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Abstract Harmonic periods have wide applicability in industrial real-time systems.
Rate monotonic (RM) is able to schedule task sets with harmonic periods up to 100%
utilization. Also, if there is no release jitter and execution time variation, RM and EDF
generate the same schedule for each instance of a task. As a result, all instances of
a task are interfered by the same amount of workload. This property decreases the
jitters that happen during sampling and actuation of the tasks, and hence, it increases
the quality of service in control systems. In this paper, we consider the problem of
optimal period assignment where the periods are constrained to be harmonic and the
task set is required to be feasible. We study two variants of this problem. In the first
one, the objective is to maximize the system utilization, while in the second one, the
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goal is to minimize the total weighted sum of the periods. First, we assume that an
interval is determined a priori for each task from which its period can be selected.
We show that both variants of the problem are (at least) weakly NP-hard. This is
shown by reducing the NP-complete number partitioning problem to the mentioned
harmonic period assignment problems.Afterwards,we consider a variant of the second
problem in which the periods are not restricted to a special interval. We present two
approximation algorithmswith polynomial-time complexity for this problemand show
that the maximum relative error of these algorithms is bounded by a factor of 1.125.
Our evaluations show that, on the average, results of the approximation algorithms are
very close to an optimal solution.

Keywords Harmonic tasks · Period assignment · Real-time schedulability · Hard
real-time

1 Introduction

Selecting appropriate timing parameters for the tasks such that performance objectives
and design constraints are met is an important step in the design of real-time systems.
Specifically, in the real-time systems with periodic tasks, selecting suitable periods
influences a number of prominent properties including the system schedulability (Seto
et al. 1998; Bini et al. 2008), jobs’ response times (Bini and Di Natale 2005), and the
related jitters (Wu et al. 2010). Harmonic periods, namely the periods that pairwise
divide each other (Han and Tyan 1997), exhibit specific characteristics which help
the designers to achieve better solutions with respect to the mentioned properties. For
instance, schedulability analysis of the task setswith constrained-deadlines canbedone
efficiently (i.e., in polynomial time) when the periods are harmonic (Bonifaci et al.
2013). This is particularly important because in the general case the problem is hard
for both fixed-priority (Eisenbrand and Rothvoß 2008) and dynamic-priority (Ekberg
and Yi 2015) scheduling policies. Furthermore, while the uniprocessor schedulable
utilization of the fixed-priority scheduling policy can be lower than 70% (Liu and
Layland 1973) for some periodic task sets, the respective value for the harmonic task
sets is 100% (Han and Tyan 1997).

Harmonic periods have been widely used in industrial applications ranging from
radar dwell tasks (Shih et al. 2003) and robotics (Li et al. 2003; Taira et al. 2005;Mizu-
uchi et al. 2007; Busquets-Mataix et al. 1996) to control systems with nested feedback
loops (Fu et al. 2010). If periods are harmonic, it will be possible to apply optimal
fault tolerant mechanisms as mentioned in Kwak and Yang (2012). In the integrated
modular avionics (IMA), harmonic periods facilitate the problem of assigning tasks
to the partition servers (Easwaran et al. 2009). Consequently, they reduce the size of
the hyperperiod which facilitates the construction and storage of the offline schedule
table used in IMA systems because then a smaller portion of RAM (or flash memory)
of the system is consumed by the offline table. It is an important requirement for the
systems with a limited memory such as Atmel UC3A0512 microcontroller that is used
for mission critical space applications (Ruiz 2005).
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Because of the mentioned advantages, finding harmonic periods for a given task
set which satisfy performance requirements in the system is an important problem for
many real-time systems. In Han and Tyan (1997) two algorithms called Sr and DCT
have been introduced to find the largest harmonic periods which are pairwise smaller
than a given set of periods. These algorithms were later used in period assignment for
radar tasks (Shih et al. 2003). However, they are not designed to tackle with period
ranges or to find the smallest harmonic periods with a feasible utilization. In Nasri
et al. (2014) and Nasri and Fohler (2015) two pseudo-polynomial time algorithms
are proposed to verify the existence of a harmonic period assignment for a given
set of period ranges. However, the essential complexity of the problem of finding the
harmonic periods such that a design objective, such as the total utilization, is optimized
is not explored. In a recent work, Xu et al. (2016) has proposed an optimal solution to
find a set of harmonic periods that have the minimum total distance from a given set of
periods. The proposed solution, however, has exponential computational complexity.

In the domain of control systems, Eker et al. (2000) have proposed a method to
assign the period of each task such that the task set utilization remains under a certain
value and a cost function that reflects the effect of task’s period on the control cost
is minimized. The proposed solution, however, is limited to the cost functions that
are convex. The problem of minimizing control cost using an online or offline period
assignment method has been considered by Henriksson and Cervin (2005) and Bini
and Cervin (2008), respectively. However, these approaches neither try nor guarantee
that the resulting periods are harmonic.

In this paper, we discuss the computational complexity of finding feasible harmonic
periods for a given set of real-time tasks where the goal is to maximize the total
utilizationwhile the periodsmust be selected fromagiven set of intervals.We show that
the problem is NP-hard by transforming the well-known number partitioning problem
to the harmonic period assignment problem. We establish the same complexity result
for a variant of the problem in which the goal is to minimize the weighted sum of the
periods. Additionally, we present two polynomial-time approximation algorithms for
a variant of the second problem in which the periods are not bounded to any interval.
We derive a tight bound of 1.125 for the maximum error of our algorithms with respect
to an optimal algorithm. Simulation results show that, on average, this error is smaller
than 1.125, which means that the approximation algorithm behaves very close to the
optimal one. It is worth noting that the complexity of this variant of the problem, i.e.,
the one with unrestricted periods, is still unknown.

Our results can be used in the design of control systems in which the control
performance is expressed (or can be approximated) by a linear function of the periods.
In these systems, jitters in the sampling and actuation can adversely affect the quality
of control (QoC) (Bini and Cervin 2008). These jitters can be efficiently reduced if
the control tasks use harmonic periods because then each time the task is released, the
same set of high priority tasks are released in the system. In this paper, we evaluate
our period assignment solution for control systems and compare the results with an
optimal non-harmonic period assignment.

This paper is an extended version of “On the Problem of FindingOptimal Harmonic
Periods” by Mohaqeqi et al. (2016) that was published in RTNS 2016. The main
additional contributions are as follows. In this paper, we establish the computational
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complexity of the problem of finding feasible harmonic periods from a set of given
period ranges, where the goal is to minimize the weighted sum of the periods. In the
RTNS paper, the hardness of finding feasible harmonic periods was studied only for
the case of maximizing the total system utilization. Moreover, in the previous paper,
the approximation error bound that we had for our approximation solutions was 2
while in this paper we have derived the tight error bound of our algorithms and show
that this bound is 9

8 = 1.125. Finally, we have addedmore experiments and considered
the effect of more parameters on the relative error of our algorithms, e.g., the effect of
weight of the periods in the goal function of the optimization. Furthermore, in order
to assess the complexity and scalability of the proposed methods in practice, we have
reported the average number of operations required by each algorithm to find harmonic
periods. We have also expanded control evaluations, considering more realistic plants
and real-time tasks with variable execution times.

