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Abstract Romanov proved that the proportion of positive integers which can be rep-
resented as a sum of a prime and a power of 2 is positive. We establish similar results
for integers of the form n = p + 22

k +m! and n = p + 22
k + 2q where m, k ∈ N and

p, q are primes. In the opposite direction, Erdős constructed a full arithmetic progres-
sion of odd integers none of which is the sum of a prime and a power of two. While
we also exhibit in both cases full arithmetic progressions which do not contain any
integers of the two forms, respectively, we prove amuch better result for the proportion
of integers not of these forms: (1) The proportion of positive integers not of the form
p + 22

k + m! is larger than 3
4 . (2) The proportion of positive integers not of the form

p + 22
k + 2q is at least 2

3 .
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1 Introduction

An old result of Romanov [16] states that a positive proportion of the positive integers
can be written in the form p+gk , where p is a prime and g ≥ 2 is a positive integer. As
there are about x/log x primes p ≤ x and �log x/log g�powers gk ≤ x , this result implicitly
gives some information about the number r(n) of representations of n = p+gk . There
are not too many integers n ≤ x with a very large number of representations and on
average r(n) is bounded. The most prominent special case of Romanov’s result is
the one concerning sums of primes and powers of 2. Euler [9] observed in a letter
to Goldbach that 959 can not be written as the sum of a prime and a power of two.
Euler’s letter was also mentioned by de Polignac [3] and provides a counter example
to a conjecture of de Polignac himself, stating that any odd positive integer is the sum
of a prime and a power of 2. In 1950, Erdős [5] and van der Corput [18] independently
proved that also the lower density of odd integers not of the form p + 2k is positive.
Here and in the following the lower density of a set A ⊂ N is defined to be

lim inf
x→∞

|{a ∈ A : a ≤ x}|
x

.

Replacing lim inf with lim sup leads to what we call upper density and if lower and
upper density coincide we speak of the density of the set A.

Concerning Romanov’s theorem one may ask how this result can be generalized.
One way would be by replacing the sequence of powers of g with another sequence
(an)n≥1. Generalizing a result of Lee [13] who replaced the powers of g by the
Fibonacci sequence, Ballot and Luca [1] proved an analogue of Romanov’s theo-
rem for the case when (an)n≥1 is a linearly recurrent sequence with certain additional
properties. For certain quadratic recurrences (an)n≥1 this was done by Dubickas [4].

We would expect that for many sets A ⊂ N, with |A ∩ [1, x]| ≥ c log x for some
positive constant c, one can write a positive proportion of integers n ≤ x as n = p+a,
p prime and a ∈ A. In this paper we study setsA with |A∩ [1, x]| ∼ cA log x but of
a quite different nature compared to previous ones. In particular, we study

A1 = {22k + m! : k,m ∈ N0},
A2 = {22k + 2q : k ∈ N0, q prime}.

Using the machinery of Romanov [16], we prove the following two theorems.

Theorem 1 The lower density of integers of the form p+22
k +m! for k,m ∈ N0 and

p prime is positive.

Theorem 2 The lower density of integers of the form p + 22
k + 2q for k ∈ N0 and

p, q prime is positive.
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Romanov type problems 269

Concerning integers not of the form p+22
k+m!weconsider twodifferent questions:

The first one is finding a large set, in the sense of lower density, of odd positive integers
not of this form.

The second question is if there is a full arithmetic progression of odd positive
integers not of the form p+ 22

k +m!. The positive answer to this question is given in
Theorem 4. Note that, the density of the set constructed in the proof of Theorem 4 is
considerably less than the density of the set used in the proof of Theorem 3.

Theorem 3 The lower density of odd positive integers not of the form p + 22
k + m!

for k,m ∈ N0 and p prime is at least 615850829669273873/2459565876494606882 > 1/4. The
lower density of all positive integers without a representation of the form p+22

k +m!
is therefore larger than 3/4.

Theorem 4 There exists a full arithmetic progression of odd positive integers not of
the form p + 22

k + m! for k,m ∈ N0 and p prime.

Finally, we prove analogous results for integers not of the form p + 22
k + 2q .

Theorem 5 There exists a subset of the odd positive integers not of the form p+22
k +

2q , for k ∈ N and p, q prime, with lower density 1/6. The lower density of all positive
integers without a representation of the form p+ 22

k + 2q is therefore larger than 2/3.
Furthermore, there exists a full arithmetic progression of odd positive integers not

of the form p + 22
k + 2q .

Concerning the last result, we recall that Erdős conjectured that the lower density
of the set of positive odd integers not of the form p+2k +2m is positive for k,m ∈ N0,
p prime (see for example [10, Sect. A19]).

For the proofs of Theorems 1 and 2, we apply the method of Romanov [16]. This
means that we start with the Cauchy–Schwarz inequality in the form

⎛
⎜⎜⎝

∑
n≤x

ri (n)>0

1

⎞
⎟⎟⎠

(∑
n≤x

ri (n)2

)
≥

(∑
n≤x

ri (n)

)2

(1)

for i ∈ {1, 2}, where r1(n) denotes the number of representations of n in the form
p + 22

k + m!, and r2(n) counts the number of representations of n in the form p +
22

k + 2q . Note that the first sum on the left-hand side of Eq. (1) equals the number
of integers less than x having a representation of the required form. It thus suffices to
check that

∑
n≤x

ri (n) � x and
∑
n≤x

ri (n)2 
 x

for both i = 1, 2 in order to get positive lower density for the sets of those integers.
The estimates

∑
n≤x r1(n) � x and

∑
n≤x r1(n)2 
 x are proved in Sect. 3, Lemmas
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3 and 4, respectively. The analogous results for r2(n) are proved in Sect. 4, Lemmas
5 and 6, respectively. Theorems 3 and 4 are proved at the end of Sect. 3 and Theorem
5 at the end of Sect. 4.

2 Notation

Let N, as usual, denote the set of positive integers, N0 the set of non-negative integers
and let P denote the set of primes. The variables p and q will always denote prime
numbers. For any prime p ∈ P and any positive integer n ∈ N, let νp(n) denote the
p-adic valuation of n, i.e. νp(n) = k where pk is the highest power of p dividing
n. For an integer n, P(n) denotes its largest prime factor. For any set S ⊂ N let
S(x) = |S ∩ [1, x]| denote the counting function of S. As usual ϕ denotes Euler’s
totient function and μ the Möbius function. Furthermore, for an odd positive integer
n we denote by t (n) the order of 2 mod n. We use the symbols 
, �,O and o within
the context of the well-known Vinogradov and Landau notation.

