
J Supercomput (2018) 74:1485–1496
https://doi.org/10.1007/s11227-017-2233-1

Actor model of Anemone functional language

Paweł Batko1 · Marcin Kuta2

Published online: 8 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract This paper describes actor system of a new functional language called
Anemone and compares it with actor systems of Scala and Erlang. Implementation
details of the actor system are described. Performance evaluation is provided on
sequential and concurrent programs.

Keywords Compiler construction · Concurrent programming · Actors · Threads ·
Message passing · Garbage collector

1 Introduction

Creating a new language is a complex task, requiring a lot of time and human resources.
Creating a function language is even more difficult, as it contains many high-level
concepts, e.g., higher-order functions or closures. Thisworkpresents design and imple-
mentation of Anemone—fully useful, secure, functional language with user-friendly
syntax, which can be enriched with new components and optimized in future.

Anemone [5] supports concurrent programming model based on actors communi-
cating via messages. Polymorphic type system of Anemone supports error detection at
compile time and encourages code reuse. Complete type inference disposes a program-
mer of defining explicit type signatures. Anemone functions are first class citizens [1]

B Marcin Kuta
mkuta@agh.edu.pl

Paweł Batko
pbatko@virtuslab.com

1 VirtusLab, Smoleńsk 21/15, 31-108 Kraków, Poland

2 Department of Computer Science, AGH University of Science and Technology, Al. Mickiewicza
30, 30-059 Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2233-1&domain=pdf
http://orcid.org/0000-0002-5496-6287

1486 P. Batko, M. Kuta

of the language, and memory is automatically managed with garbage collector mod-
ule. Mechanism of external functions gives access to functions and libraries written
in C. Anemone compiler is based on the LLVM infrastructure, which generates high
quality code for many computer architectures [8]. Created language draws inspira-
tion from many mechanisms present in various programming languages, including
Scala, Erlang, Haskell, and ML. Actor system integrated directly into language, safe
programming style encouraged by immutable variables, coherent type system with
subtyping, pattern matching mechanism, and compiler retargetability make Anemone
attractive compared to other languages.

The aims of this work were the following:

1. Implementation of a functional language compiler, analysis of such languages,
and ways of their implementation.

2. Convenient model of concurrent processing based on actors mechanism and mes-
sage passing.

3. Performance comparison of the implemented model with existing mechanisms in
other languages.

4. Equipping Anemone with polymorphic type system, full type inference, and alge-
braic data types in order to provide expressiveness, static guarantees of correctness,
at the same time preserving code clarity and conciseness.

Figure 1 outlines the most important phases performed during compilation of a
source program written in Anemone.

Figure 2 shows main modules of Anemone runtime system and dependencies
between them.

2 Related work

Threads are a low-level abstraction of concurrent programming, but using them is
difficult because they share memory. Secure, concurrent access to shared memory
requires synchronization with a critical section along with structures like semaphores
[6], mutexes or critical sections. A programmer has to pay attention to avoid race
conditions, starvation, dead locks or live locks.

Actor model [2,7] offers several advantages over thread model. Actors intuitively
model real world, and writing reliable applications using actors is simple. Asyn-
chronous communication between actors leads to better utilization of CPU time, as
idle cycles are not wasted while waiting for an answer. Separation between actors
makes programs easier to understand. The whole actor system can be understood by
analyzing each actor behavior in isolation. Actors are well suited for problems requir-
ing high performance, responsiveness or multiscaling [9], as they can delegate tasks
to workers. Actors are also lightweight, and thousands of instances can be created,
which is impossible for system threads. With actor model, synchronization mecha-
nisms present in thread model are no more needed. As actors do not share a global
state, critical sections are neither needed. Taking into account above advantages, actor
model has been adopted as concurrency model in Anemone.