The remainder of the paper is organized as follows; Sect. 2 introduces the notations
and formally describes the considered harmonic period assignment problems. The
complexity proofs are presented in Sect. 3. Next, the approximation algorithms for
finding harmonic periods are presented in Sect. 4 and are evaluated in Sect. 5. A
summary of the paper and a discussion on the related open problems are given in
Sect. 6. Finally, the conclusion and future work are presented in Sect. 7.

2 Notations and definitions

We consider a set of n real-time tasks τ1, . . . , τn with the set of worst-case execution
times (WCETs) c = {C1,C2, . . . ,Cn}. Further, for each task τi , an interval Ii =
[I si , I ei ] is given as the period range. The period of each task τi , which is denoted
by Ti , must be selected from Ii . The utilization of τi is defined as Ui = Ci/Ti . In
addition, the total utilization of the system is defined as the sum of all utilizations:
U = ∑n

i=1Ui . We use N to denote the set of positive integers.
A set of periods is said to be harmonic if the pairwise periods divide each other.

More specifically, the set of periods {T1, T2, . . . , Tn} is harmonic if for every Ti and
Tj , either Ti/Tj ∈ N, or Tj/Ti ∈ N. A set of harmonic tasks is feasible if and only
if U ≤ 1. While the period ratios of harmonic tasks are required to be integer, it is
assumed that the values of individual periods are not restricted to be integer.

The goal is to assign a set of harmonic periods to the task set such that some design
objective is optimized. For example, for control applications, the objective could be to
assign the smallest feasible periods (Bini and Cervin 2008). In this paper, we consider
two harmonic period assignment problems as specified below.

Problem 1 Take a set of n real-time tasks with the given WCETs and period ranges.
The goal is to assign a period to each task such that the total utilization is maximized,
while the periods are harmonic and the task set is feasible. Formally, the problem is
specified as

maximize U =
∑

1≤i≤n

Ui (1a)
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subject to :
Ti ∈ Ii , for 1 ≤ i ≤ n (1b)

Ti
Tj

∈ N or
Tj

Ti
∈ N, for 1 ≤ i, j ≤ n (1c)

U ≤ 1. (1d)

In the subsequent sections, we refer to this problem as the utilization-maximizing
harmonic period assignment (UHPA) problem. This problem targets finding a feasible
(and schedulable) set of harmonic periods which allows highly utilizing the resource.
Regarding existing solutions to this problem, two pseudo-polynomial algorithms to
verify the existence of a harmonic assignment are already introduced in Nasri et al.
(2014) and Nasri and Fohler (2015) though none of them guarantee that the resulting
assignment has U ≤ 1. In the current work, we try to shed some light on the inherent
complexity of the problem.

In the second problem, the goal is to minimize the weighted sum of the selected
periods, as defined below.

Problem 2 Consider a set of n tasks with given WCETs and period intervals. Then,
the problem is specified as follows.

minimize
∑

1≤i≤n

wi Ti (2a)

subject to :
Ti ∈ Ii , for 1 ≤ i ≤ n (2b)

Ti
Tj

∈ N or
Tj

Ti
∈ N, for 1 ≤ i, j ≤ n (2c)

U ≤ 1, (2d)

where wi determines how much Ti contributes to the total sum. It is supposed that wi

is given for each task τi .

In the following, this problem is referred to as the cost-minimizing harmonic period
assignment (CHPA) problem. CHPA can be used in the design of control systems in
which the control performance is expressed as a linear function of the periods. While
more complex metrics could lead to better results, a weighted sum of periods is a
simple approximation, which is also used in the literature. For instance, in Cervin
et al. (2002), it is argued that linear cost functions are reasonable approximations for
plants that are sampled reasonably fast.

Moreover, if periods are not harmonic (even if there are harmonic groups), the jobs’
response time may vary, and then, (i) calculating the response-time jitter becomes
an issue (see Eisenbrand and Rothvoß 2008), and, (ii) the cost function now also
depends on the jitter, making the overall design problem harder. In contrast, for those
applications in which execution times are constant, in the described problems, jitters
are forced to be 0 by forcing the periods to be harmonic. Thus, it both allows more
accurate description of the controller cost function and less jitter.
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In this paper, we provide a lower bound on the computation complexity of CHPA.
Also,wepropose twoapproximation algorithms for this problem,whenConstraint (2b)
is relaxed, that is, when Ii = [0,∞], for 1 ≤ i ≤ n. We use CHPA∞ to denote this
relaxed version of the problem.

3 Complexity results

In this section, we study the computational complexity of UHPA and CHPA prob-
lems. In order to show the hardness of these problems, we present a polynomial time
algorithm for reducing any given instance of the number partitioning (PART) prob-
lem to an instance of these problems. We first review the PART problem. Then, the
transformation method for each problem is described.

3.1 Number partitioning problem

This section reviews the number partitioning (PART) problem which is known as a
(weakly) NP-complete problem.1

Definition 1 (Number partitioning (PART)) Let A = {a1, . . . , an} be a set of n items
with an associated size function s : A �→ N which assigns a positive integer to each
item. The problem is to determine whether A can be partitioned into two sets A1 and
A2 such that the total size of items in A1 equals that of A2. More formally, let S, S1,
and S2 denote the sum of items size for A, A1, and A2, respectively. That is,

S =
∑

ai∈A

s(ai ) (3)

S1 =
∑

ai∈A1

s(ai ) (4)

S2 =
∑

ai∈A2

s(ai ) (5)

Then, the problem is to decide whether A can be partitioned into A1 and A2 (i.e.,
A1 ∪ A2 = A and A1 ∩ A2 = ∅) such that S1 = S2. An instance of this problem is
said to be a positive one if such a partitioning exists.

Theorem 1 (Hardness of thePARTproblemGent andWalsh 1998)ThePARTproblem
is NP-complete. However, it can be solved in pseudo-polynomial time.

3.2 Complexity of UHPA

For the complexity analysis, we present a polynomial time method for transforming
any given instance of the PART problem to an instance of UHPA. We show that an

1 A problem is weakly NP-complete if it is NP-complete and it has a pseudo-polynomial time solution.
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instance of PART is a positive one (i.e., the set A can be partitioned to the desired sets
A1 and A2) if and only if the corresponding UHPA problem has a solution with the
total utilization of one. The method is specified in the following.

Consider an instance of the PART problem as specified in Definition 1. The corre-
sponding UHPA problem is specified by a set of n + 2 real-time tasks. The WCET of
τi , for 1 ≤ i ≤ n, is determined as

Ci = 4s(ai )

3S + 3
. (6)

In addition, we set Ii = [1, 2] as the interval from which the task period can be
selected. Also, for τn+1 and τn+2 we choose

Cn+1 = Cn+2 = 2

3S + 3
, (7)

In+1 = [1, 1] and In+2 = [2, 2].
Lemma 1 A given instance of the PART problem is positive (i.e., the given set can
be partitioned) if and only if the UHPA problem instance obtained from the above-
mentioned transformation method has a solution with U = 1.

