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Abstract Personalised content adaptation has great potential to increase user engage-
ment in video games. Procedural generation of user-tailored content increases the
self-motivation of players as they immerse themselves in the virtual world. An adap-
tive user model is needed to capture the skills of the player and enable automatic game
content altering algorithms to fit the individual user. We propose an adaptive user
modelling approach using a combination of unobtrusive physiological data to iden-
tify strengths and weaknesses in user performance in car racing games. Our system
creates user-tailored tracks to improve driving habits and user experience, and to keep
engagement at high levels. The user modelling approach adopts concepts from the
Trace Theory framework; it uses machine learning to extract features from the user’s
physiological data and game-related actions, and cluster them into low level primi-
tives. These primitives are transformed and evaluated into higher level abstractions
such as experience, exploration and attention. These abstractions are subsequently
used to provide track alteration decisions for the player. Collection of data and feed-
back from 52 users allowed us to associate key model variables and outcomes to user
responses, and to verify that the model provides statistically significant decisions per-
sonalised to the individual player. Tailored game content variations between users in
our experiments, as well as the correlations with user satisfaction demonstrate that our
algorithm is able to automatically incorporate user feedback in subsequent procedural
content generation.
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1 Introduction

Computer games have become an integral part ofmodern leisure-time. There is intense
competition among game companies as they are being faced with challenges to retain
user engagement in a saturatedmarket. Steels (2004), based on the work done by Csik-
szentmihalyi (2000), suggests that for an activity to be self-motivating or “autotelic”,
there must be a balance between task challenge and the person’s skill. Estimating the
skills of the player and adapting the game challenge accordingly can lead to more
engaging and immersing games.

Serious games, and in particular simulators, offer a medium for training and eval-
uating individuals in high risk scenarios, including for example flying, driving or
performing surgery. Since individuals differ in terms of skills and preferences, a vari-
ety of training methods should be adapted to maximise training outcomes. In tasks
where the end goal is similar between individuals ( for example, successfully tackling
a sharp turn with high speed in a car racing game), people with less experience will
need more assistance to reach the desired level. As we will clarify later, we relate this
amount of assistance to the user’s Zone of Proximal Development (ZPD) (Vygotsky
1978), and we use it to estimate the challenge that a game will pose to a user. If the
challenge level is higher than the user skill, this might result into increased user anx-
iety. On the other hand, if the user skill is higher than the game challenge this might
result in increased user boredom.

In this paper, we focus on learning a user (or player) model using a combination of
behavioural and physiological data. The model infers the current user’s experience,
attention and performance from combinations of extracted features while playing a car
racing game. We monitor these abstractions, update the user model and provide deci-
sion adjustments for the alteration of the racing track according to the user.We propose
an algorithm that monitors the user performance and modifies the game experience in
real-time, with the purpose of maintaining high player satisfaction and enhancing the
learning process.

As shown in Fig. 1, the proposed adaptive user model is constructed in sequential
abstract layers following the Trace Theory framework (Settouti et al. 2009). Several
machine learning techniques, such as Affinity Propagation (Frey and Dueck 2007)
and Random Forests (Breiman 2001) are utilised to process the incoming data and
transform them into available metrics, coupled with a weighting model (such as linear
regression) that specifies their significance to the particular user. Finally, the higher
layers are built up using ideas from educational theoretical frameworks such as the
concept of flow (Csikszentmihalyi 1990), ZoneTheory (Valsiner 1997) and the Zone of
Proximal development (Vygotsky 1978); these layers provide path altering decisions
for the particular user.

Our experiments are focused on the engineering and user modelling challenges
underlying the detection of the optimal level of adaptation for each individual. We
validate the model’s outputs against the performance and feedback data from 52 users.
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Adaptive user modelling in car racing games using… 269

Fig. 1 An overview of our personalised user modelling approach for evaluating a driver in car racing. Low
level inputs are being converted to performance metrics using either the expert or the user’s “best” data.
They are then transformed using Trace Theory through game related rules and significance weights into
values representing variables from the concept of flow. Finally, the performance and state of the user, that
is represented by these variables, are exploited to instruct how each segment path is going to be altered

We conducted a user profiling analysis in order to verify and find the patterns emerging
from our user responses and determine our user types.

The purpose of this article is to build a user modelling framework that triggers the
alteration of the path of the track in a way that fits the skills and weaknesses of the
driver. However, the algorithm of changing the track and the real human evaluation
of the new segments is outside the scope of this article. In this article we studying the
feasibility of the proposed approach by correlating features of the framework to the
user responses.

1.1 Background and motivation

A well-designed computer game can promote engagement and provide an effective
learning environment (Whitton 2011). The perception of being good at an activity
and the perception of rapid improvement both contribute positively to user engage-
ment (Whitton 2011). Coyne (2003) analysed the design and characteristics of various
existing games and found repetition as one of the main factors of engaging games,
which is usually concealed through variation either in the form of difficulty levels (new
opponents, track, etc.) and/or through a narrative. Such games are based on “variation
across repetitive operations” where repetition lulls the user into expectations which are
subsequently challenged to enhance the user’s engagement. In our car racing game,
the driving task itself is repetitive with variation introduced in the form of new tracks.
The challenge that arises is customising the progression of the chosen tracks to suit the
abilities of each user. Several authors have called for a balance between task difficulty
and skill (Steels 2004; Demiris 2009), so that the user remains in a cognitive optimal
(flow) state, avoid sensory overload, and remain highly engaged (Whitton 2011; Koster
2013).

Our user model aims to adapt the game challenge—path of the track—according to
three concepts adopted from the concept of flow (Csikszentmihalyi 1990): Experience,
Exploration and Attention.
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1. Experience estimates the skill level of the user through the user’s performance
in the game. The value is determined from the average proximity of the user’s
model characteristics to those of the expert.
2. Exploration quantifies the level of consistency that the user is displaying in
his/her game actions, i.e. how varied, or probing, are his current set of actions.
Actions can include taking different racing paths, eye fixations, operating the
interface in a different manner, among others. High values for this concept
indicate that the user is finding the current task challenging, and is exploring
suitable game options. Low values indicate that the user does not vary his/her
actions, and has settled to a low level of variation. The reasoning behind this
is that the user tries to overcome the presented challenge by attempting a new
action and therefore improving their skills either through positive or negative
result.
3. Attention quantifies the continuous engagement of the user. This notion is
based on the assumption that the expert’s model, from which the user features
are compared, represents a fully engaged user according to physiological and non-
physiological features. The attention of the user is based on the game metrics.
It assumes that the user is engaged if s(he) is doing well in the game or tries to
see if the physiological data are coherent to the user’s game model. To determine
the attention metric, we first evaluate the average proximity (experience) of the
user to the expert model using only non-physiological data. Getting high values
from user input and game output metrics shows that user is performing well with
respect to segment times and racing lines; therefore, attention should be high.
This is based on the assumption that in order for the user to accomplish high
non-physiological (game related) values, the user should be highly engaged in the
game. Otherwise attention is evaluated from the current variations (exploration)
of the user’s physiological data. Since the data are relative to those of the expert’s,
positive physiological exploration means that the current features of the user are
closer to the expert’s.

The main assumption underlying the implementation of these three concepts is that
we are considering the expert model, which the user is compared with, as optimal
in respect to engagement and performance levels. It is what the user should imitate
and achieve, whereas any deviations from that are conveyed as lack of skill, challenge
or attention. It is also important to mention that the model uses both physiological
features from external sensors and behavioural data from the game and calculates the
significance of each feature obtained according to the time performance of the user in a
path.Merging the data fromboth domains gives themodelmore potential to explain the
events that are unfolding in the game. Multimodal player models have been reported
to be more accurate and match the user’s responses better than corresponding models
built on unimodal data (Yannakakis 2009; Yannakakis et al. 2013). For example, an
incorrect sequence of input actions can explain why the user crashed over a sharp
turn and as a result segment’s time was poor. However, this might also have been
a consequence of the user’s lack of experience in identifying the correct speed and
position to brake and steer or lack of attention. The latter can only be interpreted
through the concurrent monitoring of head pose and eye gaze. Doshi and Trivedi
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(2012) demonstrated the evoking of different pattern dynamics in eye gaze and head
pose between sudden visual cues and task-oriented attention shifts.

These three high level concepts monitor the user experience while playing the game
and can describe the state and engagement of the user with the game according to the
combination of their values. Based on the theory of flow (Csikszentmihalyi 1990)
there has to be balanced between challenge level and user skills, whereas attention
determines how much these values are sensitive to each other. As a result, there are
four main hypotheses that are possible for the particular task:

1. Both Experience and Exploration are High: This is the optimal state. Since expe-
rience is high, the user is engaged with the task and begins to learn the particular
path. However, exploration is also high, therefore the user has space for more self-
improvement. This means that the user’s skills are above a threshold value but not
as close to the expert’s; high exploration indicates that the user hasn’t reached the
optimal steady values of the expert’s yet. According to the interpretation of skill
development by Valsiner (1997), the user is discovering a better way to tackle a
path, however, this is not yet embraced as part of his/her experience.

2. High Experience, Low Exploration: The user is performing well; the low value of
exploration is indicating that the user found an optimal way to handle a path and
this has been adopted into the user’s skills. In order to keep the user engaged, the
level of difficulty should be raised so as to challenge the user.

3. Both Experience and Exploration are Low: The user is lacking the skills for the
challenge faced. Therefore, the attention value will be consulted to determine if
the user is getting bored and giving up (low value) or if the user is engaged with
the task through self-motivation to succeed (high value).

4. Low Experience, High Exploration: Challenges are much greater than the skills
of the user. The user is performing poorly even when different techniques are
being tried. If this state continues to persist then user’s anxiety level will increase;
therefore, in order to push the user back in the engagement-training region we
should drop the difficulty level of the game.

Based on the calculated values of the notions and the hypotheses, the model outputs
decisions on whether a path should become easier, challenging or kept the same.

2 Related research

Player modelling in games has received a lot of interest in recent years. The primary
goal of player modelling is to understand the interaction of the player experience at an
individual level. This can be either cognitive, affective or/and behavioural. There have
beenmanydifferent approaches for the understandingof a player in games (Yannakakis
et al. 2013). Research is split between two areas: playermodelling and player profiling.
The former tries to model complex phenomena during gameplay whereas the latter
tries to categorise the players based on static information, like personality or cultural
background, that does not change during gameplay. Profiling is usually performed
through the use of questionnaires (e.g. Five Factor Model of personality (Costa Jr and
McCrae 1995), demographics) and information collected through thatmethod can lead
to a construction of better user models.
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Player modelling is further split into three approaches:

1. Themodel-based approach: involves themappingof user responses to game stimuli
through a theory-driven model.

2. The model-free approach: assumes that there is a relation between the user input
and the game states, but the underlining structure function is unknown.

3. The hybrid approach: which is the one we embraced, contains methods from both
model approaches mentioned.

Game metrics, defined as statistical spatiotemporal features, are a significant com-
ponent of player modelling. When these metrics are the only data available, they don’t
provide sufficient information about individual users and can infer erroneous states
when coming only from the game context. This can be avoided by getting feedback
from users, either directly using user annotations or indirectly through sensors (e.g.
cameras, eye trackers, etc.).

