
Stat Comput (2018) 28:511–522
https://doi.org/10.1007/s11222-017-9744-8

Fast covariance estimation for sparse functional data

Luo Xiao1 · Cai Li1 · William Checkley2 · Ciprian Crainiceanu3

Received: 9 January 2016 / Accepted: 1 April 2017 / Published online: 11 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Smoothing of noisy sample covariances is an
important component in functional data analysis.We propose
a novel covariance smoothing method based on penalized
splines and associated software. The proposed method is
a bivariate spline smoother that is designed for covariance
smoothing and can be used for sparse functional or lon-
gitudinal data. We propose a fast algorithm for covariance
smoothing using leave-one-subject-out cross-validation. Our
simulations show that the proposed method compares favor-
ably against several commonly used methods. The method
is applied to a study of child growth led by one of coauthors
and to a public dataset of longitudinal CD4 counts.

Keywords Bivariate smoothing · FACEs · fPCA

1 Introduction

The covariance function is a crucial ingredient in func-
tional data analysis. Sparse functional or longitudinal data
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are ubiquitous in scientific studies, while functional prin-
cipal component analysis has become one of the first-line
approaches to analyzing this type of data; see, e.g., Besse and
Ramsay (1986), Ramsay and Dalzell (1991), Kneip (1994),
Besse et al. (1997), Staniswalis and Lee (1998), Yao et al.
(2003, 2005).

Given a sample of functions observed at a finite number of
locations and, often, with sizable measurement error, there
are usually three approaches for obtaining smooth functional
principal components: (1) smooth the functional principal
components of the sample covariance function; (2) smooth
each curve anddiagonalize the resulting sample covarianceof
the smoothed curves; and (3) smooth the sample covariance
function and then diagonalize it.

The sample covariance function is typically noisy and dif-
ficult to interpret. Therefore, bivariate smoothing is usually
employed. Local linear smoothers (Fan and Gijbels 1996),
tensor-product bivariate P-splines (Eilers and Marx 2003)
and thin plate regression splines (Wood 2003) are among
the popular methods for smoothing the sample covariance
function. For example, the fpca.sc function in the R package
refund (Huang et al. 2015) uses the tensor-product bivariate
P-splines.However, there are twoknownproblemswith these
smoothers: (1) they are general-purpose smoothers that are
not designed specifically for covariance operators; and (2)
they ignore that the subject, instead of the observation, is
the independent sampling unit and assume that the empir-
ical covariance surface is the sum between an underlying
smooth covariance surface and independent random noise.
The FACE smoothing approach proposed by Xiao et al.
(2016)was designed specifically to address theseweaknesses
of off-the-shelf covariance smoothing software. The method
is implemented in the function fpca.face in the refundRpack-
age (Huang et al. 2015) and has proven to be reliable and fast
in a range of applications. However, FACEwas developed for
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high-dimensional dense functional data and the extension to
sparse data is far from obvious. One approach that attempts
to solve these problems was proposed by Yao et al. (2003). In
their paper, they used leave-one-subject-out cross-validation
to choose the bandwidth for local polynomial smoothing
methods. This approach is theoretically sound, but computa-
tionally expensive. This may be the reason why the practice
is to either try multiple bandwidths and visually inspect the
results or completely ignore within-subject correlations.

Several alternative methods for covariance smoothing of
sparse functional data also exist in the literature: James et al.
(2000) used reduced rank spline mixed effects models, Cai
and Yuan (2012) considered nonparametric covariance func-
tion under the reproducing kernel Hilbert space framework,
and Peng and Paul (2009) proposed a geometric approach
under the framework of marginal maximum likelihood esti-
mation.

Our paper has two aims. First, we propose a new automatic
bivariate smoother that is specifically designed for covariance
function estimation and can be used for sparse functional
data. Second, we propose a fast algorithm for selecting the
smoothing parameter of the bivariate smoother using leave-
one-subject-out cross-validation. The code for the proposed
method is publicly available in the faceRpackage (Xiao et al.
2017).

2 Model

Suppose that the observed data take the form {(yi j , ti j ), j =
1, . . . ,mi , i = 1, . . . , n}, where ti j is in the unit interval
[0, 1], n is the number of subjects, and mi is the number of
observations for subject i . The model is

yi j = f (ti j ) + ui (ti j ) + εi j , (1)

where f is a smooth mean function, ui (t) is generated
from a zero-meanGaussian process with covariance operator
C(s, t) = cov{ui (s), ui (t)}, and εi j is white noise following
a normal distributionN (0, σ 2

ε ). We assume that the random
terms are independent across subjects and from each other.
For longitudinal data, mi ’s are usually much smaller than n.