123

Actor model of Anemone functional language 1487

1. Linking library files of Anemone

text of Anemone
program

2. Scanning and parsing

text of
Anemone program

3. Name mangling

Anemone AST

4. Filling global symbol table with
declarations of structures and functions

Anemone AST

5. Desugaring

Anemone AST

6. Type reconstruction

Anemone AST

7. Closure conversion

Anemone AST

8. Elimination of primitive types and operators

Anemone AST

9. Adding Runtime Type Information (RTTI)

Anemone AST

10. Construction of global roots table for GC

Anemone AST

11. Type casts insertion

Anemone AST

12. Intermediate code generation

Anemone AST

13. Intermediate code compilation

LLVM IR

14. Assembler code compilation
with linking modules of runtime system

assembler code

executable program

Fig. 1 Compilation phases of Anemone

RTTI module Garbage collector module Dynamic memory
management module

Primitive structures module Memory allocator module Actor module

Object comparison module Embedded list module Input/output module

Fig. 2 Main modules of Anemone runtime system and dependencies between them

2.1 Actors in Erlang and Scala

Erlang [3,4] implements actors at a language level and calls them processes. Erlang
processes are lightweight, as they are implemented at the level of Erlang virtual
machine and do not involve threads or processes of a operating system. Each actor
is assigned its own dynamic memory, and garbage collection is performed for each
actor independently. Sent messages are copied between heaps, which prevents sharing
them by two or more actors. Actor scheduling is a duty of the Erlang virtual machine,
and no synchronization mechanism, e.g., semaphores, is needed. Erlang actor system
ensures scalability (one actor needs only 300 bytes of memory) and high reliability of
written programs [4].

123

1488 P. Batko, M. Kuta

ping(N, Pong) ->
Pong ! {self(), ping},

end

class Ping extends Actor {
val state: Int = 1
def receive = {

case Ping =>
pong ! PingMsg

}
}

pong() ->
receive

{From, ping} ->
From ! pong,
pong();

end.

class Pong extends Actor {
def receive = {

case PingMsg =>
sender ! PongMsg

}
}

(a) Erlang implementation (b) Scala implementation

Fig. 3 Two actors ping and pong implemented in Erlang and Scala. Erlang actors are implemented as ping
and pong functions, while Scala actors are represented with instances of Ping and Pong classes. In both
cases, messages are sent with ! operator and received within receive block. The code does not comprise
start-up of the actor system

Figure 3a presents two actors, ping and pong, defined as functions in Erlang. It is
worth noting code conciseness, built-inmessage sending operator, a block for receiving
messages, and message identification with pattern matching.

Scala provides actors implementation in the Akka library [10]. Message passing is
done in sharedmemory, if actors runwithin one Java virtual machine. If actors perform
on different virtual machines, messages are serialized before sending them. Garbage
collection applies to all the actors from a given JVM instance. Actors are scheduled
by the Akka library. Akka does not impose immutable messages and avoiding global
state although strongly recommends them.

Figure 3b presents actor definitions with Akka. In contrast to Erlang, Akka actors
are defined as classes. Pattern matching, message sending operator, and a block for
receiving messages are exploited similarly as in Erlang. Actor state is represented as
a field of an actor instance. Continuity of actor work is ensured by Akka, so an actor
does not have to call itself, as in Erlang.

Features of actor models of Erlang, Scala and Anemone are summarized in Table 1.

3 Actor model of Anemone

Anemone does not provide a programmer low-level model of threads, which, although
very expressive, does not fit needs of a high-level, secure functional language.

Actor model is more restrictive than thread model, as actors communicate only
through message passing. It makes manual synchronization redundant and allows
to write programs more easily, due to imposed style of communication and message
identification. Continuity of actor work is provided in Anemone by internal implemen-
tation, which, similarly to Akka, calls actor function for each new message. Similarly
to Erlang, Anemone models actors as functions, which can accept an initial state and
pass it through. Message passing model in Anemone is similar to Akka, as they both
use shared memory to implement it.