User annotations can be done through questionnaires or third-person reports. These
are mainly of three types:

1. Rating-based format using scalar/vector values [e.g. The Game Experience Ques-
tionnaire (IJsselsteijn et al. 2008)].

2. Class-based format using Yes/No questions (Boolean).
3. Preference-based format by contrasting the user experience between consecutive

gaming sessions.

In addition to the user annotation methods reviewed by Yannakakis et al. (2013) there
are other methods such as think-aloud protocols for continuous annotation (Wolfe
2008) that have been used in other studies. However, those might interfere with the
user engagement and can potentially become obtrusive to the game experience, so we
do not use them in this paper.

2.1 Physiological user modelling

Analysis of physiological patterns during game play has been a vital technique to
assess the engagement and enjoyment of the player. Kivikangas et al. (2011) reviews a
comprehensive list of references in the area of psychophysiological methods for game
research. They emphasise that a commonly accepted theory for game experience does
not currently exist with game researchers frequently using theoretical frameworks
from other fields of study.

Similar to our concept, Tognetti et al. (2010a) presented a methodology for esti-
mating the user preference of the opponent skill from physiological states of the
user while playing a car racing game. They recorded different physiological data
[e.g. heart rate (HR), galvanic skin response (GSR), respiration (RESP), tempera-
ture (T), blood volume pulse (BVP)] during each game scenario and then classified
them, using Linear Discriminant Analysis (LDA), according to the user’s “Boolean”
responses; their questionnaire consisted of a pairwise preference scheme (2-alternative
forced choice answers) (Yannakakis and Hallam 2011). They concluded that HR and
T gave poor performance on classifying the users’ emotional state where the rest
(mostly GSR) achieved high correlations against user feedback. An interesting side
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result was that most of the users preferred an opponent of similar skills, whereas the
rest were not consistent with their responses. This shows that levels of difficulty in
the game are hard to pre-set for each user, and a more adaptive approach should be
explored.

Similarly, Yannakakis and Hallam (2008) investigated the relationship of phys-
iological signals (e.g. HR, BVP, GSR) with children’s entertainment preferences in
various physical activity games, by utilising artificial neural networks (ANN). Through
the accuracy of their ANNs on specific features (e.g. maximum, minimum, average)
of the recorded signals, they demonstrated that there was a correlation between the
children’s responses and the signals. They concluded that when children were hav-
ing “fun”, they were more engaged displaying increased physical activity and mental
effort. In addition, Yannakakis et al. (2010) investigated the effect of camera view-
points (distance, height, frame coherence) in a PacMan-like game using physiological
signals (e.g. HR, BVP, GSR) and questionnaires about the affective states of the user
(fun, challenge, boredom, frustration, excitement, anxiety, relaxation). Statistical anal-
ysis of the data obtained showed that camera viewpoint parameters directly affected
player performance. Emotions were correlated with HR activity (e.g high significant
effects between average and minimum HR versus fun; time of minimum HR versus
frustration).

Defining the level of immersion and affective state of the user in a game has been
approached through different techniques. Brown and Cairns (2004) carried out a qual-
itative research for understanding the concept of immersion in games, by interviewing
their subjects. Respectively, Jennett et al. (2008) performed three experiments on quan-
tifying the immersion of the users in games subjectively and objectively. In the first
experiment, the subject switched from a “real-world” physical task to an immersive
computer game or simple mouse click activity (control group) and then back to the
task. They concluded that the group playing the immersive game improved less on
the time taken on carrying out the “real-world” task when compared with the control
group. The explanation given by the authors was this was due to the fact that the game
decreases one’s ability to re-engage in reality. The second experiment involved the
investigation of eye fixation with immersion from users completing either the non-
immersive task and the immersive one from the previous experiment. Self-reports
revealed that there was a significant difference between the immersion level results
of the two tasks, therefore, the questionnaires were a good indicator of immersion.
In addition, eye gaze fixations per second increased over time for the non-immersive
task group where it decreased over time on the immersive one. This shows that the
control (non-immersive task) group was getting distracted more easily in irrelevant
areas whereas the experiment group increased their attention in areas more relevant to
the game. As we will show later in Sect. 3.4.2, the eye gaze fixations, blinking rate as
well as main eye gaze positions are being utilised as features by the user model. The
third experiment explored the user’s interaction and emotional state through differ-
ent modes of the simple mouse clicking task (non-immersive). Through these modes
the pace of the appearing box to be clicked was changing. The results showed that
emotional involvement is correlated to immersion where sometimes emotion can be
negative as well (e.g. anxiety in the increasing pace mode).
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2.2 User generated adaptive content and training

According to Yannakakis et al. (2013) “future games are expected to have less manual
andmore user-generated or procedurally-generated content”. This allows the potential
for novel and enjoyable game content that is personalised to the player. Charles et al.
(2005) reviews the current approaches towards player-oriented game design, examines
the research conducted for better understanding and effective modelling of players and
proposes a general framework that can adaptively and continuously alter the game
to fit the model of the player. In order to personalise you must first understand the
player through a particular game. This involves knowing the game Mechanics (the
components and rules of the game), that give rise to game Dynamics (how mechanics
behave on user inputs) and fuses to game Aesthetics (user experiences invoked by the
game). Hunicke et al. (2004) refer to this as the MDA framework and show how the
seamless attributes of each property relate to each other in a variety of games.

According to Malone (1980), the characteristics of an enjoyable game are: chal-
lenge, fantasy and curiosity. In an extension of the work, there was the addition of the
control factor, empowered either by the actions available to the user, actions already
taken or the potential of a great effect of the user’s decisions (Malone and Lepper
1987). In racing games the generation of content mainly targets the track’s path. Push-
ing the car to the limits and handling tight turns at high speeds is what engages the users
in that category of games. Loiacono et al. (2011) derived an algorithm for generat-
ing new tracks in a car simulator using single and multi-objective genetic algorithms.
Through certain constraints (e.g. path curvature radius, closed tracks, etc.) and the
use of polar coordinates, their algorithm fills the path through particular “control”
points that the road needs to cross. Cardamone et al. (2011) proposed a framework for
advancing the Loiacono et al. (2011) algorithm through a human-assisted generation
of tracks. Subjects voted for each generated track using scoring interfaces (5 Likert
scale or Boolean type) that were influencing the algorithm over the next generations
of tracks. They showed that there was an improvement of user satisfaction in younger
generations.

A similar approach for user-oriented track generation was proposed by Togelius
et al. (2006, 2007). They used a neural-network based controller (Togelius and Lucas
2006), that was trained on human driver behaviour, in order to test if a generated track
is challenging enough for a particular driver. Fitness metrics were used to evaluate the
suitability of a new track for the controller. However, the research was focused on the
methodology and creativity of the generated tracks instead of their evaluation with the
real drivers.

Apart for just being entertaining and stimulating, games can be used for training
and educating as well. Zyda (2005) refers to this as “Serious Games”; a medium
to enhance education in a more entertaining way. Based on the notion of teaching
through games,Backlund et al. (2006) conducted research on driver behaviour between
people that play racing, action, sport games (RAS-gamers) and non-gamers. People
were categorised into two groups through a questionnaire, whereas their driving skills
(attention, decision making, risk assessment, etc.) and attitude (respect speed limits,
speed margins and fellow drivers) were rated by driving school instructors, using 7-
point Likert scale. Their findings show a positive correlation between gaming and
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skill oriented aspects of driving, although there was no statistically significant effect
of attitude from the two groups. An important concluding statement suggested that
games and more specifically driving simulators are able to provide positive effects on
driving behaviour and user skill enhancement thus motivating further research.

3 Methods and materials

Our approach of the user model implementation, described in Sect. 3.4, utilises a
sequential hybrid modelling approach and integrates several algorithms, techniques
and theories from literature. Figure 1 encapsulates the model processes and identifies
the backbones of each layer. In this section we give an overall view of the methods
adopted in our model and explain why and where we apply them.

3.1 Theoretical background

In order to achieve high levels of engagement and training quality we employ ideas
from educational theoretical frameworks such as Concept of Flow, Zone of Proximal
Development and Zone Theory. The following section describes the various theoretical
as well as psychological frameworks that inspired our user model implementation.

3.1.1 Trace Theory

As shown in Fig. 1, Trace Theory (TT) is responsible for bridging the low levels
of our model to the higher ones through the transformation rules. TT is a popular
and efficient framework for collecting, analysing and transforming users’ low level
interactions, with a particular system, into more contextual and meaningful high-
level traces. These low level interactions can be the inputs of the user to the system
as mentioned by Clauzel et al. (2011). We define them as low level primitives. A
formalisation of the trace framework found in Settouti et al. (2009) suggests that
a particular combination of several low level primitives set by the system designer
creates a primary trace.

As in Bouvier et al. (2014), primitives were set to be mouse and keyboard entries
whereas a collection of them on specific timestamps and specific places in their user
interface were generating the primary traces. However, a primary trace is still low
level and not meaningful enough. The introduction of a rule based system that is
determined by a system expert aims to transform the primary traces into higher level
abstract entities that can remark on user’s profile and model. As a result of the rules
being set by an expert, they are human explainable and therefore more specific about
their underlying assumptions.

Our approach encapsulates the ideology of TT and makes use of the low level
primitives, primary traces and transformed traces in order to create the model of the
driver, while the player is operating the simulator. In Sect. 3.4.6 we provide a detailed
description on how we adopt this framework into our model.
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3.1.2 The concept of “flow”

Theconcept ofFlowhas been introducedbyCsikszentmihalyi (1990),whereas being in
Flow has been identified by Nakamura and Csikszentmihalyi (2002) as having certain
perceptions. Flow represents the feeling of being completely immersed and engaged
in an activity and also experiencing high levels of enjoyment and fulfilment (Csik-
szentmihalyi 1990). These kinds of activities were identified as self-motivating or
“autotelic” and for an activity to be autotelic there has to be a balance between the
challenge and the personal skill (Csikszentmihalyi 2000). In the case of challenge
being higher than the skill then anxiety builds up whereas if the skill is higher than
the challenge then boredom sets in. However, among different individuals the balance
between those two entities are not of the same quantity.

Steels (2004) discusses the main components of an autotelic artificial intelligence
agent that utilises the concept: (1) the user should feel in control and be able to alter
the level challenge and (2) the agent should be capable of generating new experiences
and challenges within the environment. Similarly, Chen (2007) mentioned the concept
of Flow as a mechanism of keeping the game challenges and players skills in balance
through the adaptation of game’s challenges in response to player’s actions.

Through our model, the aim is to create an autotelic activity by monitoring the
skills and challenges of the user so as to adjust the difficulty of the game. As shown
in Sect. 3.4.7, the main principles of the concept (Experience and Challenges) are
evaluated through our model, at the highest level (see Fig. 1), to describe the current
state of the user.

3.1.3 Zone of proximal development

Developmental research in children by Vygotsky (1978) addressed the general relation
between learning and development and the specific features of this relationship through
the approach of “Zone of ProximalDevelopment” (ZPD). In ZPDwe determine at least
two developmental levels. The first is the Actual Developmental Level (ADL), which
defines the mental functions that have been established by the individual (completed
the developmental cycles). The second is the Potential Development (PD), which
is the development level that an individual can reach under guidance, assistance or
collaboration. ZPD is the distance between ADL and PD and defines functions that
are not yet matured but are in the process of maturation.