Proof Let Ti denote the period of task τi assigned by a solution to the UHPA problem.
According to the specified UHPA problem, the period of τn+1 and τn+2, namely Tn+1
and Tn+2, are forced to be 1 and 2, respectively. Further, for the period of tasks τi ,
for 1 ≤ i ≤ n, there are only two options, i.e. 1 and 2 (otherwise, Ti/Tn+1 /∈ N and
Tn+1/Ti /∈ N, which violates constraint (1c)). A schematic view of a sample period
assignment is shown in Fig. 1. We define J1 and J2 as

J1 = {i | Ti = 1, 1 ≤ i ≤ n}
J2 = {i | Ti = 2, 1 ≤ i ≤ n}

Let us calculate the total utilization achieved based on a possible period assignment.
For this purpose, we can write

U =
∑

1≤i≤n+2

Ci

Ti
=

∑

i∈J1

Ci +
∑

i∈J2

Ci

2
+ Cn+1 + Cn+2

2
. (8)

Substituting the value of Ci s from (6) and (7) yields

U =
∑

i∈J1

4s(ai )

3S + 3
+

∑

i∈J2

1

2

4s(ai )

3S + 3
+ 2

3S + 3
+ 1

3S + 3

= 4

3S + 3

⎛

⎝
∑

i∈J1

s(ai ) +
∑

i∈J2

s(ai )

2

⎞

⎠ + 3

3S + 3
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Tn+1 Ti1 Ti2 Tik Tik+1 Tin−1 Tin Tn+2

. . . . . .

. . . . . .

1

2

period ranges

1

2

1 Tasks corresponding to A1

2 Tasks corresponding to A2

Period
Value

Fig. 1 Partitioning of the task set into two subsets; K1 = {τi1 , τi2 , . . . , τik } ∪ {τn+1} and K2 =
{τik+1 , . . . , τin } ∪ {τn+2}. Note that here (i1, i2, . . . , in) is a permutation of {1, 2, . . . , n}

= 4

3S + 3

⎛

⎝
∑

i∈J1

s(ai )

2
+

∑

i∈J1

s(ai )

2
+

∑

i∈J2

s(ai )

2

⎞

⎠ + 3

3S + 3

= 4

3S + 3

⎛

⎝
∑

i∈J1

s(ai )

2
+ S

2

⎞

⎠ + 3

3S + 3
. (9)

As a result, U = 1 if and only if

1 = 4

3S + 3

⎛

⎝
∑

i∈J1

s(ai )

2
+ S

2

⎞

⎠ + 3

3S + 3
, (10)

or equivalently,
3S

4
=

∑

i∈J1

s(ai )

2
+ S

2
, (11)

which means
S

2
=

∑

i∈J1

s(ai ). (12)

Equation (12) holds if and only if in the PART problem there exists a subset of A
whose total size of items equals to S/2. This means that the set A can be partitioned
into two subsets A1 and A2 with S1 = S2. As a result, the answer to the PART problem
is positive if and only if U = 1 in the UHPA problem. 
�
Theorem 2 The UHPA problem is at least weakly NP-hard.

123



838 Real-Time Syst (2018) 54:830–860

Proof The proposed transformation method can reduce any instance of the PART
problem to an UHPA problem in polynomial time. As a result, if there exists a solution
approach to the UHPA problem with a complexity better than a pseudo-polynomial
time algorithm, then there exists an algorithm for the PART problem with the same
computational complexity as shown in Lemma 1. As a result, the UHPA problem is at
least as hard as the PART problem. According to this fact, and also using Theorem 1,
it is implied that the UHPA problem is at least weakly NP-hard. 
�

3.3 Complexity of CHPA

In order to show the complexity class of the problem, we provide a polynomial time
reduction technique from the PART problem to CHPA. Toward this, consider an arbi-
trary instance of the PART problem with a set of items A = {a1, a2, . . . , an}. Let S
denote the sum of A’s items size, i.e., S = ∑n

i=1 s(ai ). Corresponding to this problem,
we construct an instance of CHPA which consists of a set of n + 2 real-time tasks,
denoted as {τ1, τ2, . . . , τn+2}. The WCET and weight of task τi , for 1 ≤ i ≤ n, are
assigned as

Ci = wi = 4s(ai )

3S + 3
. (13)

Furthermore, we put Ii = [1, 2], for 1 ≤ i ≤ n, as the interval from which τi ’s period
has to be selected. For τn+1 and τn+2, we choose

Cn+1 = wn+1 = Cn+2 = wn+2 = 2

3S + 3
, (14)

In+1 = [1, 1], and In+2 = [2, 2].
Let {T1, T2, . . . , Tn+2} denote a possible period assignment. We define J as the

weighted sum of these periods, namely J = ∑n+2
i=1 wi Ti . Also, assume J ∗ to denote

the optimal (i.e., minimum) value of J while the problem constraints are satisfied. We
show, for the constructed instance of CHPA, that we have J ∗ = 2 if and only if the
instance of the PART problem is a positive one. For this purpose, we use the following
lemma.

Lemma 2 For the instance of CHPA specified above, it holds that

J ∗ ≥ 2. (15)

Proof Let Ti denote the period of task τi assigned by a solution to CHPA. According
to the specified task parameters, the period of τn+1 and τn+2, namely Tn+1 and Tn+2,
are forced to be 1 and 2, respectively. Further, for the period of other tasks, i.e., Ti ,
for 1 ≤ i ≤ n, there are only two options, i.e., 1 and 2 (otherwise, Ti/Tn+1 /∈ N and
Tn+1/Ti /∈ N, which violates constraint (2c)). Based on this observation, we define

C1 =
∑

1≤i≤n+2Ti=1

Ci ,
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C2 =
∑

1≤i≤n+2Ti=2

Ci .

Further, we define C as the total sum of WCETs, i.e.,

C =
n+2∑

i=1

Ci =
n∑

i=1

4s(ai )

3S + 3
+ 4

3S + 3

= 4

3S + 3

(
n∑

i=1

s(ai ) + 1

)

= 4

3S + 3
(S + 1) = 4

3
. (16)

From these definitions, it is revealed that C = C1 + C2. Then, the total utilization
achieved based on the assumed period assignment can be written as

U =
n+2∑

i=1

Ci

Ti
=

∑

i :Ti=1

Ci +
∑

i :Ti=2

Ci

2
= C1 + C2

2
= 2C1 + C2

2
= C1 + C

2
. (17)

Also, the respective value of J can be computed as

J =
n+2∑

i=1

wi Ti =
∑

i :Ti=1

wi +
∑

i :Ti=2

2wi .

Thus, according to (13) and (14), which indicate wi = Ci , for 1 ≤ i ≤ n + 2, we
have

J = C1 + 2C2 = 2C1 + 2C2 − C1 = 2C − C1. (18)

From (17) it follows that C1 = 2U − C. Replacing C1 from this relation in (18)
yields

J = 2C − (2U − C) = 3C − 2U. (19)

Finally, from (16), it follows that

J = 3(
4

3
) − 2U = 4 − 2U. (20)

Consequently, sinceU ≤ 1 (according to (2d)), we have J ≥ 4−2 = 2, which implies
J ∗ ≥ 2. 
�

Now we establish a relation between the PART problem and the corresponding
instance of CHPA.

Lemma 3 A given instance of the PART problem is positive if and only if J ∗ = 2 in
the constructed instance of CHPA.
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Proof We first show that if the given PART problem is a positive instance, then the
optimal period assignment satisfies J ∗ = 2. To observe this property, let A1 and A2
denote the sets related to a solution of the PART problem. We assign the period of the
tasks such that Ti = 1 if ai ∈ A1 and Ti = 2 if ai ∈ A2, for 1 ≤ i ≤ n. As the total
size of the items in A1 is equal to that of A2, we will have C1 = C2 = C/2 = 2/3.
Subsequently, from (18), it follows that J = 2. According to Lemma 2, this means
J ∗ = 2.

