
training range, but the more the model must extrapolate, the
worse the prediction.

6.9 Comparison in 3D

We additionally evaluate SiDeNet’s 3D predictions and con-
sider the two cases: using the depth maps predicted by
SiDeNet and the voxels from SiDeNet3D.

SiDeNet The depth maps are compared to those predicted
using the depth map version of Kar et al. (2017) in Table 8.
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Table 8 CD (×100) on the
ShapeNet dataset. The models
evaluated on depth predict a
depth map which is
back-projected to generate a 3D
point cloud

Model Trained with: Evaluation is on: Number of views tested with

1 2 3 4 6

SiDeNet Silhouettes + depth Depth 1.47 0.72 0.62 0.59 0.58

Kar et al. (2017) Depth Depth 1.73 0.82 0.71 0.67 0.65

Fig. 9 Comparison ofmulti-viewmethods on ShapeNet. Renderings of
the given chair are given in the top row, followed by SiDeNet’s and Kar
et al. (2017)’s predictions. For each chair, for each row, the point clouds
from left to right show the ground truth followed by the predictions

for one, two, three, and four views respectively. The colour denotes the
z value. As can be seen SiDeNet’s predictions are higher quality than
those of Kar et al. (2017) for these examples

Table 9 CD (×100) on the Sculptures dataset. The models evaluated on depth predict a depth map which is back-projected to generate a 3D point
cloud. The models evaluated on 3D are compared using the explicitly or implicitly learned 3D

Model Trained with Evaluation is on: Number of views tested with

1 2 3

SiDeNet3D Silhouettes + depth 3D 0.87 0.82 0.81

Kar et al. (2017) Depth Depth 2.15 1.38 1.15

Tatarchenko et al. (2016) Depth Depth 1.97 – –

Yan et al. (2016) Silhouettes 3D 1.26 – –

Groueix et al. (2018) 3D 3D 1.23 – –

This comparison is only done on ShapeNet as for the Sculp-
ture dataset we found it was necessary to subtract off the
mean depth to predict high quality depth maps (Sect. 4.2).
However, for ShapeNet there is less variation between the
chairs so this is not necessary. As a result SiDeNet is trained
with 2 views, the improved silhouette loss but the depth pre-
dicted is the absolute depth. The comparison is performed
as follows for both methods. For each chair in the test set
an initial view is chosen and the depth back-projected using
the known extrinsic/intrinsic camera parameters. Then for
each additional view, the initial views are chosen by sam-
pling evenly around the z-axis (e.g. if the first view is at
15◦, then two views would be at 15◦, 195◦ and three views
at 15◦, 195◦, 255◦) and the depth again back-projected to
give a point cloud. 2500 points are randomly chosen from
the predicted point cloud and aligned using ICP (Besl and
McKay 1992) with the ground truth point cloud. This exper-
iment evaluates themethod of pooling information in the two
methods and demonstrates that SiDeNet’s global method of
combining information performs better than that of Kar et al.

(2017) which combines information along projection rays.
Some qualitative results are given in Fig. 9.

SiDeNet3D SiDeNet3D is trained with 2 views and the
improved losses. The predicted voxels from the 3D projec-
tion layer are extracted andmarching cubes used to fit a mesh
over the iso-surface. The threshold value is chosen on the val-
idation set. A point cloud is extracted by randomly sampling
from the resulting mesh.

SiDeNet3D is compared to a number of other methods
in Table 9 for the Sculpture dataset. For SiDeNet3D and all
baselines models, 2500 points are randomly chosen from the
predicted point cloud and aligned with the ground truth point
cloud using ICP. The resulting point cloud is compared to
the ground truth point cloud by reporting the chamfer dis-
tance (CD). As can be seen, the performance of our method
improves as the number of input views increases.