Demiris (2009) operationalised the ZPD concept through the creation of an hier-
archical user model, which was used in order to infer the amount of assistance that
should be given to a user driving a wheelchair.

In the racing experiments of this paper, each individual has different expertise and
rate of learning, therefore a variety of training methods should be adapted to fit each
of the users. In a task where the goal is similar (e.g. in a racing game: tackling a sharp
turn with high speed), people with lower experience would have a larger ZPD and will
need more assistance to reach the desired level. As shown in Sect. 4, through our data
collection process we observed how the notion of ZPD operates on users with variant
set of skills in driving. This was taken into account so that the model would create
personalised decisions for each user.
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3.1.4 Zone theory

Valsiner (1997)’s developed the Zone Theory to explain human development in edu-
cational setting, describing the process that establishes the development of a skill in
an individual. Valsiner (1997)’s theoretical framework includes three zones:

– The Zone of Free Movement (ZFM) represents a cognitive structure of the rela-
tionship between a person and the environment in terms of constraints that limit
the freedom of these actions and thoughts.

– The Zone of Promoted Action (ZPA)—defines the set of activities, objects or areas
within the environment from which the tutor is promoting to the tutee. With the
tutee having no obligation to accept it.

– The Zone of Proximal Development (ZPD) from Vygotsky (1978)—defines the
amount of assistance the tutee needs to reach his/her potential development (PD).

These zones constitute an interdependent system between the constraints enforced on
the environment of the learner and the actions being promoted for the learner where
both constraints and actions are imposed by external stimulus.

The development is optimised when the relationship between ZPA and ZPD is such
that what is promoted (ZPA) lies within the individual’s ability to achieve (ZPD). The
ZPD cannot be fully incorporated in the ZFM. Since ZFM is determined by the tutor
and a tutee can only develop aspects of theZPD that have been advertised (ZPA) and not
restricted (ZFM). When all zones merge it emerges “a family of possible novel forms
of change” where ZPD is dependent on the state of the ZFM/ZPA complex (Galligan
2008).

In our case, the theory of zones serves as an interesting approach to explain the rela-
tionship between our users and our adaptive training framework. The ZFM describes
the practical space that the user (tutee) can operate. This is the car simulator, the
hardware utilised and the various tracks that are available. The ZPA represents the
constraints that are promoted by the framework. The model tries to reach the engage-
ment and learning goals set on development, and through the feedback that it receives
from the user’s actions, it generates new tailored tracks that advertise new spaces
(tracks) where learning and development are most likely to be realised for a particular
user. An optimised relationship between ZPA and user’s ZPD is realised through the
new track, however, the user has to willingly co-operate, with their engagement and
attention, for the learning and development to take place, as suggested by Blanton
et al. (2005) through the concept of self-scaffolding (Valsiner 2005).

3.2 Methodological background

In this section we describe the algorithms adopted to perform feature extraction from
the user’s data.

3.2.1 Affinity propagation

The first phase of the data collection process consists of storing streams of sequential
data and clustering them into Low Level Primitives (Fig. 1). Ideally the clustering
method should conform to the following requirements:
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– Automatic determination of optimal number of clusters. The number of clusters
is one of the extracted features of the user model.

– Flexibility on the choice of similarity measure to make the clusters more relative
to the feature they describe.

– Simplicity and fast performance while maintaining low error levels. Our user
modelling is performed in real-time.

As a result, the Affinity Propagation (AP) algorithm was chosen. AP (Frey and
Dueck 2007) is an unsupervised clustering based approach. The method groups the
data by finding data’s center points, called exemplars, through data specific similarity.
The difference in approach with respect to other methods [e.g. k-centers (MacQueen
et al. 1967)] is that the initial conditions suspect all data points as exemplars. Therefore,
the number of clusters is not pre-defined but it can be influenced (if a prior information
is known) by values in the similarity measure matrix. The novelty of the method is
that it recursively transmits real-value messages throughout the data network of the
suitability of each point being an exemplar, until a good set of clusters is found. In
addition, the similarity measure matrix is a user defined function (usually Euclidean
distance) whereas through its diagonal, the user can increase the values of some data
points so that they are more likely to be used as exemplars. The diagonal is usually
set to the median or the minimum of input similarities.

3.2.2 Random forests for real time head pose estimation

Apart from eye gaze, the other main physiological feature of our model is the real-time
estimation of the head pose of the user. There are several reasons for combining eye
gaze and head pose together. Our main considerations were to keep the costs lowwhen
providing sensors for our model and provide an unobtrusive experience. Our particular
eye-tracker has a limited angle visibility. This means that it can no longer track the
eyes of the user when head angles are large. Head position aids to fill in this gap of
information when there are not any gaze data available.

Fanelli et al. (2011) used Random Forests (RFs) (Breiman 2001) to estimate, in real
time, the 3D coordinates of the nose tip and the angles of rotation of the head through
data obtained from a depth camera. In order to accomplish high prediction accuracy,
they trained their algorithm using a generated large database of synthetic depth images
of faces by rendering a 3D morphable model in different poses. Their method was
proven to be fast and reliable even when there was a percentage of occlusion on the
nose. This algorithm is suitable for our experiment since it can operate in real time, it
does not need any manual initialisation to find the head pose and also does not require
utilisation of GPU power like similar methods.

3.3 Implementation

This section discusses the simulator used, the experimental protocol as well as the
Framework’s configuration chosen for the data collection process, that aided in the
design of our user model.
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Fig. 2 a Our custom car simulator setup consisting of Vision Racer Seat with a force feedback steering
wheel, pedals and three monitors to enhance the user’s immersion to the game. Two RGB-D cameras as well
as an eye tracker was installed to capture the user’s physiological signals. b Screenshot from our customised
track. c Track used for the experiments split manually into six segments

3.3.1 The simulator

Data is collected through a racing car simulator software, rFactor,1 recommended for
its excellent graphics and realistic vehicle dynamics by many users and racing teams.
As shown in Fig. 2a, we are using a custom set-up of the Vision Racer VR32 seat with
Logitech G27 Force Feedback SteeringWheel and a combination of three monitors to
enhance the user’s experience.We have installed a Tobii EyeX eye tracker and 2 RGB-
D cameras (Kinect) which are positioned in such a way that one of them captures the
player’s face and the other captures both the player’s actions and the output from the
monitors. Real-time performance metrics, 3D-car position and user actions are being
displayed on the wide screen monitor on the wall. For the experiment, the users were
asked to complete 20 laps on a particular track that we developed and to fill a question-
naire with demographic and user profiling questions before and after the experiment.

3.3.2 Car and track selection

The car, selected from the ones available in the game,was a sport version of theRenault
Megane. The requirements were to have a car that was easy to drive by an amateur
driver, quite stable on the road, with a decent acceleration and top speed.

1 rFactor2 Simulator: http://rfactor.net/web/rf2/.
2 Vision Racer VR3: http://www.visionracer.co.uk.
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The experiments are loaded with a custom designed track called BrandHatch Indy,
which is a short (≈1.93km) but still challenging track with various types of segments
(e.g. chicanes, straights, sharp turns). As seen in Fig. 2c, the track was split into six
segments which we use to group the data in the user model. Segments were defined in
such a way that they will consist only of a single path type (e.g straight, turn, chicane,
etc.). In the track’s implementation, each side of the road was fenced (after 20m of
grass), so the user cannot skip a segment by taking shortcuts.

3.3.3 Data collection

We collected data from 52 users, where each user was asked to drive our customised
track once for 20 laps. The user answered a set questions before and after the experi-
ment. Prior to starting the experiment, each user was informed about the controls, the
visual information of the simulator and the fastest lap of the particular track as a form
of motivation.

It was important not to restrain the users with any unnecessary game-specific con-
straints or tasks. Thus users were advised to play and enjoy the game in their own
way. This is because in a similar set up, Backlund et al. (2006) reported that users who
were not assigned any task during a driving experiment enjoyed the game more than
the ones who were given a task. Each subject was given the opportunity to get to know
the simulator through a single practice lap at the beginning of the experiment which
was discarded from further analysis. It is important to note that none of the users had
previous experience on the particular game or track. At the end of the trial and after
the completion of the questionnaire, the users were informed about the aims of the
experiment and a short informal interview was carried out.

3.3.4 Questionnaire

Through questionnaires, we collected demographic as well as subjective metrics from
our users. Subjective metrics were designed to aid the evaluation of the user model.
As will be shown in Sect. 4, we based the validation of our user model’s outcomes
and high level variables on the reports obtained by the users.

Before starting the experiment, the users were asked about their age, gender and
if they had a driving license or not as well as how long they have been driving.
Furthermore, they were asked questions (Likert-scale) shown in Table 1.

3.4 User modelling

Our approach to the user model implementation utilises a sequential hybrid modelling
approach and integrates several algorithms, techniques and theories from literature. A
top down view of the user model shown in Fig. 1 encapsulates the model processes
and identifies the backbones of each layer.

Real time raw data from the user input, game, eye tracker and head pose (Low
Level Primitives) are being converted into Performance Metrics by comparing them
against the user’s previous “best” data or the expert’s data. Each metric has been
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Table 1 Game-related questions asked before and after the experiment

ID Questions Options

Before the experiment

Frequency How often do you play car racing games? [Never, Occasionally, Frequently, Every
Day]

pre Self-Rate How would you rate yourself in car
racing games?

[Beginner, Intermediate, Advanced, Expert]

After the completion of the experiment

post Self-Rate How would you rate yourself in the
racing game you tried?

[Beginner, Intermediate, Advanced, Expert]

Difficulty How would you rate the path of the given
track?

[Very Easy, Easy, Medium, Hard, Very Hard]

Improved As you loop through the track did you
feel that you improved?

[Nothing at all, Little Bit, Quite a lot, Very
Much]

Fatigue Did you feel tired during the experiment
because of the lap repetition?

[Nothing at all, Little Bit, Quite a lot, Very
Much]

given a certain weight through a linear model (Weighting Model), forecasting against
the time taken for a certain path to be completed. Through the utilisation of Trace
Theory, the performance primitives—along with their weights—are transformed via
game specific rules, into variables of the concept of flow (Csikszentmihalyi 1990)
(Theoretical Frameworks). This concept can evaluate the challenges that the user is
facing (Exploration), the skills that the user attained (Experience) and the Attention
that the user is paying to the task. From then on, the algorithm tries to balance those
abstract concepts according to the individual by giving certain instructions to alter the
track.

In this section we break down each of the layers of the user model—shown in
Fig. 1—and explain the processes carried out to reach to a decision for each segment.

3.4.1 Low level primitives

Our focuswas to use data fromunobtrusive sensors, so thatwe can avoid the attachment
of sensors to body parts, as this “might affect the experience of our user” (Yannakakis
et al. 2013). Data from the game (e.g. position, speed, number of collisions), user’s
actions, eye gaze and RGB-D data are collected during the task and timestamped
through a common clock. One of the novelties of our method is that the data is grouped
and analysed according to predefined split segments of the track (see Fig. 2c).

