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Abstract Stochastic image reconstruction is a key part of modern digital rock physics and
material analysis that aims to create representative samples of microstructures for upsam-
pling, upscaling and uncertainty quantification. We present new results of a method of
three-dimensional stochastic image reconstruction based on generative adversarial neural
networks (GANs). GANs are a family of unsupervised learning methods that require no a
priori inference of the probability distribution associated with the training data. Thanks to
the use of two convolutional neural networks, the discriminator and the generator, in the
training phase, and only the generator in the simulation phase, GANs allow the sampling
of large and realistic volumetric images. We apply a GAN-based workflow of training and
image generation to an oolitic Ketton limestone micro-CT unsegmented gray-level dataset.
Minkowski functionals calculated as a function of the segmentation threshold are compared
between simulated and acquired images. Flow simulations are run on the segmented images,
and effective permeability and velocity distributions of simulated flow are also compared.
Results show that GANs allow a fast and accurate reconstruction of the evaluated image
dataset. We discuss the performance of GANs in relation to other simulation techniques and
stress the benefits resulting from the use of convolutional neural networks . We address a
number of challenges involved in GANSs, in particular the representation of the probability
distribution associated with the training data.
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1 Introduction

The microstructural characteristics of porous media play an important role in the understand-
ing of numerous scientific and engineering applications such as the recovery of hydrocarbons
from subsurface reservoirs (Blunt et al. 2013), sequestration of CO; (Singh et al. 2017) or the
design of new batteries (Siddique et al. 2012). Modern microcomputer tomographic (micro-
CT) methods have enabled the acquisition of high-resolution three-dimensional images at the
scale of individual pores. Increased resolution comes at the cost of longer image acquisition
time and limited sample size. Individual samples allow numerical and experimental assess-
ment of the effective properties of the porous media, but give no insight into the variance
of key microstructural properties. Therefore, an efficient method to generate representative
volumetric models of porous media that allow the assessment of the effective properties is
required. The generated images serve as an input to a digital rock physics workflow to rep-
resent the computational domain for numerical estimation of key physical properties (Berg
et al. 2017).

Statistical methods aim at reconstructing porous media based on spatial statistical prop-
erties such as two-point pore—grain correlation functions. Quiblier (1984) has presented an
extensive overview of the early literature of porous media reconstruction and provided an
extension of the method of Joshi (1974) by reconstructing three-dimensional porous media
based on the empirical covariance function and probability density function obtained from
two-dimensional thin sections. Other statistical methods such as simulated annealing (Yeong
and Torquato 1998; Jiao et al. 2008) allow high-quality three-dimensional reconstruction and
incorporation of numerous statistical descriptors of porous media. Pant (2016) introduced a
multi-scale simulated annealing algorithm allowing simulation of three-dimensional porous
media at much lower computational cost than previous methods.

Methods to incorporate higher-order multi-point statistical (MPS) properties of porous
media have been developed. These MPS functions are implicitly defined by two- or three-
dimensional training images. Simulation algorithms based on multi-point statistics are
therefore considered as training image-based algorithms. MPS simulation was originally
developed in the context of generating realistic geological structures (Guardiano and Srivas-
tava 1993; Caers 2001; Mariethoz and Caers 2014). With the advent of micron-resolution
X-ray tomography (micro-CT imaging) (Flannery et al. 1987), which provides training
images, MPS simulation techniques have been successfully applied to the stochastic recon-
struction of three-dimensional porous media (Okabe and Blunt 2004, 2005, 2007).

Tahmasebi et al. (2012) and Tahmasebi and Sahimi (2012, 2013) have introduced a patch-
based approach where sub-domains are simulated along a pre-defined path and populated
based on a cross-correlation distance criterion (CCSIM). This approach is similar to the
image quilting algorithm by Efros and Freeman (2001) and Mariethoz and Caers (2014)
but corrects mismatching patches in overlapping or neighboring domains. Tahmasebi et al.
(2017) present a method for fast reconstruction of granular porous media from a single two-
or three-dimensional training image using a method closely related to CCSIM. They obtain
significant speedup in computational time by incorporating a fast Fourier transform and a
multi-scale approach. A graph-based approach is used to resolve non-physical regions at the
boundaries of simulated patches of grains.

Object-based methods describe the material domain by locating geometrical bodies of
random size at locations provided by a spatial point process. The so-called Boolean model
is a particular case where the randomly placed bodies, typically spheres, are allowed to
overlap (Matheron 1975; Chiu et al. 2013). Object-based methods may also allow interaction
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of particles to be incorporated. They have successfully been used to describe complex and
heterogeneous materials (Torquato 2013).

Process models reconstruct the pore and grain structure of materials by mimicking how
they were formed. @ren and Bakke (2003) have created reconstructions of sandstones by
reproducing the natural processes of sedimentation, compaction and diagenesis.

This contribution presents a training image-based method of image reconstruction using a
class of deep generative methods called generative adversarial networks (GANS) first intro-
duced by Goodfellow et al. (2014). Recently, Mosser et al. (2017) have shown that GANs
allow the reconstruction of three-dimensional porous media based on segmented volumetric
images. Their study applied GANSs to three segmented images of rock samples. They showed
that GANSs represent a computationally efficient method for the fast generation of large volu-
metric images that capture the statistical and morphological features, as well as the effective
permeability.