3 Integers of the form p+ 22
k + m!

Before proving Lemmas 3 and 4, we establish and collect several results needed in due
course. The following is a classical result due to Legendre (see for example Theorems
2.6.1 and 2.6.4 in [14]).

Lemma A For any prime p ∈ P and any positive integer n ∈ N, we have that

νp(n!) =
∞∑
k=1

⌊
n

pk

⌋
.

Furthermore, if σp(n) denotes the sum of base p digits of n, then

νp(n!) = n − σp(n)

p − 1
.

Theorem 6 The equation 2x1 + y1! = 2x2 + y2! has only four non-negative integer
solutions (x1, y1, x2, y2)with x1 > x2 where either x2 ≤ 52 or y2 ≤ 8. These solutions
are

(x1, y1, x2, y2) ∈ {(1, 0, 0, 2), (1, 1, 0, 2), (3, 2, 2, 3), (7, 4, 5, 5)}.

Proof Suppose that x2 ≤ 52 and note that y1 = 0 either implies that y2 ∈ {0, 1}
if x2 > 0, which leads to a solution where x1 = x2, which is excluded, or implies
that x2 = 0, whence x1 = 1 and y2 = 2. Hence, the only solution where y1 = 0
is (x1, y1, x2, y2) = (1, 0, 0, 2). From now on, we may suppose that y1 ≥ 1. In this
case, from Lemma A, we get that ν2(y1!) ≥ y1

2 − 1. This yields y1
2 − 1 ≤ x2 and thus

y1 ≤ 106. Since
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Romanov type problems 271

2x2 − y1! = 2x1 − y2!,

we have ν2(2x2 − y1!) = ν2(2x1 − y2!). Certainly |2x2 − y1!| ≤ 252 + 106! which
implies that ν2(2x2 − y1!) ≤ log(252+106!)

log 2 < 816. If x1 ≥ 816 and y2 ≥ 822, then
ν2(2x1 − y2!) ≥ 816, a contradiction. The cases where either x1 ≤ 815 or y2 ≤ 821
can be checked by a computer search which leads to the solutions

(x1, y1, x2, y2) ∈ {(1, 0, 0, 2), (1, 1, 0, 2), (3, 2, 2, 3), (7, 4, 5, 5)}.

Now suppose that y2 ≤ 8 and consider

0 < 2x1 − 2x2 = y2! − y1!,

which implies that y1 ≤ y2 ≤ 8. In particular, |y2! − y1!| ≤ 2 · 8! and thus

ν2(y2! − y1!) ≤ log(2 · 8!)
log 2

< 17.

Since ν2(2x1 −2x2) = x2, we have that x2 < 17 which is included in the case x2 ≤ 52
treated above. ��
Theorem 7 If we exclude solutions arising from interchanging (x1, y1) and (x2, y2),
the equation 2x1 + y1! = 2x2 + y2! has only four non-negative integer solutions
(x1, y1, x2, y2) with (x1, y1) �= (x2, y2) and (y1, y2) /∈ {(1, 0), (0, 1)} if x1 = x2.
These are the solutions presented in Theorem 6.

Proof We compare the 2-adic and 3-adic valuation of both sides of equivalent forms of
the equation 2x1 + y1! = 2x2 + y2! to get information about the size of the parameters
x1, x2, y1 and y2.

If x1 = x2 we have that y1! = y2! and hence either y1 = y2 or (y1, y2) ∈
{(1, 0), (0, 1)} which leads to the excluded trivial solutions. Therefore, w.l.o.g., we
may suppose that x1 > x2 and write

2x2(2x1−x2 − 1) = y1!((y1 + 1) · · · y2 − 1). (2)

Next we compute the 2-adic valuation of both sides of the last equality. For the
left-hand side we simply have ν2(2x2(2x1−x2 − 1)) = x2 while for the right-hand side
we use that the factor ((y1 +1) · · · y2 −1) is odd as soon as y2 ≥ y1 +2 which yields

ν2(y1!((y1 + 1) · · · y2 − 1)) =
{

ν2(y1!), if y2 ≥ y1 + 2,

ν2(y1!) + ν2(y1), if y2 = y1 + 1.

From this, Lemma A and the fact that 1 ≤ σ2(y1) ≤ log y1
log 2 + 1 (note that as in the

proof of Theorem 6, y1 ∈ {0, 1} leads to a single non-trivial solution listed there), we
get the following two inequalities:
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x2 = ν2(2
x2(2x1−x2 − 1)) = ν2(y1!((y1 + 1) · · · y2 − 1)) ≤ ν2(y1!) + ν2(y1)

< y1 + log y1
log 2

, (3)

x2 = ν2(2
x2(2x1−x2 − 1)) = ν2(y1!((y1 + 1) · · · y2 − 1)) ≥ ν2(y1!)

≥ y1 −
(
log y1
log 2

+ 1

)
. (4)

By Theorem 6, we may suppose that x2 ≥ 5 without loosing solutions. In this case,
the last inequality implies y1 ≤ 2x2.

Next, we look at

2x1 = 2x2 + y2! − y1!.

Since 2x2 ≤ 2x1−1 = 2x1
2 , we have that y2! > 2x1

2 , whence we get

yy22 ≥ y2! >
2x1

2
,

and thus

y2 log y2 > (x1 − 1) log 2 and y2 >
(x1 − 1) log 2

log y2
.

To get the last inequality we used that by Theorem 6 we may suppose that y2 ≥ 9
whence log y2 > 0. Now x2 ≥ 5 implies that x1 ≥ 6. If we would have that y2 ≤ x1
the last inequality would imply that

y2 >
log 2

2

(
x1

log y2

)
>

1

4

(
x1

log x1

)
. (5)

In order to prove (5), it therefore suffices to prove that y2 ≤ x1 for x1 ≥ 6. In order
to do so, we consider the equation

2x1 = y1!((y1 + 1) · · · y2 − 1) + 2x2

fromwhich we readily deduce that y1! < 2x1 . This together with 2x1 = y2!− y1!+2x2

implies that

y2! < 2 · 2x1 .