We are interested in estimating the covariance function
C(s, t). A standard procedure employed for obtaining a
smooth estimate of C(s, t) consists of two steps. In the
first step, an empirical estimate of the covariance function
is constructed. Let ri j = yi j − f (ti j ) be the residuals
and Ci j1 j2 = ri j1ri j2 be the auxiliary variables. Because
E(Ci j1 j2) = C(ti j1, ti j2) if j1 �= j2, {Ci j1 j2 : 1 ≤ j1 �=
j2 ≤ mi , i = 1, . . . , n} is a collection of unbiased empir-
ical estimates of the covariance function. In the second
step, the empirical estimates are smoothed using a bivari-
ate smoother. Smoothing is required because the empirical
estimates are usually noisy and scattered in time. Standard

bivariate smoothers are local linear smoothers (Fan and Gij-
bels 1996), tensor-product bivariate P-splines (Eilers and
Marx 2003) and thin plate regression splines (Wood 2003).
In the following section, we propose a statistically efficient,
computationally fast and automatic smoothingprocedure that
serves as an alternative to these approaches.

To carry out the above steps, we assume a mean func-
tion estimator f̂ exists. Then, we let r̂i j = yi j − f̂ (ti j )
and ̂Ci j1 j2 = r̂i j1 r̂i j2 . Note that we use the hat notation on
variables when f is substituted by f̂ and when we define a
variable with a hat notation, the same variable without a hat
notation is similarly defined using the true f . In our software,
we estimate f using a P-spline smoother (Eilers and Marx
1996) with the smoothing parameter selected by leave-one-
subject-out cross-validation. See Section S.1 of the online
supplement for details.

3 Method

We model the covariance function C(s, t) as a tensor-
product splines H(s, t) = ∑

1≤κ≤c,1≤�≤c θκ�Bκ(s)B�(t),
where ΘΘΘ = (θκ�)1≤κ≤c,1≤�≤c is a coefficient matrix,
{B1(·), . . . , Bc(·)} is the collection of B-spline basis func-
tions in the unit interval, and c is the number of interior
knots plus the order (degree plus 1) of the B-splines. Note
that the locations and number of knots as well as the polyno-
mial degrees of splines determine the forms of the B-spline
basis functions (de Boor 1978). We use equally spaced knots
and enforce the following constraint on ΘΘΘ:

θκ� = θ�κ , 1 ≤ κ, � ≤ c.

With this constraint, H(s, t) is always symmetric in s and t ,
a desired property for estimates of covariance functions.

Unlike the other approaches covariance function esti-
mation methods described before, our method applies a
joint estimation of covariance function and error variance
and incorporates the correlation structure of the auxiliary
variables {̂Ci j1 j2 : 1 ≤ j1 ≤ j2 ≤ mi , i = 1, . . . , n}
in a two-step procedure to boost statistical efficiency.
Because we use a relatively large number of knots, esti-
mating ΘΘΘ by least squares or weighted least squares tends
to overfit. Thus, we estimate ΘΘΘ by minimizing a penal-
ized weighted least squares. Let ni = mi (mi + 1)/2,
̂Ci j = {

̂Ci j j , ̂Ci j ( j+1), . . . , ̂Ci jmi

}T ∈ R
mi− j+1, HHHi j =

{H(ti j , ti j ), H(ti j , ti( j+1)), . . . , H(ti j , timi )}T ∈ R
mi− j+1,

and δδδi j = (1, 0Tmi− j )
T ∈ R

mi− j+1 for 1 ≤ j ≤
mi . Then, let ̂Ci = (̂CT

i1,
̂CT
i2, . . . ,

̂CT
imi

)T ∈ R
ni be

the vector of all auxiliary variables ̂Ci j1 j2 for subject i
with j1 ≤ j2. Here, ̂Ci contains the nugget terms ̂Ci j j

and note that E(Ci j j ) = r(ti j , ti j ) + σ 2
ε . Similarly, we

let HHHi = (HHHT
i1,HHH

T
i2, . . . ,HHH

T
imi

)T ∈ R
ni , and δδδi =
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(δδδTi1, δδδ
T
i2, . . . , δδδ

T
imi

)T ∈ R
ni . Also let Wi ∈ R

ni×ni be a

weight matrix for capturing the correlation of ̂Ci and will
be specified later. The weighted least squares is WLS =
∑n

i=1

(

HHHi + δδδiσ
2
ε − ̂Ci

)T
Wi

(

HHHi + δδδiσ
2
ε − ̂Ci

)

.Let ‖·‖F
denote the Frobenius norm and letD ∈ R

c×(c−2) be a second-
order differencing matrix (Eilers and Marx 1996). Then, we
estimate ΘΘΘ and σ 2

ε by

(̂ΘΘΘ, σ̂ 2
ε ) = arg min

ΘΘΘ :ΘΘΘ=ΘΘΘT
,σ 2

ε

{

WLS + λ‖ΘΘΘD‖2F
}

, (2)

where λ is a smoothing parameter that balances model fit and
smoothness of the estimate.

