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Abstract The generation of decision-theoretic Bayesian
optimal designs is complicated by the significant compu-
tational challenge of minimising an analytically intractable
expected loss function over a, potentially, high-dimensional
design space. A new general approach for approximately
finding Bayesian optimal designs is proposed which uses
computationally efficient normal-based approximations to
posterior summaries to aid in approximating the expected
loss. This new approach is demonstrated on illustrative,
yet challenging, examples including hierarchical models for
blocked experiments, and experimental aims of parameter
estimation and model discrimination. Where possible, the
results of the proposed methodology are compared, both
in terms of performance and computing time, to results
from using computationally more expensive, but potentially
more accurate, Monte Carlo approximations. Moreover, the
methodology is also applied to problems where the use of
Monte Carlo approximations is computationally infeasible.
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1 Introduction

The process of designing a physical experiment fits naturally
within the Bayesian approach to statistical inference. Prior
information on parameters and models can be represented by
prior distributions, and the experimental aim encapsulated
in a decision-theoretic framework by the loss function. A
Bayesian optimal design is found byminimising the expected
loss function over the space of all possible designs, i.e. the
design space, where the expectation is with respect to the
joint distribution of all unknown quantities, i.e. parameters,
models and experimental responses.

Formally, suppose the experiment consists of n runswhere
the i th run (for i = 1, . . . , n) involves measuring response yi
having specified settings di = (di1, . . . , dik) for the k con-
trollable factors. Let d = (d1, . . . ,dn) ∈ D be the W × 1
vector giving the design where W = nk and D ⊂ R

W

denotes the W -dimensional design space. Assume there is
a set, M, of competing statistical models. Model m ∈ M
posits a probability distribution, Fm , for y = (y1, . . . , yn)
which is completely specified up to an unknown pm ×1 vec-
tor of parameters θm . Bayesian inference on models and/or
parameters is based on their joint posterior distribution given
by Bayes’ theorem as

π (θm,m|y,d) ∝ π (y|θm,m,d) π (θm |m) π(m), (1)

where π (y|θm,m,d) is the probability mass/density func-
tion of Fm ; π (θm |m) is the probability density function of
the prior distribution of θm ; and π(m) is the prior model
probability of model m. Note how π (y|θm,m,d) depends
on the design and this induces a dependence of the posterior
on the design.

The aim of the experiment is represented by a loss func-
tion, which can be tailored to experimental aims of parameter
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estimation or model discrimination. In general, the loss func-
tion is given by λ(θm,m, y,d). Essentially, it compares a
summary of the posterior distribution (e.g. O’Hagan and
Forster 2004, pgs 13–14) for θm and m (conditional on y
and d) to the true values of θm and m. However, θm , m and
y are unknown so a Bayesian optimal design (e.g. Chaloner
and Verdinelli 1995) is found by minimising the expected
loss

L(d) = Eθm ,m,y|d
[
λ(θm,m, y,d)

]
(2)

over the design space,D, where the expectation in (2) is with
respect to the joint distribution of θm , m and y.

Robert (2007, Section 2.1) discusses how Bayesian infer-
ence relies on the specification of three components: (a) the
set of models, M; (b) the joint prior distribution, given
by π(θm,m); and (c) the loss function, λ(θm,m, y,d).
Notwithstanding the difficulties faced in specifying these
three components (e.g. O’Hagan and Forster 2004, Chapter
6), once in place, a Bayesian optimal design is conceptually
straightforward to define. However, finding such a design
in practice is hindered by the computational challenge of
minimising the expected loss. Typically, the expected loss
is given by a multi-dimensional analytically intractable inte-
gral, i.e. as given by (2). In the two decades since the seminal
reviewofBayesian designbyChaloner andVerdinelli (1995),
there have been few general-purpose approaches to finding
such designs, as recently highlighted by Ryan et al. (2016)
andWoods et al. (2017). Note that being able to find the exact
optimal design for an arbitrary problem is, at present, an unre-
alistic goal. Instead, the aim is to find a design “close” to the
optimal design, termed a near-optimal design by Hamada
et al. (2001).

Existing approaches to approximately finding Bayesian
designs can be divided into two broad strategies. First, the
simulation-based approach of Müller (1999) arranges a joint
distribution for θm , m, y and design d given by

h(θm,m, y,d) ∝ (c − λ(θm,m, y,d))

×π (y|θm,m,d) π (θm |m) π(m), (3)

where c ≥ sup λ(θm,m, y,d). The marginal mode of d
corresponds to the Bayesian optimal design. The so-called
Müller algorithm essentially proceeds by using simulation
methods to generate a sample from the joint distribution
of θm , m, y and d and to use this sample to estimate the
marginal mode of d. This approach has been furthermodified
by Müller et al. (2004) and Amzal et al. (2006). How-
ever, due to the difficulty in implementing efficient sampling
methods, the Müller algorithm is difficult to implement for
high-dimensional design spaces with the limit typically con-
sidered to be just W = 4 (e.g. Ryan et al. 2016).

Alternatively, the second broad strategy is the smoothing-
based approach reliant on the followingMonte Carlo approx-
imation to the expected loss

L̂(d) = 1

B

B∑

b=1

λ(θbm,mb, yb,d), (4)

where
{
θbm,mb, yb

}B
b=1 is a sample generated from the joint

distribution θm , m and y. The stochastic nature of Monte
Carlo approximation means that L̂(d) is not a smooth func-
tion andmakes application of standard optimisation methods
(including heuristic methods) difficult. Instead, Müller and
Parmigiani (1995) proposed an approach whereby L̂(d)

is evaluated at a series of designs. A statistical model
(or smoother) is then fitted which builds a relationship
between design and expected loss allowing prediction of the
expected loss for any design. This prediction is minimised
in place of the true expected loss to give an approximation
to the Bayesian optimal design. Similar to the simulation-
based Müller algorithm, the scalability of this approach to
higher dimensional design spaces remains an issue. The
chosen smoother needs to balance the increased flexibility
required for adequate predictive accuracy with the com-
putational effort of the increased number of evaluations
of L̂(d) required. Müller and Parmigiani (1995) employed
local regression models and considered design spaces up to
W = 2. More recently, Weaver et al. (2016) used a Gaussian
process model (e.g. Santner et al. 2003) and considered an
application with W = 3 and Jones et al. (2016) used Bayes
linear analysis (Goldstein andWooff 2007) and consideredup
toW = 9. To increase the applicability to higher dimensional
design spaces, Overstall and Woods (2017) proposed the
approximate coordinate exchange (ACE) algorithmwhereby
a cyclic descent algorithm (commonly called coordinate
exchange in the design of experiments literature, Meyer and
Nachtsheim1995) is used tominimise the expected loss.Very
briefly, a Gaussian process prediction of the expected loss is
sequentially minimised over each one-dimensional element
of the design space. This can be seen as a generalisation of
the approaches of Müller and Parmigiani (1995) andWeaver
et al. (2016) to higher dimensional design spaces via the use
of coordinate exchange, and thus allowed consideration of
examples with design spaces of dimensionality nearly two
orders of magnitude greater than previously addressed in the
literature.