This implies that y2 ≤ x1, since otherwise (x1 + 1)! ≤ 2x1+1 which is true for x1 ≤ 2
only. By Theorem 6 again, we may suppose that y2 ≥ 9. In this case, applying Lemma
A, we obtain

ν3(y2!) ≥
⌊ y2
3

⌋
+

⌊ y2
9

⌋
≥ y2

3
>

1

12

(
x1

log x1

)
, (6)
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where the last inequality follows by (5). Now we compute the 3-adic valuation of both
sides of Eq. (2). By inequality (3) and Lemma A for the right-hand side, we get

k = ν3(y1!((y1 + 1) · · · y2 − 1)) ≥ ν3(y1!) = y1 − σ3(y1)

2
≥ y1

2
− log y1

log 3
− 1

≥ x2
2

− log(y1)

(
1

2 log 2
+ 1

log 3

)
− 1.

Since for the left-hand side of (2) we have 3k |2x1−x2 − 1, we deduce that ϕ(3k) =
2 · 3k−1|x1 − x2. Here we used that 2 is a primitive root modulo any power of 3. This
is a direct consequence of Jacobi’s observation [12, p. XXXV] that a primitive root
modulo p2 is also a primitive root modulo any higher power of p. Using the above
bound for k and the fact that y1 ≤ 2x2, we get

x1 ≥ x2 + 2 · 3k−1 ≥ x2 + 2

9
3x2/2−log(y1)(1/2 log 2+1/log 3) ≥ x2 + 2 · 3x2/2

36x22
≥ 3x2/2

18x22
. (7)

Next we find an upper bound for x1 in terms of x2. Consider the equation

2x1 − y2! = 2x2 − y1!.

Equation (5) yields that y2 > 1
4

x1
log x1

> 1
4
√
x1. Thus, by LemmaA, ν2(y2!) >

√
x1
8 −1

and hence ν2(2x1 − y2!) ≥
√
x1
8 − 1.

On the other hand, |2x2 − y1!| ≤ 2x2 + y1! ≤ 2x2 + (2x2)2x2 ≤ 2 · (2x2)2x2 . Now
ν2(2x2 − y1!) is certainly bounded from above by the highest power of 2 less than
2 · (2x2)2x2 :

2a ≤ 2 · (2x2)
2x2 ⇔ a ≤ 2x2 log(2x2)

log 2
+ 1.

We therefore have that ν2(2x2 − y1!) ≤ 4x2 log(2x2) + 1 and putting everything
together, we get

√
x1
8

− 1 ≤ ν2(2
x1 − y2!) = ν2(2

x2 − y1!) ≤ 4x2 log(2x2) + 1,

which implies that x1 ≤ (32x2 log(2x2) + 16)2. Combining this with (7), we finally
arrive at

3x2/2 ≤ 18x22 (32x2 log(2x2) + 16)2.

This inequality is valid only for x2 ≤ 52 and the solutions satisfying this restriction
are given in Theorem 6. ��
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Lemma 1 Let m1,m2,m3,m4 ∈ N such that m1 > m2, m3 > m4 and

m1! − m2! = m3! − m4!. (8)

Then (m1,m2) = (m3,m4) or m1 = m3 and (m2,m4) ∈ {(0, 1), (1, 0)}.
Proof We start with the case where either m1 = m2 + 1 or m3 = m4 + 1 and w.l.o.g
suppose that m1 = m2 + 1. If furthermore m2 ≤ m4, we get from Eq. (8)

m2!m2 = m4!((m4 + 1) · · ·m3 − 1) ≥ m2!m4,

which leads to m2 ≥ m4 and thus m2 = m4 which implies m1 = m3. On the other
hand, if m1 = m2 + 1 and m2 > m4 Eq. (8) implies that

m2(m4 + 1) · · ·m2 = (m4 + 1) · · ·m3 − 1, (9)

and therefore m4 + 1|1 if m3 > m4 + 1 and m4 + 1|m4 otherwise, whence m4 = 0 in
both cases. Now m3 = 1 implies that (m1,m2) = (1, 0) and we are done. Otherwise,
if m3 �= 1, then the right-hand side of (9) is odd. In order for the left-hand side to be
odd we need m2 = 1, which implies that m1 = m3.

It remains to consider the case where m1 ≥ m2 + 2 and m3 ≥ m4 + 2 and w.l.o.g.
we suppose that m2 > m4. We look at Eq. (8) in the form

m2!((m2 + 1) · · ·m1 − 1) = m4!((m4 + 1) · · ·m3 − 1). (10)

By assumption, we have that ν2(m2!) = ν2(m4!) which implies that m4 is even and
m2 = m4 + 1. We hence may rewrite Eq. (10) to get

(m4 + 1) · · ·m1 − m4 = (m4 + 1) · · ·m3.

It follows that m4 + 1|m4 which implies that m4 = 0. This leads to m2 = 1 and
m1 = m3. ��
Lemma 2 For odd positive n, let t (n) be the order of 2 mod n and t (n) = 2a(n)b(n)

such that b(n) is odd. Then the series

∑
2�n

μ2(n)=1

1

nt (b(n))

converges.

Proof Recall that P(n) denotes the largest prime factor of n and observe that if u|v
then t (u)|t (v), thus b(u)|b(v) and further t (b(u))|t (b(v)). From this and Mertens’
formula in the weak form

∏
p≤x

(
1 + 1

p

)

 log x,
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we get

∑
2�n

μ2(n)=1

1

nt (b(n))
≤

∑
p≥3
p∈P

1

pt (b(p))

∑
2�m

μ(m)2=1
P(m)<p

1

m
=

∑
p≥3
p∈P

1

pt (b(p))

∏
q<p
q∈P

(
1 + 1

q

)



∑
p≥3
p∈P

log p

pt (b(p))
. (11)

We split the primes into two subsetsP andQ and consider the contribution of these
sets separately. We set P = P1 ∪ P2 ∪ P3 ∪ P4 where

P1 :=
{
p ∈ P : t (p) < p1/3

}
,

P2 :=
{
p ∈ P : P(t (p)) < p1/log log p, p /∈ P1

}
,

P3 := {p ∈ P : P(t (p)) ∈ P1, p /∈ P1 ∪ P2},
P4 := {p ∈ P : p ≤ p0},

for some fixed p0 to be chosen later. The setQ is then defined to be P\(P ∪ {2}). We
start by showing that

P(x) 
 x

(log x)3
. (12)

For P1, applying an idea of Erdős and Murty [6], we use that p|2k − 1 where
k = t (p), whence we have that

∏
p≤x
p∈P1

p
∣∣ ∏

k≤x1/3

(2k − 1).