The penalty term ‖ΘΘΘD‖2F is essentially equivalent to the

penalty
∫∫

s,t

{

∂2H
∂s2

(s, t)
}2

dsdt and can be interpreted as the

row penalty in bivariate P-splines (Eilers and Marx 2003).
Note that when ΘΘΘ is symmetric, as in our case, the row and
column penalties in bivariate P-splines become the same.
Therefore, our proposed method can be regarded as a special
case of bivariate P-splines that is designed specifically for
covariance function estimation. Another note is that when
the smoothing parameter goes to infinity, the penalty term
forces H(s, t) to become linear in both the s and the t direc-
tions. Finally, if ̂θκ� denotes the (κ, �)th element of ̂ΘΘΘ , then
our estimate of the covariance function C(s, t) is given by
˜C(s, t) = ∑

1≤κ≤c,1≤�≤c
̂θκ�Bκ(s)B�(t).

3.1 Estimation

Let b(t) = {B1(t), . . . , Bc(t)}T be a vector. Let vec(·) be an
operator that stacks the columns of a matrix into a vector and
denote ⊗ the Kronecker product operator. Then H(s, t) =
{b(t) ⊗ b(s)}T vecΘΘΘ . Let θθθ = vechΘΘΘ , where vech(·) is an
operator that stacks the columns of the lower triangle of a
matrix into a vector, and let Gc be the duplication matrix
(Seber 2007, p. 246) such that ΘΘΘ = Gcθθθ . It follows that
H(s, t) = {b(t) ⊗ b(s)}TGcθθθ .

Let Bi j = [b(ti j ), . . . ,b(timi )] ⊗ b(ti j ), Bi = [BT
i1, . . . ,

BT
imi

]T and B = [BT
1 , . . . ,BT

n ]T . Also let Xi = [BiGc, δδδi ]
and X = [XT

1 , . . . ,XT
n ]T . ααα = (θθθT , σ 2

ε )T . Finally let
̂C = (̂CT

i , . . . ,̂CT
n )T , δδδ = (δδδT1 , · · · , δδδTn )T and W =

blockdiag(W1, · · · ,Wn). Note that X can also be written
as [BGc, δδδ]. Then,
E(̂Ci ) = HHHi + δδδiσ

2
ε = [BiGc, δδδi ]

(

θθθT , δε

)T = Xiααα,

and

WLS = (

̂C − Xααα
)T

W
(

̂C − Xααα
)

. (3)

Next let tr(·) be the trace operator such that for a square
matrix A, tr(A) is the sum of the diagonals of A. We can
derive that (Seber 2007, p. 241)

‖ΘΘΘD‖2F = tr(ΘΘΘDDTΘΘΘT ),

= (vecΘΘΘ)T (Ic ⊗ DDT )vecΘΘΘ.

Because ΘΘΘ = Gcθθθ , we obtain that

‖ΘΘΘD‖2F = θθθTGT
c (Ic ⊗ DDT )GT

c θθθ

= (

θθθT σ 2
ε

)

(

P 0
0 0

)(

θθθ

σ 2
ε

)

= αααTQααα, (4)

where P = GT
c (Ic ⊗ DDT )GT

c and Q is the block matrix
containing P and zeros.

By (3) and (4), the objective function in (2) can be rewrit-
ten as

α̂αα = argmin
ααα

(

̂C − Xααα
)T

W
(

̂C − Xααα
) + λαααTQααα. (5)

Now we obtain an explicit form of α̂αα

α̂αα =
(

θ̂θθ

σ̂ 2
ε

)

=
(

XTWX + λQ
)−1 (

XTŴC
)

. (6)

We need to specify theweightmatricesWi ’s. One sensible
choice forWi is the inverse of cov (Ci ), where Ci is defined
similar to ̂Ci , except that the true mean function f is used.
However, cov (Ci ) may not be invertible or may be close to
being singular. Thus, we specify Wi as

W−1
i = (1 − β)cov (Ci ) + βdiag {diag {cov (Ci )}} ,

1 ≤ i ≤ n,

for some constant 0 < β < 1. The above specification
ensures that Wi exists and is stable. We will use β = 0.05,
which works well in practice.

We now derive cov (Ci ) in terms of C and σ 2
ε . First note

that E(ri j1ri j2) = cov(ri j1 , ri j2) = C(ti j1 , ti j2) + δ j1 j2σ
2
ε ,

where δ j1 j2 = 1 if j1 = j2 and 0 otherwise.

Proposition 1 Define Mi jk = {

C(ti j , tik), δ jkσ 2
ε

}T ∈ R
2.

Then,

cov
(

Ci j1 j2 ,Ci j3 j4

)=1T (Mi j1 j3⊗Mi j2 j4+Mi j1 j4⊗Mi j2 j3).

The proof of Proposition 1 is provided in Section S.2 of
the online supplement. Now we see thatWi also depends on
(C, σ 2

ε ). Hence, we employ a two-stage estimation. We first
estimate (C, σ 2

ε ) by using penalized ordinary least squares,
i.e., Wi = I for all i . Then, we obtain the plug-in estimate
of Wi and estimate (C, σ 2

ε ) using penalized weighted least
squares. The algorithm for the two-stage estimation is sum-
marized as Algorithm 1.

