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This note corrects the proof of Theorem 1.1 of [1], and extends the statement of the
result to odd m and also furnishes the missed statement with regard to the funding
obtained from the European Research council and that provided to A. Folsom in the
article note.

1 Introduction and statement of results

Let for m ∈ N

ϕm(z) = ϕm(z; τ) :=
(

ϑ
(
z + 1

2

)
ϑ(z)

)m

,
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where (q := e2π iτ , ζ := e2π i z with τ ∈ H, z ∈ C)

ϑ(z) = ϑ(z; τ) :=
∑

ν∈ 1
2+Z

e
π iντ+2π iν

(
z+ 1

2

)

is the Jacobi theta function. Note that in contrast to [1], we write ϕm in order to
highlight the dependence on m. Denote the coefficients of the Fourier expansion (in
z) by χr , so that

ϕm(z; τ) =:
∑
r∈Z

χr (τ )ζ r . (1.1)

Define the Nebentypus character ψm for matrices γ = ( a b
c d ) ∈ �0(2) by

ψm(γ ) := e
π im
2 ( c

2 d+d−1). (1.2)

Moreover, we require the well-known Eisenstein series E2 j (τ ). For j ≥ 2, they are
holomorphic modular forms, while E2(τ ) is a quasimodular form. The Bernoulli
numbers B� are defined for non-negative integers � by the generating function

t

et − 1
=

∑
�≥0

B�

t�

�! .

Theorem 1.1 For r ∈ Z and m ∈ N, we have

χr (τ ) = qr

1 + (−1)m+1qr
∑

0≤�<m
2

rm−2�−1 Dm−2�(τ )

(m − 2� − 1)!
(assuming that r �= 0 if m is even),

χ0(τ ) = D0(τ ) +
∑

1≤ j≤m
2

B2 j

(2 j)!D2 j (τ )E2 j (τ ) for m even,

where for each 0 ≤ j ≤ m such that j ≡ m (mod 2), the function D j is a modular
form of weight − j on �0(2) with Nebentypus character ψm, as defined in (1.2).

Remark Theorem 1.1 was given for even m in [1]; above, we have extended the
statement to hold for odd m. Moreover, the proof in [1] had a mistake: the second
displayed formula in the proof of Proposition 3.3 was incorrect. We thank Sander
Zwegers for pointing out the mistake and for fruitful discussion.

2 Proof of Theorem 1.1

Using that, for λ,μ ∈ Z, we have

ϑ(z + λτ + μ) = (−1)λ+μq− λ2
2 e−2π iλzϑ(z),
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ϑ

(
z + 1

2
+ λτ + μ

)
= (−1)μq− λ2

2 e−2π iλzϑ

(
z + 1

2

)
,

we obtain that
ϕm(z + λτ + μ) = (−1)mλϕm(z). (2.1)

Let for z0 ∈ C, τ ∈ H

Pz0 := {z0 + rτ + s : 0 ≤ r , s ≤ 1} .

Then, with z0 such that no pole of ϕm lies at the boundary of Pz0 , we compute

∫
∂Pz0

ϕm(w)e−2π irwdw =
(∫ z0+1

z0
+

∫ z0+1+τ

z0+1
+

∫ z0+τ

z0+1+τ
+

∫ z0

z0+τ

)
ϕm(w)e−2π irwdw

=
∫ 1

0
ϕm(z0 + t)e−2π ir(z0+t)dt

+ τ

∫ 1

0
ϕm(z0 + 1 + tτ)e−2π ir(z0+tτ)dt

−
∫ 1

0
ϕm(z0 + τ + t)e−2π ir(z0+τ+t)dt

− τ

∫ 1

0
ϕm(z0 + tτ)e−2π ir(z0+tτ)dt . (2.2)

Using (2.1) gives

ϕm(z0 + 1 + tτ) = ϕm(z0 + tτ), ϕm(z0 + t + τ) = (−1)mϕm(z0 + t).

Thus (2.2) becomes

e−2π ir z0
(
1 + (−1)m+1e−2π irτ

) ∫ 1

0
ϕm(z0 + t)e−2π ir tdt .