We expand on the work of Mosser et al. (2017) and investigate the ability of generative
adversarial networks to create stochastic reconstructions of an unsegmented micro-CT scan
of a larger oolitic Ketton limestone sample. We evaluate the four Minkowski functionals for
the three-dimensional datasets as a function of the gray-level threshold. In addition to the
numerical evaluation of permeability as shown by Mosser et al. (2017), we compare velocity
distributions of the original porous medium and samples obtained from the GAN. We also
provide details of the convolution approach used by GANs. Furthermore we evaluate the
reconstruction process within the trained generative function and highlight the parametric
and differentiable nature of the obtained generative function. We evaluate the computational
cost of GAN-based image simulation with reported values of computational run time for a
variety of other reconstruction methods of equal reconstruction quality. We also investigate
how the image representation evolves along the different layers of the GAN network, and
discuss the benefits that can be derived from the differentiable nature of the parameterization
used by GANSs.

2 Generative Adversarial Networks

Generative adversarial networks are a deep learning method for generating samples from
arbitrary probability distributions (Goodfellow et al. 2014; Goodfellow 2017). GANs do not
impose any a priori model on the probability density function and are therefore also referred
to as an implicit method. Without the need to specify an explicit model, GANs provide
efficient sampling methods for high-dimensional and intractable density functions.

In the case of CT images of porous media, we can define an image x to be a sample of a
real, unknown probability density function (pdf) of images pgara of which we have acquired
a number of samples which serve as training images. In our example, the training set is
comprised of 5832 sub-domains (64> voxel) of the original micro-CT image. Sub-domains
are extracted without any overlap, and each training image represents the originally acquired
dataset.

GANS consist of two functions: a generator whose role it is to generate samples of the
unknown density pgaa(X) and a discriminator function D that tries to distinguish between
samples from the training set and synthetic images created by the generator. The generator
G is defined by its parameters 6 and performs a mapping from a random prior z to the image
domain:
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ZNN(O,l)XmXIXl (1)
Go:z— ]Rlx64><64><64 2)

where d is the dimensionality of the random prior.
The discriminator D, (x) assigns a probability to an image x being a sample of the true
data distribution pgaa:
Dw . R1X64><64><64 — [O, ]] (3)

where values close to 1 represent a high probability of being a sample of X ~ pgata (X).

We represent both the generator Gy(z) and the discriminator D, (x) by differentiable
neural networks with parameters 6 and w, respectively. This allows us to use backpropaga-
tion combined with mini-batch gradient descent to optimize the generator and discriminator
according to the functional:

min Max{Ex~ pyy, [10g Do (X)] + Exvp, [log(1 = Doy (G (2)))]} “

The optimization criterion of the generator and discriminator (Eq. 4) is solved sequentially
in a two-step procedure. We first train the discriminator to maximize its ability to distinguish
real from fake samples. This is done in a supervised manner by training the discriminator on
known real samples (Label 1) and samples created by the generator (Label 0). The binary
cross-entropy is used as an objective function to compute the misclassification error:

H(y,y) == (vilog(y)) + (I — y) log(1 — y)) )

L

where y’ is a vector containing the output probability assigned by the discriminator for each
element of a given mini-batch of samples. For each mini-batch of real images, we therefore
optimize H(1,y’) and for all fake samples H(0,y’) (Eq. 5). The error is back-propagated
while keeping the parameters of the generator constant.

In a second step, we train the generator to maximize its ability to “fool” the discriminator
into misclassifying the images provided by the generator as real images. This is performed
by computing the binary cross-entropy of the output of the discriminator on a mini-batch
sampled from the generator Gy (z) and requiring that the created labels be close to one, thereby
computing H (1, y’). The parameters of the generator are then modified to optimize H (1, y’)
by applying stochastic gradient descent while keeping the parameters of the discriminator
constant.

Training of these networks is often challenging due to the competing objective functions
of the generator and discriminator. Recently, new objective functions and training heuristics
have greatly improved the training process of GANs (Arjovsky et al. 2017; Berthelot et al.
2017).

GAN:Ss follow a different training scheme from other stochastic reconstruction methods
(Sect. 1). There are two phases in GAN-based reconstruction: training and generation. Train-
ing is expensive, requiring modern graphics processing units (GPU) and for three-dimensional
datasets large GPU memory. Parallelization of the training process across numerous GPUs
reduces time for training the network. Nevertheless, finding a set of hyper-parameters, that
is, a network architecture (number of filters, types, order of layers and activation functions)
that leads to the desired quality can require significant trial and error.