From this, we get

2P1(x) ≤
∏
p≤x
p∈P1

p ≤
∏

k≤x1/3

(2k − 1) ≤ 2
∑

k≤x1/3
k ≤ 2x

2/3
,

which shows that

P1(x) 
 x2/3 = o

(
x

(log x)3

)
. (13)

To deal with the contribution of the set P2, we set

Ψ (x, y) := |{n ≤ x : P(n) ≤ y}|.

By known results on smooth numbers (in particular, a result of Canfield, Erdős and
Pomerance from [2, Corollary p.15]), we have for y > (log x)2,
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Ψ (x, y) = x

exp((1 + o(1))u log u)
, where u = log x

log y
, (14)

as both y and u tend to infinity. For p ∈ P2 we may suppose that p > x1/2 since
there are at most O(π(x1/2)) = O(x

1/2/log x) = o(x/(log x)3) primes in P2 less than√
x . If p > x1/2, then log log p > log log x/2 for sufficiently large x , and hence for

x1/2 < p < x in P2, we have

P(t (p)) < p1/log log p < x2/log log x .

Put y := x2/log log x . Thus, p − 1 is a number which is at most x , having a divisor
t (p) > p1/3 > x1/6, whose largest prime factor is at most y. It follows that p − 1 ≤ x
is a multiple of some number d > x1/6 with P(d) ≤ y. For a fixed d, the number of
such p is at most �x/d� ≤ x/d. Summing over d, we get that

P2(x) 

∑

x1/6<d<x
P(d)<y

x

d
= x

∫ x

x1/6

1

t
dΨ (t, y)

= x

((
Ψ (t, y)

t

) ∣∣∣t=x

t=x1/6
+

∫ x

x1/6

1

t2
Ψ (t, y)dt

)


 x

(
Ψ (x, y)

x
+

∫ x

x1/6

Ψ (t, y)

t2
dt

)
.

Putting u0 := log x1/6/log y = (1/12) log log x , we get that u = log t/log y ≥ u0 for all
t ∈ [x1/6, x], and

(1 + o(1))u0 log u0 =
(

1

12
+ o(1)

)
log log x log log log x > 4 log log x (15)

for large x . Using (14) and (15), we thus get that

P2(x) 
 x + x log x

exp((1 + o(1))u0 log u0)

 x

(log x)3
.

Next we consider the contribution of P3. This set contains primes p such that p − 1
is divisible by some prime q > p1/log log p but q ∈ P1. We may assume again that
p > x1/2, then q > p1/log log p > y1/4, where as before y = x2/log log x . Fixing q, the
number of primes p ≤ x such that p − 1 is a multiple of q is at most x/q. Summing
up over q ∈ P1 and using (13), we get that

P3(x) ≤
∑

y1/4<q<x
q∈P1

x

q

 x

∫ x

y1/4

dP1(t)

t
= x

((P1(t)

t

) ∣∣∣x
t=y1/4

+
∫ x

y1/4

P1(t)

t2
dt

)


 x

(
1

x1/3
+

∫ x

y1/4

dt

t 4/3

)

 x

y1/12

 x

(log x)3
.
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Finally, choose p0 such that for p > p0 we have that p
1/3 log log p > (log p)3 and get

P3(x) 
 1 
 x

(log x)3
.

We are now ready to prove that the sum on the right-hand side of (11) converges. For
the contribution of primes p ∈ P , we use the Abel summation formula as well as (12)
and get

∑
p≤x
p∈P

log p

pt (b(p))
≤

∑
p≤x
p∈P

log p

p
=

∫ x

3

log t

t
dP(t)

= P(t) log t

t

∣∣∣x
t=3

−
∫ x

3

1 − log t

t2
P(t)dt


 1 +
∫ x

3

log t

t2
t

(log t)3
dt = 1 +

∫ x

3

dt

t (log t)2

 1.

By the definition ofQ for p ∈ Qwe have that q = P(t (p)) > p1/log log p which implies
thatq|b(p) for large p. Furthermore,q /∈ P1 so t (q) > q1/3 > p1/3 log log p. By the choice
of the constant p0 in the definition of P4 this implies that t (b(p)) ≥ t (q) > (log p)3.
Finally, this implies that

∑
p∈Q

log p

pt (b(p))
≤

∑
n∈N

1

n(log n)2

 1,

which finishes the proof of the lemma. ��

Lemma 3 The following estimate holds:

∑
n≤x

r1(n) � x .

Proof We certainly have that

∑
n≤x

r1(n) ≥
⎛
⎝ ∑

p≤x/3

1

⎞
⎠

⎛
⎜⎝

∑

22k≤x/3

1

⎞
⎟⎠

⎛
⎝ ∑

m!≤x/3

1

⎞
⎠ .

By the Prime Number Theorem

∑
p≤x/3

1 ∼ x

3 log(x/3)
� x

log x
, (16)
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and 22
k ≤ x/3 implies that k ≤ log(log(x/3))−log 2

log 2 and hence

∑

22k≤x/3

1 � log log x . (17)

We use that m! ≤ mm and that mm ≤ x/3 for m ≤ log x/2 log log x and sufficiently large
x . This implies that ∑

m!≤x/3

1 � log x

log log x
. (18)

The bounds in (16), (17) and (18) show that

∑
n≤x

r1(n) � x .

��
Lemma 4 The following estimate holds:

∑
n≤x

r1(n)2 
 x .

Proof We begin with the observation that the sum counts exactly the number of solu-
tions of the equation

p1 + 22
k1 + m1! = p2 + 22

k2 + m2!

in p1, p2, k1, k2,m1 and m2 where p1 + 22
k1 +m1! ≤ x . For fixed k1, k2,m1 and m2

this amounts to counting pairs of primes (p1, p2) such that p2 = p1 + h, where

h := 22
k1 + m1! − 22

k2 − m2!.