123



514 Stat Comput (2018) 28:511–522

Algorithm 1: Estimation algorithm
Input: data, specification of settings of univariate marginal basis

functions and the smoothing parameter λ

Output: estimate of C and σ 2
ε

1 Initialize ̂C, X and Q;

2 α̂αα
(0) ← argminααα(̂C − Xααα)T (̂C − Xααα) + λαααTQααα ;

3 ̂W ← W{α̂αα(0)} ;
4 α̂αα ← argminααα(̂C − Xααα)T ̂W(̂C − Xααα) + λαααTQααα ;

3.2 Selection of the smoothing parameter

For selecting the smoothing parameter, we use leave-one-
subject-out cross-validation, a popular approach for cor-
related data; see, for example, Yao et al. (2003), Reiss
et al. (2010) and Xiao et al. (2015). Compared to the
leave-one-observation-out cross-validation, which ignores
the correlation, leave-one-subject-out cross-validation was
reported to be more robust against overfit. However, such
an approach is usually computationally expensive. In this
section, we derive a fast algorithm for approximating the
leave-one-subject-out cross-validation.

Let ˜C[i]
i be the prediction of ̂Ci by applying the proposed

method to the data without the data from the i th subject, and
then the cross-validated error is

iCV =
n

∑

i=1

‖˜C[i]
i − ̂Ci‖2. (7)

There is a simple formula for iCV. First, we let S =
X(XTWX + λQ)−1XTW, which is the smoother matrix
for the proposed method. S can be written as (XA)[I +
λdiag(s)]−1(XA)TW for some square matrix A and s is a
column vector; see, for example, Xiao et al. (2013). In par-
ticular, both A and s do not depend on λ.

LetSi = Xi (XTWX+λQ)−1XTW andSi i = Xi (XTWX
+ λQ)−1XT

i Wi . Then, Si is of dimension ni × N , where
N = ∑n

i=1 ni , and Si i is of dimension ni × ni .

Lemma 1 The iCV in (7) can be simplified as

iCV =
n

∑

i=1

‖(Ini − Si i )−1(SîC − ̂Ci )‖2.

The proof of Lemma 1 is the same as that of Lemma 3.1
in Xu and Huang (2012) and thus is omitted. Similar to Xu
and Huang (2012), we further simplify iCV by using the
approximation (Ini − STii )

−1(Ini − Si i )−1 = Ini + Si i + STii .
This approximation leads to the generalized cross-validation,
which we denote as iGCV,

iGCV =
n

∑

i=1

(SîC − ̂Ci )
T (Ini + Si i + STii )(SîC − ̂Ci )

= ‖̂C − ŜC‖2 + 2
n

∑

i=1

(

SîC − ̂Ci
)T

Si i
(

SîC − ̂Ci
)

. (8)

While iGCV in (8) is much easier to compute than iCV
in (7), the formula in (8) is still computationally expensive
as the smoother matrix S is of dimension N × N , where
N = 2, 000 if n = 100 and mi = m = 5 for all i . Thus, we
further simplify iGCV.

Let Fi = XiA, F = XA and ˜F = FTW. Define fff i =
FT
i
̂Ci , fff = FT

̂C, ˜f = ˜F̂C, Ji = FT
i WîCi , Li = FT

i Fi

and ˜Li = FT
i WiFi . To simplify notation we will denote

[I+λdiag(s)]−1 as˜D, a symmetricmatrix, and its diagonal as
˜d. Let� be the Hadamard product such that for two matrices
of the same dimensions A = (ai j ) and B = (bi j ), A � B =
(ai j bi j ).

Proposition 2 The iGCV in (8) can be simplified as

iGCV = ‖̂C‖2 − 2˜dT (˜f � fff ) + (˜f �˜d)T (FTF)(˜f �˜d)

+ 2˜dT ggg − 4˜dTG˜d + 2˜dT
[

n
∑

i=1

{

Li (˜f �˜d)
} � {

˜Li (˜f �˜d)
}

]

,

where ggg = ∑n
i=1 Ji � fff i and G = ∑n

i=1(Ji˜f
T ) � Li .

The proof of Proposition 2 is provided in Section S.2 of
the online supplement.

Algorithm 2: Tuning algorithm

Input: X, ̂C, Q,W, λλλ = {λ1, . . . , λk}T
Output: λ∗

1 Initialize s,˜f , fff , F, ggg, G, Li , ˜Li , i = 1, . . . , n ;
2 foreach λ in λλλ do
3 ˜d ← diag([I + λdiag(s)]−1);
4 I ← −2˜dT (˜f � fff );
5 I I ← (˜f �˜d)T (FTF)(˜f �˜d);
6 I I I ← 2˜dT ggg;
7 I V ← −4˜dTG˜d;
8 V ← 2˜dT

[∑n
i=1

{

Li (˜f �˜d)
} � {

˜Li (˜f �˜d)
}]

;
9 iGCV ← I + I I + I I I + I V + V ;

10 end
11 λ∗ ← argminλ iGCV;

While the formula in Proposition 2 looks complex, it can
be efficiently computed. Indeed, only the term˜d depends on
the smoothing parameter λ and it can be easily computed; all
other terms includingggg andG can be pre-calculated just once.
Suppose the number of observations per subject is mi = m
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for all i . Let K = c(c + 1)/2 + 1 and M = m(m + 1)/2.
Note that K is the number of unknown coefficients and M
is the number of raw covariances from each subject. Then,
the pre-calculation of terms in the iGCV formula requires
O(nMK 2+nM2K +K 3+M3) computation time and each
calculation of iGCV requires O(nK 2) computation time. To
see the efficiency of the simplified formula in Proposition 2,
we note that a brute force evaluation of iCV in Lemma 1
requires computation time of the order O(nM3 + nK 3 +
n2M2K ), quadratic in the number of subjects n.