Next, we show that if J ∗ = 2, then the given instance of the PART problem is
positive. We first notice that, due to (18) and as C = 4/3, the equality J ∗ = 2 implies
C1 = 2/3. Also, since C1 + C2 = C, we get C2 = 2/3, too. This means that the set
of WCETs can be divided into two sets with equal sum. Referring to (13) and (14) for
determining the value of WCETs, it is implied that the set of numbers in the original
PART problem is divisible into two sets of which the sum of the numbers are equal.
Consequently, the instance of the PART problem is positive, which completes the
proof. 
�
Theorem 3 CHPA is at least weakly NP-hard.

Proof Any given instance of the PART problem can be transformed to an instance of
CHPA in polynomial time using the presented method. Suppose CHPA to be subject to
a solution approach with a complexity better than pseudo-polynomial time. According
to Lemma 3, this implies that the original instance of the PART problem can be
decided by an algorithmwith a complexity better than pseudo-polynomial time, which
contradicts with Theorem 1. As a consequence, CHPA is at least weakly NP-hard. 
�

4 Approximate solution

In this section, we deal with the problem of optimal harmonic period assignment, in
which the goal is to minimize a weighted sum of the periods while we ensure that the
periods are harmonic and the utilization is smaller than or equal to 1, referred to as
the CHPA∞ problem. As a reference case we use the optimal solution for the relaxed
problem, when the periods are not constrained to be harmonic. We then propose two
approximation algorithms for the problem—one with linear and one with quadratic
complexity—and show that the error factor of the approximations is bounded by 1.125.

4.1 Optimal solution for the relaxed problem

We start by relaxing the harmonic constraint (namely (2c)) and let the period ratios to
be any arbitrary value. As expressed in the following lemma, this relaxed version of
the problem can be solved in linear time.

Lemma 4 Let (T ∗
1 , . . . , T ∗

n ) be the solution of the relaxed problem. In other words,

∑

1≤i≤n

wi T
∗
i ≤

∑

1≤i≤n

wi Ti , (21)
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for any period assignment (T1, . . . , Tn)which satisfies (2d). Then, T ∗
i can be obtained

by

T ∗
i =

√
Ci

wi

∑

1≤l≤n

√
wlCl . (22)

Proof The proof has been previously presented by Cervin et al. (Sect. 3.5 of Cervin
et al. 2002). It is worth noting that, although in Cervin et al. (2002) Ci s are assumed
as average execution times, the problem we consider here is mathematically the same
as the one in Cervin et al. (2002). As a result, the proof holds for our case as well. 
�
Corollary 1 Let U∗ denote the total utilization of the task set when periods are
assigned according to (22). Then, it holds that U∗ = 1.

Proof By definition, we haveU∗ = ∑n
i=1

Ci
T ∗
i
. Replacing T ∗

i from (22) in this relation

implies

U∗ =
n∑

i=1

√
wiCi

∑n
l=1

√
wlCl

= 1,

which completes the proof. 
�

4.2 A linear-complexity approximate solution

In this section, we present an approximation algorithm for the harmonic case, based
on the optimal solution obtained above.

Let (T ∗
1 , . . . , T ∗

n ) be the optimal solution of the relaxed problem indicated in
Lemma 4. Further, we define J ∗ as

J ∗ =
n∑

i=1

wi T
∗
i . (23)

Obviously J ∗ provides a lower bound for the solution of the problemwith the harmonic
constraint, i.e., (2c). In the following, we first present a fast but non-optimal harmonic
period assignment algorithm using periods T ∗

i . Then, we calculate a bound for the
maximum error of the algorithm. In the subsequent subsections, we assume that tasks
have been indexed such that T ∗

i−1 ≤ T ∗
i , ∀i; 2 ≤ i ≤ n.

4.2.1 The approximation algorithm

In our algorithm, we first assign T1 = T ∗
1 . Then, for each Ti , for i > 1, we find the

smallest harmonic period (with respect to the period of the previous task) which is
not smaller than T ∗

i . For instance, the period of the second task, denoted by T2, is
determined as

T2 =
⌈
T ∗
2

T1

⌉

T1. (24)
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Similarly, for the i-th task, we will have

Ti =
⌈

T ∗
i

Ti−1

⌉

Ti−1. (25)

From Eq. (25), it is seen that Ti ≥ T ∗
i for all i ; thus, when the periods, i.e., Ti s, for

1 ≤ i ≤ n, are assigned according to (24) and (25), the total utilization of the system
is equal to or less than 1. This is because the period assignment with T ∗

i implies a
utilization of 1 (based on Corollary 1). As a result, we can scale down each period
value such as Ti by a factor of U until the total utilization becomes 1.

The pseudo-code of the algorithm is presented in Algorithm 1. The calculated
periods are harmonic because the ratio between every two consecutive period is an
integer value. Further, in Lines 11–13, the resulting periods are scaled so that the total
utilization becomes 1. Consequently, the obtained periods satisfy (2d), and hence,
comprise a valid solution to the problem.

Algorithm 1: Simple Period Assignment
input: A WCET Ci and a weight wi for each task τi .
// Indexing is done such that Ci /wi ≤ Ci+1/wi+1, for 1 ≤ i < n.
output: A set of harmonic periods Ti , 1 ≤ i ≤ n.

1 begin
33 σ ← ∑

1≤l≤n
√

wlCl ;
4 for i ← 1 to n do
5 T ∗

i ← √
Ci /wiσ ;

6 end
7 T1 ← T ∗

1 ;
8 for i ← 2 to n do
9 Ti ← �T ∗

i /Ti−1�Ti−1;
10 end

// Scaling step
11 u = ∑

1≤i≤n Ci /Ti ;
12 for i ← 1 to n do
13 Ti ← uTi ;
14 end
15 end

4.2.2 A trivial error bound

We first give a trivial error bound by showing that the periods can no more than double
when using the approximation algorithm.

Lemma 5 For any period Ti obtained from Algorithm 1, we have

Ti < 2T ∗
i (26)
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Proof The proof is by induction. For the base case (i = 1) we have T1 = T ∗
1 < 2T ∗

1 .

Also, for i = 2, we have

T2 =
⌈
T ∗
2

T1

⌉

T1

<

(
T ∗
2

T1
+ 1

)

T1

= T ∗
2 + T1 = T ∗

2 + T ∗
1

Since we assumed that the periods (i.e., T ∗
i s) are sorted in a non-decreasing order, we

have T ∗
1 ≤ T ∗

2 . As a result,

T2 < T ∗
2 + T ∗

1

≤ T ∗
2 + T ∗

2 = 2T ∗
2

Now, assuming that (26) holds for i , we show that it will hold for i + 1 as well, for
any i < n. We consider two cases for T ∗

i+1 with respect to Ti .

Case 1: T ∗
i+1 ≤ Ti . In this case, we have

⌈
T ∗
i+1
Ti

⌉
= 1; hence, Ti+1 = Ti (due to

(25)). According to the assumption Ti < 2T ∗
i , and since T ∗

i ≤ T ∗
i+1, it follows that

Ti+1 = Ti < 2T ∗
i ≤ 2T ∗

i+1. (27)

Case 2: T ∗
i+1 > Ti . In this case, we have

Ti+1 =
⌈
T ∗
i+1

Ti

⌉

Ti

<

(
T ∗
i+1

Ti
+ 1

)

Ti

= T ∗
i+1 + Ti

< T ∗
i+1 + T ∗

i+1

= 2T ∗
i+1

which completes the induction. 
�
Corollary 1 The approximation error with Algorithm 1 is smaller than 2, i.e.,

J

J ∗ < 2.