Additionally, SiDeNet3D performs better than other base-
line methods on the Sculpture dataset in Table 9 which
demonstrates the utility of explicitly encoding the input view-
point and thereby representing the coordinate frame of the
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object. We note again that there is no canonical coordinate
frame and the input viewpoint does not align with the output
shape, so just predicting the 3D without allowing the net-
work to learn the transformation from the input viewpoint to
the 3D (as done in all the baseline methods) leads to poor
performance.
Baselines The baseline methods which do not produce point
clouds are converted as follows. To convert Yan et al. (2016)
to a point cloud, marching cubes is used to fit a mesh over
the predicted voxels. Points are then randomly chosen from
the extracted mesh. To convert Tatarchenko et al. (2016) to
a point cloud, the model is used to predict depth maps at
[0◦, 90◦, 180,◦ , 270◦]. The known intrinsic/extrinsic camera
parameters are used to back-project the depth maps. The four
point clouds are then combined to form a single point cloud.

7 Generating new views

Finally SiDeNet’s representation can be qualitatively evalu-
ated by performing two tasks that require new view genera-
tion: rotation and new view synthesis.

7.1 Rotation

As SiDeNet is trained with a subset of views for each dataset
(e.g. only 5 views of an object from a random set of view-
points in [0◦, 120◦] for the Sculpture dataset and 24 views
taken at 15◦ intervals for ShapeNet), the angle representation
can be probed by asking SiDeNet to predict the silhouette as
the angle is continuously varied within the given range of
viewpoints. Given a fixed input, if the angle is varied contin-
uously, then the output should similarly vary continuously.
This is demonstrated in Fig. 10 for both the Sculpture and
ShapeNet databases.

7.2 New view synthesis

Using the predicted depth, new viewpoints can be synthe-
sised, as demonstrated in Fig. 11. This is done by rendering
thedepthmapof theobject usingOpen3D(Zhouet al. (2018))
as a point cloud at the givenviewpoint and at a 45◦ rotation.At
both viewpoints the object is rendered in three ways: using a
textured point cloud, relighting the textured point cloud, and
rendering the point cloud using the predicted z value.

7.3 Real Images

Finally, the generalisability of what SiDeNet has learned is
tested on another dataset of real images of sculptures, curated
by Zollhöfer et al. (2015). The images of two sculptures
(augustus and relief) are taken. The images are segmented
and padded such that the resulting images have the same

properties as the Sculpture dataset (e.g. distance of sculp-
ture to the boundary and background colour). The image is
then input to the network with viewpoint 0◦. The resulting
prediction is rendered as in Sect. 7.2 at multiple viewpoints
and under multiple lighting conditions in Fig. 12. This figure
demonstrates that SiDeNet generalises to real images, even
though SiDeNet is trained only on synthetic images and for
a comparatively small (only ≈ 400) sculptures. Moreover
these real images have perspective effects, yet SiDeNet gen-
eralises to these images, producing realistic predictions.

8 Explainability

This section delves into SiDeNet, attempting to understand
how the network learns to incorporate multiple views. To
this end, the network is investigated using two methods. The
first considers how well the original input images can be
reconstructed given the angles and feature encoding x . The
second considers how well the original input viewpoints θi
can be predicted as a function of the embedding x and what
this implies about the encoding. This is done for both the
max and average pooling architectures.

8.1 Reconstruction

The first investigation demonstrates that the original input
images can be relatively well reconstructed given only the
feature encoding x and the input views.These reconstructions
in Fig. 13 demonstrate that x must hold some viewpoint and
image information.

To reconstruct the images, the approach of Mahendran
and Vedaldi (2015) is followed. Two images and their corre-
sponding viewpoints, are input to the network and a forward
pass computed. Then the combined feature vector x is
extracted (so it contains the information from the input views
and their viewpoints). The two images are reconstructed,
starting from noise, by minimizing a cost function consist-
ing of two losses: the first loss, the LMSE error, simply says
that the two reconstructed images when input to the network,
should give a feature vector x ′ that is the same as x . The sec-
ond loss, the total variation regulariserLT V (as inMahendran
and Vedaldi 2015 and Upchurch et al. 2017), states that the
reconstructed images should be smooth.