Both the Müller algorithm and the smoothing-based
approaches require evaluations of the loss function λ(θm,m,

y,d) either in the evaluation of h(θm,m, y,d) or L̂(d),
respectively. In both cases, a large number of evaluations of
the loss function will be required to find a design. Since the
loss function depends on y through the posterior distribution
of θm andm, and given that this distribution will typically be
analytically intractable, a further approximation is required.
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The most obvious approach to this problem is to use an addi-
tional Monte Carlo approximation, the exact nature of which
depends on the chosen loss function. In the case of theMonte
Carlo approximation to the expected loss, L̂(d), given by
(4), this will result in a nested or double loop Monte Carlo
(DLMC) approximation to the expected loss where the inner
loop refers to the approximation to the loss function and the
outer loop to the approximation to the expected loss. Let B̃
denote the Monte Carlo sample size in the inner loop with
B being the corresponding value in the outer loop. For typi-
cal loss functions, DLMC can induce a bias of order B̃−1 in
the approximation (e.g. Ryan 2003; Rainforth et al. 2016) to
the expected loss. Moreover, the computational complexity
of this approach is typically in the order of B × B̃ evalua-
tions of π(y|θm,m,d) for each m ∈ M. Since B and B̃ will
typically beO(103) or higher, this will be a computationally
expensive approach. The result ofwhich is that, even by using
the ACE algorithm, finding Bayesian optimal designs with
the DLMC approximation to the expected loss has been con-
fined to simple problems where the number of models under
consideration is |M | = 1 and inference has been focused on
parameter estimation.

In this paper, we consider using normal-based approxi-
mations to the posterior distribution of θm , centred around
the posterior mode of θm , and how these can be used to
approximate, in principle, any loss function. The normal-
based Laplace approximation has previously been used to
approximate the commonly used self-information loss func-
tion (see Sect. 3.1) for a nonlinear model by Long et al.
(2013) for a low-dimensional design space and under no
model uncertainty. However, application to other loss func-
tions has not previously been considered. We apply the new
methodology to illustrative examples which are challenging
in the context of Bayesian optimal design. In cases where the
computationally more expensive DLMC approach is feasi-
ble, we show, empirically, that the difference in performance
(measured in terms of expected loss) between designs found
under the two different approximations is negligible.We also
apply the proposed approach to problems where use of the
DLMC approximation to find a design would be computa-
tionally infeasible.

2 Methodology

2.1 Normal-based approximations to posterior
quantities

As discussed in Sect. 1, a typical loss function compares a
summary of the joint posterior distribution of θm and m to
the “true” values of θm and m in a way that is relevant to the
experimental aim. However, the joint posterior distribution
is usually not available in closed form. The methodology

in this paper is based on forming an approximation to
this joint distribution using normal-based approximations
and therefore providing an alternative approximation to the
loss function than the Monte Carlo approximation. The
normal-based approximation to the loss function, denoted
by λ̃(θm,m, y,d), can then be substituted into the Monte
Carlo approximation to the expected loss, given by (4), and
we refer to such an approximation as normal-based Monte
Carlo (NBMC).We can then use theACE algorithm or one of
the other smoothing-based approaches discussed in Sect. 1.
Conversely, we may also substitute λ̃(θm,m, y,d) into the
density of the joint distribution over θm , m, y and d, given
by (3), and apply the Müller algorithm.

First, note that the joint posterior distribution of θm andm,
given by (1), can be decomposed as follows (e.g. O’Hagan
and Forster 2004, page 169)

π (θm,m|y,d) = π(θm |y,m,d)π(m|y,d),

where the posterior model probability of model m ∈ M is
given by

π(m|y,d) = π(y|m,d)π(m)
∑

m∈M π(y|m,d)π(m)
, (5)

and the posterior distribution of θm (conditional on model
m ∈ M) is given by

π (θm |y,m,d) = π (y|θm,m,d) π (θm |m)

π(y|m,d)
, (6)

with

π(y|m,d) =
∫

Θm

π (y|θm,m,d) π (θm |m) dθm, (7)

usually called the marginal likelihood or evidence (Friel and
Wyse 2012) for model m ∈ M.

The posterior model probabilities are completely deter-
mined by the marginal likelihoods. Therefore, for cases
where there is model uncertainty, i.e. |M| > 1, it will be
necessary to approximate π(y|m,d) for all m ∈ M. First,
let the posterior mode for model m ∈ M be denoted by
θ̂m(y) = argmaxθm∈Θm π(y|θm,m,d)π(θm |m). Now let

Σ̂m(y) = H(θ̂m(y);m)−1,

where

H(θm;m)

= Ey|θm ,m

[
∂ logπ(y|θm,m,d)

∂θm

∂ logπ(y|θm,m,d)

∂θTm

]

−∂2 logπ(θm |m)

∂θm∂θTm
,
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i.e. the Fisher informationmatrixminus the second derivative
of the log prior density. A second-order Taylor series expan-
sionof the log integrand in (7) about the posteriormodeyields
the following so-called Laplace approximation (e.g. Gelman
et al. 2014; Long et al. 2013) to the marginal likelihood for
model m ∈ M

π̃(y|m,d)

= (2π)
pm
2 |Σ̂m(y)| 12 π(y|θ̂m(y),m,d)π(θ̂m(y)|m,d).