123

Actor model of Anemone functional language 1489

Table 1 Comparison of concurrency models of Erlang, Scala and Anemone

Erlang Scala Anemone

Actors support In language In Akka library In language

Actors specification As functions As classes As functions

Communication Asynchronous Both synchronous and
asynchronous

Asynchronous

Message passing No shared state Shared memory Shared
memory

Pattern matching Yes Yes Yes

Dynamic creation of
actors

Yes Yes Yes

Garbage collection On single threads Global VM lockup Polling

Actor model of Anemone characterizes with:

– asynchronous communication
– possibility of creating many actors in one thread
– possibility of dynamic creation of new actors
– complete integration with the garbage collector
– modeling actors as functions, similarly to Erlang
– actor control similar to Akka
– message handling through pattern matching.

Implementation of many actors within one system thread was especially challeng-
ing, as it required their proper scheduling. Construction of the garbage collector which
correctly and effectively cooperateswithmultithreaded actors architecturewas equally
challenging.

Figure 4 presents a complete program implementing two actors which communi-
cate with each other via messages. Function createActorSystem(2) creates an
actor system on the basis of two system threads, and next, actors ping and pong are cre-
ated. Function sendFromOutside starts activities of actors, i.e., sendingmessages.
Actors exploit pattern matching to identify received messages, function sendMsg to
send messages, and maintain the state identifying the address of a second actor.

4 Implementation of actors system

Anemonemodels concurrent computingwith the actormodule,whichprovides abstrac-
tion for convenient work on multicore architectures. Figure 5 presents detailed
architecture of actor module. Actor module consists of the following submodules:

– Mailbox module defines how received messages are stored and is responsible
for actors adding and removing.

– Actor management module defines architecture of a single actor.
– Threads module is responsible for management of OS threads
– Dispatcher module is responsible for running actors on system threads

123

1490 P. Batko, M. Kuta

fun ping(state, msg) {
var otherActorId = state in {

match msg {
| s :: String => {

printStr(s)
sendMsg(otherActorId, "fromPing")
nap(1)
state

}
| otherActorId :: ActorId => {

sendMsg(otherActorId, "fromPing - first")
otherActorId

fun pong(state, msg) {
var otherActorId = state in {

match msg {
| s :: String => {

printStr(s)
sendMsg(otherActorId, "fromPong")
nap(1)
state

fun main_fun() {
createActorSystem(2)
var pingActorRef = createActor(ping, 0),
pongActorRef = createActor(pong, pingActorRef) in {

sendFromOutside(pingActorRef, pongActorRef)

}} } }

} } } }

} }

Fig. 4 Creation and starting actor system

Mailbox module

Actor management module Threads module

Dispatcher module

Fig. 5 Main submodules of module of actors and message passing

InAnemone using actors is possible due to actormodule.Actor library is an interface
to this module from Anemone. Figure 6 presents functions to handle actors. The actors
library provides the following functions to manipulate actors:

– createActorSystem creates an actor system running on a given number of
system threads.

123

Actor model of Anemone functional language 1491

Fig. 6 Functions of actors
library

type:: (double) -> unit
fun createActorSystem(n)

type:: ((’s, ’m) -> ’s, ’s) -> ActorId
fun createActor(f, a)

type:: (ActorId, ’a) -> unit
fun sendMsg(to, msg)

type:: ((’s, ’m) -> ’s) -> unit
fun become(f)

Fig. 7 Structure of actor
module describing an actor
thread of Anemone

struct __athread_t {
int64_t thread_id;
int64_t actors_array_capacity;
int64_t actors_array_occupied;
int64_t current_actor_idx;
actor_t** actors_array;

};
typedef struct __athread_t athread_t;

– createActor creates a new actor in the actor system. Two parameters define
actor behavior and an initial state of actor. Function returns the id of a created
actor.

– killActor returns an object, which sent to an actor or passed as its new state
terminates its action.

– sendMsg sends a message, specified in the second parameter, to an actor defined
by the first parameter. Function can be called only by an actor.

– become can be called only by an actor. The function takes as its argument a
function determining actor new behavior.