Segments can either be a turn, a straight line or a chicane. The advantage of this
method is that the user is being monitored more frequently than once every lap and
also our metrics reflect on the performance of more primitive paths where it is easier
to identify the specific weaknesses of the driver. As seen in the bottom part of Fig. 1,
the low level primitives of the user model consist of data from two main categories
(physiological and non-physiological data), extensively listed in Table 2.
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Table 2 The raw variables collected for the user model, directly from the sensors

Non-physiological Physiological

User inputs Game outputs Eye tracker RGB-D

1. Braking 4. Time of collisions 10. Eye gaze (XY) 13. Camera information

2. Throttle 5. Car XYZ position 11. Eye position (XYZ) 14. Depth (m)

3. Steering (time) 6. Speed (km/h) 12. User presence (time) 15. RGB video (time)

7. Virtual orientation

8. Lap No.

9. Time

Table 3 The primitives of the lowest level of the user model extracted from the raw variables

Non-physiological Physiological

User inputs Game outputs Eye tracker Head pose

1. Average braking 6. No. of collisions 10. No. of blinks/s 17. CN of HP

2. Average throttle 7. Car XYZ position 11. Screen concentration 18. CC of HP

3. Average steering 8. Position and speed 12. CN of EG 19. CN of HP and VO

4. CN of user inputs 9. (Segment time) 13. CC of EG 20. CC of HP and VO

5. CC of user inputs 14. CN of EG and VO

15. CC of EG and VO

16. Eye fixations

CN cluster number, CC cluster centres, VO virtual orientation, EG eye gaze, HP head pose

3.4.2 Analysis of low primitives

The raw data of Table 2 cannot be directly used as a comparison measure for creating
a performance metric. It has to be transformed into a value or sequence of values
that can exert a significant performance result when contrasted with ones of the same
kind. Over the next paragraphs we are going to describe the process of converting the
variables of Table 2 into the primitives of Table 3.

User inputs These are the principal links between the game and the user. The user has
three main inputs to the car simulator: the steering wheel, the throttle and the brake
pedals. For each of the three series of data we compute the mean value for a particular
path to create the corresponding primitives.

We also perform the Affinity Propagation (AP) clustering method, described in
Sect. 3.2.1 over all three inputs to find the number and position of their dominant
values along the path. Clustering results point to several combinations of inputs that
act as the centres of all data. The number and values of these centres are both used
as a primitive in the user model. AP clustering facilitates the use of a user specified
similarity measure to group the data into clusters. The similarity measure used to
cluster the three inputs is their Euclidean distance.
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Game outputs The simulator we are using provides real time output data of the car and
the environment’s states with a high sampling rate (100Hz). By using the lap number,
time and path position we are able to create indices at the points at which each segment
starts and ends for each user, so we can split and group the data together. As game
output primitives, we extract the number of collisions per second for each segment.
We also store primitives of the user’s path as well as the user’s path accompanied with
the car speed.

Eye tracker From the eye tracker we obtain four kinds of information; a parameterised
real world position of the eyes, the eye gaze on the screen, the eye gaze fixations and
the presence of a user. Through a combination of this information, we calculate and
define as the user’s primitives (see Table 3): the number of blinks, the number of
fixations per second for a particular segment, as well as the screen concentration time
normalised to the segment’s time.

We also perform AP clustering on the eye gaze to determine the position and the
number of important targets on which the user was fixating. Instead of clustering
only on the eye gaze, we determine the number and important centres of user’s gaze
according to the orientation of the car in the virtual space for a particular segment.
This addition encapsulates the relationship between the user’s gaze and the orientation
(in radians) of the virtual world in the game. The similarity measure used for both
clustering approaches is the Euclidean distance of the 2 and 3 dimensions respectively.

RGB-D and head pose Apart from using the cameras to record the experiments, we
also use the depth information to find the head pose of the user. Incorporating the
algorithm, described in Sect. 3.2.2, we determine the head position and orientation of
the user at any given time. As with the eye gaze, we use the orientation data as well as
the virtual orientation of the game to create two sets of clusters with the AP algorithm.
This results in four different primitives regarding the head pose: number of spots and
the location of the centres for each of the approaches. The orientation of the head pose
is given as a quaternion. Therefore, for a similarity measure in the AP algorithm we
use a dot product to relate the angles between different quaternions. In addition, in the
approach with the added virtual orientation, the extra dimension is related with the
Euclidean distance.

After the primitives are computed, they are stored into the lowest level of the user
model. The next step is to convert them into performance metrics so that we can assess
the efforts of the user towards the task.

3.4.3 Performance metrics

An interesting study by Hong and Liu (2003) analysed the thinking strategies between
different users in a game of “Klotski”.3 They concluded that expert users, determined
by the fewer number of steps and operation time, were using more analogical thinking
towards a solution (e.g. devising a series of next moves) whereas novice players’

3 Klotski is a sliding block puzzle where users slide blocks through the confined space in order to move
the main block through the exit door.
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movements were mostly random. Having in mind that the solving ability for a problem
is content oriented, they suggested that by understanding the ways the experts operate,
we can determine the type of training required for a novice learner to acquire the
experts’ skills faster. The concept of our performance metrics employ this idea by
assessing the user’s actions with the expert’s.

In the user model structure (see Fig. 1), the layer above the low level primitives
involves their conversion to performance metrics. From each category in Table 3
several performance metrics are obtained comparing either the current user’s values
to an “expert driver” (if they exist) or to a previous user “best”. Therefore, there are
metrics appraising the performance of the user at a global level and at a personal level.

A collection of data for a segment is defined to be more optimal than others accord-
ing to the amount of time the segment took to complete. As a result, we would expect
that the “expert driver” would have the fastest possible time on that segment. In our
experiments, the expert driver for each segment was defined at the end of the data
collection process by selecting the user with the fastest segment times.

For each of the primitives in Table 3we use differentmethods as comparison against
the “optimal” values. Most of the primitives (Nos. 1–4, 6, 10–12, 14, 16, 17, 19) create
the metric by finding the absolute difference from the optimal values, however, time
performance (No. 9) is being divided by the optimal one for each segment. Cluster
centres (Nos. 5, 13, 15, 18, 20) are being matched with their closest optimal centre
and the average value of their Euclidean distance is obtained.

For Nos. 7 and 8 we use a different approach, since they consist of a sequence of
data. In general, to find the dissimilarity of the path covered between two different
sequences of car positions, it would be wrong to compare the points one-to-one since
there is a high probability that the sequences are not of the same size (since the path
has a very low probability of being identical but the sampling rate is constant). A
solution is to use a form of dynamic time warping between the two sequences so that
the temporal domain is abstracted out and we are only comparing the spatial domain
which is the path. In our case, we simply find the two closest points of the optimal path
to each of the user’s points in the path.We then calculate the point that is perpendicular
to the vector joining the two optimal points and the user’s point.

For example, Fig. 3a shows, in blue, the trajectory of the expert driver and in red
is the recorded user’s trajectory. If we zoom in on the points, as shown in Fig. 3b, we
have A and B, which are two consecutive points of the optimal path andC .C is a point
created by the path of the user in the track. Our algorithm tries to find the closest points
from the optimal path, A and B, for every user point, C . It then finds a point D on
the vector

#   »
AB that forms a perpendicular vector

#    »
DC . This calculates the difference of

point C to its closest point on the optimal path. However, the path consists of discrete
points and therefore, a perpendicular point on the path might not exist. D is found by
optimising the solution for the 3 dot product equations shown in (1). The summation
of all the absolute distances of the points in the user’s path, denoted by the vector

#    »
DC

creates the path performance metric (No. 7 in Table 3) of the user.

#   »
AB · #    »

DC = 0
#    »
AD · #    »

DC = 0
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Fig. 3 a Comparison of optimal (blue—circles) and user’s (red—squares) path. b Optimal points (blue—
circles) and user point (red—square) forming the vectors. (Color figure online)

#    »
DB · #    »

DC = 0 (1)

For calculating the path with speed metric (No. 8 in Table 3) we use a similar
method as with the path metric. This time we have to find the speed of the new Point
D as well. Therefore, speed is found by interpolating the speeds of points A and B
using their distances as a weight as shown by (2). Then the sum of their squared
differences (SSD) of all matched speeds is noted as a metric, as shown by (3).

SpeedD = SpeedA + (SpeedB − SpeedA) ∗ ‖AD‖
‖AB‖ (2)

Metric8 =
∑

(UserSpeed − SpeedD)2 (3)

The presumption made to create those two metrics is that the former analyses the user
performance only on the closeness to the optimal path, whereas the latter comments
on the speed as well. As we notice later in Sect. 3.4.4, the latter is more correlated to
the segment time since time is indirectly involved in the speed-path points.

The performance metrics in the model are converted to represent percentages,
through exponential functions, so that (1) they are comparable against each other,
without the need of rescaling, and also (2) outliers are brought closer together. Regard-
ing the latter, when two users perform poorly in a metric, their values are expected to
be well beyond and below the mean of an average user. However, the two values could
still be far from each other. This doesn’t provide any more information rather than a
poor performance from both on the particular metric.

The use of exponential functions helps to decrease that gap and keep the linearity
of the rest, up to the point where the original value is significant. For example, if
two users’ paths have a huge difference from the expert’s then we know that both
users’ time and path performance would be low. However, the time versus path per-
formance proportionality is not as linear as the ones coming from average-high metric
performances.

The exponential function used to convert the metrics to percentages is shown in (4).
Each performance metric is using a modified exponential function according to the
metric value, X , of the expert to expert comparison. The Constant,C , for each different
metric is determined by solving (4). This is by assigning the Metric variable to the
median value of all the metrics collected (from all users for the particular metric), and
the %Metric variable to 50%.
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%Metric = 100 ∗ exp
(

− (Metric − X)

C

)
∀R andX = Expert-To-Expert value

(4)

3.4.4 Performance metrics weights

In racing, “time” is the most general and important metric that can reflect on the
performance, skills and engagement of the user to the task. However, we have to get
deeper into the data in order to understand whether the driver actually achieved a good
time. In our user model we try to justify and break down the time taken by the user,
through a particular segment, using several descriptive metrics. Therefore for finding
the best “weight” of eachmetric towards the user’s segment time performance, we used
various modelling approaches; whereas the best weights describing the correlation (5)
from our collected data were adopted.

The metrics are split into three groups: All, Non-Physio, Physio. All includes all
metrics in Table 3, Non-Physio consists of all metrics obtained from the user inputs
and game outputs and Physio includes metrics associated with the user’s physiological
data, such as those obtained from eye tracker and head pose. Time performance is not
included in any groups since it is used as reference variable in (5).

ρmax = ρ

(
TimeMetricls,

m∑

k=1

Ws
k M

sl
k

)
(5)

where

– ρ is the correlation coefficient
– TimeMetricls is the time performance metric of a segment s and user lap l (No. 9
in Table 3)

– Ws
k is the weight for a particular segment s of a particular metric k

– m is the number of metrics defined in each of their group: All, Non-Physio, Physio
– Msl

k is the Performance Metric k of segment s and lap l.