When the number of observations per subject m is small,
i.e., m < c, the number of univariate basis functions, the
iGCV computation time increases linearly with respect tom;
when m is relatively large, i.e., m > c but m = o(n), the
iGCV computation time increases quadratically with respect
to m. Therefore, the iGCV formula is most efficient with a
small m, i.e., sparse data. As for the case that m is very large
and the proposed method becomes very slow, the method in
Xiao et al. (2016) might be preferred.

4 Curve prediction

In this section, we consider the prediction of Xi (t) =
f (t) + ui (t), the i th subject curve. We assume that Xi (t)
is generated from a Gaussian process. Suppose we would
like to predict Xi (t) at {si1, . . . , sim} for m ≥ 1. Let yi =
(yi1, . . . , yimi )

T , fff oi = { f (ti1), . . . , f (timi )}T , and xi =
{Xi (si1), . . . , Xi (sim)}T . Let Ho

i = [b(ti1), . . . ,b(timi )]T
and Hn

i = [b(si1), . . . ,b(sim)]T . It follows that
(

yi
xi

)

∼ N

{

(

fff oi
fff ni

)

,

(

Ho
i ΘΘΘHo,T

i Ho
i ΘΘΘHn,T

i
Hn

i ΘΘΘHo,T
i Hn

i ΘΘΘHn,T
i

)

+ σ 2
ε Imi+m

}

.

We derive that

E(xi |yi ) =
(

Hn
i ΘΘΘHo,T

i

)

V−1
i (yi − fff oi ) + fff ni ,

where Vi = Ho
i ΘΘΘHo,T

i + σ 2
ε Imi , and

cov(xi |yi ) = Vn
i −

(

Hn
i ΘΘΘHo,T

i

)

V−1
i

(

Hn
i ΘΘΘHo,T

i

)T
,

where Vn
i = Hn

i ΘΘΘHn,T
i + σ 2

ε Im . Because f , ΘΘΘ and σ 2
ε are

unknown, we need to plug in their estimates f̂ , ̂ΘΘΘ and σ̂ 2
ε ,

respectively, into the above equalities. Thus, we could predict
xi by

x̂i = {x̂i (si1), . . . , x̂i (sim)}T
=

(

Hn
i
̂ΘΘΘHo,T

i

)

V̂−1
i (yi − f̂ff oi ) + ˆfff ni ,

where f̂ff oi = { f̂ (ti1), . . . , f̂ (timi )}T , ˆfff ni = { f̂ (si1), . . . ,
f̂ (sim)}T , and V̂i = Ho

i Θ̂ΘΘHo,T
i + σ̂ 2

ε Imi . Moreover, an
approximate covariance matrix for x̂i is

ĉov(x̂i |yi ) = V̂n
i −

(

Hn
i Θ̂ΘΘHo,T

i

)

V̂−1
i

(

Hn
i Θ̂ΘΘHo,T

i

)T
,

where V̂n
i = Hn

i
̂ΘΘΘHn,T

i + σ̂ 2
ε Im .

Note that one may also use the standard Karhunen–Loeve
decomposition representation of Xi (t) for prediction; see,
e.g., Yao et al. (2005). An advantage of the above formu-
lation is that we avoid the evaluation of the eigenfunctions
extracted from the covariance function C ; indeed, we just
need to compute the B-spline basis functions at the desired
time points, which is computationally simple.

5 Simulations

5.1 Simulation setting

We generate data using model (1). The number of obser-
vations for each random curve is generated from a uniform
distribution on either {3, 4, 5, 6, 7} or { j : 5 ≤ j ≤ 15},
and then observations are sampled from a uniform distribu-
tion in the unit interval. Therefore, on average, each curve has
m = 5 orm = 10 observations. Themean function isμ(t) =
5 sin(2π t). For the covariance function C(s, t), we consider
two cases. For case 1, we letC1(s, t) = ∑3

�=1 λ�ψ�(s)ψ�(t),
whereψ�’s are eigenfunctions andλ�’s are eigenvalues.Here,
λ� = 0.5�−1 for � = 1, 2, 3 and ψ1(t) = √

2 sin(2π t),
ψ2(t) = √

2 cos(4π t) andψ3(t) = √
2 sin(4π t). For case 2,

we consider the Matern covariance function

C(d;φ, ν) = 1

2ν−1Γ (ν)

(√
2νd

φ

)ν

Kν

(√
2νd

φ

)

with range φ = 0.07 and order ν = 1. Here, Kν is the
modified Bessel function of order ν. The top two eigenvalues
for this covariance function are 0.209 and 0.179, respectively.
The noise term εi j ’s are assumed normal with mean zero and
variance σ 2