(8)

The posterior model probabilities are now approximated via

π̃(m|y,d) = π̃(y|m,d)π(m)
∑

m∈M π̃(y|m,d)π(m)
. (9)

Furthermore, we approximate the posterior distribution of
θm (conditional on m), by a normal distribution with mean
θ̂m(y) and variance Σ̂m(y), i.e.

N
(
θ̂m(y), Σ̂m(y)

)
. (10)

The tractability of the normal distribution means there are
now many direct approximations to posterior summaries of
interest (e.g. O’Hagan and Forster 2004, page 237). For
example, trivially, the posterior median of θm conditional
on m is approximated by the posterior mode. These approx-
imations to posterior summaries of interest can then be used
to approximate many loss functions of practical interest (see
Sect. 3.1 for examples).

Since the posterior distribution of θm converges to a nor-
mal distribution as n → ∞ (e.g. Gelman et al. 2014, pp.
585–588) the approximation will be more accurate for large
n. The approximation can be expected to be poor when the
true posterior distribution of θm is multi-modal or has signif-
icant skewness. In the latter case, the approximation could
be improved by a reparameterisation (e.g. Achcar and Smith
1990).

2.2 Finding the posterior mode and Fisher information

The approximations above are reliant on finding the posterior
mode, θ̂m(y), for each m ∈ M. This will need to be accom-

plished for each yb in the sample
{
θbmb ,m

b, yb
}B

b=1
, from

the joint distribution of θm , m and y, to evaluate the NBMC
approximation to the expected loss. To do this, we use a scor-
ing algorithm (e.g. Lange 2013, pgs 254–257), i.e. Newton’s
method where evaluation of the Hessian matrix of the log
posterior density is replaced by evaluation of −H(θm;m).
Specifically, let

f(θm;m) = ∂ logπ(y|θm,m,d)

∂θm
+ ∂ logπ(θm |m)

∂θm
,

be the gradient of the log posterior density with respect to
θm .

For r = 0, 1, 2, . . . , the scoring algorithm iterates through
the following steps

θ (r+1)
m = θ (r)

m + κH
(
θ (r)
m ;m

)−1
f(θ (r)

m ;m),

for some 0 < κ ≤ 1, until convergence. In the examples in
this paper, we use κ = 1

4 and a starting value of θ (0)
m =

E (θm |m), i.e. the prior mean. Convergence is deemed to

have occurred when
(
θ (r+1)
m − θ (r)

m

)T (
θ (r+1)
m − θ (r)

m

)
< ε,

where ε = 10−4.
The scoring algorithm requires the repeated inversion of

the pm × pm matrix H(θm;m). Often experiments are con-
ducted in blocks where a block consists of homogenous
experimental units. A suitable model (e.g. Pawitan 2013,
Chapter 17) in this case is a hierarchical (or mixed model)
where the effect of the block is accounted for by using block-
specific parameters (sometimes referred to as randomeffects)
for each block,which are assumed to be independent having a
common prior distribution. A consequence is that the number
of parameters, pm , for these types of models is proportional
to the number of blocks and therefore can be large. However,
due to the conditional independence structure exhibited by
hierarchicalmodels,H(θm;m)will be sparse leading to com-
putationally efficient methods for finding the inverse.

3 Examples

In this section, we begin by discussing a range of exemplar
loss functions and how they can be approximated using the
approach described in Sect. 2. This selection of loss functions
is not exhaustive but instead demonstrate how typical loss
functions may be approximated by using the approximations
outlined in Sect. 2. We then apply the proposed methodol-
ogy to find designs for experiments involving standard and
hierarchical logistic regression (Sect. 3.2) and a nonlinear
model (Sect. 3.3), for experimental aims of parameter esti-
mation and model discrimination. In the examples, we use
the ACE algorithm (briefly described in Sect. 1) to find the
optimal design since this is the only method in the literature
suitable for finding Bayesian designs for the dimensionality
of design space considered. However, the approximations to
the loss function could be applied with any method such as
the Müller algorithm or another smoothing-based method. A
more detailed description of the ACE algorithm is provided
in “Appendix 1” with a description of the choice of tuning
parameters.
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All designs found in Sects. 3.2 and 3.3 can be repro-
duced via the R (R Core Team 2016) package NBdesigns
(Overstall et al. 2017a). This is available as a Supplementary
Material to this paper. This package allows users to com-
pare future computational methodology to the approaches
described in this paper via the benchmark examples consid-
ered.

3.1 Loss functions

The loss functions considered in this section can be cate-
gorised into those for (a) parameter estimation (Sect. 3.1.1);
and (b) model discrimination (Sect. 3.1.2).

3.1.1 Parameter estimation

Suppose interest lies in theq×1vector of transformedparam-
eters φ = gm(θm), where q ≤ minm∈M pm , the gm are a set
of one-to-one and invertible functions, and φ has a consis-
tent interpretation for allm ∈ M. Inference about φ is based
on the model-averaged posterior distribution (O’Hagan and
Forster 2004, pp. 171–174) given by

πφ(φ|y,d) =
∑

m∈M
πφ(φ|m, y,d)π(m|y,d),

where we have introduced a subscript of φ on the density
function to indicate it refers to the transformed parameters.
Consider the following loss functions representing the exper-
imental aim of estimating φ. In each case, a special case
occurs when there is no model uncertainty, i.e. |M| = 1, in
which case we are interested in parameter estimation under
a single model.

Self-information loss The self-information (SI) loss is

λSI (φ, y,d) = logπφ(φ) − logπφ(φ|y,d). (11)

Minimising the expected SI loss is equivalent to maximis-
ing the expected Shannon information gain (Lindley 1956)
and expectedKullback-Liebler divergence between prior and
posterior distributions. Note that the expected SI loss is non-
positive. Typically, the density of the posterior distribution
of φ, given by πφ(φ|y,d), in the SI loss will be analytically
intractable. However, we can approximate it by first approx-
imating the posterior distribution of θm by (10) and then
deriving the approximate distribution ofφ = gm(θm) (condi-
tional onm) after taking a first-order Taylor series expansion
of φ = gm(θm) about θ̂m(y) (e.g. Khuri 2003, Chapter 4).
This leads to the following approximation to πφ(φ|y,d)

π̃φ(φ|y,d) =
∑

m∈M
π̃φ(φ|m, y,d)π̃(m|y,d), (12)

where π̃(m|y,d) is given by (9) and π̃φ(φ|m, y,d) is the
density of

N

(

gm(θ̂m(y)),
∂gm(θm)

∂θm

∣
∣
∣
∣
θm=θ̂m (y)

Σ̂m
∂gm(θm)

∂θm

∣
∣
∣
∣
θm=θ̂m (y)

)

.

