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Abstract We consider a linear real-time, multiresource network with generally dis-
tributed stochastic primitives and soft customer deadlines, in which some users require
service from several shared resources simultaneously. We show that a strictly sub-
critical network of this type is stable under the preemptive Earliest Deadline First
scheduling strategy. Our argument is direct, without using fluid model analysis as an
intermediate step. As an application of our main result, we propose a stable proxy
for the preemptive Shortest Remaining Processing Time service protocol for linear,
strictly subcritical resource sharing networks.
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Stability
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1 Introduction

Massoulié and Roberts [34] introduced resource sharing networks, commonly called
bandwidth sharing models, to model congestion control problems for Internet flows.
In such systems, flows, corresponding to continuous transfers of elastic documents,
are being transmitted, requiring simultaneous service at all nodes along their routes.
Various service protocols for resource sharing networks have been proposed. Some
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of the most popular of them are proportional fairness, originating in a work of Kelly
[23], and more general α-fair policies, introduced by Mo and Walrand [36].

A natural problem in the theory of queueing systems with simultaneous resource
possession is their stability when the average load placed on each resource is less than
its capacity. Assuming exponentially distributed document sizes, de Veciana, Lee and
Konstantopoulos [11] showed stability of weighted max-min fair and proportionally
fair policies. Bonald and Massoulié [7] obtained a counterpart of these results for
weighted α-fair protocols. Massoulié [33] established stability of a fluid model for a
resource sharing system with exponential arrival and document sizes, incorporating
additional routing. This allowed him to show stability of stochastic resource sharing
networks when file sizes have phase-type distributions. More recently, Gromoll and
Williams [18] proposed a fluidmodel associatedwith a stochastic resource sharing net-
work with generally distributed interarrival times and document sizes, working under
a fairly general bandwidth sharing discipline. Under mild assumptions, they showed
that rescaled measure-valued processes corresponding to a sequence of such networks
are tight and any weak limit point of this sequence is almost surely a fluid model solu-
tion. This, together with stability of fluid models for weighted α-fair policies in linear
and tree networks established by Gromoll and Williams [17], may be used to infer
stability of the corresponding stochastic systems. The interested reader is referred to
[18] for more references regarding stability results for generalized bandwidth sharing
policies.

Verloop, Borst and Núñez Queija [40] investigated linear, strictly subcritical
resource sharing networks with Poisson arrivals and generally distributed document
sizes, working under the Shortest Remaining Processing Time (SRPT) and Least
Attained Service (LAS) scheduling. They found that such systems may be unsta-
ble and, moreover, for networks with sufficiently many nodes, instability may arise
at arbitrarily low traffic loads. From a broader perspective, they have observed that
a linear network topology “appears already sufficiently rich to exhibit many of the
qualitative phenomena that may occur for general network topologies and route struc-
tures”. Having said this, we must also admit that there are service disciplines making
the underlying linear strictly subcritical resource sharing networks stable, while being
unstable for some other network topologies, for example, UFOS (Utilization First,
Output Second), introduced by Harrison et al. [21]. In any case, the results of [40]
indicate that it is worthwhile to understand stability phenomena in linear networks
with resource sharing as an important first step in the analysis of systems with more
complex topologies.

Recent years have brought a rapidly increasing demand for real-time services, in
which jobs have specific timing requirements. Examples of such services include voice
and video transmission, manufacturing systems, where the orders have due dates, real-
time control systems and tracking systems. Another important class of applications
arises in medical scheduling problems, like organ allocation or prioritizing admissions
to emergency rooms.