The second phase of GAN-based reconstruction, the generation of individual samples, is
extremely fast. All operations in the generator network can be represented as matrix—vector
operations which are executed efficiently on modern GPU systems and take on the order of
seconds for modern GPUs, as shown later in this paper.
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3 Dataset

The sample used in this study is an oolitic limestone of Jurassic age (169—176 million years).
The spherical to ellipsoidal grains consist of 99.1% calcite and 0.9% quartz (Menke et al.
2017). Inter- and intra-granular porosity can be observed, as well as significant amounts of
unresolved sub-resolution microporosity. This is characterized by the various shades of gray
in individual grains, where the interaction of sub-resolution porosity with X-rays penetrating
the sample during imaging leads to an increase in intermediate gray-level values (Fig. 1).
The sample was imaged using a Zeiss XRM 510 with a voxel size of 27.8 pwm. The size
of the image domain after resampling to 8 bit resolution is 900% voxels. We subdivide the
original image into a training set of non-overlapping 5832 images at a size of 64> voxels.
We define a sequential randomized pass over the full training set as an epoch. Evaluation of
the effective properties is performed at larger image sizes than the training images to judge
whether the GAN is able to generalize to larger domains. To evaluate the reconstruction

Fig. 1 Two-dimensional gray-level cross section of the three-dimensional micro-CT image of the studied
oolitic Ketton limestone sample. The image has a size of 9003 voxels and was acquired with a voxel size of
27.8 pm. Histogram equalization was applied to the image prior to its use as a training image
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quality of the GAN model, we randomly extract 64 images at a size of 2003 voxels with no
overlap from the original training image (Fig. 1) which we refer to as the validation set. A
synthetic validation set was created by sampling 64 images at a size of 200° voxels from the
trained GAN model. To perform numerical computation of the effective permeability as well
as measure the two-point correlation function, all images of the synthetic and original Ketton
validation set were segmented using Otsu thresholding (Otsu 1975). Minkowski functionals
were evaluated for the unsegmented validation sets.

3.1 Neural Network Architecture and Training

Radford et al. (2015) proposed to remove fully connected layers in the input and output
of the generator network. They represent the input layer for the latent random vector by a
reshaping operation, followed by a stack of strided convolutional layers. Jetchev et al. (2016)
introduced the SGAN architecture where the input latent vector has spatial dimension and is
immediately followed by a set of convolution operations. This allows images to be generated
that are larger than the training images. They also provide evidence that sampling using the
SGAN network architecture represents a stationary, ergodic and strongly mixing stochastic
process. Our generator architecture represents a fully convolutional network without reshap-
ing operations. The fully convolutional nature of the generator allows us to create images
of arbitrary size by providing latent random vectors with larger spatial dimensionality, e.g.,
z ~ N(0, 1)dxmxnxo, During training, m, n and o are of size one, which results in an image
of 643 voxels. For image generation, m, n and o may be of any integer size. The main differ-
ence to the SGAN architecture of Jetchev et al. (2016) is therefore that at training time the
input random vector has a spatial dimension of one and the output of the discriminator is a
single scalar value.

In Fig. 2, we show an example of a convolution and transposed convolution operation for
the two-dimensional case. The convolution is performed by sliding a filter kernel w; (Eq. 6)
over the input feature map x; (Eq. 7) (Dumoulin and Visin 2016). We rewrite this as an
efficient matrix vector operation (Eq. 8) by unrolling the discrete convolution:

wo wy wy 0 w3 wgws 0 wgwywg 0 0 0 0 O
0w0w1w20w3w4w50w(,w7w300OO
0 0 0 0 wowjwy 0 w3 wg ws 0 wg wy wg 0
00 0 0 0 wowigwr 0 w3z wg ws 0 wg wy wg

W= [4x16] (6)

The input image X, in this case a single-channel 4 x 4 image, and the output y are represented
as one-dimensional vectors:
x[16 x 1], y[4 x 1] 7

Fig. 2 Example of a discrete convolution (a) and equivalent transposed convolution operation (b) fora 3 x 3
filter kernel size applied to a 4 x 4 feature map. The active regions to compute the output value are shaded
green
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Fig. 3 Architecture of the neural network used to represent the generator function Gy (z). The latent vector
z is passed through a fully convolutional feed-forward neural network. Transposed convolution operations
upsample the image in each layer. A single convolutional layer is introduced prior to the final network layer
to reduce artifacts due to upsampling using transposed convolution

This allows us to perform the discrete convolution:
Wikx=y (8)
and we can define the transpose operation:
Wlky =x 9

where W, x, y, X’ and y’ are defined according to Egs. (6) and (7). For each convolutional
layer of the network, the input features are convolved with a number of independent filter
kernels W.

The generator consists of a series of three-dimensional transposed convolutions. In each
layer, the number of weight kernels is reduced by a factor of % Before the final transposed
convolution, we add an additional convolutional layer (Fig. 3). Each layer in the network
except the last is followed by a batch normalization (Ioffe and Szegedy 2015) and a leaky
rectified linear unit (LeakyReLU) activation function. The final transposed convolution in
the generator is followed by a hyperbolic tangent activation function (Tanh) (LeCun et al.
1998). A representation of each activation function used in the network is shown in Fig. 4.

We represent the discriminator as a convolutional classification network with binary output
using as input the real samples of the 643 voxel training set (Label 1) and synthetic realizations
of equal size created by the generator (Label 0). Each layer in the network consists of a
three-dimensional convolution operation followed by batch normalization and a LeakyReLU
activation function. The final convolutional layer outputs a single value between O and 1
(Sigmoid activation) which corresponds to the probability that the input image belongs to
the original training set or in other words that it is a real image.

We distinguish two sets of parameters for training: The set of weights of a network
comprises the adjustable parameters of the filter kernels for convolutional and neurons for
linear network layers. The so-called hyper-parameters define the network architecture and
training scheme, e.g., the number of filters per layer, the number of convolutional layers
or learning rates. A chosen set of hyper-parameters defines different networks with their
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Fig. 4 Activation functions used in the generator and discriminator networks

own weights (parameters) which are adapted using a mini-batch gradient descent method at
training time.