Proof Since the cost J depends linearly on the periods, it follows from Lemma 5 that
the cost will less than double. Finally, the rescaling step can only make the periods
smaller and can hence only give a lower cost. 
�
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4.3 A tight error bound for Algorithm 1

Now, we derive a tight upper bound on the error of the approximation algorithm.

Theorem 4 The worst-case relative error of Algorithm 1 is 9
8 .

Proof Without loss of generality, assume that the weights are scaled so that

J ∗ =
n∑

i=1

wi T
∗
i = 1.

Using (22) we have

J ∗ =
n∑

i=1

(

wi

√
Ci

wi

n∑

l=1

√
wlCl

)

=
( n∑

i=1

√
wiCi

)2
= 1,

which implies that

n∑

i=1

√
wiCi = 1

and

T ∗
i =

√
Ci

wi
.

This further implies that

U∗
i = Ci

T ∗
i

= √
wiCi = wi T

∗
i .

FromLemma5we know that the periods can nomore than double in the harmonization
step. We express this as

Ti = (1 + βi )T
∗
i , 0 ≤ βi < 1, i = 2, . . . , n.

The new cost after harmonization is given by

Ĵ = U∗
1 +

n∑

i=2

wi Ti = U∗
1 +

n∑

i=2

(1 + βi )U
∗
i =

n∑

i=1

U∗
i +

n∑

i=2

βiU
∗
i

= 1 +
n∑

i=2

βiU
∗
i .

Similarly, the utilization after harmonization is calculated as
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Û = U∗
1 +

n∑

i=2

Ci

(1 + βi )T ∗
i

= U∗
1 +

n∑

i=2

Ci

T ∗
i

(

1 − βi

1 + βi

)

= 1 −
n∑

i=2

βi

(1 + βi )
U∗
i .

In the final rescaling step, all periods are multiplied by Û . Since the cost depends
linearly on the periods, this means that the final cost after rescaling becomes

J = Ĵ Û =
(

1 +
n∑

i=2

βiU
∗
i

) (

1 −
n∑

i=2

βiU∗
i

1 + βi

)

.

Using the fact that βi
2 <

βi
1+βi

≤ βi for 0 ≤ βi < 1, we find that

J <

(

1 +
n∑

i=2

βiU
∗
i

)(

1 −
n∑

i=2

βiU∗
i

2

)

.

The right-hand side of the inequality is maximized when
∑n

i=2 βiU∗
i = 1

2 , yielding
the upper bound

J <

(

1 + 1

2

) (

1 − 1

4

)

= 9

8
.

The bound becomes arbitrarily tight when βi → 1 and
∑n

i=2U
∗
i = 1

2 . 
�
Example 1 Assume two tasks, with execution times C1 = C2 = 0.5 and weights
w1 = 0.501 and w2 = 0.499. The optimal periods are T ∗

1 = 0.999 and T ∗
2 = 1.001

with the optimal cost J ∗ = 1.000. Applying Algorithm 1, we obtain the harmonic
periods T1 = 0.750 and T2 = 1.500 with the cost J = 1.124.

4.4 A more effective approximation algorithm

The approximation algorithm introduced inSect. 4.2.1 tries to find the closest harmonic
period assignment starting from T1 ← T ∗

1 . It means that the solution which is found
through Lines 1–10 of Algorithm 1 includes the first optimal period. The result of this
assignment can be improved if we set the base of the search on other T ∗

i values as well.
For example, if we have T ∗ = {42, 56, 98}, the resulting periods from Lines 1–10 of
Algorithm 1 will be T = {42, 84, 168} with total sum of 294 while if we had used
T = {56, 56, 112}, the total sum would be 224. The latter solution can be obtained if
we start to assign T2 ← T ∗

2 and then try to find the smallest harmonic values which
are larger than the other T ∗

i s. For the same reason, any value in T ∗ can be the base
candidate and may result in a solution with smaller error than Algorithm 1. This is the
basic idea of our second approximation algorithmwhich is shown inAlgorithm 2. This
idea has been originally used by Han and Tyan (1997) for DCT algorithm. However,
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their goal was to find the largest harmonic period which is smaller than the original
given periods of the tasks.

Algorithm 2: DCT-Based Period Assignment
input: A WCET Ci and a weight wi for each task τi .
// Indexing is done such that Ci /wi ≤ Ci+1/wi+1, 1 ≤ i < n.
output: A set of harmonic periods Ti , 1 ≤ i ≤ n.

1 begin
2 Obtain T ∗ values from (22);

3 σmin ← null;
4 for i ← 1 to n do
5 T ′

i ← T ∗
i ;

6 for j ← i + 1 to n do
7 T ′

j ← �T ∗
j /T ′

j−1�T ′
j−1;

8 end
9 for j ← i − 1 down to 1 do

10 T ′
j ← T ′

j+1/�T ′
j+1/T

∗
j �;

11 end
// Scaling step

12 u = ∑
1≤i≤n Ci /T

′
i ;

13 for i ← 1 to n do
14 T ′

i ← uT ′
i ;

15 end
16 σ ← ∑

1≤ j≤n w j T
′
j ;

17 if σ < σmin or σmin = null then
18 σmin ← σ ;
19 for i ← 1 to n do
20 Ti ← T ′

i ;
21 end
22 end
23 end
24 end

The approximation error of Algorithm 2 will not be larger than that of Algorithm 1
because in the worst-case, Algorithm 2 returns an assignment which starts from T1 ←
T ∗
1 . In all other cases, the final result ofAlgorithm2 can only be better thanAlgorithm1

due to the condition in Line 17. Consequently, the relative error of Algorithm 2 with
respect to the optimal period assignment is upper-bounded by that of Algorithm 1.

According to our experimental results (shown in the next section), both algorithms
produce near-optimal results and the difference in their performance is small. However,
it isworth noting that their computational complexity is different:Algorithm2 isO(n2)
while Algorithm 1 is linear-time, i.e., O(n).

5 Experimental results

In this section, we evaluate the performance and effectiveness of our proposed approx-
imation algorithms presented in Sect. 4. In Sect. 5.1 we measure the efficiency of our
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approximation algorithms in finding harmonic periods using synthetic task sets while
in Sect. 5.2 we measure the effectiveness of our algorithms for a set of benchmark
control applications.

5.1 Measuring efficiency of the algorithms

In this set of experiments we compare our two approximation algorithms with an
optimal solution based on an exhaustive search over all relevant harmonic period
assignments. This optimal algorithm returns a harmonic period assignment with uti-
lization 1 which minimizes (2a). This algorithm has been derived from the Forward
approach in Nasri et al. (2014), and it is based on an exhaustive search which iter-
ates over all possible integer multipliers between any two period ranges, and hence, it
searches the whole solution space to find an assignment with the minimum error. We
have added a pruning rule to limit the results to the assignments with U ≤ 1. In the
experiments we measure the relative error of the proposed algorithms as

E =
∑n

i=1 wi Ti
∑n

i=1 wi T ∗
i

(28)

where T ∗
i is obtained from (22). It is worth noting that T ∗

i values are not necessarily
harmonic and hence, even the optimal algorithm based on the Forward approach may
have non-zero error. In the following experiments we evaluate the effect of theWCET,
number of tasks, and weights on the relative error of our proposed algorithms.