If h = 0, then we apply Theorem 7 to get that either (k1,m1) = (k2,m2) or
k1 = k2 and (m1,m2) ∈ {(1, 0), (0, 1)}1. The number of choices of the form
(p1, p2, k1, k2,m1,m2) in this case is

O
(

x

log x

(
log log x

log x

log log x
+ log log x

))
= O(x).

If h is odd, then one of the primes p1 and p2 equals 2 and any choice of (k1, k2,m1,m2)

fixes the other prime. There are

O
(

(log log x)2
(

log x

log log x

)2
)

= o(x)

1 Note that x1 and x2 in the non-trivial solutions in Theorem 7 are never both powers of 2.
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choices for (p1, p2, k1, k2,m1,m2) in this case. To deal with the remaining even
h �= 0, we use a classical sieve bound (cf. for example [15, Theorem 7.3]). In this
case, the number of pairs (p1, p2) of primes such that p2 = p1 + h is

O
⎛
⎝ x

(log x)2
∏
p|h

(
1 + 1

p

)⎞
⎠ .

Summing over all choices (k1, k2,m1,m2) such that h �= 0 is even (this range of
summation is indicated by the dash in the superscript of the sum below), we hence
need to show that

x

(log x)2
∑′

(k1,k2,m1,m2)

∏
p|h

(
1 + 1

p

)

 x . (19)

Observing that the prime p = 2 contributes just a constant factor, this amounts to
showing that

∑′

(k1,k2,m1,m2)

∏
p|h
p>2

(
1 + 1

p

)

 (log x)2,

which we do in what follows. We now rewrite the left-hand side of the last inequality
above as

∑′

(k1,k2,m1,m2)

∏
p|h
p>2

(
1 + 1

p

)
=

∑′

(k1,k2,m1,m2)

∑
d|h
d odd

μ(d)2

d

=
∑′

d odd
μ(d)2=1

|{(k1, k2,m1,m2) : d|h}|
d

.

Therefore we need to study, for a given odd square-free d, the cardinality of the set

Sd := {(k1, k2,m1,m2) : d|h, h �= 0, 2 � h}.

We start with the subset S1,d ⊂ Sd where

S1,d := {(k1, k2,m1,m2) ∈ Sd : m1 = m2 or {m1,m2} = {0, 1}}. (20)

We thus first deal with

∑′

d odd
μ(d)2=1

|S1,d |
d

.

By (20), (m1,m2) is chosen in at most O(log x/log log x) ways. As for (k1, k2), we
have 22

k1 ≡ 22
k2

(mod d). Since d is odd this implies that 22
k1−2k2 ≡ 1 (mod d).
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Recall that t (d) is the order of 2 modulo d. The above congruence makes 2k1 ≡ 2k2

(mod t (d)). As above we write t (d) = 2a(d)b(d), where b(d) is odd and a(d) is
some non-negative integer. This implies that 2k1−k2 ≡ 1 (mod b(d)). The above
cancellation again is justified since b(d) is odd. Hence, for k2 fixed, k1 is in a fixed
arithmetic progression modulo t (b(d)). The number of such k1 with 22

k1 ≤ x is of
order (up to a constant) at most

⌊
log log x

t (b(d))

⌋
+ 1.

Since k2 is chosen in O(log log x) ways, we have

∑′

d odd
μ(d)2=1

|S1,d |
d



(

log x

log log x

)
log log x

⎛
⎜⎜⎜⎜⎝
log log x

∑
d odd

μ(d)2=1

1

dt (b(d))
+

∑
d≤x
d odd

μ(d)2=1

1

d

⎞
⎟⎟⎟⎟⎠


 (log x)2,

where we used Lemma 2 and the fact that

∑
d≤x
d odd

μ(d)2=1

1

d

 log x .

From now on, we deal with Sd\S1,d . Any quadruple (k1, k2,m1,m2) in the above set
gives m1!−m2! �= 0 and we assume that m1 > m2. We partition the numbers d in the
range of summation into two different sets A and B. We set

A :={
d ∈ N : 2 � d, μ(d)2 = 1,∀{(k1, k2,m1,m2), (k3, k4,m3,m4)} ∈ (Sd\S1,d)2 :

22
k1 + m1! − 22

k2 − m2! = 22
k3 + m3! − 22

k4 − m4! = h

}
,

B :={
d ∈ N : 2 � d, μ(d)2 = 1, ∃{(k1, k2,m1,m2), (k3, k4,m3,m4)} ∈ (Sd\S1,d)2 :

22
k1 + m1! − 22

k2 − m2! �= 22
k3 + m3! − 22

k4 − m4!

}
.

In the set A we thus collect all d for which all solutions in Sd\S1,d give the same h
and the set B contains all other d. For d ∈ A we fix k1 and k2 for solutions in Sd\S1,d
and get

m1! − m2! = h − 22
k1 + 22

k2
.
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The existence of some other element (k1, k2,m3,m4) ∈ Sd\S1,d withm3 > m4 would
imply thatm1!−m2! = m3!−m4!which by Lemma 1 leads to (m1,m2) = (m3,m4).
Hence, for d ∈ A and for (k1, k2,m1,m2) ∈ Sd\S1,d with m1 > m2, the last two
coordinates are uniquely determined by the first two whence for d ∈ A we have

|(Sd\S1,d)| 
 (log log x)2.

We thus get that

∑
d∈A

|(Sd\S1,d)|
d


 (log log x)2
∑
d≤x

1

d

 (log x)(log log x)2 = o((log x)2).

Finally, we deal with the contribution of d ∈ B. By definition, we may find two
quadruples (k1, k2,m1,m2) with m1 > m2 and (k3, k4,m3,m4) with m3 > m4 both
in Sd\S1,d such that

h := 22
k1 + m1! − 22

k2 − m2! �= 22
k3 + m3! − 22

k4 − m4! =: h′. (21)

Let P be the set of possible prime factors of d ∈ B which exceed log x . We shall
prove that |P| = O((log x)5). For h, h′ in (21) we have that they are both divisible by
d and thus d|h − h′. Every prime factor of d (in particular the ones larger than log x)
divides

∏′

ki ,mi

(
(22

k1 − 22
k2 + m1! − m2!) − (22

k3 − 22
k4 + m3! − m4!)