4.1 Creating actor system

Creating actor system is equivalent to creating a number of threads and initialization of
their data structures. The actor system of Anemone distinguishes two kinds of threads:
system threads and actor threads. Each actor thread contains a system thread and a
number of actors.

Function createActorSystem creates a new actor systemwith a given number
of threads. In particular, it creates a table of athread_t structures, describing actor
threads (Fig. 7). Each athread_t structure corresponds to one system thread and
many actors (actors_array).

System threads are created and managed with the help of POSIX pthreads library.
Function athread_main_fun creates system threads and defines their behavior.
Function athread_main_fun works in the following steps:

– initializes of structures describing an actor thread.
– waits for the first actor in this thread.
– takes the next actor assigned to this actor thread.

123

1492 P. Batko, M. Kuta

Fig. 8 Structure of actor
module describing a single actor
of Anemone

struct __actor_t {
closure_t *user_cls;
void *state;
uint64_t actor_id;
mailbox_t *mailbox;

};
typedef struct __actor_t actor_t;

fun pong(state, msg) {
printStr("Pong: " ^ msg)
sendMsg(pingActorId, "PONG" ^ msg)
state

}

Fig. 9 An example of a function defining actor behavior. Function pong takes as its arguments a current
actor state and a new message. It sends a message of type string to an actor identified by pingActorID. The
function returns a new state (in this case unchanged) as a result of its call

– starts handling atmostmax_msg_handled_per_actormessages in themail-
box of the actor. Variable max_msg_handled_per_actor is tunable.

– removes an actor from the system in the following cases:
– an actor received a message being a result of killActor call
– an actor returned a new state equal to the return value of killActor call.

– serves next actor, if it is present.
– terminates, if no actors are present in this actor thread.

4.2 Implementation of an actor and message passing

Actors and message passing are implemented in the actor module in C. Figure 8
presents the structure of the actor module used by the actor management module. It
consists from the following fields:

– user_cls—a closure describing actor behavior,
– state—actor state, it is passed as a parameter to a closure describing actor
behavior,

– actor_id—actor id in the actor management module,
– mailbox—a pointer to the mailbox of an actor.

An actor mailbox stores messages sent to a given actor. Each message has a sender,
a receiver, and the content. Messages are processed under the FIFO regime. Sending
a message does not incur copying the whole message but only a lightweight copying
of a pointer to the message, as message passing is done in shared memory.

At any time, actor thread can run at most one actor. Figure 9 presents a simple actor
definition. Function sendMsg, responsible for sending a message to another actor,
does not specify explicitly the sender of a message. The sender (currently running
actor) is identified due to the local context of the actor thread, implemented by the
actor module.

Figure 10 presents functions of the actor management module, responsible for
associating actor threads with contextual data. Function threads_setspecific

123

Actor model of Anemone functional language 1493

void* threads_getspecific() {
return pthread_getspecific(THREAD_KEY);

}

void threads_setspecific(void* data) {
pthread_setspecific(THREAD_KEY, data);

}

Fig. 10 Getting and setting local state of a given actor thread. Function threads_getspecific gets
local state of a actor thread, while threads_setspecific sets it. Key THREAD_KEY defines local
data of a given actor thread. Both functions are implemented in pthreads

is used in the main loop of athread_main_fun to set thread context to current
actor. When function responsible for sending messages is called, it can access local
context of a thread to get the id of the actor. The advantage of such a solution is a
support for many actors in one system thread through changing value of thread context
and conciseness of function sendMesg.

In addition to local context setters and getters, implementation of actor module uses
synchronization primitives—mutexes and conditional variables of pthreads. Correct
and effective realization of the actor system on the basis of above mechanisms is a
duty of the runtime system of Anemone.