There are several possible reactions of a real-time system to deadline misses. In
this paper, we will focus on the case of soft deadlines in which lateness is permitted
and the jobs completed after their deadlines are used.
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A natural service protocol for real-time systems is Earliest Deadline First (EDF),
in which the job with the shortest remaining lead time, i.e., the difference between its
deadline and the current time, is selected for service. A definition of the preemptive
EDF policy for a resource sharing network with soft deadlines and arbitrary topology
was given by Kruk [26]. In order to describe the contents of the latter paper, for each
element i from the set I of available routes of the network, each time t ≥ 0 and each
s ∈ R, let Yi (t, s) denote the cumulative idleness by time t with regard to transmission
of flows with lead times at time t not greater than s. The main result of Kruk [26]
was to show that, under mild distributional assumptions, the preemptive EDF resource
sharing protocolminimizes

∑
i∈I Yi with respect to the pointwise functional inequality.

(The latter relation is a partial ordering, according to which, for functions f , g of two
variables t , s, we have f ≤ g if and only if f (t, s) ≤ g(t, s) for all arguments t and
s.) One may wonder whether the above (or a similar) minimality result may be used to
show stability of the corresponding EDF networks.While this idea looks attractive, we
have not been able to obtain any results along this line. Related optimality properties of
the EDF protocol were studied by Liu and Layland [32], Panwar and Towsley [38,39],
Moyal [37], Kruk et al. [31], Atar et al. [3], in the context of single-server systems,
and by Baruah [4], who investigated resource sharing networks with hard deadlines.

In this paper, we consider linear resource sharing networks with renewal arrival
streams and generally distributed document sizes. Upon arrival to the network, a flow
on each route is assigned a soft random deadline drawn from a distribution associated
with this route. Assuming mild conditions on the model stochastic primitives, we
show that a strictly subcritical network of this type is stable under the preemptive EDF
service policy. This result is in sharp contrast to instability of strictly subcritical linear
networks under the SRPT protocol established in [40]. Indeed, there is a deep relation
between the EDF and SRPT scheduling strategies. Their similarity was first noticed
(at least to our knowledge) by Bender, Chakrabarti and Muthukrishnan [5] and then,
more explicitly, by Down, Gromoll and Puha [14], who investigated fluid limits for
SRPT queues using an auxiliary process similar to the one introduced by Doytchinov,
Lehoczky and Shreve [15] in the context of heavy traffic analysis for EDF queues. In
fact, in Sect. 8 of our paper, we apply our main result, together with an idea of Bender,
Chakrabarti and Muthukrishnan [5], to propose a stable regularization of the SRPT
protocol for linear resource sharing networks.

Themain idea of our stability proof is to verify the condition given inTheorem3.1 of
Dai [9] (see (10), to follow)which, roughly speaking, states that after a sufficiently long
time, the expected size of the system state is small in comparison to the size of the initial
condition as the former gets large. In the literature, this criterion is usually checked by
proving stability of the corresponding fluid model, as was originally suggested by Dai
[9]. Here, we choose an alternative way, proving Dai’s condition (10) directly for the
underlying queueing system, without using fluid model analysis as an intermediate
step. Our argument is based on two crucial ingredients. The first one, presented in
Sect. 5, is an investigation of some general properties of the workload process in
linear resource sharing networks. This part of the analysis requires only a very mild
assumption on the service protocol, and hence it is applicable to a broad range of
disciplines as long as the network is linear. The main result of this section states that in
the strictly subcritical case, after a time proportional to the size of the initial condition,
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the workload on all the “local routes” of the network, requiring only a single resource,
is small. The question is whether or not the workload on the “long route”, requiring the
cooperation of all the system resources, is also small at the same time. In the case of
the preemptive EDF protocol, the answer is affirmative, thanks to a current lead time
estimate presented in Sect. 4, stating that the smallest of the lead times of flows on the
“long route” is close to the smallest of the lead times of flows on the “local routes”.
This excludes the possibility of congestion on the “long route” without at least one of
the “local” ones being congested as well. While such an estimate cannot be expected
to hold for disciplines other than EDF, we hope that the main idea of our approach will
turn out to be useful also for asymptotic analysis of linear resource sharing networks
with other service protocols.