)
,

where the product is taken over all mi with mi ! ≤ x and all ki with 22
ki ≤ x for i =

1, 2, 3, 4. The dash indicates that the product is to be taken over the non-zero factors
only. Since each factor in this product is of sizeO(x) any of these factors has at most
O(log x) prime factors. Furthermore, for the octuple (k1, k2, k3, k4,m1,m2,m3,m4)

we haveO((log log x)4(log x/log log x)4) = O((log x)4) choices and altogether we have
that |P| = O((log x)5). Write d = udvd , where ud is divisible by primes p ≤ log x
only. Hence the factor vd is divisible only by primes in P . Then

∑
d∈B

|(Sd\S1,d)|
d

≤

⎛
⎜⎜⎜⎜⎜⎝

∑
u odd

μ(u)2=1
P(u)<log x

|(Su\S1,u)|
u

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∑
v odd

μ(v)2=1
p|v⇒p∈P

1

v

⎞
⎟⎟⎟⎟⎟⎠

,

where we used that Sd\S1,d ⊂ Su\S1,u if u | d. For the second sum we have

∑
v odd

μ(v)2=1
p|v⇒p∈P

1

v
=

∏
p∈P

(
1 + 1

p

)
= O(1),
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which follows from partial summation and the fact that P has O((log x)5) elements
all larger than log x . It thus remains to bound

∑
u odd

μ(u)2=1
P(u)<log x

|(Su\S1,u)|
u

.

For this, we fix (m1,m2) with m1 > m2 not both in {0, 1}. Then putting M1,2 =
m2! − m1!, we need to count the number of (k1, k2) such that 22

k1 − 22
k2 ≡ M1,2

(mod u). Analogously as before, for fixed k2, this puts k1 into a fixed arithmetic
progression modulo t (b(u)). The number of k1 with 22

k1 ≤ x in this progression is of
order O(log log x/t (b(u)) + 1). Thus, we have

∑
u odd

μ(u)2=1
P(u)<log x

|(Su\S1,u)|
u



(

log x

log log x

)2

(log log x)

×

⎛
⎜⎜⎜⎜⎜⎝
log log x

∑
u odd

μ(u)2=1
P(u)<log x

1

ut (b(u))
+

∑
u odd

μ(u)2=1
P(u)<log x

1

u

⎞
⎟⎟⎟⎟⎟⎠


 (log x)2.

Here, we used Lemma 2 and Mertens’ formula, which yields

∑
u odd

μ(u)2=1
P(u)<log x

1

u
=

∏
3≤p≤log x

(
1 + 1

p

)

 log log x .

��
Proof of Theorem 3 Since the density of integers of the form p + 22

k + m!, p ∈ P,
m, k ∈ N and m < 22

6 − 1 is zero, we may suppose that m ≥ 22
6 − 1. In this case,

we have m! ≡ 0 mod 22
6 − 1, and for k ≥ 6, we have that 22

k ≡ 1 mod 22
6 − 1. If

n ≡ a+1 mod 22
6 −1, where a is a residue class mod 22

6 −1 with (a, 22
6 −1) > 1,

then (n−22
k −m!, 226 −1) > 1 which leaves only finitely many choices for the prime

p = n − 22
k − m!. This implies that the proportion of such n with a representation

of the form n = p + 22
k + m! is zero. We have 22

6 − 1 − ϕ(22
6 − 1) choices for the

residue class a and half of the integers in these residue classes are odd which yields a
density of

22
6 − 1 − ϕ(22

6 − 1)

2 · (226 − 1)
= 615850829669273873

2459565876494606882
.
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We note that a more refined version of the above argument was used by Habsieger
and Roblot [11, Sect. 3] to prove an upper bound on the proportion of odd integers not
of the form p + 2k . ��

Proof of Theorem 4 We will show that none of the integers n satisfying the following
system of congruences is of the form p + 22

k + m! :

1 mod 2 1 mod 3 3 mod 5

2 mod 7 6 mod 11 3 mod 17

7 mod 19 9 mod 23.

By the Chinese Remainder Theorem, the arithmetic progressions above intersect in a
unique arithmetic progression. Let n be an element of this progression and suppose
that n = p + 22

k + m!.
If m ≥ 3, then n = p + 22

k + m! ≡ p + 22
k
mod 3. All primes except for 3 are

in the residue classes 1, 2 mod 3 and 22
k ≡ 1 mod 3 for k ≥ 1. Thus, for m ≥ 3 and

k ≥ 1 we have that n = p + 22
k +m! ≡ 1 mod 3; hence, the only possible choice for

p is p = 3.
Next, we show that if p = 3, then m < 5. To do so, we use that 22

k ≡ 1 mod 5
for k ≥ 2; hence for m ≥ 5 we are left with n = 3 + 22

k + m! ≡ {0, 2, 4} mod 5, a
contradiction to n ≡ 3 mod 5.

In the case that k = 0, we will show thatm ≥ 3 impliesm < 7. Let n = p+2+m!
and m ≥ 3. Then n ≡ 1 mod 3 implies that p ≡ 2 mod 3. If additionally m ≥ 7, then
n = p + 2 + m! ≡ p + 2 mod 7. Since n ≡ 2 mod 7, the only possible choice for p
is p = 7, which contradicts p ≡ 2 mod 3.

Using the above observations, the only cases we need to consider are those of
m = 0, m = 1, m = 2, m = 3, 4 and k = 0 or p = 3 and m = 5, 6 and k = 0.

If m ∈ {0, 1} and we additionally have that p is odd, then n = p + 22
k + 1 is even,

a contradiction to n ≡ 1 mod 2. It remains to deal with the case when p = 2. Then
we have n = 2+ 22

k + 1 and we get a contradiction from n ≡ 3 mod 5 which would
imply that 22

k ≡ 0 mod 5.
For the case m = 2, we use that 22

k ≡ 1 mod 17 for k ≥ 3. Hence, for m = 2
and k ≥ 3, we have that n = p + 22

k + 2 ≡ p + 3 mod 17 which together with
n ≡ 3 mod 17 leaves us with p = 17.We use that n = 17+22

k +2 ≡ 2 mod 3 to get a
contradiction ton ≡ 1 mod 3. Sincem = 2 and k = 0 implyn = p+4 ≡ p+1 mod 3,
the only possible choice for p in this case is p = 3 but n = 7 �≡ 3 mod 5. If
m = 2 and k = 1, then n = p + 6 and n ≡ 6 mod 11 implies that p = 11. This
contradicts n ≡ 1 mod 3. Last we need to deal with m = 2 and k = 2. In this case,
n = p+18 ≡ p+3 mod 5, and hence, n ≡ 3 mod 5 implies that p = 5. Now n = 23
does not satisfy the congruence n ≡ 1 mod 3.