5.1.1 The effect of WCET

In the first experiment, we consider the effect of relative ratio of WCET values, i.e.,
Ci/Ci−1. The parameter of experiment is the maximum ratio between any two con-
secutive WCET values (sorted in an ascending order). For this experiment we assume
a task set with 10 tasks (later in Sec. 5.1.2 we will evaluate the effect of different num-
ber of tasks). The WCET of each task is selected randomly with uniform distribution
so that Ci ∈ [Ci−1, kCi−1] where C1 ∈ [1, 10] and k is the maximum WCET ratio.
We assume all tasks have the same weight, i.e., ∀i, wi = 1. For each value of k we
generate 10,000 random task sets and report the average, maximum, and minimum
relative errors that are seen in those task sets.

As it is shown in Fig. 2, when the relative ratio of two consecutive WCET is small,
Algorithm 1 has higher error because it only finds the harmonic assignments starting
from T ∗

1 . Since valid assignments must be larger than T ∗
i values, if T ∗

2 /T ∗
1 ≈ 1,

Algorithm 1 assigns T2 ← 2T1 which will be much larger than T ∗
2 . However, since

2T ∗
1 will bemuch larger than T ∗

i (2 ≤ i ≤ n), it is a safe assignment for other Ti values.
Consequently, the resulting harmonic periods will be T = {T ∗

1 , 2T ∗
1 , 2T ∗

1 , . . . , 2T ∗
1 }

while the period assignment from Algorithm 2 is T ′ = {T ∗
n , T ∗

n , . . . , T ∗
n }. It happens

because if we have small ratio between consecutive Ci values, then T ∗
n < 2T ∗

1 .
In the next experiment, we evaluate the effect of selection range for Ci values. In

this experiment we assume n = 10, ∀i, wi = 1, and eachCi is selected randomly with
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Fig. 2 The relative error of the algorithms. TheWCET of each task has been randomly selected so thatCi ∈
[Ci−1, kCi−1] where C1 ∈ [1, 10]. In diagram (a), the optimal method and Algorithm 2 are overlapped
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Fig. 3 The relative error of the algorithms. The WCET of each task has been selected from [1, 10σ ]. In
diagram (a), the optimal method and Algorithm 2 are overlapped

a uniform distribution from range [1, 10σ ]where σ is the parameter of the experiment
and shows thewideness of the ranges. Figure 3a–d shows the results of this experiment.

When σ is small, e.g., smaller than 1, WCETs are selected from a narrower range
which means that they are more similar to each other. As discussed in Sect. 4, when
WCETs are similar, Algorithm 1 has a large relative error as it can be seen in Fig. 3a
and c. In this situation, however, both Algorithm 2 and the optimal algorithm are able
to find harmonic periods with small error because since the WCETs are similar, T ∗

i
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Fig. 4 The relative error of the algorithms. The WCET of each task has been selected from [1, 500]. In
this diagram, the optimal method and Algorithm 2 are overlapped

values are almost the same which means that the optimal harmonic assignment will
be the one that assigns one period to all tasks. Since Algorithm 1 starts by assigning
T ∗
1 as T1, it may not be able to assign the same period to all other tasks, and hence, it

will suffer from larger errors. We will study this particular case later in Sect. 5.1.4.
From σ = 0.1 to 1.6we see a decreasing pattern in the relative error of Algorithm 1.

The reason is that since we select 10 values from the range [10, 101.6], the chance
that the resulting WCETs have larger relative ratio increases with the increase in σ .
Consequently, the relative error of Algorithm 1 decreases since the situation becomes
better.

With the increase in σ after σ = 1.6,WCET values increase as they can be selected
from a larger range. This increase in the average values of WCETs affect the result of∑n

i=1
√

wiCi which in turn leads to have large T ∗
i (since they are obtained from (22)).

In addition, if
∑n

i=1
√

wiCi is a large value, the effect of
√
Ci/wi on T ∗

i decreases,
particularly because

√
x function does not grow as fast as x . Consequently, T ∗

i values
become large and become relatively close to each other. Due to this effect, the relative
error of our algorithms remains almost constant as it can be seen for large values of σ

in Fig. 3a and large values of WCET ratio in Fig. 2a.

5.1.2 The effect of the number of tasks

Next, we consider the effect of the number of tasks, i.e., n on the relative error of the
algorithms. The WCET of each task is selected randomly with a uniform distribution
from interval [1, 500] while n varies from 5 to 30. In this experiment we assume that
all weights are equal to 1.

Figure 4a demonstrates the average relative error as a function of the number of
tasks. As it is shown, Algorithm 2 still performs as good as the optimal algorithm and
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Fig. 5 The number of operations required by different algorithms to find harmonic periods. Note that the
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is able to find harmonic periods with the minimum error. Figure 4b–d confirm the fact
that the algorithms provide predictable assignments where the maximum observed
relative error is very close to the average and the minimum observed relative error. It
is worth noting that when n increases, the number of values selected from the range
increase which in turn increases

∑n
i=1

√
wiCi . Thus the same effect that happened

for the large σ values in Fig. 3 happens here as well.
Since n directly affects the time consumption of our algorithms, for this experiment

we also report the number of algorithmic operations that are needed to be performed
until harmonic periods are found by the algorithms. Note that we only count the
algorithmic steps rather than single instructions because the number of instructions
depend on the platform and the programming language. Thus, we count the operations
performed in Algorithms 1 and 2. For example, Line 3 or 11 of Algorithm 1 consist
of n operations while Line 5 consists of 1 operation. For the case of the exhaustive
search, we do it the same way that is done by Nasri et al. (2014). Figure 5 shows
the number of operations required to find harmonic periods. As it can be seen, the
exhaustive solution has an exponential growth when n increases while both of our
algorithms have a polynomial growth w.r.t the number of tasks.

5.1.3 The effect of weights

In the next experiment, we evaluate the effect of weights on the relative error of the
algorithms. For this experiment we have 10 tasks and the WCETs are selected with
a uniform distribution from range [1, 500]. The weight of each task is selected with
uniform distribution from [0.1,W ] where W shows the maximum weight and is the
parameter of the experiment.
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Fig. 6 Relative error of different algorithms as a function of weights. WCETS are selected from [1, 500]
and weights are selected from [0.1,W ] where W is the horizontal axis of the diagrams

Figure 6a shows the average relative error of the algorithms. When the maximum
weight is 0.1, all weights are equal (because the weights will all be 0.1. In that case,
Algorithm 2 performs the same as the optimal algorithm. However, by the increase in
the length of intervals from which the weights are selected, Algorithm 2 is no longer
able to find harmonic periods with the minimum cost because it does not consider
the effect of weights when it finds harmonic assignments through Lines 5–15. In
other words, Algorithm 2 focuses on finding the closest harmonic values and cannot
consider the effect of weights. As a result, its decisions will gradually become similar
to Algorithm 1 which is ignorant towards the weights too.