Inserting the Fourier expansion of ϕm yields

∫ 1

0
ϕm (z0 + t) e−2π ir tdt =

∑
�∈Z

χ�(τ)e2π i�z0
∫ 1

0
e2π i(�−r)tdt = χr (τ )e2π ir z0 .

So (assuming r �= 0 if m is even)

χr (τ ) = (−1)m+1qr

1 + (−1)m+1qr

∫
∂Pz0

ϕm(w)e−2π irwdw. (2.3)
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We now compute (2.2) in another way, picking z0 = − 1
2 − τ

2 . Then the only pole
of ϕm in Pz0 is at z = 0. So, using the Residue Theorem, (2.2) equals

2π i Resz=0

(
ϕm(z)e−2π ir z

)
. (2.4)

Write (noting that ϕm is even or odd, depending on the parity of m)

ϕm(z) =
∑

m−2�>0

Dm−2�(τ )

(2π i z)m−2� + O(1). (2.5)

Inserting the series expansion of e−2π ir z , (2.4) becomes

(−1)m+1
∑

0≤�<m
2

rm−2�−1 Dm−2�(τ )

(m − 2� − 1)! .

Thus, for r ∈ Z (with the restriction that r �= 0 if m is even) we obtain by comparing
with (2.3),

χr (τ ) = qr

1 + (−1)m+1qr
∑

0≤�<m
2

rm−2�−1 Dm−2�(τ )

(m − 2� − 1)! .

This gives the first equation in Theorem 1.1.
To determine χ0 (for m even), we plug in to (1.1), which implies

ϕm(z) =
∑

1≤�≤m
2

D2�(τ )

(2� − 1)!
∑

r∈Z\{0}

r2�−1qrζ r

1 − qr
+ χ0(τ ). (2.6)

We now insert the Laurent expansions around z = 0 on both sides. We write the sum
on r as ∑

r≥1

r2�−1qrζ r

1 − qr
+

∑
r≥1

r2�−1ζ−r

1 − qr
. (2.7)

It is not hard to see that both sums converge absolutely for −v < y < 0, where
v := Im(τ ), y := Im(z). We write the second summand in (2.7) as

∑
r≥1

r2�−1ζ−r

1 − qr
=

∑
r≥1

r2�−1ζ−r +
∑
r≥1

r2�−1ζ−r qr

1 − qr
. (2.8)
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The first summand equals

(
− 1

2π i

∂

∂z

)2�−1 ∑
r≥1

ζ−r =
(

− 1

2π i

∂

∂z

)2�−1 1

ζ − 1

=
(

− 1

2π i

∂

∂z

)2�−1 (
B0

2π i z
+ B2�(2π i z)2�−1

(2�)!
)

+ O
(
z2

)

= (2� − 1)!
(2π i z)2�

− B2�

2�
+ O

(
z2

)
.

The second summand combines with the first summand in (2.7) as using that ϕm is an
even function of z,

2
∑
r≥1

r2�−1qr

1 − qr
+ O

(
z2

)
.

Thus the right hand side in (2.6) becomes

∑
1≤�≤m

2

D2�(τ )

(2� − 1)!

⎛
⎝2

∑
r≥1

r2�−1qr

1 − qr
− B2�

2�
+ (2� − 1)!

(2π i z)2�

⎞
⎠ + χ0(τ ) + O

(
z2

)

= −
∑

1≤�≤m
2

D2�(τ )

(2�)! B2�E2�(τ ) +
∑

1≤�≤m
2

D2�(τ )

(2π i z)2�
+ χ0(τ ) + O

(
z2

)
.

Picking off the constant term on both sides of (2.5) then gives

χ0(τ ) = D0(τ ) +
∑

1≤�≤m
2

D2�(τ )

(2�)! B2�E2�(τ ),

as claimed.
The proof of the modularity follows from the fact that for γ = ( a b

c d ) ∈ �0(2), we
have that

ϕm

(
z

cτ + d
; γ τ

)
= ψm(γ )ϕm(z; τ).
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