(13)

The result is that the approximate model-averaged posterior
distribution of φ given by (12) is a mixture of normal distri-
butions where each component is given by (13) and weighted
by π̃(m|y,d).

It may not always be possible to find a closed form for the
density of the prior distribution of φ, evaluation of which is
necessary for the calculation of the SI loss given by (11). In
these cases, we suggest approximating the prior distribution
of θm for each m ∈ M by a normal distribution (with mean
μm = E(θm |m) and variance Ψm = var(θm |m)). Now, the
prior density πφ(φ) can be approximated via

π̃φ(φ) =
∑

m∈M
π̃φ(φ|m)π(m),

where π̃φ(φ|m) is the density of N
(
μm, Ψm

)
. Similar to the

posterior distribution, the model-averaged prior distribution
of φ is approximated by a mixture of normal distributions
but where the weights are the true prior model probabilities.

It is well known (e.g. Chaloner and Verdinelli 1995) that
in cases where there is no model uncertainty, |M| = 1,
g(θ) = θ , and under a normal approximation to the posterior
distribution the expected SI loss is equal to the objective func-
tion that defines pseudo-BayesianD-optimality (a commonly
used criterion in classical optimal design of experiments).
In “Appendix 2”, we discuss the relationship between the
normal-based approximation to the SI loss above and the
pseudo-Bayesian D-optimal approximation. It is shown that
the objective function for pseudo-Bayesian D-optimality is
itself an approximation to the expectation of the normal-
based approximation to the SI loss. This places the normal-
based approximations as being a compromise between the
computationally expensive DLMC approximation and the
computationally cheap pseudo-Bayesian D-optimal approx-
imation. Furthermore, in Sect. 3.2, we empirically compare
the two approximations.

Absolute error loss The absolute error (AE) loss (e.g. Robert
2007, pp. 79–80) is given by

λAE (φ, y,d) =
q∑

j=1

|φ j − Q(φ j |y,d)|,

where Q(φ j |y,d) is the model-averaged posterior marginal
median of φ j . If there is no model uncertainty, i.e. |M| = 1,
then we can approximate the posterior median by Q̃(φ j |y,d)

= gm(θ̂m(y)) j . However, if |M| > 1, then there is no closed
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form for the median (or any quantile) of a mixture of normal
distributions. To overcome this problem, we use simulation.
We generate a sample

{
φc}C

c=1 from the approximate model-
average posterior distribution of φ. We then approximate
Q(φ j |y,d) by the corresponding samplemedian. The sample
{
φc}C

c=1 can be generated as follows

1. Generate {mc}Cc=1 where model m is chosen with proba-
bility π̃(m|y,d).

2. For c = 1, . . . ,C , complete the following steps

(a) Generate θcmc from N
(
θ̂
c
m(y), Σ̂mc

)
.

(b) Set φc = gmc(θcmc).

Squared error loss The squared error loss (e.g. Robert 2007,
pp. 77–79) is given by

λSE (φ, y,d) = (
φ − Eφ|y,d [φ]

)T (
φ − Eφ|y,d [φ]

)
,

where

Eφ|y,d [φ] =
∑

m∈M
Eθm |y,m,d [gm(θm)]π(m|y,d). (14)

Typically, unless the gm are linear functions, the posterior
meanEθm |y,m,d [gm(θm)]will not be available in closed form.
To approximate this posterior mean, we use the simulation
approach described above for the case of approximating the
posterior median, only replacing the sample median by sam-
ple mean.

3.1.2 Model discrimination

Now, suppose the experimental aim is model discrimina-
tion, and thus inference is based on the posterior model
probabilities. Consider the following loss functions. In
both cases, we can derive approximations by replacing the
marginal likelihood, π(y|m,d), or posterior model prob-
ability, π(m|y,d) by the corresponding approximations,
π̃(y|m,d) or π̃(m|y,d), given by (8) and (9), respectively.

0–1 loss The 0–1 loss (e.g. Robert 2007, pp. 80–81) is
given by

λ01(m, y,d) = 1 − I (m = M(m|y,d)),

where I (A) denotes the indicator of event A and M(m|y,d))

= argmaxm∈M π(y|m,d)π(m) is the posterior modal
model. The design that minimises the expected 0–1 loss
equivalently maximises the expected posterior model prob-
ability of the modal model.

Model self-information loss The model self-information
loss (e.g McGree 2017) is derived by extending the self-
information loss for parameters to the posterior model
probabilities. It is given by

λMSI (m, y,d) = logπ(m) − logπ(m|y,d).

3.2 Logistic regression

The setup for the following example is adapted from Over-
stall and Woods (2017) who correspondingly adapted it
from a simpler problem studied by Woods et al. (2006)
and Gotwalt et al. (2009). It concerns a first-order logistic
regression model in k = 4 factors and n runs. Although
from a Bayesian inference perspective, logistic regression
is a relatively simple model, it (or more generally some
type of binary response model) is frequently used to bench-
mark new computational approaches in statistics (e.g. Minka
2001; Girolami and Calderhead 2011; Hoffman and Gel-
man 2014). Moreover, until Overstall and Woods (2017),
fully Bayesian design for such a model had not previously
been attempted in the literature indicating that in the con-
text of fully Bayesian design logistic regression remains a
non-trivial problem.