ε . We consider two levels of signal to noise ratio
(SNR): 2 and 5. For example, if

σ 2
ε = 1

2

∫ 1

s=0

∫ 1

t=0
C(s, t)dsdt,

then the signal-to-noise ratio in the data is 2. The number
of curves is n = 100 or 400 and for each covariance func-
tion 200 datasets are drawn. Therefore, we have 16 different
model conditions to examine.
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5.2 Competing methods and evaluation criterion

We compare the proposed method (denoted by FACEs) with
the following methods: (1) The fpca.scmethod in Goldsmith
et al. (2010), which uses tensor-product bivariate P-splines
(Eilers and Marx 2003) for covariance smoothing and is
implemented in the R package refund; (2) a variant of fpca.sc
that uses thin plate regression splines for covariance smooth-
ing, denoted by TPRS, and is coded by the authors; 3) the
MLE method in Peng and Paul (2009), implemented in the
R package fpca; and 4) the local polynomial method in Yao
et al. (2003), denoted by loc, and is implemented in theMAT-
LAB toolboxPACE. The underlying covariance smoothingR
function for fpca.sc and TPRS is gam in the R packagemgcv
(Wood 2013). For FACEs, we use c = 10 marginal cubic B-
spline bases in each dimension. To evaluate the effect of the
weight matrices in the proposed objective function (2), we
also report results of FACEs without using weight matrices;
we denote the one stage fit by FACEs (1-stage). For fpca.sc,
we use its default setting, which uses 10 B-spline bases in
each dimension and the smoothing parameters are selected
by “REML.” We also code fpca.sc ourselves because the
fpca.sc function in the refund R package incorporates other
functionalities andmaybecomevery slow.ForTPRS,we also
use the default setting in gam, with the smoothing parame-
ter selected by “REML.” For bivariate smoothing, the default
TPRSuses 27 nonlinear basis functions, in addition to the lin-
ear basis functions.We also consider TPRSwith 97 nonlinear
basis functions to match the basis dimension used in fpca.sc
and FACEs. For the method MLE, we specify the range for
the number of B-spline bases to be [6, 10] and the range of
possible ranks to be [2, 6]. We will not evaluate the method
using a reduced rank mixed effects model (James et al. 2000)
because it has been shown in Peng and Paul (2009) that the
MLE method is more superior.

We evaluate the above methods using four criterions. The
first is the integrated squared errors (ISE) for estimating the
covariance function. The next two criterions are based on the
eigendecomposition of the covariance function: C(s, t) =
∑∞

�=1 λ�ψ�(s)ψ�(t), where λ1 ≥ λ2 ≥ . . . are eigenvalues
and ψ1(t), ψ2(t), . . . are the associated orthonormal eigen-
functions. The second criterion is the integrated squared
errors (ISE) for estimating the top 3 eigenfunctions from
the covariance function. Let ψ(t) be the true eigenfunction
and ψ̂(t) be an estimate of ψ(t), then the integrated squared
error is

min

[∫ 1

t=0
{ψ(t) − ψ̂(t)}2dt,

∫ 1

t=0
{ψ(t) + ψ̂(t)}2dt

]

.

It is easy to show that the range of integrated squared error for
eigenfunction estimation is [0, 2]. Note that for the method
MLE, if rank 2 is selected, then only two eigenfunctions can

be extracted. In this case, to evaluate accuracy of estimat-
ing the third eigenfunction, we will let ISE be 1 for a fair
comparison. The third criterion is the squared errors (SE)
for estimating the top 3 eigenvalues. The last criterion is the
methods’ computation speed.

5.3 Simulation results

The detailed simulation results are presented in Section S.3
of the online supplement. Here, we provide summaries of the
results along with some illustrations. In terms of estimating
the covariance function, for most model conditions, FACEs
gives the smallest medians of integrated squared errors and
has the smallest inter-quarter ranges (IQRs). MLE is the 2nd
best for case 1, while loc is the 2nd best for case 2. See Figs. 1
and 2 for illustrations under some model conditions.

In terms of estimating the eigenfunctions, FACEs tends
to outperform other approaches in most scenarios, while for
the remaining scenarios, its performance is still comparable
with the best one.MLEperformswell for case 1 but relatively
poorly for case 2, while the opposite is true for loc. TPRS and
fpca.sc perform quite poorly for estimating the 2nd and 3rd
eigenfunctions in both case 1 and case 2. Figure 3 illustrates
the superiority of FACEs for estimating eigenfunctions when
n = 100,m = 5.

As for estimation of eigenvalues, we have the following
findings: (1) FACEs performs the best for estimating the first
eigenvalue in case 1; (2) loc performs the best for estimat-
ing the first eigenvalue in case 2; (3) MLE performs overall
the best for estimating 2nd and 3rd eigenvalues in both cases,
while the performance of FACEs is very close and can be bet-
ter thanMLEunder somemodel scenarios; (4) TPRS, fpca.sc
and loc perform quite poorly for estimating the 2nd and
3rd eigenvalues in most scenarios. We conclude that FACEs
shows overall very competitive performance and never devi-
ates much from the best performance. Figure 4 illustrates the
patterns of eigenvalue estimation for n = 100,m = 5.