We evaluated theweights through variousmodels, using different versions of Spear-
man correlation and linear regression:

• Spearman correlation The first approach to determine the relation and significance
of eachmetric to time is to perform non-parametric Spearman’s correlation (Spear-
man 1904) between each performance metric and their respective performance
segment time. The statistical significance of the correlation values is defined by
the p values (p < 0.05).
The correlation results are shown in Table 4. As previously mentioned, metrics

are either created from comparisons with the expert’s or the user’s “best” data. All
metrics’ p values are well below 0.001, indicating that the results are statistically
significant. It is also noticeable that most of the correlations coming from the
comparisons of user’s “best” metrics are larger than those of the expert. This
is expected since each user will behave according to their own knowledge and
skills, therefore a small change towards improvement will be more noticeable.
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Table 4 Spearman correlation values of the performance metrics against segment time between user and
expert data

Metrics Rho-value (user) Rho-value (expert)

1. Cluster number of eye gaze and virtual orientation 0.37 0.35

2. Cluster centres of eye gaze and virtual orientation 0.41 0.28

3. Cluster number of eye gaze 0.27 0.19

4. Cluster centres of eye gaze 0.31 0.14

5. No. of blinks/s 0.27 0.17

6. Screen time 0.28 0.17

7. No. of collisions/s 0.56 0.49

8. Path with speed performance 0.82 0.91

9. Path performance 0.57 0.48

10. Cluster number of head pose and virtual orientation 0.44 0.49

11. Cluster centres of head pose and virtual orientation 0.50 0.38

12. Cluster number of head pose 0.23 0.14

13. Cluster centres of head pose 0.40 0.11

14. Cluster centres of user inputs 0.59 0.44

15. Cluster number of user inputs 0.49 0.54

16. Average braking 0.21 0.25

17. Average throttle 0.50 0.60

18. Average steering 0.48 0.33

19. Eye Fixations 0.20 0.17

All p values are <0.001. The closer the value is to 1 the closer the particular variable is more correlated to
the segment time. As anticipated the physiological signals have on average lower significance to the time
than the non-physiological. (Values ≥0.40 are in bold)

Evaluating (5) , theweightsWs
k are set to be the normalised value of the correlations

found from each metric k. Also, since the Spearman correlation is performed from
all data collected including all segments, the weights of each segment s are the
same.

• Spearman segment correlation By grouping the data according to their segments,
we performed Spearman correlation within each segment. This approach revealed
that the significance of each performance metric also depends on the segment’s
path as well (see Table 5). Therefore, for this second method we set the weights
Ws

k to be the normalised correlations found for each individual segment s. Thus,
the difference of this method to the previous is that the weight of each metric k
is varying across the segments. Segment 1, which is the straight line in the path,
was not included in the model since it has to remain unaltered due to track design
issues.

• Linear regression (LR) The main issue with both of the previous approaches is that
the Spearman correlation calculates the significance of each metric without con-
sidering the correlations between them as well. If twometrics are highly correlated
to each other then one of them can be removed since this makes the whole model
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simpler and more robust to small changes. In order to reduce those redundancies
and find the best weights that describe (5), we perform a linear regression for each
group of segment data, according to (6).

T imeMetricls = C +
m∑

k=1

Xs
kM

sl
k (6)

The linear regression model calculates the coefficients Xs
k of each metric k for a

particular segment s accompanied with an interception coefficient C . Coefficients are
found using the least squares problem method by minimising the sum of the squared
error (min ‖Ax − b‖22) where in our case A represents a matrix of our metrics obser-
vations and b is their corresponding time metrics (Mead and Renaut 2010; Lawson
and Hanson 1974). We experimented with six different approaches using this model
(The name in the brackets specifies the id given to each of the approaches):

1. (LM Perc) The linear model was forced to provide either positive or zero val-
ued coefficients Xs

k (C was unconstrained) for solving (6), where the data were
all expressed as percentages. Then the coefficients for each segment Xs

k were nor-
malised and set as theweightsWs

k . The reasoning for the positive bounds is because
metrics were designed to have positive correlations to time and also the conversion
of the metrics to percentages was one sided with 100% being the expert.

2. (LM Pos Raw) The linear model was bound to calculate positive coefficients but
metrics were not converted into percentages. The coefficients found for each seg-
ment Xs

k were then set directly as the weights Ws
k .

3. (LM Raw) In order to check that our reasoning for positive bounds was valid, we
used the same approach as 2 but with no positive bounds. Therefore, coefficients
could be negative as well.

4. (LM * OPT ) All of the above linear models are set with the maximum number of
metrics available. However, this might impact on fitness of the model since they
could provide coefficients that are overfitting the data due to the high complexity
of the model and the degrees of freedom introduced. Therefore, using all of the
three methods mentioned (LM Perc, LM Pos Raw, LM Raw), we found the optimal
combination and number of metrics of each method that gave the best linear model
by finding the lowest calculated rootmean square error (RMSE)—all combinations
were tested using exhaustive search.

3.4.5 Weight model selection

For choosing the right weights that fit the data into (5), we evaluated the users’ data
from theweights obtained fromeachmodel and then performed aSpearman correlation
test between the Time Metric (right side) and the summation of the left side of (5), for
each group. The Spearman correlation of all models and groups are shown in Table 6
whereas the plots in Figs. 4, 5, and 6 show only the best of each model type for clarity.

Themost correlatedmodel, among all groups ofmetrics, was the LMPercwhere the
weights were bound to be positive and datawere converted to percentages. All versions
of the optimal LM models (LM * Opt) didn’t substantially improve their correlation
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Table 6 Spearman correlation of the model’s outcomes for three different group of variables; All, Physio,
Non-Physio

Figure ID Metrics All Physio Non physio

LM Perc 1. LM percentage 0.95 0.58 0.95

LM Perc Opt 2. LM percentage optimal 0.95 0.58 0.94

Spearman 3. Spearman 0.86 0.54 0.86

SegmentsSpearman 4. Spearman segments 0.87 0.56 0.87

5. LM raw 0.50 0.58 0.55

LM Raw Opt 6. LM raw optimal 0.73 0.58 0.92

7. LM raw positive 0.86 0.56 0.92

LM Pos Raw Opt 8. LM raw positive optimal 0.87 0.56 0.92

All correlations are statistically significant with p values <0.01
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Fig. 4 Outcomes of different models for group All. Between the models tested, LM Perc provides the best
weights for a linear correlation between the combined metrics and the time performance. LM Perc and LM
Perc Opt have identical correlations (ρ = 0.95) since the latter only corrected some peaks in the values

result but through the plots we can spot that the optimal models corrected some peaks
in the values. Each dot in the figures represents a segment trial from a particular user.
Therefore, each dot is a set of metrics collected from a respective segment (multiplied
by their respective weights), plotted against the time metric that is normalised so we
can compare all the data from all segments together.

The model selected for our Framework is the LM Percentage (LM Perc) since it
gives the highest Spearman correlation and also the steeper linear curve in all the
results. The weights used for each metric generated from expert comparisons are
shown in Tables 7, 8, and 9. The metrics that haven’t been found to be significant in
the user model or they are already described by other metrics, have a very low weight
value.
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Fig. 5 Outcomes of different models for group Physio. Between the models tested, LM Perc provides the
best weights for a linear correlation between the combined physio metrics and the time performance. LM
Perc and LM Perc Opt have identical correlations (ρ = 0.58) since the latter only corrected some peaks in
the values
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Fig. 6 Outcomes of different models for group Non-Physio. Between the models tested, LM Perc provides
the best weights for a linear correlation between the combined non-physiometrics and the time performance.
LM Perc and LM Perc Opt have identical correlations (ρ = 0.94) since the latter only corrected some peaks
in the values

3.4.6 Transformation rules

The metric-weight pairs described in the previous sections specify the significance of
eachmetric to the good timeperformance of a particular path. They are the fundamental
information that transformation rules are using to define the higher level concepts.

Following the theoretical frameworks of behavioural analysis like the Concept
of Flow (Steels 2004; Csikszentmihalyi 1990), the Zone of Proximal Develop-
ment (Vygotsky 1978), the Zone Theory (Valsiner 1997) and the Trace-Based System
theory described in Settouti et al. (2009) and Bouvier et al. (2014), we further anal-
ysed the metrics using game specific assumptions into three classes that make up the
high level in the driver model (called Transformed Modelled Traces in Trace Theory):
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Table 7 Weights of each performance metric in the All group, generated from the expert comparisons
using the linear regression model constrained for positive value coefficients (LM Perc)

Metrics Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

1. CN of EG and VO 0.020 0.004 0.007 0.008 0.010

2. CC of EG and VO 0.027 0.051 2.2e−06 0.024 0.080

3. CN of EG 1.8e−11 0.014 5.8e−08 0.004 0.002

4. CC of EG 7.3e−10 0.016 0.025 3.4e−10 3.3e−11

5. No. of blinks/s 0.011 4.1e−10 3.4e−10 4.1e−10 0.014

6. Screen time 2.2e−11 4.8e−10 0.017 0.005 4.9e−12

7. No. of collisions/s 1.6e−10 2.0e−11 6.3e−09 0.042 0.018

8. Path with speed Perf. 0.674 0.467 0.848 0.768 0.423

9. Path performance 6.0e−12 3.5e−11 2.0e−10 0.011 1.6e−12

10. CN of HP and VO 0.016 0.004 0.014 0.015 0.015

11. CC of HP and VO 0.039 0.097 0.002 1.4e−10 0.058

12. CN of HP 0.013 4.3e−10 6.2e−08 0.008 0.018

13. CC of HP 0.008 2.5e−12 0.005 0.033 2.4e−11

14. CC of user inputs 0.027 0.044 3.5e−08 7.2e−07 0.048

15. CN of user inputs 0.021 0.047 0.008 0.012 0.015

16. Average braking 2.6e−11 0.038 1.1e−07 0.009 0.050

17. Average throttle 0.124 0.151 0.075 0.047 0.244

18. Average steering 0.014 0.026 2.4e−08 0.014 3.2e−12

19. Eye fixations 0.004 0.042 8.8e−07 1.2e−10 0.006

Table shows the amount of significance of a metric according to the segment’s path. Each column adds up
to one. These values were used to derive our results in the expert model
CN cluster number, CC cluster centres, VO virtual orientation, EG eye gaze, HP head pose

Experience, Exploration and Attention The value of each class is determined by a
combination of the performance metrics analysed according to certain game-specific
rules:

Experience The skills of the user, is determined by the proximity of the user’s prim-
itives to the expert’s. Since the metrics are now expressed as percentages, the higher
the value the better the user is performing on that particular metric. Although the sig-
nificance of this metric to the user’s skill is determined by the weight calculated using
the chosen linear regression method (LM Perc). Skill cannot be determined by a single
group of values. It has to be an overall value of several trials. Therefore, it is calculated
by the weighted sum of the mean of each performance metric over a certain number
of laps, as shown by (7). It can be argued that Experience could also be determined
by the average lap time of the user, as (7) is similar to (6). However, with (7) we are
able to comment on the specific aspects (through the weight-metric pairs) that derive
a high/low value. This feature broadens the use of our Framework, as we will discuss
later in Sect. 5.1.
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Table 8 Weights of each performance metric in the Physio group, generated from the expert comparisons
using the linear regression model constrained for positive value coefficients (LM Perc)