A binary response is measured forG blocks each of nG =
6 runs, i.e. the total number of runs is n = GnG . Let yi j
and xti j denote the experimental response and value of the
t th factor for the j th run from the i th block (i = 1, . . . ,G;
j = 1, . . . , nG ; t = 1, . . . , 4), respectively. It is assumed
that yi j ∼ Bernoulli

(
ρi j

)
, independently, where

log

(
ρi j

1 − ρi j

)
= β0 + γ0i +

4∑

t=1

vt (βt + γti ) xti j ,

= xTi j
(
v ◦ (

β + γ i

))
,

where β = (β0, β1, β2, β3, β4) are the regression parame-
ters, γ = (

γ 1, . . . , γ G

)
are the block-specific parameters,

v = (v0, . . . , v4) is a binary vector with vt = 1 (vt = 0)
indicating whether the t th factor is active (inactive), and ◦
denotes element-wise multiplication. The complete pm × 1
vector of parameters is θm = (

βm, γm

)
. Eachmodelm ∈ M

is determined by the |M| = 24 = 16 combinations of v.
LetX = (

XT
1 , . . . ,XT

G

)T
be the n×5model matrix where

Xi is the nG ×5 model matrix for the i th group with j th row
given by xTi j . The design is given by d = vec(DT ) where D
is the n × 4 matrix given by X with the first column of ones
(corresponding to the intercept) removed. The design space
D has dimensionalityW = 4n and is such that each element
of d lies in the interval [−1, 1].

From Woods et al. (2006) and Overstall and Woods
(2017), we assume independent prior distributions for each

123



Stat Comput (2018) 28:343–358 349

6 12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

Number of runs, n

R
el

at
iv

e 
ef

fic
ie

nc
y 

(%
)

6 12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

(a) - Standard logistic regression (Self-information loss)

6 12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

Number of runs, n

R
el

at
iv

e 
ef

fic
ie

nc
y 

(%
)

6 12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

(b) - Standard logistic regression (Squared error loss)

12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

Number of runs, n

R
el

at
iv

e 
ef

fic
ie

nc
y 

(%
)

12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

(c) - Hierarchical logistic regression (Self-information loss)

12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

Number of runs, n

R
el

at
iv

e 
ef

fic
ie

nc
y 

(%
)

12 18 24 30 36 42 48

70
75

80
85

90
95

10
0

10
5

(d) - Hierarchical logistic regression (Squared error loss)

Fig. 1 Boxplots of twenty DLMC approximations (B = 20, 000) to the relative self-information (a, c) and squared error (b, d) efficiencies plotted
against n ∈ NS = {6, 8, . . . , 48} for standard logistic regression (a, b) and against n ∈ NH = {12, 18, . . . , 48} for hierarchical logistic regression
(c, d)

element of β with lower and upper limits given by L =
(−3, 4, 5,−6,−2.5) and U = (3, 10, 11, 0, 3.5). Following
Overstall and Woods (2017), we assume two different prior
distributions for each γ i (i = 1, . . . ,G).

(i) A prior point mass at γ i = 0 for all i , resulting in
standard logistic regression with pm = 1 + ∑4

t=1 vt .
(ii) A hierarchical prior distribution in which elements of

γ i are independent and identically distributed as γti ∼
U[−ζt , ζt ], for t = 0, . . . , 4 with ζt ∈ (0, Zt ) unknown
and having triangular prior density π(ζt ) = 2(Zt −
ζt )/Z2

t with (Z0, Z1, . . . , Z4) = (3, 3, 3, 1, 1). The
numbers of parameters is pm = 1+G+(1+G)

∑4
t=1 vt .

Under each of these two prior distributions, we find
designs for the experimental aims of parameter estimation
and model discrimination.

3.2.1 Parameter estimation

We set vt = 1 for all t so that there is no model uncertainty
and consider generating designs under the aim of estimating
φ = β. This means gm = g is a linear function given by
g(θ) = Aθ , where for (1) standard logistic regression, A =
I5; and for (2) hierarchical logistic regression, A = (I5, R)

is a 5 × 5(1 + G) matrix where R is a 5 × 5G matrix of
zeros.
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Fig. 2 Plots ofNBMCapproximations (withB=1000 and B = 20,000)
to the expected loss plotted against the DLMC approximation (B =
50,000) to the expected loss for standard (a, b for n = 6) and hierar-

chical (c, d) for n = 12) logistic regression under the self-information
(a, c) and squared error (b, d) loss function. A line through the origin
with slope one has been added to aid in the comparison

We consider the self-information and squared error loss
functions and compare designs found under the DLMC
approximation (as found by Overstall and Woods 2017 and
referred henceforth as DLMCdesigns) against designs found
under the NBMC approximations proposed in this paper
(henceforth referred to as NBMC designs). To make com-
parisons valid, we found the NBMC designs under exactly
the same implementation of ACE as those used to find the
DLMC designs (see “Appendix 1” for details). Additionally,
we also compare against pseudo-Bayesian D- and A-optimal
designs (also as found by Overstall and Woods 2017).

We compare designs using relative efficiency. Let d∗
SI and

d∗
SE be the DLMC designs under the SI and SE loss func-

tions, respectively, found by Overstall and Woods (2017).
The relative SI and SE efficiencies of a design d are defined
as

RSI (d) = LSI (d)

LSI (d∗
SI )

× 100%, (15)

RSE (d) = LSE (d∗
SI )

LSI (d)
× 100%, (16)

respectively, where LSI and LSE refer to the expected SI
and SE loss functions, respectively. Note that the definition
of relative SI efficiency, given by (15), follows from how the
expected SI loss is non-positive. The relative efficiencies are
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Fig. 3 Plots of mean computer time required to find the NBMC, DLMC and pseudo-Bayesian designs for standard (a, b) and hierarchical (c, d)
logistic regression under the SI (a, c) and SE (b, d) loss function

approximated by approximating the expected losses in (15)
and (16) by using the DLMC approximation.

The top row of Fig. 1 shows boxplots of twenty DLMC
approximations to the relative efficiency for SI (left) and SE
(right) for the NBMC and pseudo-Bayesian designs plotted
against n ∈ NS = {6, 8, . . . , 48} (meaning W ranges from
24 to 192) for standard logistic regression. The bottom row
shows the same boxplots for hierarchical logistic regression
plotted against n ∈ NH = {12, 18, . . . , 48} (meaning W
ranges from 48 to 192). In both cases, the relative efficiencies
of the NBMC designs are clearly very close to one for all
values of n indicating that the performance of these designs
(in terms of expected loss) is very close to the performance
of the DMLC designs. However, the relative efficiency of the
pseudo-Bayesian designs only become close to one as n gets
larger. In the case of the SI loss, it appears from Fig. 1 that

we could obtain a negligible difference in expected SI loss
for values of n over approximately forty by using the pseudo-
Bayesian D-optimal design. This design is computationally
more efficient to find than a fully Bayesian design, however,
knowing that it had nearly equivalent performance to the fully
Bayesian design would be hard without first finding the fully
Bayesian design.