We now compare run times of the various methods; see
Fig. 5 for an illustration. When m = 5, FACEs takes about
four to seven times the computation times of TPRS and
fpca.sc; but it is much faster than MLE and loc, the speed-
up is about 15 and 35 folds, respectively. When m = 10,
although FACEs is still slower than TPRS and fpca.sc, the
computation times are similar; computation times of MLE
and loc are over 9 and 10 folds of FACEs, respectively.
Because TPRS and fpca.sc are naive covariance smoothers,
their fast speed is offset by their tendency to have inferior
performance in terms of estimation of covariance functions,
eigenfunctions, and eigenvalues.

Finally, by comparing results of FACEs with its 1-stage
counterpart (see the online supplement), we see that taking
into account of the correlations in the raw covariances boosts
the estimation accuracies of FACEs a lot. The 1-stage FACEs
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Fig. 1 Boxplots of ISEs of five estimators for estimating the covariance functions of case 1, n = 100

Fig. 2 Boxplots of ISEs of five estimators for estimating the covariance functions of case 2, n = 100

is of course faster. It is interesting to note that the 1-stage
FACEs is actually also very competitive against other meth-
ods.

To summarize, FACEs is a relatively fast method coupled
with competing performance against the methods examined
above.

5.4 Additional simulations for curve prediction

We conduct additional simulations to evaluate the perfor-
mance of the FACEs method for curve prediction. We focus

on case 1 and use the same simulation settings in Sect. 5.1 for
generating the training data and the testing data. We generate
200 new subjects for testing. The number of observations for
the subjects are generated in the samewayas the trainingdata.

In addition to the conditional expectation approach out-
lined in Sect. 4, Cederbaum et al. (2016) proposed a new
prediction approach (denoted by FAMM). As functional data
have amixed effects representation conditional on eigenfunc-
tions, the standard prediction procedure for mixed effects
models can be used for curve prediction. The FAMMrequires
estimates of eigenfunctions and is applicable to any covari-
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Fig. 3 Boxplots of ISEs of five estimators for estimating the top 3 eigenfunctions when n = 100,m = 5. Note that the straight lines are the
medians of FACEs when SNR = 5 and the dash lines are the medians of FACEs when SNR = 2

Fig. 4 Boxplots of 100× SEs of five estimators for estimating the eigenvalues when n = 100,m = 5. Note that the straight lines are the medians
of FACEs when SNR = 5 and the dash lines are the medians of FACEs when SNR = 2
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Fig. 5 Boxplots of
computation times (in seconds)
of five estimators for estimating
the covariance functions when
n = 400,SNR = 2. Note that
the x-axis is not equally spaced

FACEs

TPRS

fpca.sc

MLE

loc

Time(in seconds) of case 1: m = 5

1 7 55 403 2981

Time(in seconds) of case 1: m = 10

1 7 55 403 2981

FACEs

TPRS

fpca.sc

MLE

loc

Time(in seconds) of case 2: m = 5

1 7 55 403 2981

Time(in seconds) of case 2: m = 10

1 7 55 403 2981

ance smoothingmethod. Finally, direct estimation of subject-
specific curves has also been proposed in the literature
(Durban et al. 2005; Chen and Wang 2011; Scheipl et al.
2015).

We will compare the following methods: (1) the condi-
tional expectation method using FACEs; (2) the conditional
expectationmethod using fpca.sc; (3) the conditional FAMM
method using FACEs; (4) the conditional FAMM method
using fpca.sc; (5) the conditional expectation method using
loc; and (6) the spline-based approach in Scheipl et al. (2015)
without estimating covariance function, denoted by pffr, and
is implemented in the R package refund. This method uses
direct estimation of subject-specific curves. For the condi-
tional FAMM approach, we follow Cederbaum et al. (2016)
and fix smoothing parameters at the ratios of the estimated
eigenvalues and error variance from covariance function.
Fixing smoothing parameters significantly reduces the com-
putation times of the FAMM approach.

We evaluate the above methods using the integrated
squared errors, and the results are summarized inTable 1. The
results show that either approach (conditional expectation or

conditional FAMM) using FACEs has overall smaller pre-
diction errors than competing approaches. The conditional
FAMMapproach using FACEs is slightly better than the con-
ditional expectation approach. The results suggest that better
estimation of the covariance function leads to more accurate
prediction of subject-specific curves.

6 Applications

We illustrate the proposed method on a publicly available
dataset. Another application on a child growth dataset is pro-
vided in Section S.4 of the online supplement.