Metrics Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

1. CN of EG and VO 0.084 0.057 0.036 0.102 0.125

2. CC of EG and VO 0.216 0.088 0.335 0.218 0.214

3. CN of EG 0.049 0.063 0.056 2.7e−07 0.020

4. CC of EG 1.5e−08 0.048 1.5e−06 1.2e−07 9.6e−09

5. No. of blinks/s 0.074 8.0e−09 0.017 0.106 0.067

6. Screen time 2.3e−06 6.6e−10 0.038 2.0e−06 2.6e−09

7. CN of HP and VO 0.154 0.125 0.159 0.189 0.191

8. CC of HP and VO 0.303 0.367 0.319 0.385 0.148

9. CN of HP 0.062 0.170 0.041 5.0e−08 0.105

10. CC of HP 2.1e−08 6.0e−10 3.2e−08 3.8e−08 0.084

11. Eye fixations 0.057 0.081 2.6e−08 1.4e−08 0.045

Table shows the amount of significance of a metric according to the segment’s path. Each column adds up
to one. These values were used to derive our results in the expert model
CN cluster number, CC cluster centres, VO virtual orientation, EG eye gaze, HP head pose

Table 9 Weights of each performance metric in the Non physio group, generated from the expert compar-
isons using the linear regression model constrained for positive value coefficients (LM Perc)

Metrics Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

1. Path with speed Perf. 0.776 0.611 0.914 0.842 0.545

2. Path performance 1.3e−06 3.1e−07 7.0e−11 0.011 4.0e−07

3. CC of user inputs 0.040 0.042 1.3e−09 6.5e−09 0.053

4. CN of user inputs 0.031 0.070 0.014 0.025 0.029

5. Average braking 1.1e−06 0.065 1.6e−11 0.013 0.063

6. Average throttle 0.133 0.178 0.073 0.039 0.288

7. Average steering 0.020 0.036 1.1e−10 0.020 1.9e−07

8. No. of collisions/s 6.5e−09 8.6e−07 6.4e−12 0.050 0.021

Table shows the amount of significance of a metric according to the segment’s path. Each column adds up
to one. These values were used to derive our results in the expert model

Experiencel,sn =
m∑

k=1

Ws
k ∗

∑l
i=l+(1−n) M

i,s
k

n
, l > n, n > 0, s ∈ S (7)

where

– s is the id of a particular segment of segment’s set S
– l is the lap number we are interested in
– n defines the number of laps the value is defined from
– Ws

k is the normalised weight of a metric k and segment s in the All group
– m is the number of all metrics defined in the All group
– Mi,s

k is the Performance Metric k of lap i and segment s
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– Experiencel,sn is the experience value of lap number l and segment s over n laps.

Exploration As defined in the introduction, is a metric of how varied (explorative) is
the range of actions that the user is using in the current task. Through the metrics we
define this as the weighted sum, of a metric’s absolute shift to a proportion of its mean
(defined as “jump”). If the difference between two consecutive metrics passes a fixed
percentage value of the current experience then the value is positive, otherwise it is
negative. This is expressed by (8).

Explorationl,sn =
m∑

k=1

Ws
k ∗

((|Ml,s
k − Ml−1,s

k |) − (
J sk ∗

∑l
i=l+(1−n) M

i,s
k

n

))
,

1 > Jk > 0, l > n, n > 0, l > 1, s ∈ S (8)

where

– J sk defines the proportion of “jump” of the experience value of that metric

– Explorationl,sn is the exploration value of lap number l and segment s fromwhich
current experience value for each metric k was calculated over n laps.

Attention keeps a record of the continuous attention of the user along consecutive
segments. This is calculated by first evaluating the experience of the user only from
non-physiological data through consecutive segments. If the value is above a threshold,
then the user’s attention is high and positive and the value is kept as the Attention.
Otherwise, we calculate the exploration value only from the physiological data and
use that for Attention. This is expressed by (9).

I = f (l, s),

npExperiencel,sn =
npm∑

k=1

npWs
k ∗

∑I
i=I+(1−n) M

i
k

n
,

pExplorationl,sn =
pm∑

k=1

pWs
k ∗

((|MI
k − MI−1

k |) − (p
J sk ∗

∑I
i=I+(1−n) M

i
k

n

))
,

Attentionl,sn =
{
npExperiencel,sn − npT if npExperiencel,sn ≥ npT
pExplorationl,sn if npExperiencel,sn < npT

1 > p J sk > 0, l > n, n > 0, l > 1, s ∈ S

(9)

where

– np and p prescripts define the Non-Physio and the Physio group metrics respec-
tively

– I is the index number representing segment s in lap l. Function f transforms s
and l to I so that I − 1 defines the previous consecutive segment of index I

– n defines the number of consecutive segments the value is defined from
– Wk is the normalised weight of a metric k defined in the respective group
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Fig. 7 The two figures show how the area of the region of flow reduces between high and low Attention.
The flow region defines the optimal region for user engagement. In the low attention case, the region of flow
becomes narrower and the user model’s variables are compared between themselves than to the threshold
parameters

– m is the number of metrics defined in each group
– Mi

k is the Performance Metric k of segment-lap index i
– Jk defines the proportion of “jump” of the Experience value of that metric
– npT defines the threshold set for separating low and high values in the Non-Physio
group np.

To sum up, we described the way the performance metrics are created, how their
weights are evaluated and defined the values of our high level variables through game
specific rules. The next step is to utilise these values to determine the current state and
performance of the user and provide instructions to change the segments of the track.

3.4.7 Exploiting the flow

The high level variables mentioned in Sect. 3.4.6 monitor the user experience while
playing the game and control the segment altering decision algorithm according to the
combination of their values. The balance between the level of challenge and the user’s
skill is considered as the optimal operating region (Flow Region) whereas attention
defines the range they are operating in, as shown by Fig. 7. When attention is low
then the flow region is much narrower, therefore, experience and exploration values
should be treated with more care than when attention is high. Our approach is that
thresholds define low/high experience/exploration values in high attention, whereas
in low attention they are compared with each other.

Giving instructions to change the track at this point is straightforward and is shown
in Fig. 8a. In more detail, when there is a high Attention, defined through a threshold,
and:

1. Both Experience and Exploration are High: The user is in the optimal region so
the segment should be kept the same.
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Fig. 8 a The outcome of the Segment Altering Decision algorithm depends on the values of Exploration,
Experience and Attention and their assigned thresholds. b 3D Lattice of User Model showing the implicit
space of the high level variables instructing the algorithm to change a particular segment. Colour coding of
the decisions is respected between the two figures. (Color figure online)

2. Both Experience and Exploration are Low: The user is engaged since Attention is
high, therefore we should allow more time for the user to adapt and build up skill
so the segment should still stay the same.

3. High Experience, Low Exploration: A more challenging track should be provided
(e.g. onewithmore or sharper curves) since the user’s skills are high and challenges
drop below the threshold.

4. Low Experience, High Exploration: An easier segment should be created (e.g. one
that imitates a previous user path, or with less curvature) since the user’s skills
cannot cope with the current challenge of the path.

When the algorithm detects low Attention, Experience and Exploration values are
compared to themselves and not to a threshold, therefore:

5. Experience larger than Exploration: Skills are greater than the challenges so the
path should become more challenging.

6. Experience lower than Exploration: Skills are lower than the challenges of that
path so an easier path should be provided.

7. Experience same as Exploration (both low): Both values are low and Attention of
the user is also low therefore an easier segment should be provided.

Using the above information and Fig. 8a we constructed a 3D lattice, shown in
Fig. 8b, that covers the implicit space of those three variables. Each region in the
lattice (indicated by the different colours/shapes) instructs the algorithm to either
leave the segment untouched (blue—diamond) or change the segment to either an
easier (green—square) or harder (red—circle) path according to the user model.

In order to plot the lattice, we used a 50% threshold for each class in order to define
high and low values. Our user model consists of various parameters and thresholds
(e.g. proportion jump—J ) that can be altered as user spends more time with the game.
In this article we are not focusing on how these parameters are changing the outcome
of the algorithm, however, the reported values (see Table 10) are the ones used to derive
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Table 10 Values of the various
thresholds and parameters of the
model

Variable Percentage

1. J sk 20

2. p J sk 20

3. npT 40

4. ExperienceT 40

5. ExplorationT 50

6. AttentionT 50

For each segment s and each
metric k is possible to use a
different value, however in order
to retrieve our results we used
the same for all segments and
metrics

the results of our experiment. Their values were chosen to mid-percentage or common
values regarding the variability of the subjects collected, although there might be more
optimal ones.

Specifically, the two variables representing the “jump” (J sk ,
p J sk )—amount of

improvement of the user in respect to their average experience—were set at 20%
as this was found empirically to be a good proportion of improvement. The thresholds
relating to the experience (npT , ExperienceT ), were set at the median of the reported
experience of our participants, so that the algorithmwould create a good distribution of
all the outcomes. The thresholds deciding for high/low exploration (ExplorationT )
and attention (AttentionT ) were set at 50% (middle range) as both of their defini-
tions (Transformation Rules) were designed to give values equally in the negative and
positive region.

4 Results

The simulator has been driven by 52 users and all of the data were recorded and
analysed offline. In the following section we conducted a user profiling analysis in
order to verify and find the patterns emerging from our user responses to determine
our user types. We also validated our Framework’s outcomes using the data collected
from the users through their responses.

4.1 User profiling

An outstanding user model needs to be compatible with the user’s game play experi-
ence. The latter depends on the type of the player as well. Type can be subcategorised
into multiple groups, like regular gamers versus non-gamers or/and racing enthusiasts
or not, etc. As we noticed from our experiments, the users who were involved in racing
communities were more willing to do the experiment, they were better engaged and
they havemore constructive feedback than novice. A successful user model is to detect
these kinds of patterns and act according to the individual’s conceptions.

For better understanding of the different categories of our subjects, we performed
user profiling on the questionnaire of our experiment. As shown in Table 11, we
collected data from subjects of various groups (e.g. age, gender, racing gamers and
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Table 11 User demographic profiling: static (Nos. 1–5) and game specific (Nos. 6–10) information ana-
lytics regarding the users in our experiment

Analytics from 52 subjects Results

1. Age 19–35 (M = 25, SD = 4)

2. Driving years 0–18 (M = 5, SD = 5)

3. Gender 87% men, 13% women

4. Driving license 83% yes, 17% no

5. Game play frequency 31% never, 52% occasionally, 15% frequently, 2% every day

6. Track difficulty 4% easy, 54% medium, 38% hard, 4% very hard

7. Improvement 1 nothing, 27 little, 14 a lot, 10 very much

8. Fatigue 24 nothing, 21 little, 6 a lot, 1 very much

9. Pre self-rating 21 beginners, 18 intermediates, 12 advanced, 1 expert

10. Post self-rating 25 beginners, 18 intermediates, 9 advanced

We collected data from 52 subjects of broad range of ages, both genders and various skills in real driving
and car game racing

real driving experience) so that we can implement a user model that can adapt to
diverse player types.

