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Abstract
We consider the problem of learning parameters of latent variable models from mixed (continuous and ordinal) data with
missing values. We propose a novel Bayesian Gaussian copula factor (BGCF) approach that is proven to be consistent when
the data are missing completely at random (MCAR) and that is empirically quite robust when the data are missing at random,
a less restrictive assumption than MCAR. In simulations, BGCF substantially outperforms two state-of-the-art alternative
approaches. An illustration on the ‘Holzinger & Swineford 1939’ dataset indicates that BGCF is favorable over the so-called
robust maximum likelihood.
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1 Introduction

In psychology, social sciences, and many other fields,
researchers are usually interested in “latent” variables that
cannot be measured directly, e.g., depression, anxiety, or
intelligence. To get a grip on these latent concepts, one com-
monly used strategy is to construct a measurement model
for such a latent variable, in the sense that domain experts
design multiple “items” or “questions” that are considered to
be indicators of the latent variable. For exploring evidence of
construct validity in theory-based instrument construction,
confirmatory factor analysis (CFA) has been widely stud-
ied (Jöreskog 1969; Castro et al. 2015; Li 2016). In CFA,
researchers start with several hypothesized latent variable
models that are then fitted to the data individually, afterwhich
the one that fits the data best is picked to explain the observed
phenomenon. In this process, the fundamental task is to learn
the parameters of a hypothesized model from observed data,
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which is the focus of this paper. For convenience, we simply
refer to these hypothesized latent variable models as CFA
models from now on.

The most common method for parameter estimation in
CFA models is maximum likelihood (ML), because of its
attractive statistical properties (consistency, asymptotic nor-
mality, and efficiency). The ML method, however, relies on
the assumption that observed variables follow a multivari-
ate normal distribution (Jöreskog 1969). When the normality
assumption is not deemed empirically tenable, ML may
not only reduce the accuracy of parameter estimates, but
may also yield misleading conclusions drawn from empir-
ical data (Li 2016). To this end, a robust version of ML
was introduced for CFAmodels when the normality assump-
tion is slightly or moderately violated (Kaplan 2008), but
still requires the observations to be continuous. In the real
world, the indicator data in questionnaires are usually mea-
sured on an ordinal scale (resulting in a bunch of ordered
categorical variables, or simply ordinal variables) (Poon
and Wang 2012), in which neither normality nor continu-
ity is plausible (Lubke and Muthén 2004). In this case, Item
Response Theory (IRT) models (Embretson and Reise 2013)
arewidely used, inwhich amathematical item response func-
tion is applied to link an item to its corresponding latent
trait. However, the likelihood of the observed ordinal ran-
dom vector does not have closed-form and is considerably
complex due to the presence a multi-dimensional integral,
so that learning the model given just the ordinal observa-
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tions is typically intractable especially when the number of
latent variables and the number of categories of the observed
variables are large. Another class of methods designed for
ordinal observations is the diagonally weighted least squares
(DWLS), which has been suggested to be superior to the
ML method and is usually considered to be preferable over
othermethods (Barendse et al. 2015;Li 2016).Various imple-
mentations of DWLS are available in popular softwares or
packages, e.g., LISREL (Jöreskog 2005), Mplus (Muthén
2010), lavaan (Rosseel 2012) and OpenMx (Boker et al.
2011)

However, there are two major issues that the existing
approaches do not consider. One is the mixture of continuous
and ordinal data. As we mentioned above, ordinal variables
are omnipresent in questionnaires, whereas sensor data are
usually continuous. Therefore, a more realistic case in real
applications is mixed continuous and ordinal data. A sec-
ond important issue concerns missing values. In practice,
all branches of experimental science are plagued by miss-
ing values (Little and Rubin 1987), e.g., failure of sensors,
or unwillingness to answer certain questions in a survey. A
straightforward idea in this case is to combinemissing values
techniques with existing parameter estimation approaches,
e.g., performing listwise-deletion or pairwise-deletion first
on the original data and then applying DWLS to learn param-
eters of a CFA model. However, such deletion methods are
only consistent when the data are missing completely at ran-
dom (MCAR), which is a rather strong assumption (Rubin
1976), and cannot transfer the sampling variability incurred
by missing values to follow-up studies. The two modern
missing data techniques, maximum likelihood and multi-
ple imputation, are valid under a less restrictive assumption,
missing at random (MAR) (Schafer and Graham 2002), but
they require the data to be multivariate normal.

Therefore, there is a strong demand for an approach that is
not only valid under MAR but also works for mixed contin-
uous and ordinal data. For this purpose, we propose a novel
BayesianGaussian copula factor (BGCF) approach, inwhich
a Gibbs sampler is used to draw pseudo Gaussian data in a
latent space restricted by the observed data (unrestricted if
that value is missing) and draw posterior samples of param-
eters given the pseudo data, iteratively. We prove that this
approach is consistent under MCAR and empirically show
that it works quite well under MAR.

The rest of this paper is organized as follows. Section 2
reviews background knowledge and related work. Section 3
gives the definition of a Gaussian copula factor model and
presents our novel inference procedure for this model. Sec-
tion 4 compares our BGCF approach with two alternative
approaches on simulated data, and Sect. 5 gives an illustra-
tion on the ‘Holzinger & Swineford 1939’ dataset. Section 6
concludes this paper and provides some discussion.

2 Background

This section reviews basic missingness mechanisms and
related work on parameter estimation in CFA models.

2.1 Missingness mechanism

Following Rubin (1976), let Y = (yi j ) ∈ R
n×p be a data

matrix with the rows representing independent samples, and
R = (ri j ) ∈ {0, 1}n×p be a matrix of indicators, where
ri j = 1 if yi j was observed and ri j = 0 otherwise. Y con-
sists of two parts, Yobs and Ymiss, representing observed and
missing elements in Y , respectively. When the missingness
does not depend on the data, i.e., P(R|Y , θ) = P(R|θ)

with θ denoting unknown parameters, the data are said to be
missing completely at random (MCAR), which is a special
case of a more realistic assumption calledmissing at random
(MAR). MAR allows the dependency between missingness
and observed values, i.e., P(R|Y , θ) = P(R|Yobs, θ). For
example, all people in a group are required to take a blood
pressure test at time point 1, while only those whose values
at time point 1 lie in the abnormal range need to take the test
at time point 2. This results in some missing values at time
point 2 that are MAR.

2.2 Parameter estimation in CFAmodels

When the observations follow a multivariate normal dis-
tribution, maximum likelihood (ML) is the mostly-used
method. It is equivalent to minimizing the discrepancy func-
tion FML (Jöreskog 1969):

FML = ln|Σ(θ)| + trace[SΣ−1(θ)] − ln|S|−p,

where θ is the vector of model parameters, Σ(θ) is the
model-implied covariance matrix, S is the sample covari-
ance matrix, and p is the number of observed variables in
the model. When the normality assumption is violated either
slightly or moderately, robust ML (MLR) offers an alterna-
tive. Here, parameter estimates are still obtained using the
asymptotically unbiased ML estimator, but standard errors
are statistically corrected to enhance the robustness of ML
against departures from normality (Kaplan 2008; Muthén
2010). Another method for continuous nonnormal data is
the so-called asymptotically distribution free method, which
is a weighted least squares (WLS) method using the inverse
of the asymptotic covariance matrix of the sample variances
and covariances as a weight matrix (Browne 1984).