Tomake the above analysis rigorous, it is necessary to overcome several difficulties.
First, in order to model an EDF queueing system, the lead times of individual flows
or some equivalent information must be stored. In the preemptive case, considered in
this paper, the number of partially transmitted flows is unbounded and their residual
service times must be stored as well. This calls for modeling the network evolution
in an infinite-dimensional state space. Since the original analysis of Dai [9] was con-
strained to head-of-the-line (HL) disciplines (i.e., such that at any time at most one
customer in each class has been partially served), onemust proceed carefully, adjusting
Dai’s [9] approach to preemptive EDF networks which do not enjoy the HL property.
Furthermore, in the stability analysis for our system, different (infinite-dimensional)
initial states have to be considered. Some of them are statistically “atypical” in various
ways, for example they may have very “irregular” structure of initial lead times, or
some service times “abnormally” large. Consequently, any statistical regularity in the
system’s behavior may, in general, be observed only after all the initial flows leave the
network. Finally, the partially served flows are difficult to analyze, so it is necessary
to show that, in some sense, their influence on the system’s asymptotics is negligible.
We accomplish the latter task in Sect. 6, showing a suitable state space collapse result
which is, in a sense, a counterpart of “crushing lemmas” used in the heavy traffic
analysis of “conventional” EDF queueing systems (see, for example, [15]).

There is a connection between our results and stability theory for switched net-
works. In contrast to the systems discussed above, generalized switches are packet
level models in which time is discrete and processing a task takes exactly one time
unit. This considerably simplifies the analysis, since the current state of a switch is
fully characterized by the finite dimensional vector of queue lengths, any scheduling
policy for it is HL and there are no partially transmitted packets there. A natural service
discipline for a generalized switch is the Longest Queue First (LQF) algorithm, select-
ing the set of served links iteratively, in a way somewhat similar to EDF and SRPT,
but according to the queue lengths rather than lead times or residual service times. In a
seminal paper, Dimakis andWalrand [13] showed stability for a class of LQF systems
satisfying the local pooling condition (which is true for linear networks) and, under
mild assumptions on stochastic arrivals, also for some more general network topolo-
gies, for which a suitable rank condition holds. The main ideas of their analysis were
to use the maximal queue length as a Lyapunov function for the underlying Markov
chain and to combine diffusion-scale properties of the sample paths with the fluid
limit framework. Accordingly, their proof techniques are notably different from the
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ones used in this paper, in which the dynamics of the underlying Markov process are
more complicated, even for relatively simple network topologies. The network graphs
satisfying local pooling under primary interference constraints were characterized by
Birand et al. [6].

Stability theory for resource sharing networks is clearly related to stability prob-
lems for “conventional” multiserver, multiclass queueing networks. The fundamental
difference between these two types of systems is that flows in a bandwidth sharing
network need access to all the resources on their routes simultaneously, while cus-
tomers of a multiclass queueing network visit different servers along their routes in
succession. However, there are also some important similarities. The results from the
theory of multiclass queueing networks which are of greatest relevance to this paper,
in addition to [9], are the works by Bramson [8] and Kruk [24]. The former shows
stability of general strictly subcritical multiclass EDF networks without preemption,
while the latter contains the corresponding result for preemptive, strictly subcritical
EDF networks with fixed customer routes. In both those papers, convergence of the
fluid-scaled sample paths of the network performance processes to fluid limits, satis-
fying the corresponding fluid model equations, together with stability of the resulting
fluid model, were used to prove stability of the stochastic EDF networks under con-
sideration. The results of [24] may be generalized to strictly subcritical, preemptive
EDF networks with Markovian routing, although such a generalization seems to be
nontrivial. This paper is devoted to preemptive EDF resource sharing systems, so our
analysis is more akin to the one presented in [24]. In particular, our proof of state space
collapse from Sect. 6 resembles the proof of the corresponding result from [24].