Ifm = 3 and p = 3we have that n = 9+22
k ≡ 8, 10, 11, 13 mod 17 contradicting

n ≡ 3 mod 17. On the other hand, ifm = 3 and k = 0, then n = p+8 ≡ p+3 mod 5
and we get a contradiction as shown above.
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For m = 4 and p = 3 we get n = 27+ 22
k ≡ {9, 11, 12, 14} mod 17, a contradic-

tion to n ≡ 3 mod 17. Ifm = 4 and k = 0, it follows that n = p+26 ≡ p+7 mod 19
which implies p = 19 and n = 45. This contradicts n ≡ 3 mod 5.

In the case when m = 5 and k = 0, we have that n = p + 122 ≡ p + 3 mod 17.
Together with n ≡ 3 mod 17 this only leaves p = 17 which contradicts n ≡ 3 mod 5.

Finally, if m = 6 and k = 0, then n = p + 722 ≡ p + 9 mod 23. Together with
n ≡ 9 mod 23, this only leaves p = 23 which yields a contradiction to n ≡ 3 mod 5.

��

4 Integers of the form p+ 22
k + 2q

Lemma 5 The following estimate holds:

∑
n≤x

r2(n) � x .

Proof The lemma follows from

∑
n≤x

r2(n) ≥

⎛
⎜⎜⎝

∑
p≤x/3
p∈P

1

⎞
⎟⎟⎠

⎛
⎜⎝

∑

22k≤x/3

1

⎞
⎟⎠

⎛
⎜⎜⎝

∑
q≤log x/3

q∈P

1

⎞
⎟⎟⎠ .

By the Prime Number Theorem, we have

∑
p≤x/3
p∈P

1 � x

log x
and

∑
q≤log x/3

q∈P

1 � log x

log log x
.

Together with

∑

22k≤x/3

1 � log log x,

this finishes the proof of the lemma. ��
Lemma 6 The following estimate holds:

∑
n≤x

r2(n)2 
 x .

Proof Again r2(n)2 counts the number of solutions of the equation

p1 + 22
k1 + 2q1 = p2 + 22

k2 + 2q2
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in p1, p2, k1, k2, q1 and q2 where p1 + 22
k1 + 2q1 ≤ x . This means counting pairs of

primes (p1, p2) such that p2 = p1 + h, where

h := 22
k1 + 2q1 − 22

k2 − 2q2 .

If h = 0 then either (k1, q1) = (k2, q2) or w.l.o.g. k1 > k2 and

22
k2
(
22

k1−2k2 − 1
)

= 2q1
(
2q2−q1 − 1

)
.

Since 22
k1−2k2 − 1 and 2q2−q1 − 1 are odd, we have that 2k2 = q1 and hence k2 = 1

and q1 = 2. This leads to 2k1 = q2 and hence to k1 = 1 and q2 = 2 a contradiction to
k1 > k2. If h = 0 we thus have that (k1, q1) = (k2, q2) and p2 is fixed by a choice of
p1, k1 and q1. The last three parameters may be chosen inO(x) ways and we can deal
with the contribution of solutions of the equation p2 = p1 + h where h �= 0. Since
h is even, we may directly use the sieve bound from [15, Theorem 7.3] which, after
summing over all h, yields an upper bound of order

x

(log x)2
∑′

(k1,q1,k2,q2)

∏
p|h

(
1 + 1

p

)
(22)

for the sum in the lemma, where the dash indicates that (k1, q1) �= (k2, q2). Noting that
the contribution of the prime 2 is just a constant factor, we disregard it. Furthermore
h ≤ x by definition, and a very crude upper bound for the number of prime factors of
h, in particular for those larger than log x , is given by log x/log 2. We thus get

∑′

(k1,q1,k2,q2)

∏
p|h
p>2

(
1 + 1

p

)



∑′

(k1,q1,k2,q2)

(
1 + 1

log x

)log x/log 2

︸ ︷︷ ︸
≤e1/log 2

∏
p|h

2<p≤log x

(
1 + 1

p

)



∑′

(k1,q1,k2,q2)

∑
d|h

d odd
P(d)≤log x

μ(d)2

d

=
∑
d≤x
d odd

P(d)≤log x

μ(d)2

d

∑′

(k1,q1,k2,q2)
d|h

1. (23)

If we fix k1, q1 and k2, then the fact that d | h implies

2q2 ≡ 22
k1 + 2q1 − 22

k2 =: l mod d,

where l is a fixed residue class mod d. This puts q2 in a fixed residue class mod t (d).
Since we are counting representations of integers n ≤ x , we have q2 ≤ log x/log 2.
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Hence if t (d) > log x there are at most two choices for q2. If t (d) ≤ log x , the
Brun–Titchmarsh inequality yields an upper bound of

O
(

log x/log 2

ϕ(t (d)) log (log x/t (d) log 2)

)

for the number of choices of q2. We thus get an upper bound of the following order
for (23)

log x log log x

⎛
⎜⎜⎜⎜⎝

∑
d odd

P(d)≤log x
t (d)≤log x

μ(d)2 (log x/log 2)

dϕ(t (d)) log (log x/t (d) log 2)
+

∑
d odd

P(d)≤log x
t (d)>log x

μ(d)2

d

⎞
⎟⎟⎟⎟⎠

. (24)

As earlier, by Mertens’ formula

∑
d odd

P(d)≤log x

μ(d)2

d

 log log x .

To deal with the first sum in (24), we use ϕ(m) � m/log logm (see [17, Theorem 15])
and split the range of summation in two parts and get

∑
d odd

P(d)≤log x
t (d)≤log x

μ(d)2 (log x/log 2)

dϕ(t (d)) log (log x/t (d) log 2)

 log x

log log x

∑
d odd

P(d)≤log x
t (d)≤√

log x

μ(d)2 log log t (d)

dt (d)

+ (log x)3/4
∑
d odd

P(d)≤log x√
log x<t (d)≤log x

μ(d)2 log log t (d)

d
√
t (d)

.