When the observed data are on ordinal scales, Muthén
(1984) proposed a three-stage approach. It assumes that a
normal latent variable x∗ underlies an observed ordinal vari-
able x , i.e.,
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x = m, if τm−1 < x∗ < τm, (1)

where m (= 1, 2, . . . , c) denotes the observed values of x ,
τm are thresholds (−∞ = τ0 < τ1 < τ2 < · · · < τc =
+∞), and c is the number of categories. The thresholds and
polychoric correlations are estimated from the bivariate con-
tingency table in the first two stages (Olsson 1979; Jöreskog
2005). Parameter estimates and the associated standard errors
are then obtained by minimizing the weighted least squares
fit function FWLS:

FWLS = [s − σ(θ)]TW−1[s − σ(θ)],

where θ is the vector of model parameters, σ(θ) is the
model-implied vector containing the nonredundant vector-
ized elements of Σ(θ), s is the vector containing the
estimated polychoric correlations, and the weight matrix W
is the asymptotic covariance matrix of the polychoric corre-
lations. Amathematically simple form of theWLS estimator,
the unweighted least squares (ULS), arises when the matrix
W is replaced with the identity matrix I . Another variant of
WLS is the diagonally weighted least squares (DWLS), in
which only the diagonal elements of W are used in the fit
function (Muthén et al. 1997; Muthén 2010), i.e.,

FDWLS = [s − σ(θ)]TW−1
D [s − σ(θ)],

where W−1
D = diag(W) is the diagonal weight matrix. Var-

ious recent simulation studies have shown that DWLS is
favorable compared to WLS, ULS, as well as the ML-based
methods for ordinal data (Barendse et al. 2015; Li 2016).

3 Method

In this section, we introduce the Gaussian copula factor
model and propose a Bayesian inference procedure for this
model. Then, we theoretically analyze the identifiability and
prove the consistency of our procedure.

3.1 Gaussian copula factor model

Definition 1 (Gaussian copula factor model) Consider a
latent random (factor) vector η = (η1, . . . , ηk)

T, a response
random vector Z = (Z1, . . . , Z p)

T and an observed random
vector Y = (Y1, . . . ,Yp)

T, satisfying

η ∼ N (0,C), (2)

Z = Λη + ε, (3)

Y j = F−1
j

(
Φ

[
Z j/σ(Z j )

])
, ∀ j = 1, . . . , p, (4)

with C a correlation matrix over factors, Λ = (λi j ) a p × k
matrix of factor loadings (k ≤ p), ε ∼ N (0, D) residuals

Y1 Z1 Z5 Y5

η1 η3 Z6 Y6

Y2 Z2 Z7 Y7

Y3 Z3 η2 η4 Z8 Y8

Y4 Z4 Z9 Y9

Fig. 1 Gaussian copula factor model

with D = diag(σ 2
1 , . . . , σ 2

p), σ(Z j ) the standard deviation
of Z j ,Φ(·) the cumulative distribution function (CDF) of the
standard Gaussian, and Fj

−1(t) = inf{x : Fj (x) ≥ t} the
pseudo-inverse of a CDF Fj (·). Then, this model is called a
Gaussian copula factor model.

The model is also defined in Murray et al. (2013), but the
authors restrict the factors to be independent of each other
whilewe allow for their interactions.Ourmodel is a combina-
tion of a Gaussian factor model (from η to Z) and a Gaussian
copula model (from Z to Y ). The factor model allows us to
grasp the latent concepts that are measured by multiple indi-
cators. The copula model provides a good way to conduct
multivariate data analysis for two reasons. First, it raises the
theoretical framework in whichmultivariate associations can
bemodeled separately from the univariate distributions of the
observed variables (Nelsen 2007). Especially, when we use a
Gaussian copula, the multivariate associations are uniquely
determined by the covariance matrix because of the ellipti-
cally symmetric joint density, which makes the dependency
analysis very simple. Second, the use of copulas is advocated
to model multivariate distributions involving diverse types
of variables, say binary, ordinal, and continuous (Dobra and
Lenkoski 2011). A variable Y j that takes a finite number
of ordinal values {1, 2, . . . , c} with c ≥ 2, is incorporated
into our model by introducing a latent Gaussian variable Z j ,
which complieswith thewell-knownstandard assumption for
an ordinal variable (Muthén 1984) (seeEq. 1). Figure 1 shows
an example of the model. Note that we allow the special case
of a factor having a single indicator, e.g., η1 → Z1 → Y1,
because this allows us to incorporate other (explicit) variables
(such as age and income) into our model. In this special case,
we set λ11 = 1 and ε1 = 0, thus Y1 = F−1

1 (Φ[η1]).
In the typical design for questionnaires, one tries to get

a grip on a latent concept through a particular set of well-
designed questions (Martínez-Torres 2006; Byrne 2013),
which implies that a factor (latent concept) in our model is
connected to multiple indicators (questions) while an indica-
tor is only used to measure a single factor, as shown in Fig. 1.
This kind of measurement model is called a pure measure-
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ment model (Definition 8 in Silva et al. (2006)). Throughout
this paper, we assume that all measurement models are pure,
which indicates that there is only a single non-zero entry
in each row of the factor loadings matrix Λ. This inductive
bias about the sparsity pattern of Λ is fully motivated by the
typical design of a measurement model.

In what follows, we transform the Gaussian copula factor
model into an equivalent model that is used for inference
in the next subsection. We consider an integrated (p + k)-
dimensional random vector X = (ZT, ηT)T, which is still
multivariate Gaussian, and obtain its covariance matrix

Σ =
[
ΛCΛT + D ΛC

CΛT C

]
, (5)

and precision matrix

Ω = Σ−1 =
[

D−1 −D−1Λ

−ΛTD−1 C−1 + ΛTD−1Λ

]
. (6)

Since D is diagonal andΛ only has one non-zero entry per
row, Ω contains many intrinsic zeros. The sparsity pattern
of such Ω = (ωi j ) can be represented by an undirected
graph G = (V , E), where (i, j) /∈ E whenever ωi j = 0 by
construction. Then, a Gaussian copula factor model can be
transformed into an equivalent model controlled by a single
precision matrix Ω , which in turn is constrained by G, i.e.,
P(X|C,Λ, D) = P(X|ΩG).

Definition 2 (G-Wishart distribution) Given an undirected
graph G = (V , E), a zero-constrained random matrix Ω

has a G-Wishart distribution, if its density function is

p(Ω|G) = |Ω|(ν−2)/2

IG(ν, Ψ )
exp

[
− 1

2
trace(Ψ Ω)

]
1Ω∈M+(G),

with M+(G) the space of symmetric positive definite matri-
ceswith off-diagonal elementsωi j = 0whenever (i, j) /∈ E,
ν the number of degrees of freedom, Ψ a scale matrix,
IG(ν, Ψ ) the normalizing constant, and 1 the indicator func-
tion (Roverato 2002).

TheG-Wishart distribution is the conjugate prior of preci-
sion matrices Ω that are constrained by a graph G (Roverato
2002). That is, given the G-Wishart prior, i.e., P(Ω|G) =
WG(ν0, Ψ0) and data X = (x1, . . . , xn)T drawn from
N (0,Ω−1), the posterior for Ω is another G-Wishart dis-
tribution:

P(Ω|G, X) = WG(ν0 + n, Ψ0 + XTX). (7)

When the graph G is fully connected, the G-Wishart dis-
tribution reduces to a Wishart distribution (Murphy 2007).
Placing a G-Wishart prior on Ω is equivalent to placing an

inverse-Wishart on C , a product of multivariate normals on
Λ, and an inverse-gamma on the diagonal elements of D.
With a diagonal scale matrix Ψ0 and the number of degrees
of freedom ν0 equal to the dimension of X plus one, the
implied marginal densities between any pair of variables are
uniformly distributed between [−1, 1] (Barnard et al. 2000).

3.2 Inference for Gaussian copula factor model

We first introduce the inference procedure for complete
mixeddata and incompleteGaussian data, respectively, based
on which the procedure for mixed data with missing values
is then derived. From this point on, we use S to denote the
correlation matrix over the response vector Z.

3.2.1 Mixed data without missing values

For a Gaussian copula model, Hoff (2007) proposed a
likelihood that only concerns the ranks among observa-
tions, which is derived as follows. Since the transfor-
mation Y j = F−1

j

(
Φ

[
Z j

])
is non-decreasing, observing

y j = (y1, j , . . . , yn, j )
T implies a partial ordering on z j =

(z1, j , . . . , zn, j )
T, i.e., z j lies in the space restricted by y j :

D( y j ) = {
z j ∈ R

n : yi, j < yk, j ⇒ zi, j < zk, j
}
.