In total, 8 models have been trained on the Ketton image dataset. The main hyper-
parameters that were varied for each model are the number of filters in the generator and
discriminator, Ngr and NpF, respectively, as well as the number of convolutional layers
before the final transposed convolution in the generator. The dimensionality of the latent
random vector z was kept constant at a size of 512 x 1 x 1 x 1. Learning was performed by
stochastic gradient descent using the ADAM optimizer with momentum constants 8; = 0.5,
B2 = 0.999 and a constant learning rate of 2 x 10™*. Network training was performed on
eight NVIDIA K40 GPUs using a mini-batch size of 64 images and the total run time of each
training run is 8 h.

To train the pair of networks Gg(z) and D,,(x), we make use of two heuristic stabilization
methods. First, Gaussian noise (x = 0, 0 = 0.1) is added to the input of the discriminator
which is annealed linearly over the first 300 epochs of training. A theoretical analysis of why
adding Gaussian noise helps to stabilize GAN training was performed by Kaae Sgnderby
et al. (2016). In addition, we make use of a second stabilization method called label switch-
ing. Label switching represents a heuristic stabilization method with the aim of weakening
the discriminator during the early stages of training. This heuristic stabilization method is
performed by training the discriminator every N steps for one step with switched labels of
the input real and generator simulated images; a real image is expected to be labeled as false
and generated images as real. This corresponds to switching the expected labels of the input
image mini-batches in Eq. (5).

Among the eight models tested, the network architecture generating realizations with the
smallest mismatch with respect to the evaluated statistical and physical properties is presented
in Table 1. The presented model has hyper-parameters of Npp = Ngg = 64. Training was
stopped after 170 epochs, i.e., full iterations of the training set of images. The generator
consists of 27.9 x 10° adjustable parameters and 11.0 x 10° parameters for the discriminator.
Visual inspection of the generated images and empirical computation of morphological and
statistical properties were used as a measure for reconstruction performance at each iteration.

After training, the generator was used to create 64 reconstructions at a size of 2003 voxels
by sampling from the noise prior z (Eq. 1) and performing the mapping from the latent space
to the image space (Eq. 2). Figure 5 shows slices through 32 non-overlapping sub-domains
of the Ketton validation set and slices through 32 synthetic validation samples generated by
the GAN model. The samples shown represent a random set of the generator output and were
not selected by hand for their visual or statistical quality. The following sections present

the a posteriori calculations of statistical, morphological and effective properties of these
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Table 1 Architecture of the generator and discriminator networks

Layer Type Filters  Kernel Stride  Padding  Batch normalization  Activation
Generator

1 ConvTransp3D 512 4x4x4 1 0 Yes LeakyReLU
2 ConvTransp3D 256 4x4x4 2 1 Yes LeakyReLU
3 ConvTransp3D 128 4x4x4 2 1 Yes LeakyReLU
4 ConvTransp3D 64 4x4x4 2 1 Yes LeakyReLU
5 Conv3D 64 3x3x3 1 1 Yes LeakyReLU
6 ConvTransp3D 1 4x4x4 2 1 No Tanh
Discriminator

1 Conv3D 64 4x4x4 2 1 No LeakyReLU
2 Conv3D 128 4x4x4 2 1 Yes LeakyReLU
3 Conv3D 256 4x4x4 2 1 Yes LeakyReLU
4 Conv3D 512 4x4x4 2 1 Yes LeakyReLU
5 Conv3D 1 4x4x4 1 0 No Sigmoid

The generator is a fully convolutional version of a DCGAN (Radford et al. 2015) with one additional convo-
lution layer prior to the final transposed convolution. LeakyReL U activation functions were used for all layers
except the last

64 synthetic validation images in comparison to the extracted validation set of the original
Ketton image (Fig. 5).

3.2 Two-Point Probability Functions

The two-point probability functions S>(r) allow the first- and second-order moments of a
microstructure to be characterized. We define the isotropic non-centered two-point probability
function S, (r) as the probability that two arbitrary points separated by a distance ||r|| are
located in the same phase, i.e., grain or void phase of the microstructure. While S, (r) may be
defined for both phases of a porous medium, we compute the two-point probability function
with respect to the pore phase only.

Sy(r) =P(xe P,x+reP) forx,reR> (10

$>(0) is equal to the porosity of the porous medium. Stabilization of S,(r) occurs around
a value of ¢? as the distance tends toward infinity. In addition, the specific surface area
Sy can be determined from the slope of the two-point probability function at the origin
Sy = —45,(0) (Berryman 1987).

We calculate S, (r) numerically using the lattice point algorithm (Jiao et al. 2008). Figure 6
shows the directional two-point probability function for 64 200% voxel sub-domains of the
original Ketton validation set (gray) and the GAN-generated realizations (red). We find that
the 64 GAN-generated realizations lie within the standard deviation of the experimental S> (r)
computed for the 64 original Ketton images.