Figure 6b–d show the maximum, average, and minimum relative error of the algo-
rithms. As it can be seen, the optimal algorithm is the most predictable since the
difference between its maximum and minimum relative errors is about 0.03. This is
the case for Algorithm 2 only when all weights are equal to 0.1.

5.1.4 The effect of similar WCET

As it was mentioned in Sect. 4, the maximum error of Algorithm 1 appears when T ∗
values are almost similar. To study this extreme case we conduct another experiment in
which we select the execution times from [10,000, 10,001] for n = 10 tasks. Figure 7a
shows the average relative error of the algorithms as a function of the weights. As it
can be seen, for the case where the weights are equal, Algorithm 1 has the largest error.
This diagram also shows that the increase in the weights reduces the relative error of
Algorithm 1 because they cancel the effect of a harmonic assignment. Moreover, As
it can be seen in Fig. 7c, the error bound that we have presented in Theorem 4 is tight
since there exists task sets whose relative error is 9

8 = 1.125.
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Fig. 7 Relative error of different algorithms as a function of weights for an odd case of WCETs. WCETS
are selected from [10,000, 10,001] and weights are selected from [0.1,W ] where W is the horizontal axis
of the diagrams

Unlike Algorithm 1 that is not efficient when WCETs are similar, Algorithm 2
becomes more efficient because as long as the weights are not different from each
other, e.g., for W = 0.1 to 0.3, the ratio between the optimal harmonic periods will
be 1 (almost in all cases). As a result, the assignment with the smallest error will be
the one that assigns the largest value of T ∗

i to all tasks. However, when the weights
increase, this assignment will not be the best one anymore, and hence, Algorithm 2’s
decisions deviate from the optimal one.

5.2 Measuring the effectiveness of the algorithms for control systems

In this subsection, the two algorithms for period harmonization are evaluated in control
system examples. To allow for a large number of cases to be investigated, the Jitterbug
MATLAB toolbox (Cervin et al. 2003) is used throughout to design the controllers
and to evaluate the resulting performance. We first study a simple example in detail
and then present results for 100 sets of randomly generated plants.

5.2.1 A simple codesign example

As a simple codesign example, we assume that three linear plants,

P1(s) = 2

s2 − 1
,

P2(s) = 2

s2
,

P3(s) = 1

s(s + 1)
,

(29)
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should be controlled by three control tasks. For each controller, the goal is to minimize
the quadratic cost function

Ji = lim
T→∞

1

T
E

∫ T

0

(
y2i (t) + u2i (t)

)
dt, (30)

when the plant is subject to white input noise with intensity 1 and white measurement
noise with intensity 0.1. Prior to implementation, a continuous-time linear-quadratic-
Gaussian (LQG) controller Ki (s) has been designed for each plant to give satisfactory
performance. The cost functions are normalized so that J cti = 1 corresponds to con-
tinuous control. Running all continuous controllers hence gives the ideal overall cost
J ct = ∑3

i=1 J
ct
i = 3.

The execution times are given by C1 = 0.144, C2 = 0.175, C3 = 0.102. These
values also represent the minimum possible periods and control delays for the control
loops. The weights wi are found by evaluating the sensitivity towards an increased
period for each control loop:

wi = ∂ Ji
∂Ti

(Ci ). (31)

The analysis yields the weights w1 = 2.47, w2 = 1.45, w3 = 0.409. It is seen
that the two first plants, which are open-loop unstable, are more sensitive towards a
period extension than the last plant. Using Lemma 4, the initial periods are then given
by T ∗

1 = 0.319, T ∗
2 = 0.458, T ∗

3 = 0.658. The respective jitter margins for these
periods, assuming a constant delay of Ci , are given by Jm1 = 0.248, Jm2 = 0.358,
Jm3 = 1.40.

As a baseline, we evaluate two different design methods for the set of sampling
periods given by T init = T ∗/0.99. (A target utilization of U = 0.99 is used for the
non-harmonic periods to avoid numerical problems in the evaluation.)

– Initial LQG design Each controller is designed without regard for the scheduling,
assuming a constant control delay of Ci .

– Delay-aware LQG design The delay of each controller is assumed constant and
given by the approximate response-time formula from Bini and Cervin (2008).
Based on this, a standard LQG controller compensating for the fixed delay is
designed.

We then evaluate two different methods, where the controllers are redesigned after
harmonization:

– Harmonic LQG designUsingAlgorithms 1 and 2, two sets of harmonic periods are
calculated. For each resulting task set, we assign task release offsets to minimize
the control delay and design a standard LQG controller for the remaining constant
delay. These two sets of controllers are evaluated with or without offset.

We evaluate the cost with constant execution time C , or random execution time in
unif(0.5C, C). All the costs are normalized to the continuous-time LQG cost. The
resulting periods and the total LQG cost are shown in Table 1, where all numbers have
been rounded to three significant digits. It is seen that, in the constant execution time
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Table 1 Results for the simple example

T1 T2 T3 Constant exec. times Random exec. times

Initial (J init) 0.322 0.463 0.665 5.57 4.43

Delay-aware (Jda) 0.322 0.463 0.665 5.13 4.55

Algorithm 1, no offset (Jh1) 0.260 0.520 1.04 5.63 5.38

Algorithm 2, no offset (Jh2) 0.286 0.571 0.571 5.27 4.69

Algorithm 1, with offset (Jh1o) 0.260 0.520 1.04 4.86 4.44

Algorithm 2, with offset (Jh2o) 0.286 0.571 0.571 4.58 4.09

case, the harmonic LQG costs without offset are slightly worse than the initial and
delay-aware LQG costs, because the harmonization forces the periods to deviate from
their optimal values. The harmonic LQG costs with offset are however lower than
the harmonic LQG cost without offset. The reason is that, by using harmonic periods
and task offsets, the schedule will give rise to both constant and short delays. This
positive effect dominates over the negative effect of having to deviate quite far from
the optimal, real-valued periods.

The execution time is rarely constant in real-time systems. It is seen that also for
the random execution times, Algorithm 2 with release offsets produces the smallest
overall cost.

In the next section, a larger evaluation is performed using randomly generated plant
dynamics, showing the variability and confidence of the results obtained.

5.2.2 Randomly generated examples

To see whether the results for the simple example above hold in more general cases,
sets of three plants have been randomly generated for evaluation from the following
four plant families:

– Family A: All plants have two real or complex stable poles. They are drawn from

PA(s) = K

τ 2s2 + 2ζ τ s + 1
, (32)

where τ = 10−2α , K = 2 × 10β , ζ = 2γ , and α, β, γ ∈ unif(0, 1).
– Family B: All plants have two real or complex stable poles and one integrator.
They are drawn from

PB(s) = K

τ s
(
τ 2s2 + 2ζ τ s + 1

) , (33)

where τ = 10−2α , K = 0.3 × 10β , ζ = 2γ , and α, β, γ ∈ unif(0, 1).
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– Family C: All plants have two real or complex stable poles, one stable or unstable
zero and one integrator. They are drawn from

PC (s) = K
[
1 − sgn(λ − 0.5)τTzs

]

τ s
(
τ 2s2 + 2ζ τ s + 1

) , (34)

where τ = 10−2α , K = 1.3 × 10β , ζ = 2γ , Tz = 10η−2, and α, β, γ, η, λ ∈
unif(0, 1).