Therefore, observing Y suggests that Z must be in

D(Y) = {Z ∈ R
n×p : z j ∈ D( y j ),∀ j = 1, . . . , p}.

Taking the occurrence of this event as the data, one can com-
pute the following likelihood Hoff (2007)

P(Z ∈ D(Y)|S, F1, . . . , Fp) = P(Z ∈ D(Y)|S).

Following the same argumentation, the likelihood in our
Gaussian copula factor model reads

P(Z ∈ D(Y)|η,Ω, F1, . . . , Fp) = P(Z ∈ D(Y)|η,Ω),

which is independent of the margins Fj .
For the Gaussian copula factor model, inference for the

precision matrix Ω of the vector X = (ZT, ηT)T can now
proceed via construction of aMarkov chain having its station-
ary distribution equal to P(Z, η,Ω|Z ∈ D(Y),G), where
we ignore the values for η and Z in our samples. The prior
graph G is uniquely determined by the sparsity pattern of
the loading matrix Λ = (λi j ) and the residual matrix D (see
Eq. 6), which in turn is uniquely decided by the pure mea-
surement models. The Markov chain can be constructed by
iterating the following three steps:
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1. Sample Z: Z ∼ P(Z|η, Z ∈ D(Y),Ω);
Since each coordinate Z j directly depends on only one
factor, i.e., ηq such that λ jq �= 0, we can sample each
of them independently through Z j ∼ P(Z j |ηq , z j ∈
D( y j ),Ω).

2. Sample η: η ∼ P(η|Z,Ω);
3. Sample Ω: Ω ∼ P(Ω|Z, η,G).

3.2.2 Gaussian data with missing values

Suppose that we have Gaussian data Z consisting of two
parts, Zobs and Zmiss, denoting observed and missing values
in Z, respectively. The inference for the correlation matrix of
Z in this case can be done via the so-called data augmentation
technique that is also aMarkov chainMonte Carlo procedure
and has been proven to be consistent under MAR (Schafer
1997). This approach iterates the following two steps to
impute missing values (Step 1) and draw correlation matrix
samples from the posterior (Step 2):

1. Zmiss ∼ P(Zmiss|Zobs, S) ;
2. S ∼ P(S|Zobs, Zmiss).

3.2.3 Mixed data with missing values

For the most general case of mixed data with missing values,
we combine the procedures of Sects. 3.2.1 and 3.2.2 into the
following four-step inference procedure:

1. Zobs ∼ P(Zobs|η, Zobs ∈ D(Yobs),Ω);
2. Zmiss ∼ P(Zmiss|η, Zobs,Ω);
3. η ∼ P(η|Zobs, Zmiss,Ω);
4. Ω ∼ P(Ω|Zobs, Zmiss, η,G).

A Gibbs sampler that achieves this Markov chain is sum-
marized in Algorithm 1 and implemented in R.1 Note that
we put Step 1 and Step 2 together in the actual implemen-
tation since they share some common computations (lines
2–4). The difference between the two steps is that the values
in Step 1 are drawn from a space restricted by the observed
data (lines 5–13), while the values in Step 2 are drawn from
an unrestricted space (lines 14–17). Another important point
is that we need to relocate the data such that the mean of
each coordinate of Z is zero (line 20). This is necessary for
the algorithm to be sound because the mean may shift when
missing values depend on the observed data (MAR).

By iterating the steps in Algorithm 1, we can draw corre-
lation matrix samples over the integrated random vector X ,
denoted by {Σ(1), . . . , Σ(m)}. The mean over all the samples
is a natural estimate of the true Σ , i.e.,

1 The code including those used in simulations and real-world applica-
tions is provided in https://github.com/cuiruifei/CopulaFactorModel.

Algorithm 1 Gibbs sampler for Gaussian copula factor
model with missing values
Require: Prior graph G, observed data Y .

# Step 1 and Step 2:
1: for j ∈ {1, . . . , p} do
2: q = factor index of Z j
3: a = Σ[ j,q+p]/Σ[q+p,q+p]
4: σ 2

j = Σ[ j, j] − a × Σ[q+p, j]
# Step 1: Zobs ∼ P(Zobs|η, Zobs ∈ D(Yobs),Ω)

5: for y ∈ unique{y1, j , . . . , yn, j } do
6: zl = max{zi, j : yi, j < y}
7: zu = min{zi, j : y < yi, j }
8: for i such that yi, j = y do
9: μi, j = η[i,q] × a

10: ui, j ∼ U
(
Φ

[ zl−μi, j
σ j

]
, Φ

[ zu−μi, j
σ j

])

11: zi, j = μi, j + σ j × Φ−1(ui, j )
12: end for
13: end for

# Step 2: Zmiss ∼ P(Zmiss|η, Zobs,Ω)

14: for i such that yi, j ∈ Ymiss do
15: μi, j = η[i,q] × a

16: zi, j ∼ N (μi, j , σ
2
j )

17: end for
18: end for
19: Z = (Zobs, Zmiss)

20: Z = (ZT − μ)T, with μ the mean vector of Z
# Step 3: η ∼ P(η|Z,Ω)

21: A = Σ[η,Z]Σ−1
[Z,Z]

22: B = Σ[η,η] − AΣ[Z,η]
23: for i ∈ {1, . . . , n} do
24: μi = (Z[i,:]AT)T

25: η[i,:] ∼ N (μi , B)

26: end for
27: η[:, j] = η[:, j] × sign(Cov[η[:, j], Z[:, f ( j)]]), ∀ j , where f ( j) is the

index of the first indicator of η j .
# Step 4: Ω ∼ P(Ω|Z, η,G)

28: X = (Z, η)

29: Ω ∼ WG(ν0 + n, Ψ0 + XTX)

30: Σ = Ω−1

31: Σi j = Σi j/
√

Σi iΣ j j ,∀i, j

Σ̂ = 1

m

m∑

i=1

Σ(i). (8)

Based on Eqs. (5) and (8), we obtain estimates of the param-
eters of interests:

Ĉ = Σ̂[η,η];
Λ̂ = Σ̂[Z,η]Ĉ−1 ;
D̂ = Ŝ − Λ̂ĈΛ̂T, with Ŝ = Σ̂[Z,Z]. (9)

We refer to this procedure as a Bayesian Gaussian copula
factor approach (BGCF).

3.2.4 Discussion on prior specification

For the default choice of the prior G-Wishart distribution,
we set the degrees of freedom ν0 = dim(X) + 1 and the

123

https://github.com/cuiruifei/CopulaFactorModel


982 Statistics and Computing (2019) 29:977–993

scale matrix Ψ0 = ε1 in the limit ε ↓ 0, where dim(X)

is the dimension of the integrated random vector X and 1

is the identity matrix. This specification results in a non-
informative prior, in the sense that the posterior only depends
on the data and the prior is ignorable. We recall Eq. (7) and
take the posterior expectation as an example. The expectation
of the covariance matrix is

E (Σ) = E (Ω−1) = Ψ0 + XTX
ν0 + n − dim(X) − 1

= Ψ0 + XTX
n

,

which reduces to the maximum likelihood estimate in the
limit ε ↓ 0. In the actual implementation, we simply set
Ψ0 = 1, which is accurate enough when the sample size is
not too small. In the case of a very small data size, it is needed
to make Ψ0 smaller than the identity matrix.

To incorporate prior knowledge into the inference pro-
cedure, our model enjoys some flexibility. As mentioned
in Sect. 3.1, placing a G-Wishart prior on Ω is equiv-
alent to placing an inverse-Wishart on C , a product of
multivariate normals on Λ, and an inverse-gamma on the
diagonal elements of D. Therefore, one could choose one’s
favorite informative priors on C , Λ, and D separately, and
then derive the resulting G-Wishart prior on Ω . While the
inverse-Wishart and inverse-gamma distributions have been
criticized as unreliable when the variances are close to
zero (Schuurman et al. 2016), our model does not suffer
from this issue. This is because in our model the response
variables (i.e., the Z variables) depend only on the ranks of
the observed data, and in our sampling process we always set
the variances of the response variables and latent variables
to one, which is scale-invariant to the observed data.