4.3 Scheduling many actors in one system thread

The actor module can create a huge number of actors, significantly exceeding
the number of running threads of the operating system, as an Anemone actor is
defined by a lightweight data structure (several hundred bytes). An actor thread
associates a system thread with many actors. Actor scheduling in Anemone is a
duty of the actor module and is based on the number of received messages. Each
running actor may receive no more than max_msg_handled_peractor mes-
sages. If an actor receives all the messages from its mailbox (but not exceeding the
max_msg_handled_per_actor threshold), the next actor belonging to the same
actor thread will be scheduled. Above scheduling algorithm promotes implementation
of actors as quickly performing functions. Time-consuming tasks should be delegated
by an actor to its child workers. The drawback of this solution is that some system
threads will be blocked by these heavy computations. A separate pool of threads with
asynchronous communication could be a remedy to this problem and future extension
of Anemone.

4.4 Pattern matching

With pattern matching supported by Anemone, defining actors and their behavior is
easier.

Figure 11 presents an actor defined with pattern matching. Message msg, received
by an actor, is matched to the first pattern, Bar(b), where Bar denotes a data type
defined in Anemone, and b denotes a field of this data type. If the first match fails,
pattern f :: Foo will be checked. The second pattern will be matched if msg is

123

1494 P. Batko, M. Kuta

Fig. 11 Usage of pattern
matching in definition of
Anemone actor

fun anActor(state, msg) {
match msg {

| Bar(b) => { ... }
| f :: Foo => { ... }

}
}

Table 2 Execution time of the
program computing 20th
element of the Fibonacci
sequence

Language Execution time (s) Ratio

Java (1.7.0_60) 0.45 3.09

Scala (2.10.4) 0.75 1.87

Anemone 1.41 1.00

of type Foo. Identifier f introduces variable f, which refers to matched object, msg,
and has type Foo.

5 Experiments

To assess quality of Anemone implementation and its runtime system, performance
tests have been conducted and execution time of programs written in Anemone,
Scala and Java have been compared. For each language, the arithmetic mean
of ten measurements with time command was reported. The experiments were
performed under dual-core Intel Core i3-2310M CPU with 2.10GHz clock and
Linux Ubuntu 13.10. Heap size for Scala and Java was set to default values. For
Anemone heap size was set to 100KiB and the threshold triggering a collection to
0.8.

The first experiment, which assessed quality of generated code and efficiency of
the runtime system, compared time performance of a sequential program (computa-
tion of 20th element of the Fibonacci sequence) written in Java, Scala and Anemone.
Results in Table 2 show that implementation in Scala was two times faster, while
implementation in Java three times faster than Anemone implementation. It can
be partly attributed to memory organization in Anemone. Language performance
is significantly influenced by efficiency of the memory allocation module. While
Anemone is a new language, memory allocation algorithm in JVM used by Scala
and Java has been fine-tuned for many years. On the other hand, Anemone is a lan-
guage compiled to machine code and does not bear overhead of starting its virtual
machine.

The second experiment assessed efficiency of the Anemone actor system. Imple-
mentations in Anemone and Akka of two actors communicating with each other were
compared. Actors sent in total 10,000 messages.

Table 3 presents results of this performance test. Implementation in Akka turned
out to be six times faster than implementation in Anemone. Efficiency of the memory
allocation module of Anemone could have significant impact on results.

123

Actor model of Anemone functional language 1495

Table 3 Execution time of the program creating simple actor system

Language Execution time (s) Ratio

Scala (2.10.4) + Akka (2.2-M3) 1.86 6.12

Anemone 11.41 1.00

Table 4 Statistics of memory allocator and collector for the program computing 22th term of the Fibonacci
sequence. Part 1

Heap size (KiB) Allocated (KiB) Collected (KiB) Application time (s) Collector time (s)

100 17,781 17,714 3.54 0.08

1000 17,781 17,498 34.34 0.05

Table presents total allocated and collected memory, application time (collector time not included) and
collector time for the program computing 22th term of the Fibonacci sequence for different heap sizes

Table 5 Statistics of memory allocator and collector for the program computing 22th term of the Fibonacci
sequence. Part 2

Heap size (KiB) Allocation speed (KiB/s) Collection speed (KiB/s) Number of collections

100 5019 216,454 241

1000 517 344,489 22

Table presents speed of memory allocation and collection as well as the number of performed collections
for the program computing 22th term of the Fibonacci sequence

5.1 Efficiency tests of memory allocator and collector

The third experiment examined efficiency of the dynamic memory management mod-
ule of Anemone.