– Family D: All plants have two real or complex stable poles, one stable or unstable
pole and one integrator. They are drawn from

PD(s) = K

τ s
(
τ 2s2 + 2ζ τ s + 1

) [
1 − sgn(λ − 0.5)τTps

] , (35)

where τ = 10−2α , K = 10β , ζ = 2γ , Tp = 10η+1, and α, β, γ, η, λ ∈
unif(0, 1).

The plant parameters have been chosen to give reasonable robustness when combined
with the LQG design weights. Also a random time constant τ has been included to
generate plants with possibly very different time scales.

25 sets of three plants are randomly generated for each family, and the cost functions
are normalized so that 1 corresponds to continuous-time control. The initial sampling
periods are again calculated using evaluation of the sensitivity towards an increase in
period, Eq. (31). The jitter margin was calculated for all 300 controllers, and in no
case was it smaller than 67% of the initial period, indicating that all controllers were
reasonably robust.

Using this setup, we evaluate the following costs. In the initial and delay-aware
LQG evaluations, we use the utilization target U = 0.99, while the harmonic cases
use full utilization.

– Initial LQG cost J init. The LQG controllers are designed for T init
i as the period

and Ci as the constant delay. For each task, we calculate the first 100 response
times to estimate the response time distribution. Using this distribution as the delay
distribution in Jitterbug, the LQG cost J initi is evaluated.

– Delay-aware LQG cost J da. We again design the LQG controller with T init
i as the

period but now with the approximate delay from Bini and Cervin (2008). The first
100 response times are used to calculate the response time distribution. Then the
distribution is used in the Jitterbug evaluation.

– Harmonic LQG cost J h1, J h2, J h1o, and J h2o. We use T init
i as the initial period

and Algorithms 1 and 2 to evaluate the two harmonic task period sets with full
utilization. For the no offset case, the LQG controller is designed using a constant
delay, equal to the the response time. For the offset case, the LQG controller is
designed using a constant delay, equal to the difference between the response time
and the start latency. The LQG cost is evaluated with an offset which is equal to
the start latency. J h1 stands for the LQG cost using Algorithm 1 with no offset,
and J h1o stands for the LQG cost using Algorithm 1 with offset. J h2 and J h2o are
defined similarly.
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Table 2 Average costs under
constant execution times

Family A Family B Family C Family D

J init 4.83 4.69 4.38 4.36

Jda 4.70 4.53 4.22 4.17

Jh1 4.89 4.67 4.36 4.37

Jh2 4.75 4.53 4.25 4.21

Jh1o 4.60 4.31 4.05 4.05

Jh2o 4.45 4.20 3.99 3.92

Table 3 Average costs under
random execution times
[0.5C, C]

Family A Family B Family C Family D

J init 4.29 4.07 3.82 3.79

Jda 4.33 4.12 3.87 3.84

Jh1 4.54 4.30 4.05 4.11

Jh2 4.42 4.23 3.97 3.93

Jh1o 4.23 3.96 3.74 3.75

Jh2o 4.13 3.91 3.71 3.66

We consider two options for the execution time: a constant one equal to C and a
random one which is uniformly distributed in (0.5C, C). The costs, averaged over 25
generated plant sets for each family, are shown in Tables 2 and 3. As seen from the
results, the initial LQGcosts are slightly better than the costs of harmonic LQGwithout
offset, and worse than the harmonic LQG with offset. The costs for the harmonization
of Algorithm 2 are smaller than those of Algorithm 1, while the computation of
Algorithm 2 is more time-consuming.

To see the variability of the results, the LQG costs over all four plant families
under constant execution times are shown in the box plot of Fig. 8. The costs are
all normalized relative to J init. All the values of J da are smaller than J init, because
the delay-aware LQG takes the approximation of the response time, instead of the
execution time, as delay into the control design. The values of J h1 can be worse or
better than J init, because the sampling periods fromAlgorithm1 are different from T ∗

i s
in Lemma 4, but harmonic. The costs of J h2 are smaller than J h1, because the sampling
periods calculated by using Algorithm 2 give better overall control performance. Both
J h1o and J h2o are smaller than J init on average. The reason is that the offset is adopted
in the scheduling, which leads to shorter delay. Furthermore, in almost all cases,
J h2o is smaller than J init. The conclusion is that harmonic periods from Algorithm 2
together with release offsets should be the recommended design method for control
tasks.
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Fig. 8 Costs relative to J init for the 100 randomly generated examples under constant execution times

Table 4 The complexity of different harmonic period assignment problems

maxU min
∑

wi Ti

Restricted range NP-hard in the weak sense (at least) NP-hard in the weak sense (at least)

Unrestricted range There exists poly.time algorithm Unknown (there exists poly.time
approximation)

6 Discussions

Table 4 summarizes the known results for the complexity of the optimal harmonic
period assignment problem. The results are shown for two different optimization
objectives and constrains.

As shown in Sect. 3, when the goal is to maximize U or to minimize the weighted
sum of the periods, and we have restricted period ranges (i.e., UHPA and CHPA
problems), the harmonic period assignment problem is weakly NP-hard. If periods
are not confined by a minimum and maximum value, i.e., they can be any value, then
one possible harmonic assignment is

T1 = T2 = · · · = Tn =
n∑

i=1

Ci (36)

In (36), period ratio between any two consecutive periods is 1while the utilization is
1. Hence it is a linear-time solution for UHPAwhen periods are not restricted. Through
Sect. 4 we have shown that there exist polynomial-time approximation algorithms
when the goal is to minimize the weighted sum of Ti . However, to the best of the
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authors’ knowledge, there is no known result for the class of hardness of the problem.
The latter problem has wide applications in control systems as it can increase their
quality of control through minimizing jitters of sampling and actuation.

An interesting observation in our experiments is that, when all tasks incorporate the
same weight, Algorithm 2 is as good as the optimal solution based on an exhaustive
search. It remains as an open question whether the DCT-based algorithm is really an
optimal solution to assign harmonic periods in this situation or not. If it is the case,
then CHPA∞ can be solved in polynomial-time using Algorithm 2 for the special case
of equal weights.

7 Conclusion

In this paper, we have discussed the hardness of the harmonic period assignment prob-
lem in cases where periods must be selected from a given range and the goal is to find a
harmonic assignment which maximizes the utilization. We have shown that this prob-
lem is weakly NP-hard. It was also shown that the same result holds when the objective
is to minimize the weighted sum of periods. We have also considered the problem of
minimizing the weighted sum of harmonic periods where there is no lower and upper
bound on the valid periods. While the computational complexity of this version of the
problem is unknown,we presented two polynomial-time approximation algorithms for
it. We have shown that the upper bound of the error of these algorithms with respect
to the results of an optimal period assignment algorithm is upper bounded by 1.125.
Our algorithms can be used to increase the quality of control in control systems. We
have evaluated the proposed algorithms using synthetic task sets as well as benchmark
control applications. The results have shown that even though the guaranteed bounded
error is 1.125, the second algorithm is as good as the optimal solution based on an
exhaustive search when all tasks are assigned the same weight.

As our future work, we intend to investigate the optimality of our second algorithm
in the mentioned special case. Moreover, we try to provide efficient solutions, either
using approximation algorithms or heuristics to solve the first problem where periods
are bounded to a specified set of intervals. A solution to this problem can be further
used in the design space exploration in order to simplify parameter assignment phase.
Also we plan to provide a new method to obtain the space of feasible periods for RM.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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