One limitation of the current inference procedure is that
one has to choose the prior on C from the inverse-Wishart
family, on Λ from the normal family, and on D from the
inverse-gamma family in order to keep the conjugacy, so
that one can enjoy the fast and concise inference. When the
prior is chosen from other families, sampling Ω from the
posterior distribution (Step 4 in Algorithm 1) is no longer
straightforward. In this case, a different strategy like the
Metropolis-Hastings algorithm might be needed to imple-
ment our Step 4.

3.3 Theoretical analysis

3.3.1 Identifiability of C

Without additional constraints,C is non-identifiable (Ander-
son and Rubin 1956). More precisely, given a decomposable
matrix S = ΛCΛT + D, we can always replace Λ with ΛU
and C with U−1CU−T to obtain an equivalent decompo-
sition S = (ΛU )(U−1CU−T )(UTΛT) + D, where U is a

k × k invertible matrix. Since Λ only has one non-zero entry
per row in our model, U can only be diagonal to ensure that
ΛU has the same sparsity pattern as Λ (see Lemma 1 in
“Appendix”). Thus, from the same S, we get a class of solu-
tions for C , i.e., U−1CU−1, where U can be any invertible
diagonal matrix. In order to get a unique solution for C , we
impose two sufficient identifying conditions: 1) restrict C to
be a correlation matrix; 2) force the first non-zero entry in
each column ofΛ to be positive. See Lemma 2 in “Appendix”
for proof. Condition 1 is implemented via line 31 in Algo-
rithm 1. As for the second condition, we force the covariance
between a factor and its first indicator to be positive (line 27),
which is equivalent to Condition 2. Note that these conditions
are not unique; one could choose one’s favorite conditions to
identify C , e.g., setting the first loading to 1 for each factor.
The reason for our choice of conditions is to keep it consistent
with our model definition where C is a correlation matrix.

3.3.2 Identifiability of3 and D

Under the two conditions for identifying C , factor loadings
Λ and residual variances D are also identified except for the
case in which there exists one factor that is independent of all
the others and this factor only has two indicators. For such
a factor, we have 4 free parameters (2 loadings, 2 residu-
als) while we only have 3 available equations (2 variances,
1 covariance), which yields an underdetermined system. See
Lemmas 3 and 4 in “Appendix” for detailed analysis. Once
this happens, one could put additional constraints to guaran-
tee a unique solution, e.g., by setting the variance of the first
residual to zero. However, we would recommend to leave
such an independent factor out (especially in association
analysis) or study it separately from the other factors.

Under sufficient conditions for identifying C , Λ, and D,
our BGCF approach is consistent even with MCAR missing
values. This is shown in Theorem 1, whose proof is provided
in “Appendix”.

Theorem 1 (Consistency of the BGCF approach) Let Yn =
( y1, . . . , yn)

T be independent observations drawn from a
Gaussian copula factor model. If Yn is complete (no missing
data) or contains missing values that are missing completely
at random, then

lim
n→∞ P

(
Ĉn = C0

) = 1,

lim
n→∞ P

(
Λ̂n = Λ0

) = 1,

lim
n→∞ P

(
D̂n = D0

) = 1,

where Ĉn, Λ̂n, and D̂n are parameters learned by BGCF,
while C0, Λ0, and D0 are the true ones.
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4 Simulation study

In this section, we compare our BGCF approach with alter-
native approaches via simulations.

4.1 Setup

4.1.1 Model specification

Following typical simulation studies on CFA models in the
literature (Yang-Wallentin et al. 2010; Li 2016), we con-
sider a correlated 4-factor model in our study. Each factor
is measured by 4 indicators, since Marsh et al. (1998) con-
cluded that the accuracy of parameter estimates appeared to
be optimal when the number of indicators per factor was four
andmarginally improved as the number increased. The inter-
factor correlations (off-diagonal elements of the correlation
matrix C over factors) are randomly drawn from [0.2, 0.4],
which is considered a reasonable and empirical range in the
applied literature (Li 2016). For the ease of reproducibility,
we construct our C as follows.

set.seed(12345)
C <- matrix(runif(4^2, 0.2, 0.4), ncol=4)
C <- (C*lower.tri(C)) + t(C*lower.tri(C))
diag(C) <- 1

In the majority of empirical research and simulation stud-
ies (DiStefano 2002), reported standardized factor loadings
range from 0.4 to 0.9. For facilitating interpretability and
again reproducibility, each factor loading is set to 0.7. Each
corresponding residual variance is then automatically set to
0.51 under a standardized solution in the population model,
as done in Li (2016).

4.1.2 Data generation

Given the specified model, one can generate data in the
response space (the Z in Definition 1) via Eqs. (2) and (3).
When the observed data (theY inDefinition 1) are ordinal,we
discretize the correspondingmargins into the desired number
of categories. When the observed data are nonparanormal,
we set the Fj (·) in Eq. (4) to the CDF of a χ2-distribution
with degrees of freedom df. The reason for choosing a χ2-
distribution is that we can easily use df to control the extent
of non-normality: a higher df implies a distribution closer to
a Gaussian. To fill in a certain percentage β of missing values
(we only consider MAR), we follow the procedure in Kolar
and Xing (2012), i.e., for j = 1, . . . , 
p/2�, i = 1, . . . , n:
yi,2∗ j is missing if zi,2∗ j−1 < Φ−1(2 ∗ β).

4.1.3 Evaluation metrics

We use average relative bias (ARB) and root mean squared
error (RMSE) to examine the parameter estimates, which are

defined as

ARB = 1

r

r∑

i=1

θ̂i − θi

θi
, RMSE =

√√√√1

r

r∑

i=1

(θ̂i − θi )2,

where θ̂i and θi represent the estimated and true values,
respectively. An ARB value less than 5% is interpreted as
a trivial bias, between 5 and 10% as a moderate bias, and
greater than 10% as a substantial bias (Curran et al. 1996).
Note that ARB describes an overall picture of average bias,
that is, summing up bias in a positive and a negative direction
together. A smaller absolute value of ARB indicates better
performance on average.

4.2 Ordinal data without missing values

In this subsection, we consider ordinal complete data since
thismatches the assumptions of the diagonallyweighted least
squares (DWLS) method, in which we set the number of
ordinal categories to be 4. We also incorporate the robust
maximum likelihood (MLR) as an alternative approach,
which was shown to be empirically tenable when the number
of categories is more than 5 (Rhemtulla et al. 2012; Li 2016).
See Sect. 2 for details of the two approaches.

Before conducting comparisons, we first check the con-
vergence property of the Gibbs sampler used in our BGCF
approach. We randomly generate a dataset of sample size
n = 500. With this dataset, we run our Gibbs sampler five
times independently (with different starting values), in which
we collect 2000 successive samples for each chain. Table 1
shows the Potential Scale Reduction Factor (PSRF) (Gelman
and Rubin 1992) with 95% upper confidence limit (within
the parentheses) of the 6 interfactor correlations and 16 fac-
tor loadings over the 5 chains. From Table 1, we see quite a
good convergence of the Gibbs sampler. Figure 2 shows the
RMSE of estimated interfactor correlations (left panel) and
factor loadings (right panel) over the first 100 iterations for
the first chain. We see that the sampler converges very fast,
in which the burn-in period is only around 10. More experi-
ments done for different numbers of categories and different
random datasets show that the burn-in is less than 20 on the
whole across various conditions. Figure 3 shows the autocor-
relation function ofGibbs samples in the first chain,wherewe
randomly select 3 interfactor correlations and 3 factor load-
ings, respectively. We see that the autocorrelations almost
disappear with a lag of 10. Based on these results, in our fol-
lowing simulations, we just run one chain, in which we set
the burn-in to 50, thin the chain with step-size 10, and collect
100 independent Gibbs samples.2