Finally, let us mention a growing body of literature devoted to scaling limits for
“conventional” EDFnetworks. The case of a single-server, single customer class queue
is relatively well understood by now. Fluid limits for such systems with hard dead-
lines and no preemption, under various distributional assumptions, were investigated
by Decreusefond and Moyal [12], Atar, Biswas and Kaspi [1], and, recently, Atar,
Biswas, Kaspi and Ramanan [3]. Heavy traffic limits for preemptive EDF queues with
soft deadlines were provided by Doytchinov, Lehoczky and Shreve [15], and the cor-
responding analysis for EDF queues with reneging was given by Kruk, Lehoczky,
Shreve and Ramanan [31]. The accuracy of the heavy traffic approximation from [15]
was investigated by Kruk, Lehoczky and Shreve [27,28]. There are also a few results
concerning multistation EDF systems. Atar, Biswas and Kaspi [2] developed fluid
limits for a many-server EDF queue. The heavy traffic analysis of [15] was extended
to multiclass feedforward EDF networks by Yeung and Lehoczky [42], and to some
acyclic EDF networks by Kruk, Lehoczky, Shreve and Yeung [29]. Developing a fully
satisfactory heavy traffic theory for general multiclass, multiserver EDF queueing net-
works appears to be mathematically challenging, since, as was pointed out by Kruk
[25], such networks typically exhibit unconventional heavy traffic behavior. Counter-
parts of the above-mentioned results for resource sharing EDF networks are still to be
developed.

This paper is organized as follows. In Sect. 2 we define a stochastic model for
a linear EDF resource sharing network. Section 3 contains our main result and the
rest of the paper is devoted to its proof. In Sect. 4 we provide essential current lead
time estimates. Section 5 is devoted to investigation of theworkload dynamics in linear
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resource sharing networks. In Sect. 6, we estimate the time of transmission completion
for all the initial flows and we show that after this time state space collapse holds.
Section 7 contains the proof of the main result. Section 8 concludes.

1.1 Notation

The following notation will be used. Let N denote the set of nonnegative integers and
let R denote the set of real numbers. For a, b ∈ R, we write a ∨ b (a ∧ b) for the
maximum (minimum) of a and b, a+ for a ∨0 and �a� for the largest integer less than
or equal to a. The infimum (supremum) taken over the empty set should be interpreted
as ∞ (−∞). For a vector a = (a1, . . . , an) ∈ R

n , let |a| = ∑n
i=1 |ai |. By convention,

a sum over the empty set of indices equals zero. The nonnegative real numbers [0,∞)

will be denoted by R+.
The Borel σ -field on a metric space S will be denoted by B(S). For B ∈ B(R), we

denote the indicator of the set B by IB . For a function g : R → R and T ∈ (0,∞),
let ||g||T = sup{|g(x)| : x ∈ [0, T ]}. We also let 1(x) = 1 for x ∈ R.

Let M denote the set of finite, nonnegative measures on B(R). For ξ ∈ M and a
Borel measurable function g : R → R that is integrable with respect to ξ , define
〈g, ξ 〉 = ∫

R
g(x)ξ(dx). For μ ∈ M, we define Lμ = sup{x ∈ R : 〈I(−∞,x), μ〉 = 0}.

In particular, μ(R) = 0 if and only if Lμ = ∞. We denote the measure in M that puts
one unit of mass at a point x ∈ R by δx .

All stochastic processes used in this paper are assumed to have paths that are right
continuous with finite left limits (r.c.l.l.). We denote by D[0,∞) the space of r.c.l.l.
functions from [0,∞) into R.

2 Stochastic model

Our stochastic model of a linear EDF resource sharing network consists of the follow-
ing: the network topology, stochastic primitives, the service protocol and performance
processes describing the time evolution of the system. These are defined below.

2.1 Network structure

We consider a network with a finite number of resources (nodes), labeled by j =
1, . . . , J , and a finite set of routes, labeled by i = 1, . . . , I . Each route may be
identifiedwith a nonempty subset of J = {1, . . . , J }, interpreted as the set of resources
used by this route. Let A = [a ji ] be the J × I incidence matrix in which a ji = 1
if resource j is used by route i and a ji = 0 otherwise. Let I = {1, . . . , I }. Then
the set R(i) of resources used by route i may be described by the equation R(i) =
{ j ∈ J : a ji = 1}. In what follows, by the network topology we mean the structure
of connections between the resources made by the routes, which is defined by the
incidence matrix A (or, equivalently, by the sets R(i), i ∈ I). Throughout this paper,
we assume that the network under consideration is linear, i.e., I = J + 1,R(i) = {i},
i = 1, . . . , J , and R(J + 1) = J.
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By a flow on route i we mean a continuous transmission of a file through the
resources used by this route. We assume that a flow takes simultaneous possession of
all the resources on its route during the transmission. For convenience, we also assume
that all the resources have a unit service rate.