We now investigate the accuracy of the NBMC approx-
imation to the expected loss. For the SI and SE loss, we
randomly generate T designs and for each one calculate
three different approximations to the expected loss: a DLMC
approximation with B = 50,000 (which we consider near
exact evaluation of the expected loss), and NBMC approxi-
mations with B = 1000 and B = 20, 000. The t th design for
t = 1, . . . , T , is generated by perturbing the DLMC designs
under each of the loss functions as follows
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Fig. 4 Plots of the DLMC approximation (B = 20,000) to the expected 0–1 (a) and model self-information (b) loss function for standard and
hierarchical logistic regression against n

d(t)
SI = (1 − ut )d∗

SI + utd(t),

d(t)
SE = (1 − ut )d∗

SE + utd(t)

where, at each iteration, ut ∼ U(0, 1
2 ), and d

(t) is a design in
which each element is generated fromU(−1, 1). The top row
of Fig. 2 shows plots of the two NBMC approximations to
the expected loss plotted against theDLMCapproximation to
the expected loss for standard logistic regression under the SI
(left) and SE (right) loss function for n = 6 (i.e. the small-
est number of runs considered). The bottom row of Fig. 2
shows the same plots for hierarchical logistic regression
with n = 12 (again the smallest number of runs consid-
ered). In all four cases, although the NBMC approximation
to the expected loss can be inaccurate, especially for designs
close to the minimum, the ordering of designs in terms of
expected loss is the same as for the DLMC approximation.
This means the NBMC approximation to the expected loss is
minimised for design close to the design that minimises the
DLMC approximation.

Figure 3 shows plots of the mean computer time required
to compute the three types of design (NBMC, DLMC and
pseudo-Bayesian) for the models and loss functions con-
sidered. Note that the algorithm was run on the IRIDIS
4 supercomputer facility at the University of Southamp-
ton which has 2.6Ghz processors with 4Gb memory. Note
that the MBMC designs are typically found in a third of
the computing time required to find the DLMC designs.

The pseudo-Bayesian designs require the smallest amount
of computing time but this should be judged in parallel with
the lack of efficiency these designs exhibit when compared
to the corresponding fully Bayesian design (see Fig. 1).

3.2.2 Model discrimination

Now consider the aim of model discrimination. Suppose
that v0 = 1 (corresponding to the intercept) but that vt is
unknown for t = 1, . . . , 4. Each unique combination of
(v1, . . . , v4) corresponds to a unique model m. The total
number of models is |M| = 24 = 16 ranging from
(v1, . . . , v4) = (0, 0, 0, 0) (intercept only; all factors inac-
tive) to (v1, . . . , v4) = (1, 1, 1, 1) (full model; all factors
active). The prior model probabilities are such that P(vt =
1) ∼ U[0, 1] independently, for each t = 1, . . . , 4. For
model m, let (vm1, . . . , vm4) denote the values of vt where
the number of regression parameters is given by bm =
1 + ∑4

t=1 vmt . The marginal prior model probabilities are
then given by

π(m) = 1

5
( 4
bm−1

) ,

which corrects for Bayesian multiplicity (Scott and Berger
2010).

We find designs for both standard and hierarchical logistic
regression for each value of n (NS for standard, and NH for

123



Stat Comput (2018) 28:343–358 353

0.50 0.55 0.60

0.
40

0.
50

0.
60

0.
70

(a) Standard logistic regression - 0-1 loss

DLMC approximation to expected 0-1 loss (B=50,000)

N
B

M
C

 a
pp

ro
xi

m
at

io
n 

to
 e

xp
ec

te
d 

0-
1 

lo
ss

-1.0 -0.8 -0.6 -0.4

-1
.2

-1
.0

-0
.8

-0
.6

-0
.4

(b) Standard logistic regression - MSI loss

DLMC approximation to expected MSI loss (B=50,000)

N
B

M
C

 a
pp

ro
xi

m
at

io
n 

to
 e

xp
ec

te
d 

M
S

I l
os

s

0.42 0.44 0.46 0.48 0.50 0.52

0.
42

0.
46

0.
50

(c) Hierarchical logistic regression - 0-1 loss

DLMC approximation to expected 0-1 loss (B=50,000)

N
B

M
C

 a
pp

ro
xi

m
at

io
n 

to
 e

xp
ec

te
d 

0-
1 

lo
ss

-1.4 -1.3 -1.2 -1.1 -1.0

-1
.4

-1
.3

-1
.2

-1
.1

-1
.0

(d) Hierarchical logistic regression - MSI loss

DLMC approximation to expected MSI loss (B=50,000)

N
B

M
C

 a
pp

ro
xi

m
at

io
n 

to
 e

xp
ec

te
d 

M
S

I l
os

s

B = 1,000 B = 50,000

Fig. 5 Plots of NBMC approximation (with B = 1000 and B = 20,000) to the expected 0–1 (a, c) and model self-information (b, d) loss plotted
against the corresponding DLMC approximation (B = 50,000) for standard (a, b for n = 6) and hierarchical (c, d for n = 12) logistic regression

hierarchical), under both the 0–1 and model self-information
loss functions, respectively. Bayesian optimal design on such
a scale for the experimental aim of model discrimination has
not been addressed previously in the literature. It would be
infeasible to find DLMC designs in this situation since it
would require |M| = 16 Monte Carlo approximations to
the marginal likelihood for every b = 1, . . . , B. Conversely,
the normal-based approximations will require |M| = 16
Laplace approximations which will be computationally less
intensive.

However, although it is infeasible to use the DLMC
approximation to find designs, we can use it to assess
the NBMC designs. Figure 4 shows boxplots of twenty
DLMC approximations to the expected 0–1 and model self-
information loss functions for both standard and hierarchical
logistic regression against n for the NBMC designs. Note
that the expected loss for the hierarchical model is always
greater than for the standard model and that this difference

increases as n increases. This is due to the extra uncertainty
introduced by the blocks and their associated block-specific
parameters (whose number is proportional to n).