LMSE =
∑
i

(xi − x ′
i )
2 (4)

LT V =
∑
i, j

(
(Ii, j+1 − Ii, j )

2 + (Ii+1, j − Ii, j )
2
)β/2

(5)

This gives the total loss L = LMSE + λT V ∗ LT V . Here,
β, λT V are chosen such that β = 2 and λT V = 0.001. The
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Fig. 10 Qualitative results for rotating an object using the angle embed-
ding of θ ′. As the angle θ ′ is rotated from [0◦, 360◦] while the input
images and viewpoints are kept fixed, it can be seen that the objects
rotate continuously for ShapeNet (a–d) and the Sculpture database (e).

Additionally, the results for ShapeNet improve given additional input
views. For example, in (d), the base of the chair is incorrectly predicted
as solid given one view but correctly predicted given additional views

cost function is optimized usingSGD(withmomentum0.975
and learning rate 1, which is decreased by a factor of 0.1 at
each 1000 steps).

8.2 Analysis of feature embeddings

In the reconstructions above, it seems that some viewpoint
information is propagated through the network, despite the
aggregation function. Here, we want to understand precisely
how this is done. In order to do so, the following exper-
iment is conducted: how well can the various viewpoints
(e.g. θ1 · · · θN ) be predicted for a given architecture from
the embedding x . If the hypothesis—that the embedding x
encodes viewpoint—is correct, then these viewpoints should
be accurately predicted.

As a result, x is considered to determine how much of it
is viewpoint-independent and how much of it is viewpoint-
dependent. This is done by using each hidden unit in x to
predict the viewpoint θ1 using ordinary least squares regres-
sion (Friedman et al. 2001) (only θ1 is considered as x is
invariant to the input ordering). Training pairs are obtained
by taking two images with corresponding viewpoints θ1 and
θ2, passing them through the network and obtaining x .

The p value for each hidden unit is computed to determine
whether there is a significant relation between the hidden
unit and the viewpoint. If the p-value is insignificant (i.e. it is
large,> 0.05) then this implies that the hidden unit and view-
point are not related, so it contains viewpoint-independent
information (presumably shape information). The number
of hidden units with p value less than c, as c is varied, is
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Fig. 11 This figure demonstrates how new views of a sculpture can be
synthesised. For each sculpture the input views are shown to the left.
The sculpture is then rendered at two viewpoints. At each viewpoint,
three renderings are shown: (i) the rendered, textured point cloud, (ii)

the point cloud relit and (iii) the depth cloud rendered by using the
z-value for the colour (e.g. dark red is further away and yellow/white
nearer). Zoom in for details (Color figure online)

visualised in Fig. 14 for both architectures. As can be seen,
more than 80% of the hidden units for both architectures are
significantly related to the viewpoint.

Since so many of the hidden units have a significant rela-
tion to the viewpoint, they would be expected to vary as a
function of the input angle. To investigate this, the activations
of the hidden units are visualised as a function of the angle
θ1. For two objects, all input values are kept fixed (e.g. the
images and other viewpoint values) except for θ1 which is
varied between 0◦ and 360◦. A subset of the hidden units in
x are visualised as θ1 is varied in Fig. 15. As can be seen, the
activation either varies in a seemingly sinusoidal fashion—
it is maximised at some value for θ1 and decays as θ1 is
varied—or it is constant.

Moreover, the activations are not the same if the input
images are varied. This implies that the hidden units encode
not just viewpoint but also viewpoint-dependent information

(e.g. shape—such as the object is tall and thin at 90◦). This
information is aggregated over all views with either aggre-
gation method. The aggregation method controls whether
the most ‘confident’ view (e.g. if using max) is chosen or all
views are considered (e.g. avg). Finally, this analysis demon-
strates the utility of encoding the input viewpoints in the
architecture. When generating the silhouette and depth at a
new or given viewpoint, these properties can be easily mor-
phed into the new view (e.g. if the new viewpoint is at 90◦
then components nearer 90◦ can be easily considered with
more weight by the model).