Due to the ellipsoidal nature of the grains found in the Ketton limestone, a significant
oscillation can be observed in all three orthogonal directions. This “hole effect” is charac-
teristic of periodic media (Torquato and Lado 1985). The hole effect found in the training
image dataset is reproduced by the samples generated by the GAN model, indicating the
preservation of periodic features in the pore microstructure of the synthetic images.
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Training Images

GAN Models

Fig. 5 Cross sections of the 200% voxel sub-domains of the Ketton micro-CT image (top) and synthetic
realizations obtained from the trained generator of the generative network (bottom)
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Fig. 6 Comparison of the two-point probability function S, (r) measured along the Cartesian axes for Ketton
image sub-domains and GAN-generated realizations. S> (r) was measured on images after thresholding using
Otsu’s method. Gray and red shaded areas, respectively, show the variation around the average behavior (u=+o)
of 64 images of the Ketton image and GAN-generated validation set
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0.40

Sa(r)

0 20 40 60 80 100
Lag Distance r [vozels]

Fig. 7 Radial average of the average two-point probability function S>(r)) for 64 dataset sub-domains and
GAN-generated images. Excellent agreement of the average behavior can be observed (dashed line), whereas
a lower variation around the mean behavior can be observed for the GAN-generated images

Good agreement between the real and synthetic microstructures can be observed for the
radial averaged two-point probability function (Fig. 7). For both the radial averaged and
directional estimates of S>(r), a tight clustering around the mean can be observed, whereas
the real porous medium shows a larger degree of variation around the mean.

3.3 Minkowski Functionals

To evaluate the ability of the trained GAN model to capture the morphological properties of
the studied Ketton limestone, we compute four integral geometric properties that are closely
related to the set of Minkowski functionals as a function of the image gray value.

For any n-dimensional body we can define n + 1 Minkowski functionals to characterize
morphological descriptor of the grain—pore body structures (Mecke 2000). The Minkowski
functional of zeroth order is equivalent to the porosity of a porous medium and defined as:

Vpore
Vv

where Vpore corresponds to the pore volume and V to the bulk volume of the porous medium.
We measure the specific surface area Sy defined as an integral geometric relationship:

M1
sz—lz—/dS (12)

¢ =M= (an

Vv %

where M is the Minkowski functional of first order. In three dimensions, M corresponds
to the surface area of the pore—grain interface. Both Sy and ¢ can be obtained by estimation
of the two-point probability function S»(r) (Sect. 3.2). The specific surface area Sy has
dimensions of @ and its inverse can be used to define a characteristic length scale of the
porous medium.
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The Minkowski functional of order 2, the integral of mean curvature, M3, can be related
to the shape of the pore space due to its measure of the curvature of pore—grain interface. We
use a bulk volume average of the specific surface area defined as:

M _ L Das (13)
Ky = — = — —_— —_—
VS Taoav )\ T

where r and r, are the principal radii of curvature of the pore—grain interface.
The Euler characteristic, xy, is a measure of connectivity that is proportional to the
dimensionless third-order Minkowski functional M3:
M; 1 1

=—— | —dS§ (14)

XV:47TV_4JTV rir

We evaluate these four image morphologic properties at each of the 256 gray-level values
of the 2003 voxel Ketton image sub-domains and the GAN-generated realizations. This allows
us to describe the porous medium as a set of characteristic functions dependent on a global
truncation value p for each of the four Minkowski functionals (Schmihling 2006; Vogel
et al. 2010). To compute the four properties at each threshold level p, the publicly available
microstructure analysis software library Quantim was used (Vogel 2008).

Figure 8 compares these four estimated properties as a function of the image threshold
value for the Ketton image (gray) and the samples generated by the GAN model (red). The
shaded regions correspond to the variation around the mean p + o for both synthetic and real
image datasets. The same 64 samples of the validation set used in the evaluation of the two-
point probability function have been used for this analysis. Additionally, the vertical dashed
lines represent the range of the threshold values obtained by Otsu’s method when applied
to the individual images. This allows an estimate of the error region that is significant when
introducing a thresholding method based on a global truncation value such as Otsu’s method.

Our analysis of the GAN-based models shows excellent agreement for the porosity ¢ (p),
specific surface area Sy (p) and integral of mean curvature «y (p) as a function of the thresh-
old value p. For these three properties, a low error is introduced when applying global
thresholding. The fourth property, the specific Euler characteristic, xy (p), shows an error of
20% in the range of global thresholding values with good agreement outside this range. This
implies that care must be taken when segmenting an image—real or generated—to preserve
the connectivity of the pore space. As for the covariances, we also observe that the scatter
produced by the GAN simulations is less than the scatter of the training set.

3.4 Permeability and Velocity Distributions

To validate GAN-based model generation for uncertainty evaluation and numerical com-
putations, it is key that the generated samples capture the relevant physical properties of
the porous media that the model was trained on. The permeability and, moreover, the local
velocity distributions represent the key properties of the porous medium (Menke et al. 2017).

To evaluate the ability of GAN-based models to capture the permeability and in situ
velocity distributions of the Ketton training images, we solve the Stokes equation on a
segmented representation of each of the 64 Ketton sub-domains and 64 synthetic pore rep-
resentations created by the GAN model. The segmented representations used to estimate
the two-point probability functions were reused for this evaluation. A finite difference-based
method adapted for binary representations of voxel-based pore representations was used to
compute the effective permeability from the derived velocity field (Mostaghimi et al. 2013).
The effective permeability was computed in the three Cartesian directions.
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Fig. 8 Four Minkowski functionals as a function of the segmentation threshold. The shaded regions show
the variation of the properties around the mean p & o. Vertical dashed lines show the region of segmentation
thresholds obtained by applying Otsu’s method
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We present the resulting distribution of estimated permeability values as a function of the
effective porosity:
Viow
Vv

where Viow is the volume of the connected porosity.