2 Note that the parameter values used here to specify the Gibbs sam-
pler are based on some empirical results. These values can be treated
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Table 1 Potential Scale Reduction Factor (PSRF) with 95% upper con-
fidence limit of the 6 interfactor correlations and 16 factor loadings over
5 chains

PSRF PSRF PSRF

C12 1.00 (1.00) λ1 1.01 (1.02) λ9 1.01 (1.02)

C13 1.00 (1.01) λ2 1.00 (1.01) λ10 1.00 (1.01)

C14 1.00 (1.01) λ3 1.01 (1.02) λ11 1.00 (1.00)

C23 1.00 (1.01) λ4 1.00 (1.00) λ12 1.00 (1.00)

C24 1.00 (1.01) λ5 1.00 (1.00) λ13 1.00 (1.01)

C34 1.00 (1.00) λ6 1.01 (1.03) λ14 1.02 (1.05)

λ7 1.02 (1.06) λ15 1.00 (1.00)

λ8 1.01 (1.03) λ16 1.01 (1.02)

Fig. 2 Convergence property of our Gibbs sampler over 100 iterations.
Left panel: RMSE of interfactor correlations; Right panel: RMSE of
factor loadings
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Fig. 3 Autocorrelation function (ACF) of Gibbs samples for a ran-
domly select three out of six interfactor correlations, and b randomly
select three out of sixteen factor loadings

Now we evaluate the three involved approaches. Figure 4
shows the performance of BGCF, DWLS, and MLR over
different sample sizes n ∈ {100, 200, 500, 1000}, providing

Footnote 2 continued
as default choice, but we recommend to retest the convergence for a
specific real-world problem and make the best choice. If this is difficult
to do, one could just choose a larger value than the current one to stay
in a safe condition since the larger the better for all these parameters.

(a) Interfactor Correlations

(b) Factor Loadings

Fig. 4 Results obtained by the Bayesian Gaussian copula factor
(BGCF) approach, the diagonally weighted least squares (DWLS), and
the robust maximum likelihood (MLR) on complete ordinal data (4 cat-
egories) over different sample sizes, showing the mean of ARB (left
panel) and the mean of RMSE with 95% confidence interval (right
panel) over 100 experiments for a interfactor correlations and b factor
loadings, where dashed lines and dotted lines in left panels denote± 5%
and ± 10% bias, respectively

the mean of ARB (left panel) and the mean of RMSE with
95% confidence interval (right panel) over 100 experiments.
From Fig. 4a, interfactor correlations are, on average, triv-
ially biased (within twodashed lines) for all the threemethods
that in turn give indistinguishable RMSE regardless of sam-
ple sizes. From Fig. 4b, MLRmoderately underestimates the
factor loadings and performs worse than DWLSw.r.t. RMSE
especially for a larger sample size, which confirms the con-
clusion in previous studies (Barendse et al. 2015; Li 2016).

4.3 Mixed data withmissing values

In this subsection, we consider mixed nonparanormal and
ordinal data with missing values, since some latent variables
in real-world applications are measured by sensors that usu-
ally produce continuous but not necessarily Gaussian data.
The 8 indicators of the first 2 factors (4 per factor) are trans-
formed into a χ2-distribution with d f = 8, which yields a
slightly nonnormal distribution (skewness is 1, excess kurto-
sis is 1.5) (Li 2016). The 8 indicators of the last 2 factors are
discretized into ordinal with 4 categories.

One alternative approach in such cases is DWLS with
pairwise-deletion (DWLS + PD), in which heterogeneous
correlations (Pearson correlations between numeric vari-
ables, polyserial correlations between numeric and ordi-
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Fig. 5 Results for n = 500 obtained by BGCF, DWLS+ PD (pairwise
deletion), DWLS + MI (multiple imputation), and the full information
maximum likelihood (FIML) on mixed nonparanormal (df = 8) and
ordinal (4 categories) data with different percentages of missing values,
for the same experiments as in Fig. 4

nal variables, and polychoric correlations between ordinal
variables) are first computed based on pairwise complete
observations, and then DWLS is used to estimate model
parameters.A second alternative concernsDWLSwithmulti-
ple imputation (DWLS+MI), where we choose 20 imputed
datasets for the follow-up study.3 Specifically, we use the
R package mice (Buuren and Groothuis-Oudshoorn 2010),
in which the default imputation method “predictive mean
matching” is applied. A third alternative is the full informa-
tion maximum likelihood (FIML) (Arbuckle 1996; Rosseel
2012), which first applies an EMalgorithm to imputemissing
values and then uses MLR to learn model parameters.

Figure 5 shows the performance of BGCF, DWLS + PD,
DWLS+MI, and FIML for n = 500 over different percent-
ages of missing values β ∈ {0%, 10%, 20%, 30%}. First,
despite a good performance with complete data (β = 0%)
DWLS + PD deteriorates significantly with an increasing
percent of missing values especially for factor loadings.
DWLS+MIworks better thanDWLS+PD, but still does not
perform well when there are more missing values. Second,
our BGCF approach overall outperforms FIML: indistin-
guishable for interfactor correlations but better for factor
loadings.

Two more experiments are provided in “Appendix”. One
concerns incomplete ordinal data with different numbers of

3 The overall recommendations are to use 20 imputations to have proper
estimated coefficients, and use 100 imputations to have proper estimated
coefficients and standard errors.

categories, showing that BGCF is favorable over the alter-
natives for learning factor loadings. Another one considers
incomplete nonparanormal data with different extents of
deviation from a Gaussian, which indicates that FIML is
rather sensitive to the deviation and only performs well for
a slightly nonnormal distribution, while the deviation has
no influence on BGCF at all. See “Appendix” for more
details.

5 Application to real-world data

In this section, we illustrate our approach on the ‘Holzinger
& Swineford 1939’ dataset (Holzinger and Swineford 1939),
a classic dataset widely used in the literature and publicly
available in the R package lavaan (Rosseel 2012). The data
consists ofmental ability test scores of 301 students, inwhich
we focus on 9 out of the original 26 tests as done in Rosseel
(2012). A latent variable model that is often proposed to
explore these 9 variables is a correlated 3-factormodel shown
inFig. 6,wherewe rename the observed variables to “Y1,Y2,
…, Y9” for simplicity in visualization and to keep it identical
to our definition of observed variables (Definition 1). The
interpretation of these variables is given in the following list.

– Y1: Visual perception;
– Y2: Cubes;
– Y3: Lozenges;
– Y4: Paragraph comprehension;
– Y5: Sentence completion;
– Y6: Word meaning;
– Y7: Speeded addition;
– Y8: Speeded counting of dots;
– Y9: Speeded discrimination straight and curved capitals.

The summary of the 9 variables in this dataset is provided
in Table 2, showing the number of unique values, skewness,
and (excess) kurtosis for each variable (this dataset contains
no missing values). From the column of unique values, we
notice that the data are approximately continuous. The aver-
age of ‘absolute skewness’ and ‘absolute excess kurtosis’
over the 9 variables are around 0.40 and 0.54, respectively,
which is considered to be slightly nonnormal (Li 2016).
Therefore, we chooseMLR as the alternative to be compared
with our BGCF approach, since these conditions match the
assumptions of MLR.

We run our Bayesian Gaussian copula factor approach on
this dataset. The learned parameter estimates are shown in
Fig. 6, in which interfactor correlations are on the bidirected
edges, factor loadings are in the directed edges, and unique
variance for each variable is around the self-referring arrows.
The parameters learned by the MLR approach are not shown
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Fig. 6 Path diagram for the
Holzinger & Swineford data, in
which latent variables are in
ovals while observed variables
are in squares, bidirected edges
between latent variables denote
correlation coefficients
(interfactor correlations),
directed edges denote factor
loadings, and self-referring
arrows denote residual variance,
respectively. The edge weights
in the graph are the model
parameters learned by our
BGCF approach

Y1

0.42

Y2

0.83

Y3

0.68

Y4 0.29

visual

0.76 0.41 0.57

0.44

0.47

textual

0.84

0.87

0.84

0.28

Y5 0.25

Y70.67 Y6 0.30

Y80.48 speed

0.58

0.72

0.66

Y90.57

Table 2 The number of unique values, skewness, and (excess) kurtosis
of each variable in the ‘HolzingerSwineford1939’ dataset

Variables Unique values Skewness Kurtosis

Y1 35 − 0.26 0.33

Y2 25 0.47 0.35

Y3 35 0.39 − 0.89

Y4 20 0.27 0.10

Y5 25 − 0.35 − 0.54

Y6 40 0.86 0.84

Y7 97 0.25 − 0.29

Y8 84 0.53 1.20

Y9 129 0.20 0.31

here, since we do not know the ground truth so that it is hard
to conduct a comparison between the two approaches.