Similar to Sect. 3.2.1, we check the validity of the approx-
imation by plotting NBMC approximations (with B = 1000
and B = 20,000) against the DLMC approximation to the
expected loss with B = 50,000. Figure 5 shows the result-
ing plots for n = 6 (standard logistic regression) and n = 12
(hierarchical logistic regression). In this case, we can see that
the NBMC approximations to the expected loss appear very
accurate for both loss functions.

3.3 Mechanistic modelling of chemical reactions

In this section, we consider the famous example from Box
and Hill (1967) concerning discriminating between nonlin-
ear models for describing chemical reactions. Suppose the
i th run consists of specifying temperature xi1 ∈ (0, 150) and
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Fig. 6 Boxplots of twenty NBMC approximations (B = 20,000) to the expected loss for the NBMC designs plotted against n under the each of
the loss functions for the nonlinear model example

reaction time xi2 ∈ (450, 600), i.e. di = (xi1, xi2), and mea-
suring the yield yi froma chemical reaction, for i = 1, . . . , n.
It is assumed that

yi ∼ N
(
ηm(θ;di ), σ 2

)
,

independently for i = 1, . . . , n where m ∈ M. Consider
the set M = {1, 2, 3, 4} of |M| = 4 competing models for
ηm(θ;di ) given as follows

m = 1 : η1(θ;di ) = exp

(
−θ11xi1 exp

(
−θ12

xi2

))
;

m = 2 : η2(θ;di ) = 1/

(
1 + θ21xi1 exp

(
−θ22

xi2

))
;

m = 3 : η3(θ;di ) = 1/

(
1 + θ31xi1 exp

(
−θ32

xi2

)) 1
2 ;

m = 4 : η4(θ;di ) = 1/

(
1 + θ41xi1 exp

(
−θ42

xi2

)) 1
3 ;
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where the unknown parameters θm = (θm1, θm2) have the
same interpretation under each model. Following Box and
Hill (1967), a-priori we assume that θm1 ∼ N(400, 252) and
θm2 ∼ N(5000, 2502), independently, and that π(m) = 1/4.
Box and Hill (1967) assumed that the response variance was
fixed as σ 2 = 0.12. However, we let σ 2 be unknown and
assume that σ 2 ∼ U[0, 1].

We consider n = {5, 10, 15, . . . , 50} meaning that W
ranges from 10 to 100. To demonstrate the versatility of
the normal-based approximations presented in this paper,
for each value of n, we find NBMC designs under a total of
eight different loss functions.We consider the three exemplar
loss functions (Sect. 3.1.1) for parameter estimation for (a)
φ = gm(θm) = θm ; and (b) φ = gm(θm) = θm2/θm1, where
in the latter case we are interested in the ratio of the two
unknown parameters. In both cases, we are taking account of
model uncertainty by considering the model-averaged pos-
terior distribution of φ. We also consider the two exemplar
loss functions for model discrimination (Sect. 3.1.2).

It is not clear how to find DLMC approximations to
the expected loss for every loss function considered in this
section. For example, a DLMC approximation to the model-
averaged posterior median required for the AE loss would
require samples from the posterior distribution of θm for each
m ∈ M and yb, for b = 1, . . . , B. Therefore, in this section,
we rely on the NBMC approximations to assess the perfor-
mance of designs. Figure 6 shows twenty boxplots of the
NBMC approximation (B = 20,000) to the expected loss for
theNBMCdesigns plotted against n for each of the loss func-
tions. Note how the expected loss functions for φ = θm have
a faster relative decrease in expected loss with increasing n
than the expected loss for φ = θm2/θm1. This is easiest to
see for the SE in loss in Fig. 6b, where the expected SE loss
for φ = θm has a relative decrease of approximately 35%
when n increase from 5 to 50. The corresponding (see Fig.
6e) relative decrease in expected SE loss for φ = θm2/θm1 is
approximately 15%.This is due to the formof the parameteri-
sationof interest gm(θm).Whenφ = θm , the trace of the prior
variance of φ is 63,125 which gives an upper bound on the
expected loss. The corresponding value for φ = θm2/θm1 is
approximately 1.Under the latter parameterisation, it appears
the choice of design does not have as great an impact on the
expected SE loss than the former.

4 Conclusion

In this paper, we have proposed the use of normal-based
approximations to posterior summaries to aid in the approx-
imation of the loss function. The resulting approximate loss
can be used in conjunction with any algorithm suitable for
finding the design that minimises the expected loss function.
The methodology was used in conjunction with the ACE

algorithm to find designs which have similar performance
(in terms of expected loss) to designs generated by the orig-
inal ACE algorithm with the DLMC approximation to the
expected loss, but using a fraction of the computing time.
The methodology was also able to find designs for problems,
under model uncertainty, where use of the DLMC approach
would be infeasible and, as such, have not previously been
addressed in the literature.

The normal-based approximations utilised in this paper
are formed by using the location of, and curvature around,
the posterior mode. Taking advantage of alternative normal-
based or other deterministic approximations may be of
future interest. In particular, one could consider using the
expectation propagation (EP) algorithm of Minka (2001) to
form efficient approximations to the posterior distribution
of the parameters. Similar to mode-/curvature-based approx-
imations used in this paper, EP also provides an efficient
approximate of the marginal likelihood. EP could potentially
be useful in a wider range of problems as any distribution in
the exponential family could be considered as the parametric
form for approximating the posterior distribution.
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Appendix 1: Details on the approximate coordinate
exchange algorithm

ACE algorithm

1. Choose an initial design d0 = (
d01 , . . . , d

0
W

)
and set the

current design to be dC = (
dC1 , . . . , dCW

) = d0.
2. For i = 1, . . . ,W complete the following steps

(a) Let Li (d) = L(dC1 , . . . , dCi−1, d, dCi+1, . . . , d
C
W ) be

the function given by the expected loss function
which only varies over the design space, Di , for the
i th element.
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(b) For j = 1, . . . , Q, evaluate the MC approximation
to the expected loss given by

z j = L̂i (d j ),

for
{
d1, . . . , dQ

} ∈ Di . Fit a GP emulator to
{
z j , d j

}Q
j=1 and set L̃i (d) to be the resulting pre-

dictive mean.
(c) Find

d∗
i = argmind∈Di L̃

i (d),

and let d∗ = (
dC1 , . . . , dCi−1, d

∗, dCi+1, . . . . . . , d
C
W

)

be the proposed design.
(d) Set dC = d∗ with probability p∗.