CD4 cells are a type of white blood cells that could send
signals to the human body to activate the immune response
when they detect viruses or bacteria. Thus, the CD4 count
is an important biomarker used for assessing the health of
HIV-infected persons as HIV viruses attack and destroy the
CD4 cells. The dataset analyzed here is from the Multicenter
AIDS Cohort Study (MACS) and is available in the refund R
package (Huang et al. 2015). The observations are CD4 cell

Table 1 Median and IQR (in parenthesis) of ISEs for curve fitting for case 1

n m SNR FACEs FAMM(FACEs) fpca.sc FAMM(fpca.sc) loc pffr

100 5 2 0.714 (0.085) 0.699 (0.102) 0.790 (0.156) 0.765 (0.147) 0.826 (0.135) 1.178 (0.092)

400 5 2 0.592 (0.058) 0.596 (0.058) 0.625 (0.077) 0.639 (0.076) 0.735 (0.082) 1.181 (0.093)

100 10 2 0.369 (0.047) 0.355 (0.044) 0.420 (0.066) 0.405 (0.069) 0.456 (0.076) 0.880 (0.060)

400 10 2 0.323 (0.027) 0.317 (0.031) 0.330 (0.036) 0.336 (0.035) 0.406 (0.042) 0.872 (0.065)

100 5 5 0.497 (0.074) 0.476 (0.082) 0.617 (0.171) 0.585 (0.147) 0.636 (0.106) 1.080 (0.109)

400 5 5 0.375 (0.042) 0.372 (0.042) 0.416 (0.060) 0.419 (0.055) 0.523 (0.066) 1.050 (0.101)

100 10 5 0.218 (0.044) 0.202 (0.040) 0.259 (0.056) 0.246 (0.053) 0.294 (0.058) 0.734 (0.071)

400 10 5 0.164 (0.019) 0.160 (0.021) 0.182 (0.028) 0.180 (0.026) 0.243 (0.034) 0.740 (0.066)

The results are based on 200 replications. Numbers in boldface are the smallest of each row
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Fig. 6 Observed log (CD4 count) trajectories of 366 HIV-infected
males. The estimated population mean is the black solid line

counts for 366 infectedmales in a longitudinal study (Kaslow
et al. 1987). With a total of 1888 data points, each subject
has between 1 and 11 observations. Statistical analysis based
on this or related datasets were done in Diggle et al. (1994),
Yao et al. (2005), Peng and Paul (2009) and Goldsmith et al.
(2013).

For our analysis, we consider log (CD4 count) since the
counts are skewed.We plot the data in Fig. 6 where the x-axis
is months since seroconversion (i.e., the time at which HIV
becomes detectable). The overall trend seems to be decreas-
ing, as can be visually confirmed by the estimated mean
function plotted in Fig. 6. The estimated variance and cor-
relation functions are displayed in Fig. 7. It is interesting to
see that the minimal value of the estimated variance function
occurs at month 0 since seroconversion. Finally, we display

Fig. 7 Estimated variance
function (left panel) and
correlation function (right
panel) for the log (CD4 count)
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Fig. 8 Predicted
subject-specific trajectories of
log (CD4 count) and associated
95% confidence bands for 4
males. The estimated population
mean is the dotted line
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in Fig. 8 the predicted trajectory of log (CD4 count) for 4
males and the corresponding pointwise confidence bands.

7 Discussion

Estimating and smoothing covariance operators is an old
problem with many proposed solutions. Automatic and fast
covariance smoothing is not fully developed, and, in practice,
one still does not have a method that is used consistently. The
reason why the practical solution to the problem has been
quite elusive is the lack of automatic covariance smoothing
software. The novelty of our proposal is that it directly tackles
this problem from the point of view of practicality. Here, we
proposed a method that we are already using extensively in
practice and which is becoming increasingly popular among
practitioners.

The ingredients of the proposed approach are not all new,
but their combination leads to a complete product that can
be used in practice. The fundamentally novel contributions
that make everything practical are: (1) use a particular type
of penalty that respects the covariance matrix format; (2)
provide a very fast fitting algorithm for leave-one-subject-
out cross-validation; and (3) ensure the scalability of the
approach by controlling the overall complexity of the algo-
rithm.

Smoothing parameters are an important component in
smoothing and usually selected by either cross-validation
or likelihood-based approaches. The latter make use of
the mixed model representation of spline-based smoothing
(Ruppert et al. 2003) and tend to perform better than cross-
validation (Reiss and Todd Ogden 2009; Wood 2011). New
optimization techniques have been developed (Rodríguez-
Álvarez et al. 2015, 2016; Wood and Fasiolo 2017) for
likelihood-based approaches. Likelihood-based approaches
seem impractical for smoothing of raw covariances because
the entries are products of normal residuals. Moreover,
the raw covariances are dependent within subjects, which
imposes additional challenge. Developing likelihood-based
selection of smoothing parameters for covariance smoothing
is of interest but beyond the scope of the paper.

To make methods transparent and reproducible, the
method has been made publicly available in the face pack-
age and will be incorporated in the function fpca.face in the
refund package later. The current fpca.face function (Xiao
et al. 2016) deals with high-dimensional functional data
observed on the same grid and has been used extensively
by our collaborators. We have a long track-record of releas-
ing functional data analysis software and the final form of
the function will be part of the next release of refund.
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