By a result of Erdős and Turán [7,8], the sums

∑
d odd

log log t (d)

dt (d)
and

∑
d odd

log log t (d)

d
√
t (d)

converge which altogether proves an upper bound of order O((log x)2) for (23) and
hence an upper bound of order O(x) for (22). ��
Proof of Theorem 5 We prove the theorem by showing that the subset of positive
integers in the residue class 3 mod 6 having a representation of the form p+ 22

k + 2q

has density 0.
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If k > 0, then 22
k = 42

k−1
. The fact that 42 ≡ 4 mod 6 puts the term 22

k
into the

residue class 4 mod 6 if k > 0. Using the same fact again, we get for q = 2l + 1

2q = 22l+1 = 2 · 4l ≡ 2 mod 6.

Furthermore, all primes except 2 and 3 are in the residue classes {1, 5} mod 6. Thus
if n is in none of the sets

S1 := {p + 2 + 2q : p, q ∈ P},
S2 := {p + 22

k + 4 : p ∈ P, k ∈ N},
S3 := {2 + 22

k + 2q : k ∈ N, q ∈ P},
S4 := {3 + 22

k + 2q : k ∈ N, q ∈ P},

all of which have density 0, and if n has a representation of the form n = p+22
k +2q ,

then n is in one of the residue classes

{1, 5} + {4} + {2} = {1, 5} mod 6.

The set

S = {n ∈ N : n ≡ 3 mod 6}\(S1 ∪ S2 ∪ S3 ∪ S4)

has density 1/6, consists of odd integers only and none of its members is of the form
p + 22

k + 2q . This proves the first part of the Theorem.
To find a full arithmetic progression of integers not of the form p + 22

k + 2q , we
will add additional congruences ruling out the integers in the sets S1, S2, S3 and S4.
We claim that none of the integers n satisfying the congruences

3 mod 6 4 mod 5 4 mod 7

9 mod 13 5 mod 17 8 mod 19

20 mod 23 2 mod 29 3 mod 31

10 mod 37

is of the form p+22
k +2q . By the above considerations, it suffices to check that none

of the integers in the sets S1, S2, S3 and S4 is contained in this arithmetic progression.
We start with the integers in S1. Take n = p + 2 + 2q ∈ S1 and suppose that n is

in the arithmetic progression constructed above. We use that except for q ∈ {2, 3}, we
have that q ≡ {1, 5, 7, 11} mod 12 and that for any l ∈ N0 we have that

212l+1 ≡ 212l+5 ≡ 2 mod 5, 212l+7 ≡ 2 mod 7, 212l+11 ≡ 7 mod 13.

If q ≡ {1, 5} mod 12, then n = p + 2 + 2q ≡ p + 4 mod 5. Since n ≡ 4 mod 5,
this implies that p = 5. Now 7 + 212l+1 ≡ 2 mod 7 and 7 + 212l+5 ≡ 0 mod 13,
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contradiction to n ≡ 4 mod 7 and n ≡ 9 mod 13. In the case of q = 12l + 7, we get
n = p + 2 + 212l+7 ≡ p + 4 mod 7 and the only possible choice for p is p = 7.
Then 9+ 212l+7 ≡ 2 mod 5, a contradiction to n ≡ 4 mod 5. Finally if q = 12l + 11,
then n = p + 2 + 212l+11 ≡ p + 9 mod 13 and from n ≡ 9 mod 13 we get p = 13.
Since n = 15+ 212l+11 ≡ 3 mod 5, we again get a contradiction to n ≡ 4 mod 5. To
finish off the integers in the set S1, it remains to deal with q ∈ {2, 3}. If q = 2 we have
n = p + 6 ≡ p mod 6. Since n ≡ 3 mod 6, we are left with p = 3 and n = 9 which
contradicts to n ≡ 4 mod 7. If q = 3 then n = p + 10 and from n ≡ 10 mod 37, we
need to have that p = 37, and hence n = 47. This is impossible since it contradicts to
n ≡ 4 mod 5.

Next, we deal with the integers in S2 and we use that 22
k ≡ 1 mod 17 for k ≥ 3.

Thus, for k ≥ 3 and n = p + 22
k + 4 ∈ S2 we have that n = p + 22

k + 4 ≡
p + 5 mod 17. From n ≡ 5 mod 17, we see that the only admissible choice for p
is p = 17, and hence, n = 21 + 22

k
. As above we use that 22

k ≡ {2, 4} mod 6
and thus 21 + 22

k ≡ {1, 5} mod 6 a contradiction to n ≡ 3 mod 6. We are left with
k ∈ {0, 1, 2}. For k = 0, we get n = p+6 which was ruled out when we dealt with the
integers in S1. If k = 1 we have n = p+ 8 and from n ≡ 8 mod 19, the only possible
choice for p is p = 19 and thus n = 27. This contradicts to n ≡ 4 mod 5. Finally, if
k = 2 we have n = p + 20 and from n ≡ 20 mod 23 we again are left with a single
possible choice for p, namely p = 23. Now n = 43, contradicting to n ≡ 4 mod 5.

For integers n in the set S3, we have n = 2+22
k +2q . If q = 2we have n ≡ 22

k
mod

6 and again using that 22
k ∈ {2, 4} mod 6, we get a contradiction to n ≡ 3 mod 6.

If q is odd, then 2q ≡ 2 mod 6. If furthermore k = 0, then n = 4 + 2q ≡ 0 mod 6,
and if k = 1, we get n = 6 + 2q ≡ 2 mod 6. In both cases this yields a contradiction
to n ≡ 3 mod 6. For k ≥ 2 and q odd, we have that 22

k ≡ {16, 24, 25} mod 29
and 2q ≡ {2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27} mod 29. For k ≥ 2 and q
odd, it is thus true that 22

k + 2q �≡ 0 mod 29 and thus n = 2+ 22
k + 2q ≡ 2 mod 29

yields a contradiction in this case.
Finally, for integers in the set S4 we apply a similar argument as for integers in the

set S3. For any prime q we have that 2q ≡ {1, 2, 4, 8, 16} mod 31, and for all k ∈ N0

we get 22
k ≡ {2, 4, 8, 16} mod 31. Again 22

k + 2q �≡ 0 mod 31 for any prime q and
any non-negative integer k. Thus, n = 3+22

k +2q ≡ 3 mod 31 yields a contradiction.
��
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