From analytics Nos. 9 and 10 of Table 11, which reports the score that the users
gave to themselves before and after the experiment, we noticed (as expected) a higher
population in the lower scores since most of our subjects were not frequent racing
game players (No. 5). From data obtained from analytic No. 8, we can also infer that
most of the users enjoyed the game and didn’t feel tired through the process. We
acknowledged from the user’s feedback that the low score on tiredness was either
because 20 laps were not enough for them to become fatigued or the subjects were
very excited to try a racing simulator. Likewise, the improvement (No. 7), was mostly
minor since large sample of the users were either beginners or intermediates, therefore
they couldn’t improve much in such a short time, considering that any pre-training
was not provided.

Analytic No. 6 is the score of the track on the factor of difficulty. Our aim was to
provide a starting track that was in general not very challenging but also not partic-
ularly easy. Most of the scores lie in the middle range therefore, our objective was
accomplished. However, user feedback disclosed that the particular questionmight not
have been answered as initially envisaged. Subjects were supposed to respond with
a level of difficulty regarding their performance. Instead, some responded by taking
into account only the appearance of the track’s path and length.

Some users commented on the fact that there should have been more categories to
rate themselves, especially towards the higher range. Also, we notice that only 37%
of the users changed their skills rating by a level, as shown by Fig. 9a. Specifically,
subjects that lowered their scores commented that they didn’t perform as well as
they expected. Since the change was only by a level and most of the users haven’t
altered their score, we decided to combine the two (pre and post) responses. By adding
the ordinal values of the two Self-Rate (Pre and Post) responses we created a much
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Fig. 9 37% of the users changed their decision by only one level during self-rate before and after the
experiment. Therefore, to be able to retrieve combined results from both of their responses, we re-evaluate
each user into three groups

elaborated description of our users (see Fig. 9b). However, since eight groups are far
too many for the number of our subjects we decided to re-evaluate them into three
(see Fig. 9c). People who changed their mind were re-evaluated to their lower choice
(self-assigned skill).

Kruskal–Wallis test between the two Self-Rate and Re-evaluate skill groups (Pre
versus Re-evaluate, Post versus Re-evaluate) gave very low p values (p < 0.01).
Therefore we can state that the assigned groups are still dependent to the users’
self-reported skill. For the rest of our results section we are using the Re-evaluate
skill groups (see Fig. 9c) to correlate the characteristics of the Framework and user
responses.

The next step is to find particular patterns in the users’ responses and further under-
stand their profile type. The game specific questions labelled as: Frequency, Fatigue,
Difficulty andUser Self-Rate (Re-evaluate)were testedwith each other usingKruskal–
Wallis test.

Low p value (p < 0.01) was observed between the Self-Rate response with game
play frequency response. As anticipated, people who tend to play racing games fre-
quently are expected to be Intermediate or Advanced whereas those that don’t, will
rate themselves as Beginners. Under a pairwise test, there is no distinct separation
in the middle-upper classes (e.g. Frequently versus Occasionally, Intermediate ver-
sus Advanced). Responses from each self-rate group towards game play frequency
response are shown in Fig. 10a.

An interesting correlation was also detected between Self-Rate and Improved
responses with p < 0.05. Beginners tend to respond that their improvement was
little to nothing. Whereas most of the Intermediate and Advanced users responded
with high improvement as show in Fig. 10b. This can be explained using the ZPD.
Players with the required skills and experience could learn on every lap repetition and
improve themselves up to their ADL, which is in turn much higher than the player’s
marked as Beginners. Therefore, assuming all users start at scoring their improvement
from the same point then more experienced users will improve more than the rest.

Apart from thosementioned, there were not any other statistically significant results
between the responses. Therefore, we can assume from the responses that are not
mentioned [track difficulty (χ2(3) = 2.565, p = 0.46) and fatigue (χ2(3) = 6.772,
p = 0.0795)] that they cannot be directly associated with the user’s Self-Rate response
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Fig. 10 a Game play Frequency responses versus Self-Rate groups give statistically significant results
using Kruskal–Wallis test (p value <0.01). b Improved responses versus Self-Rate groups give statistically
significant results using Kruskal–Wallis test (p value <0.05)

and the user profile in general, however, they can be retrieved during game play. In fact
as we will show later, responses concerning fatigue are correlated to the user attention
calculated by our Framework.

4.2 Algorithm’s validation

It is important to mention that the algorithm for finding the metrics’ significance
(weights) for the expert’s model used data from only after the fifth lap, since feedback
from the users suggested that familiarity of the track and simulator in general happened
after 5–8 laps.

What follows in the rest of this section is the validation of the algorithm’s high level
variables and outcomes through the user responses:

Algorithm’s outcome variability and user’s self-rate response Chi-squared test was
applied to assess the goodness of fit for the variability of the algorithm’s output on the
users’ level of expertise. Userswere split into three groups according to their combined
self-rating responsementioned in Sect. 4.1. For each segment of the track the algorithm
evaluated the user through the model, and gave an output for the alteration that has to
be made on that segment; this can be either easier, same or challenging. These were
set as the category names of the Chi-square table.

By counting the number of category outputs generated from all segments for each
of the three groups, we create the Chi-square matrix shown in Table 12. The null
hypothesis states that the decisions for each group are being drawn from the same
distribution and that categories are independent from the groups. The test rejects the
null hypothesis with a Chi-square statistic at χ2 = 72.19 and p < 0.01. This shows
that the algorithm provides different proportions of segment alterations to particular
groups.

Furthermore, by assigning a score value for each category (easy: 1, same: 2, chal-
lenging: 3) we calculated the average score for each user from the generated outputs.
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Table 12 Chi-square table of algorithm variability (expert model) versus users reported skill shows statis-
tically significant results (χ2 = 72.19, p < 0.01)

Group: categories Easy Same Challenging Total

Beginner 67 [42.54] 68 [77.54] 5 [19.92] 140

Intermediate 12 [25.83] 57 [47.08] 16 [12.10] 85

Advanced 0 [10.63] 19 [19.38] 16 [4.98] 35

Total 79 144 37 260

Number in the squared parentheses indicate the expected value of each group in the particular category

Utilising Kruskal–Wallis test with the null hypothesis that the scores of each group
arise from the same distribution gave χ2(2) = 22.64 and p value <0.01. Therefore,
there is enough evidence to reject the null hypothesis. Box plots of the average score
against the groups are shown in Fig. 11a. In addition, as expected, the Spearman cor-
relation between the average score and the user’s skill report is positively correlated
(ρ = 0.66, p < 0.01).

As a result, the tests support the fact that the algorithm generates outputs according
to the different levels of expertise of each user. Over the subsequent paragraphs, we
will present inmore depth the correlation of the users’ responses to the specificmetrics
of our framework:

User fatigue and attention metric The users were asked if they “felt tired during the
experiment because of the lap repetition?” (Question: Fatigue). These responses were
pairedwith the algorithm’s averageAttention value of each user.UsingKruskal–Wallis
test (χ2(3) = 10.75, p = 0.01) we found that the Attention value is significantly
different for different levels of self-reported fatigue (see Fig. 11b). The Spearman
correlation test (ρ = −0.39, p < 0.01) showed that there is a significant negative
correlation between Attention value and user’s fatigue response (lowest rank is set to
“Nothing at all” whereas “Very Much” is the highest). From this we can infer that
the algorithm’s Attention output is also statistically correlated with the self-reported
fatigue.

User experience report and experience metric Similar to the previous test, the average
value of themodel’s experience variable of each user was paired to the user’s combined
self-rate response. The Kruskal–Wallis test (χ2(2) = 28.81, p < 0.01) indicates
that the average experience score is significantly different for each distinct self-rate
skill response (see Fig. 11c). The Spearman correlation test showed a strong positive
correlation between experience value and user reported skill (ρ = 0.75, p < 0.01).

User improvement report and exploration metric The average value of the model’s
exploration variable of each user was paired with the user’s self-rated improvement.
The Kruskal–Wallis test (χ2(3) = 12.54, p < 0.01) indicates that exploration score
is statistically different for the various levels of self-rate improvement (see Fig. 11b).
In addition, the Spearman correlation test found a negative correlation between explo-
ration value and self-rated improvement (ρ = −0.48, p < 0.01).
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Fig. 11 a Boxplots of the average score of track altering decision of each user against their skill response.
Kruskal–Wallis test shows statistically significant results: χ2(2) = 22.64, p < 0.01. Whereas Spearman
Correlation: ρ = 0.66, p value <0.01 shows a strong positive correlation. b Boxplots of the average score
Attention of each user against their response on fatigue. Kruskal–Wallis test shows statistically significant
results: χ2(3) = 11.35, p = 0.01. Spearman Correlation detects a negative correlation: ρ = −0.41,
p < 0.01. c Boxplots of the average score on Experience of each user against their response on self-reported
skill. Kruskal–Wallis test shows statistically significant results: χ2(2) = 28.81, p < 0.01. Spearman
Correlation gives a strong positive correlation: ρ = 0.75, p < 0.01. d Boxplots of the average score on
Exploration of each user against their response on improvement. Kruskal–Wallis test shows statistically
significant results: χ2(3) = 12.54, p < 0.01. Whereas Spearman correlation shows a negative correlation:
ρ = −0.48, p < 0.01

Furthermore, in Sect. 4.1 we noticed that users with higher skill tend to respond on
the improvement question positively. However, results from this test show that subjects
with higher improvement response have a lower exploration (challenge) value. This
fact reinforces the method of evaluating the user exploration in the algorithm since
users with higher skill have less challenges, as the game environment stays constant,
and therefore generate lower exploration values.

4.3 Expert–user best models comparison

The results of the previous Sect. 4.2 and the implementation of the user model in
Sect. 3.4 mainly focus on comparison of user data with the expert’s. However, having
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expert data for a particular track contradicts the concept of creating new tracks that are
tailored to the user. The Framework will not be able to model the user when moving
from a newly generated segment path to a subsequent segment since expert data will
not be available to create the metrics.

In order to confront this issue, on the second level (Performance Metrics) of our
user model (see Fig. 1), we allow the comparison of the data either with an expert
or user’s “best” data. Both comparisons should generate similar results to the higher
level of the model. In this section we test this hypothesis by using the model through
user’s “best” data to create segment decision changes as in Sect. 4.2 and compare
against them.

Therefore, the algorithmwas set to provide segment outputs after the completion of
20 laps from each user and the performance metrics were created using comparisons
from the user’s “best” data. The model’s linear weights are trained only on the user’s
available data. It is expected that the model will refine itself to the particular user after
a number of laps.

The segment decisions of the algorithmwere comparedwith the ones obtained from
the expert model. Results show that most of the decisions were the same (70.5%) and
29.5% differ mostly towards higher levels: same and challenging (see Fig. 12a). Using
theWilcoxon signed rank (two-tailed) test between paired decisions of the twomodels,
showed that there was a statistically significant change of outcomes between expert
and user’s “best” models (Z = −4.417, p < 0.01). The result gives enough evidence
to assume that there was a shift towards higher outcomes.

This increment is expected mainly for two reasons. Individual user models might:

1. Not have enough and valid data to create a good model for the user.
2. Be overconfident since the user might perform well when compared to the user’s

best performance but badly when compared to an expert.

Figure 12b shows the values of the three abstract variables, of the Theoretical Frame-
work level, that are used to generate the output decisions via thresholds. The vertical
bounds indicate results from different users. In general, the sequences between expert
and user’s best are similar but we can identify particular users for whom the two mod-
els do not agree (this is mainly because of the second reason mentioned). In future
work we will tackle this issue by personalising the thresholds (see Table 10) for each
individual user (in the user’s best model case) so that the two models are coherent.