In order to compare the BGCF approach with MLR quan-
titatively, we consider answering the question: “What is the
value of Y j when we observe the values of the other vari-
ables, denoted by Y \ j , given the population model structure
in Fig. 6?”

This is a regression problem but with additional con-
straints to obey the population model structure. The differ-
ence from a traditional regression problem is that we should
learn the regression coefficients from the model-implied
covariance matrix rather than the sample covariance matrix
over observed variables.

– For MLR, we first learn the model parameters on the
training set, from which we extract the linear regression
intercept and coefficients of Y j on Y \ j . Then, we predict
the value of Y j based on the values of Y \ j . See Algo-
rithm 2 for pseudo code of this procedure.

– For BGCF, we first estimate the correlation matrix Ŝ
over response variables (the Z in Definition 1) and the
empirical CDF F̂j of Y j on the training set. Then we
draw latent Gaussian data Z j given Ŝ and Y \ j , i.e.,
P(Z j |Ŝ, Z\ j ∈ D(Y \ j )). Lastly, we obtain the value
of Y j from Z j via F̂j , i.e., Y j = F̂−1

j

(
Φ[Z j ]

)
. See Algo-

rithm 3 for pseudo code of this procedure. Note that we
iterate the prediction stage (lines 7–8) for multiple times
in the actual implementation to get multiple solutions
to Y (new)

j , then the average over these solutions is taken

as the final predicted value of Y (new)
j . This idea is quite

similar to multiple imputation.

Algorithm 2 Pseudo code of MLR for regression.

1: Input: Y (train) and Y (new)
\ j .

2: Output: Y (new)
j .

3: Training Stage:
4: Fit the model using MLR on Y (train);
5: Extract the model-implied covariance matrix from the fitted model,

denoted by Ŝ;
6: Extract regression coefficients b of Y j on Y \ j from Ŝ, that is, b =

Ŝ−1
[\ j,\ j] Ŝ[\ j, j];

7: Obtain the regression intercept b0, that is,
b0 = E (Y (train)

j ) − b · E (Y (train)
\ j ).

8: Prediction Stage:
9: Y (new)

j = b0 + b · Y (new)
\ j .

The mean squared error (MSE) is used to evaluate the pre-
diction accuracy, where we repeat a tenfold cross validation
for 10 times (thus 100 MSE estimates totally). Also, we take
Y j as the outcome variable alternately while treating the oth-
ers as predictors (thus 9 tasks totally). Figure 7 provides the
results of BGCF and MLR for all the 9 tasks, showing the
mean of MSE with a standard error represented by error bars
over the 100 estimates.We see that BGCF outperformsMLR
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Fig. 7 MSE obtained by BGCF
and MLR when we take each Y j
as outcome variable (the others
as predictors) alternately,
showing the mean over 100
experiments (10 times tenfold
cross validation) with error bars
representing a standard error

Algorithm 3 Pseudo code of BGCF for regression.

1: Input: Y (train) and Y (new)
\ j .

2: Output: Y (new)
j .

3: Training Stage:
4: Apply BGCF to learn the correlationmatrix over response variables,

i.e., Ŝ = Σ̂[Z,Z];
5: Learn the empirical cumulative distribution function of Y j , denoted

by F̂j .
6: Prediction Stage:
7: Sample Z (new)

j from P(Z (new)
j |Ŝ, Z\ j ∈ D(Y \ j ));

8: Obtain Y (new)
j , i.e., Y (new)

j = F̂−1
j

(
Φ[Z (new)

j ]).

for Tasks 5 and 6 although they perform indistinguishably for
the other tasks. The advantage of BGCF overMLR is encour-
aging, considering that the experimental conditions match
the assumptions of MLR. More experiments are done (not
shown) after we make the data moderately or substantially
nonnormal, suggesting that BGCF is significantly favorable
to MLR, as expected.

6 Summary and discussion

In this paper, we proposed a novel Bayesian Gaussian cop-
ula factor (BGCF) approach for learning parameters of CFA
models that can handle mixed continuous and ordinal data
with missing values. We analyzed the separate identifiability
of interfactor correlations C , factor loadings Λ, and residual
variances D, since different researchers may care about dif-
ferent parameters. For instance, it is sufficient to identify C
for researchers interested in learning causal relations among
latent variables (Silva and Scheines 2006; Silva et al. 2006;
Cui et al. 2016), with no need to worry about additional con-
ditions to identify Λ and D. Under sufficient identification
conditions, we proved that our approach is consistent for
MCAR data and empirically showed that it works quite well
for MAR data.

In the experiments, our approach outperformsDWLSeven
under the assumptions of DWLS. Apparently, the approxi-
mations inherent in DWLS, such as the use of the polychoric

correlation and its asymptotic covariance, incur a small loss
in accuracy compared to an integral approach like the BGCF.
When the data follow from a more complicated distribution
and contain missing values, the advantage of BGCF over its
competitors becomes more prominent. Another highlight of
our approach is that the Gibbs sampler converges quite fast,
where the burn-in period is rather short. To further reduce
the time complexity, a potential optimization of the sampling
process is available (Kalaitzis and Silva 2013).

There are various generalizations to our inference
approach. While our focus in this paper is on the correlated
k-factor models, it is straightforward to extent the current
procedure to other class of latent models that are often con-
sidered in CFA, such as bi-factor models and second-order
models, by simply adjusting the sparsity structure of the prior
graph G.

Also, one may consider models with impure measure-
ment indicators, e.g., a model with an indicator measuring
multiple factors (cross-loadings) or a model with resid-
ual covariances (Bollen 1989), which can be easily solved
with BGCF by changing the sparsity pattern of Λ and D.
However, two critical issues might arise in this case: the non-
identification problems due to a large number of parameters
and the slow convergence problem of MCMC algorithms
because of dependencies in D. The first issue can be
solved by introducing strongly-informative priors (Muthén
and Asparouhov 2012), e.g., putting small-variance priors
on all cross-loadings. The caveat here is that one needs to
choose such priors very carefully to reach a good balance
between incorporating correct information and avoiding non-
identification. See Muthén and Asparouhov (2012) for more
details about the choice of priors on cross-loadings and cor-
related residuals. Once having the priors on C , Λ, and D,
one can derive the prior on Ω . The second issue can be alle-
viated via the parameter expansion technique (Ghosh and
Dunson 2009; Merkle and Rosseel 2018), in which the resid-
ual covariance matrix is decomposed into a couple of simple
components through some phantom latent variables, result-
ing in an equivalent model called a working model. Then,
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our inference procedure can proceed based on the working
model.

It is possible to extend the current approach to multiple
groups to accommodate cross-national research or by incor-
porating a multilevel structure, although this is not quite
straightforward. Then, one might not be able to draw the
precision matrix directly from a G-Wishart (Step 4 in Algo-
rithm 1) since different groups may have different C and
D while they share the same Λ. However, this step can be
implemented by drawing C , Λ, and D separately.