Our results (Figs. 9, 10) show that the GAN model generates stochastic reconstructions
that capture the average permeability of the original training image at a scale of 200> voxels,
with the majority of samples closely centered around the average effective permeability of
the Ketton subsets.

The velocity distributions of the numerical simulations performed on the Ketton validation
dataset and generated realizations were normalized by the average cell-centered velocity
following the approach of Alhashmi et al. (2016) and a histogram with 256 logarithmically
spaced bins in a range from 10~* to 102 for each simulation was obtained.

Geft = (16)
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Fig. 9 Directional permeability computed on the validation dataset (64 images with 2003 voxels) extracted
from the original Ketton limestone micro-CT dataset and realizations obtained from the GAN model. Values of
permeability obtained from the synthetic images are tightly clustered around the mean of the original dataset

Fig. 10 Averaged permeability 1x 10-10
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Figure 11 shows the per-bin arithmetic average of the bin frequencies and a bounding
region of one standard deviation &= o as the shaded area. Due to the high range of velocities
spanning six orders of magnitude, the x-axis is represented in logarithmic scaling.

Visually, the distributions of the generated samples and Ketton sub-domains are nearly
equivalent with minor deviations in the frequency of the very high and very low velocities.
For the GAN model, low velocities are more abundant than in the original image, whereas
the opposite is true for high velocities.

To evaluate whether the velocity distributions obtained from numerical simulation of
flow for the GAN-generated images are statistically similar to distributions representative of
the original image dataset, we perform a two-sample Kolmogorov—Smirnov test. The null

hypothesis Hy states that two samples are of the same underlying distribution. Define D, ,,
as:

Dy, ;= sup |F1,n(x) — 2 (x)] 17)
X
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Fig. 11 Comparison of probability density functions of the magnitude of velocity extracted from the centers
of voxels in the pore space divided by the average flow velocity plotted on semilogarithmic (left) and double-
logarithmic axes (right). The combinations of 64 simulations on sub-domains obtained from the original dataset
and 64 generated realizations of the GAN model are shown. Shaded regions highlight the variation around the
mean of all simulations y & o. The solid line shows the homogeneous limit velocity distribution for a single
capillary tube

Table 2 Results of the two-sample Kolmogorov—Smirnov test for equality of velocity distributions computed
on the image dataset and generated realizations

Direction Dy m Do .05
X 0.09 0.12
y 0.09

0.07

The null hypothesis of distributional equality is to be accepted at a significance level of @ = 0.05 for all three
directional velocity distributions

and the null hypothesis Hy is rejected if

Dun = clan[ (18)

where n and m are the sample sizes, respectively, and c(«) = ,/ —% In(%). All tests were
performed at a significance level of @ = 0.05 for the per-bin average velocity distributions
presented in Fig. 11 (dashed curves).

For all three directions, the null hypothesis can be accepted at the 5% significance level
based on the Dy s statistic, giving evidence to the visual similarity between the velocity
distributions of the real Ketton images and their synthetic counterparts (Table 2).
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4 Discussion

We have presented the results of training a generative adversarial network on a micro-CT
image of the oolitic Ketton limestone. The image morphological properties were evaluated as
a function of the image threshold level and it was shown that the generated images capture the
textural features of the original training image. Two-point statistics and effective properties
computed on segmented representations of the individual sub-domains have also shown
excellent agreement between the realizations generated by the GAN model and subsets of
the Ketton image. Nevertheless there remain a number of open questions that need to be
addressed.

The predicted statistical and morphological properties have shown a tight bound around
the average behavior of the training image. This indicates that there is less variation in the
generated samples than in the training samples. This behavior can have a number of origins.

The training images can be regarded as samples of the unknown multivariate pdf prea(X),
which is likely to be multimodal. The original formulation of the GAN objective function
(Goodfellow et al. 2014) has been shown to lead to unimodal pdfs, even if the training set pdf
itself is multimodal (Goodfellow 2017). The behavior of a generator to represent multimodal
pdfs by a pdf with fewer modes is called mode collapse (Goodfellow 2017). This behavior
may occur due to the fact that there is no incentive for diversity in GAN training.

Visually the images generated by the presented GAN model are nearly indistinguishable
from their real counterparts (Fig. 5). Minkowski functionals and statistical parameters allow
us to perform an evaluation of the reconstruction quality. Nevertheless, this does not rule
out the fact that the generator may be memorizing the training set, show mode collapse
behavior or output a low diversity of synthetic samples. A generator showing one or more of
these behaviors will falsely indicate low errors in the Minkowski functionals, statistical and
effective properties.

By visual inspection of the validation set generated by the GAN model, no evidence of
identical or repeated features in the generated images could be found. Following the approach
by Radford et al. (2015), we perform an interpolation between two points in the latent space
VA

Zsurt, Zend € N(0, 121X g e [0, 1] (192)
Zinter = B Zstart + (1 — B) Zend (19b)

where S is a range of numbers from zero to one. This provides evidence of the generator’s
ability to learn meaningful representations and shows the absence of memorization.

