
Software Qual J (2017) 25:3–5
DOI 10.1007/s11219-017-9354-x

Special issue on program debugging

Sudipto Ghosh1 · J. Jenny Li2

Published online: 13 January 2017
© Springer Science+Business Media New York 2017

Software today is large and complex, in fact, more so than ever before. Consequently, debug-
ging when failure is observed is also becoming much more difficult and time-consuming.
Manual debugging is quickly losing its viability as a practical option, and yet at the same
time, various alternative approaches are still too immature for practical use.

Techniques that aim for automatic fault localization are not accurate and consistent
enough to pinpoint the locations of faults to a desired degree. Distinguishing executions that
fail due to different causative faults, reliably recording and replaying failed executions, and
fixing bugs without introducing new faults are but some of the debugging-related problems
faced by developers today.

Recent efforts, such as the recommender system-based approaches that mine different
types of software repositories and suggest various debugging actions or program fixes, are
still unproven to be consistently effective. Formal verification techniques generally suffer
from complexity and scalability issues. Static techniques can often be imprecise. The heavy
performance overhead of dynamic techniques can prohibit their application.

Even though a software development project may apply such techniques, they may
require developers to make the final selection, diagnosis, and fixing decisions. Social
aspects of software development projects that aid debugging, such as selecting the right
developers to perform the right debugging tasks at the right time, have not been adequately
explored. Last but not least, while studies are being conducted to reveal, clarify, or resolve
some of these issues, researchers often conduct studies in restrictive environments that may
inherently make incorrect assumptions about the industry. All these concerns can induce

� Sudipto Ghosh
ghosh@cs.colostate.edu

J. Jenny Li
juli@kean.edu

1 Department of Computer Science, Colorado State University, Fort Collins, CO, USA

2 Department of Computer Science, Kean University, Union, NJ, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9354-x&domain=pdf
mailto:ghosh@cs.colostate.edu
mailto:juli@kean.edu


4 Software Qual J (2017) 25:3–5

in practitioners a lack of faith with regard to the results that debugging research can offer
and deliver. In this special issue on Program Debugging, seven papers are presented that
investigate issues in diverse areas of program debugging and their automation.

The first paper “Efficient and Scalable Omniscient Debugging for Model Transforma-
tion” by Jonathan Corley, Brian P. Eddy, Eugene Syriani, and Jeff Gray proposes a technique
for supporting omniscient debugging for model transformations. By using enhanced navi-
gation and exploration features during a debugging session, developers can achieve more
thorough omniscient debugging than by using a strict stepwise execution environment. This
paper also presents the results on comparing the execution time performance and memory
usage of this approach compared to a stepwise execution approach.

The second paper “10 Years of Research on Debugging Concurrent and Multicore Soft-
ware: A Systematic Mapping Study” by Sara Abbaspour, Daniel Sundmark, Sigrid Eldh,
Hans Hansson, andWasif Afzal presents the results of a systematic mapping study of debug-
ging concurrent and multicore software. The findings indicate that several important issues
need to be investigated and broader studies need to be performed.

The third paper “Studying the Advancement in Debugging Practice of Professional
Software Developers” by Michael Perscheid, Robert Hirschfeld, Benjamin Siegmund, and
Marcel Taeumel presents results obtained by observing several professional developers
when they performed debugging tasks. Interviews were conducted and a large-scale online
debugging survey was performed to obtain new insights on debugging practices.

The fourth paper “Reproducing Failures based on Semi-Formal Failure Scenario
Descriptions” by Gun Karagoz and Hasan Sozer presents an approach that uses semi-
structured failure scenario descriptions from the field to let developers automatically
reproduce failures for debugging purposes.

The fifth paper “Effective Software Fault Localization using Predicted Execution
Results” by Eric Wong, Ruizhi Gao, Zhenyu Chen, and Yabin Wang addresses the problem
of failure detection when no test oracle exists to automatically determine the success or fail-
ure of executions. Often the outputs are verified manually and sometimes even the expected
outputs are unknown.

The sixth paper “Fault Localization for Automated Program Repair: Effectiveness,
Performance, and Repair Correctness” by Fatmah Yosef Assiri and James M. Bieman stud-
ies various fault localization and automated program repair techniques in terms of their
effectiveness, performance, and correctness of the produced repairs.

The seventh paper “A Declarative Framework for Stateful Analysis of Execution Traces”
by Naser Ezzati Jivan, Florian Wininger, and Michel R. Dagenais proposes a generic declar-
ative trace analysis framework to analyze, comprehend, and visualize execution traces.
This is an important step before developers can debug execution, detect problems and
bottlenecks, and identify root causes for problems.

We, the guest editors, thank the authors for their hard work in preparing and revising their
manuscripts. We thank the reviewers for taking the time to write detailed reviews. Finally,
we thank the Editor-In-Chief, Prof. Rachel Harrison, and the editorial staff for their patience
and hard work in getting this special issue ready for publication.



Software Qual J (2017) 25:3–5 5

Dr. Sudipto Ghosh is an Associate Professor of Computer Science at Colorado State University. He received
the Ph.D. degree from Purdue University in 2000. His teaching and research interests include model-
ing, designing and testing of object-oriented software and aspect-oriented and component-based software
development. He is on the editorial boards of the Software Quality Journal, Journal of Software Testing, Ver-
ification and Reliability, and Information and Software Technology. He was a general co-chair of MODELS
2009 and Modularity 2015. He was a program co-chair of ICST 2010. He is a member of the ACM and a
Senior Member of the IEEE, and IEEE Computer Society.

Dr. J. Jenny Li is a professor at Kean University computer science department. Prior to joining Kean, she
was a research scientist at Avaya Labs, formerly part of Bell Labs. She is an experienced academic and
industrial researcher with more than 80 papers published in technical journals and conferences, and holder of
over 20 patents. She also worked at Bellcore (formerly Telcordia and now Applied Communication Science)
for 5 years. Her current research interest is in the application of artificial intelligence and machine learning
techniques to network software security. She received her Ph.D from University of Waterloo in 1996.


	Special issue on program debugging