Another line of future work is to analyze standard errors
and confidence intervals while this paper concentrates on
the accuracy of parameter estimates. Our conjecture is that
BGCF is still favorable because it naturally transfers the extra
variability incurred by missing values to the posterior Gibbs
samples: we indeed observed a growing variance of the pos-
terior distribution with the increase of missing values in our
simulations. On top of the posterior distribution, one could
conduct further studies, e.g., causal discovery over latent fac-
tors (Silva et al. 2006; Cui et al. 2018), regression analysis (as
we did in Sect. 5), or other machine learning tasks. Instead of
using a Gaussian copula, some other choices of copulas are
available to model advanced properties in the data such as
tail dependence and tail asymmetry (Krupskii and Joe 2013,
2015).
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Appendix A: Proof of Theorem 1

Theorem 1 (Consistency of the BGCF approach) Let Yn =
( y1, . . . , yn)

T be independent observations drawn from a
Gaussian copula factor model. If Yn is complete (no missing
data) or contains missing values that are missing completely
at random, then

lim
n→∞ P

(
Ĉn = C0

) = 1,

lim
n→∞ P

(
Λ̂n = Λ0

) = 1,

lim
n→∞ P

(
D̂n = D0

) = 1,

where Ĉn, Λ̂n, and D̂n are parameters learned by BGCF,
while C0, Λ0, and D0 are the true ones.

Proof If S = ΛCΛT + D is the response vector’s covari-

ance matrix, then its correlation matrix is S̃ = V− 1
2 SV− 1

2 =
V− 1

2 ΛCΛTV− 1
2 + V− 1

2 DV− 1
2 = Λ̃CΛ̃T + D̃, where V is

a diagonal matrix containing the diagonal entries of S. We
make use of Theorem 1 from Murray et al. (2013) to show
the consistency of S̃. Our factor-analytic prior puts positive
probability density almost everywhere on the set of correla-
tion matrices that have a k-factor decomposition. Then, by
applying Theorem 1 in Murray et al. (2013), we obtain the
consistency of the posterior distribution on the response vec-
tor’s correlation matrix for complete data, i.e.,

lim
n→∞ Π(S̃ ∈ V (S̃0)|Zn ∈ D(Yn)) = 1 a.s. ∀ V (S̃0), (10)

where D(Yn) is the space restricted by observed data, and
V (S̃0) is a neighborhood of the true parameter S̃0. When the
data contain missing values that are completely at random
(MCAR), we can also directly obtain the consistency of S̃
by again using Theorem 1 in Murray et al. (2013), with an
additional observation that the estimation of ordinary and
polychoric/polyserial correlations from pairwise complete
data is still consistent under MCAR. That is to say, the con-
sistency shown in Eq. (10) also holds for data with MCAR
missing values.

From this point on, to simplify notation, we will omit
adding the tilde to refer to the rescaled matrices S̃, Λ̃, and D̃.
Thus, S from now on refers to the correlation matrix of the
response vector. Λ and D refer to the scaled factor loadings
and noise variance, respectively.

The Gibbs sampler underlying the BGCF approach has
the posterior of Σ (the correlation matrix of the integrated
vector X) as its stationary distribution.Σ contains S, the cor-
relation matrix of the response random vector, in the upper
left block and C in the lower right block. Here, C is the
correlation matrix of factors, which implicitly depends on
the Gaussian copula factor model from Definition 1 of the
main paper via the formula S = ΛCΛT + D. In order to
render this decomposition identifiable, we need to put con-
straints on C , Λ, D. Otherwise, we can always replace Λ

with ΛU and C with U−1CU−1, where U is any k × k
invertible matrix, to obtain the equivalent decomposition
S = (ΛU )(U−1CU−T )(UTΛT) + D. However, we have
assumed that Λ follows a particular sparsity structure in
which there is only a single non-zero entry for each row.
This assumption restricts the space of equivalent solutions,
since any ΛU has to follow the same sparsity structure as Λ.
More explicitly, ΛU maintains the same sparsity pattern if
and only if U is a diagonal matrix (Lemma 1).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Statistics and Computing (2019) 29:977–993 989

By decomposing S, we get a class of solutions for C and
Λ, i.e., U−1CU−1 and ΛU , where U can be any invertible
diagonal matrix. In order to get a unique solution for C , we
impose two identifying conditions: (1) we restrict C to be
a correlation matrix; (2) we force the first non-zero entry in
each column of Λ to be positive. These conditions are suffi-
cient for identifyingC uniquely (Lemma2).Wepoint out that
these sufficient conditions are not unique. For example, one
could replace the two conditionswith restricting the first non-
zero entry in each column of Λ to be one. The reason for our
choice of conditions is to keep it consistent with our model
definition where C is a correlation matrix. Under the two
conditions for identifying C , factor loadings Λ and residual
variances D are also identified except for the case in which
there exists one factor that is independent of all the others
and this factor only has two indicators. For such a factor,
we have 4 free parameters (2 loadings, 2 residuals), while
we only have 3 available equations (2 variances, 1 covari-
ance), which yields an underdetermined system. Therefore,
the identifiability of Λ and D relies on the observation that
a factor has a single or at least three indicators if it is inde-
pendent of all the others. See Lemmas 3 and 4 for detailed
analysis.

Now, given the consistency of S and the unique smooth
map from S to C , Λ, and D, we obtain the consistency of
the posterior mean of the parameter C , Λ, and D, which
concludes our proof. ��
Lemma 1 If Λ = (λi j ) is a p× k factor loading matrix with
only a single non-zero entry for each row, then ΛU will have
the same sparsity pattern if and only ifU = (ui j ) is diagonal.

Proof (⇒) We prove the direct statement by contradic-
tion. We assume that U has an off-diagonal entry that is
not equal to zero. We arbitrarily choose that entry to be
urs, r , s ∈ {1, 2, . . . , k}, r �= s. Due to the particular sparsity
pattern, we have chosen forΛ, there exists q ∈ {1, 2, . . . , p}
such that λqr �= 0 and λqs = 0, i.e., the unique factor
corresponding to the response Zq is ηr . However, we have
(ΛU )qs = λqr urs �= 0, which means (ΛU ) has a different
sparsity pattern from Λ. We have reached a contradiction,
therefore U is diagonal.

(⇐) If U is diagonal, i.e., U = diag(u1, u2, . . . , uk),
then (ΛU )i j = λi j u j . This means that (ΛU )i j = 0 ⇐⇒
λi j u j = 0 ⇐⇒ λi j = 0, so the sparsity pattern is pre-
served. ��
Lemma 2 (Identifiability of C) Given the factor structure
defined in Sect. 3 of the main paper, we can uniquely recover
C from S = ΛCΛT + D if (1) we constrain C to be a
correlation matrix; (2) we force the first element in each
column of Λ to be positive.

Proof Here, we assume that the model has the stated factor
structure, i.e., that there is some Λ, C , and D such that S =

ΛCΛT + D. We then show that our chosen restrictions are
sufficient for identification using an argument similar to that
in Anderson and Rubin (1956).

The decomposition S = ΛCΛT + D constitutes a system
of p(p+1)

2 equations:

sii = λ2i f (i) + dii

si j = c f (i) f ( j)λi f (i)λ j f ( j) , i < j,
(11)

where S = (si j ),Λ = (λi j ),C = (ci j ), D = (di j ), and
f : {1, 2, . . . , p} → {1, 2, . . . , k} is themap froma response
variable to its corresponding factor. Looking at the equation
system in (11), we notice that each factor correlation term
cqr , q �= r , appears only in the equations corresponding to
response variables indexed by i and j such that f (i) = q
and f ( j) = r or vice versa. This suggests that we can
restrict our analysis to submodels that include only two fac-
tors by considering the submatrices of S,Λ,C, D that only
involve those two factors. To be more precise, the idea is to
look only at the equations corresponding to the submatrix
S f −1(q) f −1(r), where f −1 is the preimage of {1, 2, . . . , k}
under f . Indeed, we will show that we can identify each
individual correlation term corresponding to pairs of factors
only by looking at these submatrices. Any information con-
cerning the correlation term provided by the other equations
is then redundant.