3. Return to step 2.

Comparison procedure

In step 2d, we accept the proposed design, d∗ with probabil-
ity p∗. The proposed design originates from the Gaussian
process emulator. Similar to all statistical models, Gaus-
sian process emulators, can fit inadequately. To mitigate
the effects of an inadequate emulator, Overstall and Woods
(2017) proposed a comparison between the proposed design
d∗ and the current design dC . Note that the proposed design
d∗ should be accepted if

Eθm ,m,y|d∗
[
λ(θm,m, y,d∗)

]
< Eθm ,m,y|dC

[
λ(θm,m, y,dC )

]

(17)

Forb = 1, . . . , Bwegenerate samples
{
λb∗

}B
b=1 and

{
λbC

}B
b=1

as follows

λb∗ = λ(θ∗b
m ,m∗b, y∗b,d∗),

λbC = λ(θbm,mb, yb,dC ),

where
{
θ∗b
m ,m∗b, y∗b}B

b=1 and
{
θbm,mb, yb

}B
b=1 are samples

from the joint distribution of θm , m and y conditional on
d∗ and dC , respectively. We use these samples to perform a
Bayesian hypothesis test of (17). The form of the Bayesian
hypothesis test, as described in Overstall and Woods (2017),
assumes that the λb∗’s and λbC ’s are continuous and their
distribution reasonably assumed normal. In this case, the
probability of accepting the proposed design is

p∗ = 1 − F

(

−
∑B

b=1 λbC − ∑B
b=1 λb∗√

2Bv̂

)

,

where F(·) is the distribution function of the t-distribution
with 2B − 2 degrees of freedom,

v̂ =
∑B

b=1(λ
b
C − λ̄C )2 + ∑B

b=1(λ
b∗ − λ̄∗)2

2B − 2
,

and λ̄C and λ̄∗ are the sample means of the λbC ’s and λb∗’s,
respectively.

The assumption of normality will clearly be violated for
the 0–1 loss function for model discrimination, described in
Sect. 3.1, where the λb∗’s and λbC ’s will be binary in the set
{0, 1}. For such loss functions, we introduce the following
modification. Assume that

λbC
iid∼ Bernoulli (ρC ) ,

λb∗
iid∼ Bernoulli (ρ∗) ,

for b = 1, . . . , B.We also assume the following independent
prior distributions: ρC ∼ U[0, 1] and ρ∗ ∼ U[0, 1]. The
resulting posterior distributions are

ρC |λ1C , . . . , λB
C ∼ Beta

(
1 + Bλ̄C , 1 + B − Bλ̄C

)
,

ρ∗|λ1∗, . . . , λB∗ ∼ Beta
(
1 + Bλ̄∗, 1 + B − Bλ̄∗

)
.

The probability of accepting the new design is then given by

p∗ = P
(
ρ∗ < ρC |λ1C , . . . , λB

C , λ1∗, . . . , λB∗
)

which is evaluated via simulation as follows

p∗ ≈ 1

B

B∑

b=1

F
(
ρb
C ; 1 + Bλ̄∗, 1 + B − Bλ̄∗

)
,

where F (·; a, b) denotes the distribution function of the
Beta(a, b) and

{
ρb
C

}B
b=1 is a sample fromBeta

(
1 + Bλ̄C , 1+

B − Bλ̄C
)
.

Implementation details

To reduce the likelihood of the ACE algorithm converging to
local optima, it is restarted from E different starting designs.
These E repetitions of the ACE algorithm are run in an
embarrassingly parallel fashion. Note that there is further
scope for parallelising theACE algorithm. The Q evaluations
of theMonte Carlo approximation to the expected loss in step
2b could be parallelised. Furthermore, the calculation of the
posterior mode for b = 1, . . . , B could also be parallelised.
These have not been pursued here through. Even by repeating
the ACE algorithm E times does not guarantee that it will
converge to the true optimal design. Following Overstall and
Woods (2017) we set E = 20, Q = 20, and B = 1000,
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except for in the comparison procedure where B = 20, 000.
These values were found by Overstall and Woods (2017) to
perform well for a variety of examples. Additionally, Müller
and Parmigiani (1995) also found that B could be similarly
small when using their smoothing-based approach. Note that
in their use of DLMC approximation to the expected loss,
Overstall and Woods (2017) used B̃ = B for the Monte
Carlo sample size in the inner loop of the DLMC approx-
imation. Again following Overstall and Woods (2017), we
fit the Gaussian process model using a squared exponential
correlation function.

The ACE algorithm is implemented in the R package
acebayes (Overstall et al. 2017b) available from the Com-
prehensive R Archive Network.

Appendix 2: Relationship between proposed
approximations and pseudo-Bayesian design

Consider the case where |M | = 1 and g(θ) = θ . The approx-
imated SI loss is then

λ̃SI (θ, y,d) = logπ(θ) + p

2
log(2π) + 1

2
log |Σ̂θ |

+1

2

(
θ − θ̂(y)

)T
Σ̂−1

θ

(
θ − θ̂(y)

)
.

The corresponding expected approximate SI loss is given by

L̃ S I (d) = Eθ

[
Ey|θ ,d

[
λ̃SI (θ, y,d)

]]
. (18)

Assume that the prior distribution for θ is sufficiently diffuse
so that Σ̂θ = I(θ;d)−1 and the posterior mode is approx-
imately equal to the maximum likelihood estimator (MLE).
Using the delta-method and the approximate distribution of
the MLE, the following approximation for L̃ S I (d) can be
derived

L̃ S I (d) = Eθ

[
p

2
log(2π) + p

2
+ logπ(θ) − 1

2
log |I(θ;d)|

]
.

This is proportional to the objective function for pseudo-
Bayesian D-optimality. Similarly, an approximation to the
expected squared error loss is given by

L̃ S I (d) = Eθ

[
tr

{
I(θ;d)−1

}]
,

the objective function for pseudo-Bayesian A-optimality.
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