As executed inSect. 4.2,we also performed aChi-squared test to assess the goodness
of fit, for the variability of the algorithm’s output on the user’s combined self-reported
skill. By counting the number of category outputs generated from all segments for
each of the three groups, we created the Chi-square matrix shown in Table 13. The
Chi-square test indicated that depending on the user’s skill group, the model out-
puts different proportion of a particular segment decision, with statistically significant
results (χ2 = 37.34, p < 0.01).

In addition, the Kruskal–Wallis test between the average score obtained for each
user from the generated ordinal output decisions and the user’s combined self-reported
skill gave χ(2)2 = 17.67 and p < 0.01. This shows that the generated scores are a
statistically different for different levels of self-reported skill. This can be inferred
from Fig. 13 that advanced users are well separated from intermediates and begin-
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Fig. 12 a Comparison of the ordinal outputs between models using expert and user data comparisons.
Wilcoxon signed rank (two-tailed) test gives Z = −4.417 and p value <0.01, as some of the outcomes
shifted towards higher levels. b Outputs of high level variables of the two models using expert and user’s
“best” data comparisons. The boundaries between the vertical lines indicate the results from different users.
For all the variables and for each user, the trends are similar (some differ with a fixed bias per user).
Therefore, the difference in results is because the model is overconfident for the abilities of each user and
the particular thresholds chosen

Table 13 Chi-square table of algorithm variability (User “best” model) versus users reported skill give
statistically significant results (χ2 = 37.34, p < 0.01)

Group: categories Easy Same Challenging Total

Beginner 30 [18.84] 71 [71.27] 11 [21.89] 112

Intermediate 7 [13.79] 57 [52.18] 18 [16.03] 82

Advanced 0 [4.37] 12 [16.55] 14 [5.08] 26

Total 37 140 43 220

Number in the squared parentheses indicate the expected value of each group in the particular category

ners. However, intermediates and beginners share some overlap. The Spearman’s
correlation supports a positive correlation of ρ = 0.61 and p < 0.01. This correla-
tion is similar to the expert’s model segment decision score versus skill comparison
(ρ = 0.66) result, despite the fact that there is a shift towards higher outcomes for
some of the users.

5 Discussion

Our objective is to enhance the gaming experience by modelling the user using
behavioural and unobtrusive physiological data, and customising the designed tracks
in a racing game. By utilising theoretical frameworks on learning and development
such as the concepts of flow and Zone of Proximal Development, we aim to “keep the
player satisfaction at a high level” (Tognetti et al. 2010b). Our user model consists
of six processing levels where sequential data from various sensors, user inputs and
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Fig. 13 Boxplots of the average
score of track altering of each
user against their skill response.
Kruskal–Wallis test shows
statistically significant results:
χ(2)2 = 17.67, p < 0.01.
Spearman correlation is strongly
positive: ρ = 0.61, p < 0.01

game outputs are being transformed into theoretical concepts utilised to explain the
development of human skills, challenges and attention in that particular task (car rac-
ing). Low level primitiveswere designed in a way so as to constitute specific as well as
general user characteristics which are then compared to an expert value or user’s best
performance. Each metric is validated for significance using correlation tests whereas
the output of the Framework’s performance is confirmed using two different tech-
niques: (1) User satisfaction and feedback through questionnaire; (2) by generating a
user specific outcome associated with user responses. By applying several statistical
tools, we associate the user responses to specific algorithm variables and outcomes to
confirm that the algorithm is both in-line with users perspective and with the assump-
tions we made to design the model. By rejecting the null hypothesis in each of our
tests in Sect. 4.2 we showed that the model is able to:

– distinguish between the skill level of each user by evaluating the Experience
– keep track of the improvement of the user through Exploration
– specify the user’s Attention through the data
– create personalised outcomes for each particular user which are still conform to
their skill group

– function and elicit similar results without using expert data
– be further configured through model’s parameters to fit user progress

Compared with similar model approaches specified in Sect. 2 our methodology
was not to define the particular features that are correlated to specific user responses
and actions in the game, despite the fact that the model implicitly defines feature sig-
nificance through their weights. Instead, we incorporated all of our available sensory
and game data, obtained from each user, into our model and let the algorithm specify
their applicability in every situation (i.e. segments). Our hypotheses of different fea-
ture significance according to various situations and even between different users are
confirmed. The former is specified through the different weights in Tables 7, 8, and 9
along each particular segment.
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Backlund et al. (2006) found positive correlations between skill and improvement
when students were rated by their instructors in a real driving experiment. In our results
we show that we are in agreement with their statement; users that rated themselves
and were also defined by the algorithm as advanced drivers seem to be able to improve
faster and more than users in the beginner group.

In addition, Togelius et al. (2007) created new tracks that fit the driving style of an
agent that was trained on a particular user. They stated that depending on the racing
skills of each user (beginner vs advanced) their generated tracks developed either
easier paths (more straight lines, less sharp turns) or harder ones. We showed that the
sum of the generation of our ordinal output instructions is correlated to the ordinal
level of skills of the user. Therefore, our adaptive user model framework behaves in
a similar manner to their findings. Moreover, our model also integrates attention and
exploration concepts in order to describe the current state of the user and adapt better
to the individual.

Our future direction is to further validate our hypotheses and the specific variables
of the Framework. This can be achieved by modelling the users through a multiple
track scenario consisting of personalised (experiment) and fixed (control) transitions
of tracks that would allow us to observe the engagement and training through the
groups of users.

5.1 Modification and transferability

The proposed method of the adaptive user model is based on having independent
hierarchical levels. Thus each level can be modified to fit the requirements of the user
activity that needs to be modelled:

– The non-physiological data of the Low Level Primitives level, such as the game
outputs and the user inputs are specific to the task. These can be assigned as
anything from mouse clicks to explicit complex actions that are significant to the
progress of the competing task.

– For theWeighting Model level, the designer should specify the target or a combi-
nation of them that provide a measure of global performance to the task (i.e. total
score, completion time, number of wins/kills). Moreover, the regression model
can be switched with any other similar machine learning technique that provides
weights for every input towards a specific output.

– The last three higher levels are interrelated to the Theoretical Framework chosen
for the task. In our case we are interested in the development of the user’s driving
skills and the engagement of the user to the game. From our chosen psychological
frameworks, these are evaluated through Experience, Exploration and Attention.
Thus there is a need for three transformation rules in the Trace Theory level, which
are specified by the task designer/expert.

– The Goal level utilises the thresholds set on the evaluated high level variables and
the outcome of the model depends on the task (i.e. personalisation of the track’s
paths).
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Example: Training children with cognitive difficulties to use a wheelchair Our model
could be used to identify particular weaknesses a child possesses when handling a
wheelchair—via the model’s weighted metrics—when the Task is to drive through a
narrow door or performing a turn in a corridor. The Goal could be to either alter the
scenario to fit the particular user (i.e. increase the door’s opening, make the turn less
sharp) or personalise the assistance that gives to the user.

The Low Level Primitives as in our case, could consist of user’s driving inputs, eye
gaze/fixations, blinks, head pose, wheelchair’s path, velocities and angle, task comple-
tion time, collisions etc. Whereas theWeighting Model target could be a combination
of the path-angle metric, since this is the most important aspect in this task. As this
task also involves learning, development as well as engagement of the user and the task
involves driving, the Theoretical Framework and transformation rules (Trace Theory
level) could be the ones we already proposed.

5.2 Limitations

The main limitation of the studies we reported in this paper is that the evaluations are
based on self-reported user data using Likert-scale self-reports. It is difficult to assess
whether responses are reliable or if they are affected by other factors that haven’t
been considered. An argument emerges that it is not sufficient to assume that users are
capable of understanding their own performance and potential. Therefore, responses
tend to be subjective to the particular person and the situation s(he) provides them,
and thus can be biased.

However, we addressed this issue by (a) collecting data from many users (52) so
that the results are statistically significant and (b) carrying out user profiling tests to
first check that our user models are varied and to identify any patterns or irregularities
between their responses (Fan et al. 2006). In future work we also plan to add user
monitoring when driving new personalised tracks and attempt to validate the implied
characteristics of our Framework through the direct comparison between the user’s
performance and engagement in different trials.

On a more technical detail, we employed linear based models to calculate the
weights used to evaluate the high level variables in the Theoretical Frameworks level.
These weights may not provide optimal values since the metrics might not necessarily
be linear to the Goal (Time metric) we determined, which will be addressed in future
work. Furthermore, the evaluation of the Attention variable is based exclusively on a
game-determined approach and does not take into account any latent emotional states
of the user. In addition, the selection of our sensors influence ourmodel’s operation; we
chose sensors that are unobtrusive to the user and the task.However, this can sometimes
cause data loss or inaccuracy since they have a finite area of tracking. The user model
can be designed to adapt to these problems by continuously re-calculating the weights,
although an extended loss or stream of erroneous data can lead to an inadequate user
model. In our future work we are planning to employ additional physiological sensors
(i.e. heart rate, skin conductance) that will enhance the evaluation of user’s immersion
to the task.
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6 Conclusion

In this article we propose an adaptive user modelling framework for transforming
user’s low level primitives composed of game-related user actions, game outputs and
unobtrusive physiological data such as head pose and eye tracking into theoretical
frameworks of learning and development (e.g. concept of flow and Zone of Proximal
Development). Our intention is to provide a flexible algorithm that identifies the on-
line weaknesses and performance of a race driver so that we can alter the track’s path to
fit the individuals level of skill. The functionality of the framework so far is to provide
segment alteration instructions (i.e. same, easier, challenging) and also point out the
human factors, that lead to the particular decisions. The design and implementation
of a new path as well as the experiments regarding that, are outside the scope of this
paper.

Real user experiments using a simulator setup allowed us to calculate the correla-
tions of our extracted features (Low Level Primitives) and estimate the engagement
of the users to the task, through their comparisons to an expert—a trained and self-
engaged—user. In addition, simple and logical rules regarding the racing task were
embraced in order to perform the Trace Theory’s transformation process of low level
traces to the theoretical frameworks. The fitness of the rules and in general the mod-
elling process was verified by associating user responses to the experiment with the
offline instructions generated. User profiling helped us understand the variation in
the user types, whereas feedback helped us to improve our future experiments. An
interesting result is that our user responses were not found to be statistically different
between genders as indicated in Backlund et al. (2006).

The future development of the user model is to verify the results through experi-
ments where the track is being altered through the decisions of the model in real time,
which will allow the user to drive the new track straight away. User attention, skill and
challenges will be monitored with the aim of keeping above a threshold through the
whole process. This approach will also validate the Framework without the need of
user responses. As far as we are aware, this kind of experiment hasn’t been conducted
before. However, the forthcoming main challenge is to elicit a new path that fits the
user model. The path construction algorithm has to include both the instruction gen-
erated and the specific human factors that lead to the decision in order to create new
segments that will both improve the engagement and assist the training of the user.

An important future aim will be the adaptation of that model structure to another
game or task through minimal changes. This will prove the transferability of the
model with as few modifications possible and show its generic capabilities to capture
the engagement and enhance user training.
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