Let us then consider an arbitrary pair of factors in our
model and the corresponding submatrices of Λ, C , D, and
S (the case of a single factor is trivial). In order to simplify
notation, we will also use Λ, C , D, and S to refer to these
submatrices. We also re-index the two factors involved to
η1 and η2 for simplicity. In order to recover the correlation
between a pair of factors from S, we have to analyze three
separate cases to cover all the bases (see Fig. 8 for examples
concerning each case):

1. The two factors are not correlated, i.e., c12 = 0 (there are
no restrictions on the number of response variables that
the factors can have).

2. The two factors are correlated, i.e., c12 �= 0, and each
has a single response, which implies that Z1 = η1 and
Z2 = η2.

3. The two factors are correlated, i.e., c12 �= 0, but at least
one of them has at least two responses.

Case 1 If the two factors are not correlated (see the exam-
ple in the left panel of Fig. 8), this fact will be reflected in
the matrix S. More specifically, the off-diagonal blocks in S,
which correspond to the covariance between the responses of
one factor and the responses of the other factor, will be set to
zero. If we notice this zero pattern in S, we can immediately
determine that c12 = 0.
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Z2

Z1 η1 η2

Z3

Z1 η1 η2 Z2

Z1 Z3

η1 η2

Z2 Z4

Fig. 8 Left panel: Case 1 (c12 = 0); Middle panel: Case 2 (c12 �= 0 and only one response per factor); Right panel: Case 3 (c12 �= 0 and at least
one factor has multiple responses)

Case 2 If the two factors are correlated and each factor
has a single associated response (see the middle panel of
Fig. 8), themodel reduces to aGaussianCopulamodel. Then,
we directly get c12 = s12 since we have put the constraints
Z = η if η has a single indicator Z .

Case 3 If at least one of the factors (w.l.o.g., η1) is
allowed to have more than one response (see the example
in the right panel of Fig. 8), we arbitrarily choose two of
these responses. We also require one response variable cor-
responding to the other factor (η2). We use λi1, λ j1, and λl2
to denote the loadings of these response variables, where
i, j, l ∈ {1, 2, . . . , p}. From Eq. (11) we have:

si j = λi1λ j1

sil = c12λi1λl2

s jl = c12λ j1λl2.

Since we are in the case in which c12 �= 0, which auto-
matically implies that s jl �= 0, we can divide the last two
equations to obtain sil

s jl
= λi1

λ j1
. We then multiply the result

with the first equation to get
si j sil
s jl

= λ2i1. Without loss of
generality, we can say that λi1 is the first entry in the first
column of Λ, which means that λi1 > 0. This means that we
have uniquely recovered λi1 and λ j1.

We can also assume without loss of generality that λl2
is the first entry in the second column of Λ, so λl2 > 0. If
η2 has at least two responses, we use a similar argument to
the one before to uniquely recover λl2. We can then use the
above equations to get c12. If η2 has only one response, then
dll = 0, which means that sll = λ2l2, so again λl2 is uniquely
recoverable and we can obtain c12 from the equations above.

Thus, we have shown that we can correctly determine cqr
only from S f −1(q) f −1(r) in all three cases. By applying this
approach to all pairs of factors, we can uniquely recover all
pairwise correlations. This means that, given our constraints,
we can uniquely identify C from the decomposition of S. ��

Lemma 3 (Identifiability of Λ) Given the factor structure
defined in Sect. 3 of the main paper, we can uniquely recover
Λ from S = ΛCΛT + D if (1) we constrain C to be a
correlation matrix; (2) we force the first element in each
columnofΛ to be positive; (3)whena factor is independent of
all the others, it has either a single or at least three indicators.

Fig. 9 A factor model with
three indicators Z1

η1 Z2

Z3

Proof Compared to identifying C , we need to consider
another case in which there is only one factor or there exists
one factor that is independent of all the others (the former
can be treated as a special case of the latter). When such a
factor only has a single indicator, e.g., η1 in the left panel of
Fig. 8, we directly identify d11 = 0 because of the constraint
Z1 = η1. When the factor has two indicators, e.g., η2 in the
left panel of Fig. 8, we have four free parameters (λ22, λ32,
d22, and d33) while we can only construct three equations
from S (s22, s33, and s23), which cannot give us a unique
solution. Now we turn to the three-indicator case, as shown
in Fig. 9. From Eq. (11) we have:

s12 = λ11λ21

s13 = λ11λ31

s23 = λ21λ31.

We then have s12s13
s23

= λ211, which has a unique solution for
λ11 together with the second constraint λ11 > 0, after which
we can naturally get the solutions to λ21 and λ31. For the
other cases, the proof follows the same line of reasoning as
Lemma 2. ��

Lemma 4 (Identifiability of D) Given the factor structure
defined in Sect. 3 of the main paper, we can uniquely recover
D from S = ΛCΛT + D if (1) we constrain C to be a
correlation matrix; (2) when a factor is independent of all
the others, it has either a single or at least three indicators.

Proof We conduct our analysis case by case. For the case
where a factor has a single indicator, we trivially set dii = 0.
For the case in Fig. 9, it is straightforward to get d11 =
s11 − λ211 from s12s13

s23
= λ211 (the same for d22 and d33).

Another case we need to consider is Case 3 in Fig. 8, where
we have

si j sil
s jl

= λ2i1 (see analysis in Lemma 2), based on

whichwe obtain dii = sii −λ2i1. By applying this approach to
all single factors or pairs of factors, we can uniquely recover
all elements of D. ��
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Fig. 10 Results forn = 500 andβ = 10%obtained byBGCF,DWLS+
PD, DWLS + MI, and FIML on ordinal data with different numbers
of categories, showing the mean of ARB (left panel) and the mean of
RMSEwith 95% confidence interval (right panel) over 100 experiments
for a interfactor correlations and b factor loadings, where dashed lines
and dotted lines in left panels denote±5% and±10% bias, respectively
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Fig. 11 Results for n = 500 and β = 10% obtained by BGCF, DWLS
with PD, and FIML on nonparanormal data with different extents of
non-normality, for the same experiments as in Fig. 10

Appendix B: Extended simulation study

This section continues the experiments in Sect. 4 of the main
paper, in order to check the influence of the number of cat-

egories for ordinal data and the extent of non-normality for
nonparanormal data.

B1: Ordinal data with different numbers of
categories

In this subsection, we consider ordinal data with various
numbers of categories c ∈ {2, 4, 6, 8}, in which the sample
size and missing values percentage are set to n = 500 and
β = 10%, respectively. Figure 10 shows the results obtained
by BGCF (Bayesian Gaussian copula factor), DWLS + PD
(diagonally weighted least squares with pairwise deletion),
DWLS+MI (diagonallyweighted least squareswithmultiple
imputation) and FIML (full information maximum likeli-
hood), providing the mean of ARB (average relative bias)
and the mean of RMSE (root mean squared error) with 95%
confidence interval over 100 experiments for (a) interfactor
correlations and (b) factor loadings. From Fig. 10a, although
DWLS+MIhas very similar behavior asBGCFw.r.t. RMSE,
BGCF is less biased especially when there are more cat-
egories. From Fig. 10b, BGCF outperforms all the three
alternative approaches w.r.t. both ARB and RMSE.

B2: Nonparanormal data with different extents of
non-normality

In this subsection, we consider nonparanormal data, in which
we use the degrees of freedom d f of a χ2-distribution to
control the extent of non-normality (see Section 4.1.2 of the
main paper for details). The sample size and missing values
percentage are set to n = 500 and β = 10%, respectively,
while the degrees of freedom varies d f ∈ {2, 4, 6, 8}.

Figure 11 shows the results obtained by BGCF, DWLS
+ PD, and FIML, providing the mean of ARB (left panel)
and the mean of RMSE with 95% confidence interval (right
panel) over 100 experiments for (a) interfactor correlations
and (b) factor loadings. We do not include DWLS + MI in
this experiment because it becomes approximately the same
with FIML for fully continuous data. The major conclusion
drawn here is that, while a nonparanormal transformation has
no effect on our BGCF approach, FIML is quite sensitive to
the extent of non-normality, especially for factor loadings.
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