2.2 Stochastic primitives

Let (Ω,A, P) be a probability space on which all the random objects to follow will be
defined. The initial condition consists of nonnegative integers Qi (0), i ∈ I, counting
the numbers of initial flows on each route at time zero, strictly positive constant initial
file sizes of the initial flows ṽi,k and their corresponding constant initial lead times
(deadlines) l̃i,k , where i ∈ I, k = 1, . . . , Qi (0). Without loss of generality, we assume
that l̃i,k ≤ l̃i,k+1 for every k = 1, . . . , Qi (0) − 1, i ∈ I. The initial flow with service
time ṽi,k and deadline l̃i,k will be called flow k on route i .

Let Ni (·) be an exogenous arrival process for the route i ∈ I. For each i it is a delayed
renewal process with rate αi . For t ≥ 0, Ni (t) represents the number of flows arriving
to the i-th route in the time interval (0, t]. The k-th arrival modeled by Ni (·) will be
called flow Qi (0)+k on route i . Its arrival time equalsUi,k = inf{t ≥ 0 : Ni (t) ≥ k}.
The first arrival times Ui,1, i ∈ I, are assigned fixed positive values. For notational
convenience, we also define the “arrival times” of the initial flows by the formula
Ui,k−Qi (0) = l̃i,k ∧ 0, k = 1, . . . , Qi (0), if Qi (0) ≥ 1, and Ui,0 = 0 otherwise.
The corresponding interarrival times are defined as ui,k = Ui,k − Ui,k−1, where
k ≥ (2− Qi (0)) ∧ 1. For i ∈ I and t ≥ 0, let Ai (t) = Qi (0) + Ni (t). We assume that
for i ∈ I and k ≥ 2,

E ui,k = 1/αi < ∞, (1)

P(ui,k ≥ x) > 0 for all x > 0, (2)

and, for some ni > 0 and some nonnegative Borel function gi such that
∫ ∞
0 gi (x)dx >

0, we have
P(ui,2 + · · · + ui,ni ∈ dx) ≥ gi (x)dx . (3)

In other words, the interarrival times of incoming flows are integrable, unbounded and
spread out.

For i ∈ I and k ≥ 1, a random variable vi,k represents the initial size of the file
associated with the Qi (0) + k-th flow on route i , i.e., the cumulative transfer time of
this flow through the network. We assume that for each i ∈ I the random variables
{vi,k}k≥1 are strictly positive and forman independent and identically distributed (i.i.d.)
sequence with finite mean

mi = E vi,k < ∞, i ∈ I, k ≥ 1. (4)

For i ∈ I and k ≥ 1, a random variable li,k represents the initial lead time for the
transmission of the file associated with the Qi (0) + k-th flow on route i . Thus, the
deadline for the Qi (0) + k-th transmission on route i equals Ui,k + li,k . We assume
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that for each i ∈ I the random variables {li,k}k≥1 are nonnegative and they form an
i.i.d. sequence with a finite first moment:

E li,k < ∞, i ∈ I, k ≥ 1. (5)

In an important special case of a First-In-System, First-Out (FISFO) resource shar-
ing network, we have

li,k ≡ 0, i ∈ I, k ≥ 1. (6)

In this case, for the sake of derivation of current lead time estimates in Sect. 4.1,
which are slightly stronger than general ones, presented in Sect. 4.2, for i ∈ I such
that Qi (0) > 0, we additionally assume the compatibility condition

l̃i,k ≤ 0, k = 1, . . . , Qi (0). (7)