The smooth transition between the starting image Gy (Zsart) and the endpoint Gg (Zeng)
shownin Fig. 12 indicates that the generator has not memorized the training set and has instead
learned a lower-dimensional representation z that results in meaningful features of the pore—
grain microstructure. Definition of GAN training objectives compatible with high-diversity

SEEARIVREVI e

=000 =012 B=025 B=038 0.50 =062 B=0.75 =0.88 = 1.0

Fig. 12 Interpolation in the latent space z performed for the evaluated generator Gg shows a smooth inter-
polation between the start latent random vector Zgtart (8 = 1) and the end point Zgpg (B = 0). An example
feature of this can be seen by a bright calcite grain present in the left most image slowly being transformed
into a spherical grain with significant microporosity
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samples showing no mode collapse and stable training remains an open problem. Che et al.
(2016) have presented a summary of recent advances to counteract mode collapse and have
proposed a regularization method to improve GAN output variety. Reformulations of the
GAN training criterion (Eq. 4) based on the Wasserstein distance (WGAN-GP) (Gulrajani
et al. 2017) and other training approaches to GANs such as EBGAN (Zhao et al. 2016) or
DRAGAN (Kodali et al. 2017) show the ability to model multimodal densities and allow
stable training.

It is important to note that the output of the generator is parameterized by the stochastic
latent random vector and can be optimized due to the differentiable nature of the generative
neural network. This is a powerful concept that has been leveraged in a number of applica-
tions in computer vision. Inpainting is the task of creating semantically meaningful content
where missing data exist. Commonly this is a task performed where objects are occluded or
only partially visible. In microstructural applications and often at larger geological scales,
lower-dimensional information may be more readily available than acquiring a full three-
dimensional image, e.g., thin sections of porous media. Constraining images to these data
is referred to as conditioning and can be reformulated as an inpainting problem. Yeh et al.
(2016) introduced a framework for inpainting using GANs where the latent random vector
can be optimized with regard to a perceptual objective function determined by the discrimina-
tor and a mismatch between the observed data and the output of the generator. In other work,
we have shown that the method of Yeh et al. (2016) can be applied and produces stochastic
three-dimensional samples that honor the given two- and one-dimensional conditioning data
(Mosser et al. 2018).

While the input and output to the GAN generator and discriminator are well defined,
the interior mechanics of the neural network that result in high-quality reconstructions are
not well understood. Rather than treating GANS as a black-box mechanism, it is of interest
to evaluate the behavior of the generator and discriminator in more detail. In Fig. 13, we
have extracted the generator’s output after each layer’s activation function (following the
convolution operation and batch normalization).

Based on the consecutive upsampling of the noise prior z by each transposed convolution
in the generator, we observe a multi-scale feature representation of the final image. Early
layers, where the spatial dimensions of the images are small, can be related to global features
in the generator output. The final layers create highly detailed representations of the structural
features of the reconstructed images. This view of the generator’s behavior also helps identify
deficiencies in the network’s architecture. In layers 3 and 4, we see repeated noise that appears
to be following a grid like structure. This is due to the transposed convolutional operation and
in parts is diminished by the additional convolution operation prior to the last upsampling
operation. This could be alleviated by the use of other convolution-based upsampling layers

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Qutput

-

Fig. 13 Representations of the noise prior z as it is propagated through the generator Gy. Each layer adds to
a multi-scale reconstruction of the final image Gy (z). The shallow layers 1, 2 and 3 introduce global features
of the final image, whereas deeper layers add high-fidelity details to the output image. Significant noise is still
present in layer 3 due to the use of transposed convolution operations, but reduced by the convolution in layer
5
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such as the sub-pixel convolution operation (Shi et al. 2016) or interpolation upsampling
(nearest neighbor, bilinear, trilinear).

The discriminator’s role is simply to label images as real or “fake,” but it also is a critical
component in the ability of the generator to learn features in the original image space. The
discriminator, in order to distinguish GAN-generated from real training images, needs to
learn a unique set of features that distinguish real samples from fake ones. As such, for future
work, it may be of interest to use a GAN trained discriminator for classification or feature
extraction (Arora and Zhang 2017).

Nevertheless, we can perform a similar operation as for the generator and inspect some
of the features learned by the discriminator. Figure 14 shows a set of 5 learned filters applied
to an image of the Ketton training set. At shallow layers, we find that the discriminator has
learned to identify the pore space (layer 1, second row) as well as a number of edges. Deeper
layers in the network represent more abstract features, and after layer 2, no original feature
of the pore space is distinguishable.

Considering that the samples used to evaluate the statistical and effective properties were
not chosen by hand but represent a random group of generated images based on the GAN
model, further improvement can be obtained in the reconstruction results. The discriminator
may be used as an evaluation criterion for samples where higher values obtained from the
discriminator D(Gg(z)) indicate that the samples are closer to the real training image dataset.
In this way, high-quality reconstructions may be “cherry-picked” by choosing representations
that score values D(x) close to one (real label) from a much larger set of reconstructions.