Tables 4 and 5 present statistics about garbage collector for heap size of 100 and
1000kB. During the program run, there was allocated and collected approximately
17MB memory. Efficiency of the garbage collector module was determined by divid-
ing total collected memory by total time of application execution. Measured efficiency
was 200 and 300MB per sec, respectively, which seems a very good results. It is
worth noting, that increasing heap size reduced the number of memory collections
and increased efficiency by 50%.

Table 5 presents also memory allocation speed, determined by dividing total allo-
catedmemory by total time of application execution. Allocation speedwasmuch lower
than collection speed, which can be easily explained by the fact that beside allocation,
proper computations were performed by the application.

However, implemented memory allocator does not scale well with the increase
in the heap size. With the tenfold increase of heap size, total time of application
increased ten times, and memory allocation speed decreased ten times (Table 5). The
performance drop can be caused by implementation of the search of free chunks of
memory through linear heap scan.

123

1496 P. Batko, M. Kuta

Optimization of this aspect of the dynamic memory management module could
significantly improve the results.

6 Conclusions

Model and implementation of actor system of a new function language,Anemone, have
been described. Anemone was developed within a limited period of time. Proposed
language was few times slower than Scala or Java, which is a very good result, taking
into account that latter languages have been already developed and optimized for a
long period of time by large teams of experts.

Acknowledgements This research was financed by AGHUniversity of Science and Technology Statutory
Fund.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abelson H, Sussman GJ, Sussman J (1996) Structure and interpretation of computer programs, 2nd
edn. MIT Press/McGraw-Hill, Cambridge

2. Agha GA (1990) ACTORS—a model of concurrent computation in distributed systems. MIT Press
series in artificial intelligence. MIT Press, Cambridge

3. Armstrong J (2007) Erlang—software for a concurrent world. In: Ernst E (ed) ECOOP 2007—
Object-Oriented Programming, 21st European Conference, Berlin, Germany, July 30–August 3, 2007,
Proceedings, vol. 4609, p 1

4. Armstrong J (2010) Erlang. Commun ACM 53(9):68–75
5. Batko P (2014) A compiler for functional language with support for message passing. Master’s thesis,

Department of Computer Science, AGH University of Science and Technology, Krakow (in Polish)
6. Dijkstra EW (1965) Cooperating sequential processes, technical report EWD-123. Technical report

Eindhoven University of Technology
7. Hewitt C, Bishop P, Steiger R (1973) A universal modular ACTOR formalism for artificial intelligence.

In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73, pp 235–
245

8. Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis and transfor-
mation. In: Proceedings of the 2004 International Symposium on Code Generation and Optimization
(CGO’04), pp 75–88

9. Rycerz K, Bubak M (2016) Using Akka actors for managing iterations in multiscale applications. In:
Wyrzykowski R, Deelman E, Dongarra J, Karczewski K, Kitowski J, Wiatr K (eds) Proceedings of
the 11th International Conference on Parallel Processing and Applied Mathematics, PPAM 2015, pp
332–341. https://doi.org/10.1007/978-3-319-32149-3

10. Wyatt D (2013) Akka concurrency. Artima Incorporation, New York

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-32149-3

	Actor model of Anemone functional language
	Abstract
	1 Introduction
	2 Related work
	2.1 Actors in Erlang and Scala

	3 Actor model of Anemone
	4 Implementation of actors system
	4.1 Creating actor system
	4.2 Implementation of an actor and message passing
	4.3 Scheduling many actors in one system thread
	4.4 Pattern matching

	5 Experiments
	5.1 Efficiency tests of memory allocator and collector

	6 Conclusions
	Acknowledgements
	References