8.3 Discussion

In this section, to understandwhat twoversions of SiDeNet—
avg and max—have learned, two questions have been posed.
How well can the original input images be reconstructed
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Fig. 12 SiDeNet’s predictions for real images. This figure demonstrates
how SiDeNet generalises to real images. For each sculpture the input
view (before padding and segmentation) is shown to the left. The pre-
dicted point cloud is then rendered at twoviewpoints.At each viewpoint,

three renderings are shown: (i) the rendered, textured point cloud, (ii)
the point cloud relit and (iii) the depth cloud rendered by using the
z-value for the colour (e.g. dark red is further away and yellow/white
nearer). Zoom in for details (Color figure online)

(a)

(b)

Fig. 13 Reconstruction of the original input images for max/avg
pooling architectures. The ability to propagate viewandviewpoint infor-
mation through the network is demonstrated by the fact that the input
images can be reconstructed given the latent feature vector and input
angles using the approach of Mahendran and Vedaldi (2015)

Fig. 14 Visualises the relation between the individual hidden units and
the viewpoint. Eachhiddenunit is used in a separate regression to predict
the viewpoint. The p value for each hidden unit is computed and for a
given set of values c, the number of hidden units with a p value < c
is plotted. This demonstrates that the majority of hidden units in both
architectures are correlatedwith the viewpoint. For themaxarchitecture,
98% of the hidden units have p < 0.05 and for the avg pool architecture
90%

from the angles and latent vector x? How is x encoded such
that views can be aggregated and that with more views, per-
formance improves? The subsequent analysis has not only
demonstrated that the original input views can be recon-
structed given the viewpoints and x but has also put forward
an explanation for how the views are aggregated: by using
the hidden units to encode shape and viewpoint together.

9 Summary

This work has introduced a new architecture SiDeNet for
learning about 3D shape, which is tested on a challenging
dataset of 3D sculptureswith a high variety of shapes and tex-
tures. To do this a multi-task loss is used; the network learns
to predict the depth for the given views and the silhouette at
a new view. This loss has multiple benefits. First, it enforces
that the network learns a complex representation of shape,
as predicting the silhouette enforces that the network learns
about the visual hull of the object andpredicting the depth that
the network learns about concavities on the object’s surface.
Second, using an image-based representation is beneficial, as
it does not limit the resolution of the generated model; this
benefit is demonstrated on the ShapeNet dataset. The trained
network can then be used for various applications, such as
new view synthesis and can even be used directly on real
images.

The second benefit of the SiDeNet architecture is the view-
dependent representation and the ability to generalise over
additional views at test-time. Using a view-dependent rep-
resentation means that no implicit assumptions need to be
made about the nature of the 3D objects (e.g. that there exists
a canonical orientation). Additionally, SiDeNet can leverage
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Fig. 15 Visualisation of the activation of hidden units as a function of
θi for the two architectures. θi is varied between 0◦, 360◦ and all other
values kept constant. Each hidden unit is normalised to between 0 and
1 over this sequence of θi and visualised. This figure demonstrates two
things: that the activation is a continuous, smooth function of θi or con-
stant (visualised as white in the figure). Second, it demonstrates that
the hidden units activated are based on the input views, as they vary

from view to view. This implies that the hidden units encode viewpoint
dependent information (e.g. object properties and the associated view-
point). a The activation for a subset of hidden units for the avg-pooling
architecture for two different sets of input images (left and right). b The
activation for a subset of hidden units for the max-pooling architecture
for two different sets of input images (left and right)

additional views at test time and results (both silhouette and
depth) improve with each additional view, even when the
views are not photometrically consistent.

While the architecture is able to capture a wide variety of
shapes and styles as demonstrated in our results, it is most
likely that SiDeNet would improve given more data. How-
ever, despite the sculpture dataset being small compared to
standard deep learning datasets, it is interesting that SiDeNet
can be used to boost performance on a very different synthetic
dataset of chairs and predict depth, out-of-the-box, on real
sculpture images.
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A Additional Architectural Details

A.1 2D Architecture

Table 10 gives additional information about the 2D archi-
tectures used. There are two variations. The first takes a
256 × 256 architecture and generates silhouette and depth
images of size 256× 256. The second stays in 2D and modi-
fies the silhouette decoder to generate a smaller silhouette of
size 57 × 57.
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Table 10 Overview of the different architectures. The colours corre-
spond to Fig. 3. The part in orange corresponds to the angle encoding
and the part in blue the image encoding. These are then concatenated
at layer 6 by broadcasting the angle encoding across the spatial dimen-
sions of the image tensor to which it is supposed to be concatenated.