The computational effort to perform image reconstruction using GANs can be split into
two parts: training time and generation time. The training time is the total time required to
find a set of parameters of the generator that allows generation at sufficient image quality.
We define generation time as the total time required to initialize a neural network and the
associated parameters obtained during the training phase and the generation of the images
by passing a latent random vector z through the generator to obtain an image x ~ Gy (z).
To create one realization from a GAN, it is necessary to train the generator—discriminator
pairing only once; therefore, training time is a fixed computational cost. Once trained, the
generator can simply be reused for each new realization.

We have performed benchmarking of our GAN model in terms of the computational time.
Training was performed on eight Nvidia K40 GPUs and the total training time was 8 h. We
evaluate the generation time of 100 realizations based on this set of pre-trained parameters.
Each benchmark consists of the following steps: initialization of the generator parameters,
sampling and initializing a latent random vector in GPU memory and finally applying the
generator to the latent random vector X ~ Gg(z) to create a realization with 4503 voxels.
When sampling 100 realizations the first step, the initialization of the pre-trained generator
parameters, is only required once and is not repeated for subsequent sampling operations.
We have repeated this benchmarking exercise ten times on an NVIDIA V100 GPU and have
quoted the average total run times. Our benchmark shows that the average run time to perform
sampling of 100 realizations with 4503 voxels is 100 s.

The main limitations in computational effort come from two factors: the training time and
available GPU memory. In the future, we expect the training time to decrease, due to greater
performance of GPUs and development of novel GAN training methods that allow faster
convergence. Furthermore GAN-based image synthesis for large spatial domains requires
large amounts of GPU memory, for example reconstruction with 450% voxel requires more
than 10 gigabytes of GPU memory.

Recently, a number of algorithms have been developed to perform high-quality recon-
struction of porous media based on training images (Jiao et al. 2009; Zachary and Torquato
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Fig. 14 An inspection of the behavior of the discriminator’s learned feature representations for a training
sample of the original Ketton training image. Each column represents one layer of the discriminator network.
Each row represents one learned filter kernel in each layer applied to the input (leftmost column)

2011; Tahmasebi et al. 2017). While considering the resulting image quality to be equal, one
possible differentiation of these methods is computational run time. Reported run times are
heavily dependent on a number of criteria such as the simulated image size, software imple-
mentation or hardware used. Table 3 presents a summary of measured computational time
reported for a number of recent reconstruction methods as well as their respective simulated
image sizes.

Most methods reported in Table 3 incur a high computational cost per generated realization,
with the exception of the method of Tahmasebi et al. (2017). We refer to these methods as
proportional cost methods as the computational cost scales linearly with the number of created
realizations. Training-based methods such as the presented GAN-based approach have a high
initial computational cost due to the required training phase. Our method, once training is
completed, has a very small generation time per realization. It is possible to determine an
amortization time, when the use of one approach, considering all other factors equal, becomes
beneficial.
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Table 3 Comparison of reported computational run times of recent reconstruction methods

Authors Method Size [Voxe]s3] Run time (x 1) (h) Run time (x 100) (h)

Computational run time comparison

Pant (2016) Simulated 3003 22-47 2200
annealing

Capek et al. Simulated 3203 160—-400 16,000
(2009) annealing

Tahmasebi et al. Patch-based 10002 x 300 0.1 11
(2017)

Okabe and Blunt MPS 1503 12 1200
(2004)

Current work GAN 4503 8 8.1

The computational cost for running 100 realizations is estimated based on the smallest reported run time for
each algorithm. An unbiased comparison is difficult as each method has been evaluated on a different dataset
and image sizes

Fig. 15 Comparison of the A
computational cost for two = Proportional Cost

stochastic reconstruction -
stochastic reconstruction « = » Training-based
methods at fixed image size.

Proportional cost-based methods
are associated with a high run
time per realization.
Training-based methods, such as
the presented GAN method, have
a high initial computational cost
due to their training phase and a
small cost per generated
realization afterward

Computational Runtime

Training Time (GAN)

Number of Realizations

Figure 15 presents a schematic comparison of the computational cost induced by different
methods as a function of the number of realizations at a fixed image size. The amortization
time, where the two curves intersect, corresponds to the number of realizations at which
training-based methods, such as GANs, become faster.

5 Conclusions

We have presented a method to reconstruct microstructures of porous media based on gray-
scale image representations of volumetric porous media. By creating a GAN-based model of
an oolitic Ketton limestone, we have shown that GANs can learn to represent the statistical
and effective properties of segmented representations of the pore space as well as their
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Minkowski functionals as a function of the image gray level. In addition to the effective
permeability which is associated with a global average of the velocity field, we show that
the pore-scale velocity statistical distributions have been recovered by the synthetic GAN-
based models. We highlight the roles of the discriminator and generator function of the
GAN and show that the GAN learns a multi-scale representation of the pore space based on
inference from a latent random prior. Large hyper-parameter searches involved in the deep
neural network architectures and learning instabilities make the training of GANSs difficult.
The high computational cost involved in training GAN’s is made good use of for applications
when very large or many stochastic reconstructions are required. The differentiable nature
of the generative network parameterised by the latent random vector provides a powerful
framework in the context of gradient-based optimization and inversion techniques. Future
work will focus on creating GAN-based methodologies that ensure a valid representation of
the underlying data distribution allowing application of GANSs for uncertainty quantification
and inversion of effective material properties.
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