Layer type Conv denotes convolution followed by an Leaky ReLU (0.2)
layer. Layer type Upsamp denotes a sequence of layers: ReLU, Bilin-
ear 2x2 Upsampler, Conv, BatchNorm. Layer type ConvTB denotes the
sequence: Conv Transpose, ReLU, and BatchNorm. Finally, layer type
ConvT denotes the sequence: Conv Transpose and ReLU

Layer Type Stride / Kernel Size / Padding Prev. Layer Img. Size (pre layer) Img. Size (post layer)

Encoder

1 Conv 2/4/1 Ii 3×256×256 64×128×128

2 Conv 2/4/1 1 64×128×128 128×64×64

3 Conv 2/4/1 2 128×64×64 256×32×32

4 Conv 2/4/1 3 256×32×32 512×16×16

5 Conv 2/4/1 4 512×16×16 512×8×8

A Conv 1/1 θi 2×1×1 32×1×1

B Conv 1/1 A 32×1×1 32×1×1

6 Concat – 5/B – 544×8×8

7 Conv 2/4/1 6 544×8×8 512×4×4

8 Conv 2/4/1 7 512×4×4 512×2×2

9 Conv 2/4/1 8 512×2×2 512×1×1

Decoder (depth)

10 UpSamp 1/3/1 x 512×1×1 512×2×2

11 UpSamp 1/3/1 10/8 1024×2×2 512×4×4

12 UpSamp 1/3/1 11/7 1024×4×4 512×8×8

13 UpSamp 1/3/1 12/5 1024×8×8 512×16×16

14 UpSamp 1/3/1 13/4 1024×16×16 256×32×32

15 UpSamp 1/3/1 14/3 512×32×32 128×64×64

16 UpSamp 1/3/1 15/2 256×64×64 64×128×128

17 UpSamp 1/3/1 16/1 128×128×128 3×256×256

18 Tanh (×5) – 17 3×256×256 3×256×256

Decoder (silhouette) 256 × 256

C Conv 1/1 θi 2×1×1 32×1×1

D Conv 1/1 A 32×1×1 32×1×1

19 Concat – D/x – 544×1×1

20 ConvTB 2/4/1 19 544×1×1 256×4×4

21 ConvTB 2/4/1 20 256×4×4 128×8×8

22 ConvTB 2/4/1 21 128×8×8 128×16×16

23 ConvTB 2/4/1 22 128×16×16 64×32×32

24 ConvTB 2/4/1 23 64×32×32 64×64×64

25 ConvTB 2/4/1 24 64×64×64 32×128×128

26 ConvTB 2/4/1 25 32×128×128 1×256×256

27 Sigmoid – 26 1×256×256 1×256×256

Decoder (silhouette) 57 × 57

C Conv 1/1 θi 2×1×1 32×1×1

D Conv 1/1 A 32×1×1 32×1×1

19 Concat – D/x – 544×1×1

20 ConvT 2/4/1 19 544×1×1 512×4×4

21 ConvT 2/4/1 20 512×4×4 256×8×8

22 ConvT 2/5/1 21 256×8×8 128×16×16

23 ConvT 2/5/1 22 128×16×16 64×32×32

24 ConvT 2/6/1 23 64×32×32 1×57×57

25 Sigmoid – 24 1×57×57 1×57×57
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A.2 3D Decoder

The third architecture modifies the silhouette decoder to
generate a latent 3D representation which projects to a sil-
houette of size 57 × 57 (the encoder is the same as for the
2D architectures). The 3D decoder is composed of the fol-
lowing set of 3D convolutional transposes and ReLU units.
ConvT3D(256,3,2) → ReLU → ConvT3D(128,3,2) →
ReLU → ConvT3D(64,3,2) → ReLU → ConvT3D(1,4,2).
ConvT3D(c,k,s) denotes a 3D convolutional transpose layer
with c output channels, a kernel size k and stride s. The result-
ing 57× 57× 57 voxel is finally transformed as described in
section 4.4.
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