We assume that for each i ∈ I, the random vectors (vi,k, li,k), k ≥ 1, are independent.
We also assume that the sequences {ui,k}k≥2, i ∈ I, and {(vi,k, li,k)}k≥1, i ∈ I, are
mutually independent. (We do not rule out a possibility of dependence between vi,k

and li,k for the same indices i, k; see the discussion in Sect. 8.)
Let ρi = αi mi be the traffic intensity of route i . The corresponding traffic intensity

for resource j is ρ j = ∑I
i=1 a jiρ

i . We say that a resource sharing network is strictly
subcritical if ρ j < 1 for every j ∈ J.

2.3 Residual file sizes, lead times

For t ≥ 0, i ∈ I and k ≤ Ai (t), let wi,k(t) denote the residual size of the file
(transmission time) of flow k on route i at time t . Thus, wi,k(·) decreases during the
transmission of the flow k on route i and it is constant otherwise.

To determine whether flows meet their timing requirements, one must keep track
of each flow’s lead time, where

lead time = deadline − current time.

More formally, let t ≥ 0, i ∈ I and k ≤ Ai (t). The lead time at time t of flow k on
route i is defined by

li,k(t) =
{

l̃i,k − t, if k ≤ Qi (0),
li,k−Qi (0) + Ui,k−Qi (0) − t, if k > Qi (0).

We combine the stochastic primitives defined above into the following measure-
valued arrival process: for i ∈ I and t ≥ 0, let

Vi (t) =
Qi (0)∑

k=1

ṽi,kδli,k(t) +
Ni (t)∑

k=1

vi,kδli,Qi (0)+k (t).
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Then Vi (t) = 〈1,Vi (t)〉 denotes the total time necessary to complete the transmission
of all flows that have arrived at the route i ∈ I by time t .

2.4 Basic performance processes

For t ≥ 0 and i ∈ I, the measure-valued state descriptors for route i are defined by

Qi (t) =
Ai (t)∑

k=1

I(0,∞)(wi,k(t))δli,k(t), Wi (t) =
Ai (t)∑

k=1

wi,k(t)I(0,∞)(wi,k(t))δli,k(t).

The random measure Qi (t) (resp. Wi (t)) puts the unit mass (resp., the mass equal
to the corresponding residual transmission time) at the lead time of any flow present
on route i at time t . Then Qi (t) = 〈1,Qi (t)〉 denotes the number of flows on route
i ∈ I at time t and Wi (t) = 〈1,Wi (t)〉 denotes the total time necessary to complete
the transmission of these flows, which will be called the workload on route i at time
t . Let Q(t) = (Q1(t), . . . , QI (t)) and W (t) = (W1(t), . . . , WI (t)).

The current lead time process for route i will be denoted by Ci (·), where

Ci (t) = LQi (t) ∧
(

max
k≤Ai (t)

li,k(t) + 1
)
, t ≥ 0. (8)

In other words, Ci (t) is equal to the smallest of the lead times of the flows present on
route i at time t if Qi (t) > 0, and maxk≤Ai (t) li,k(t) + 1 otherwise.

2.5 Service protocol

The network operates under the preemptive EDF policy, dynamically allocating band-
width to flows with the shortest remaining lead time. In the case of preemption, we
assume preempt-resume and no setup, switchover or other type of overhead. A precise
definition of this protocol for general resource sharing networks was given in [26]. We
recall it here, adjusting it to the network under consideration and introducing notation
which will be used in Sect. 4.

For every t ≥ 0 and i ∈ I such that Qi (t) > 0, let

ki (t) = min{k ∈ {1, . . . , Ai (t)} : li,k(t) = Ci (t), wi,k(t) > 0}. (9)

In words, ki (t) is the index of the “most urgent” flow on route i present in the system
at time t (strictly speaking, the smallest such index, if there is more than one).

Let t ≥ 0 be such that Q(t) �= 0 and let i0 = i0(t) ∈ I be such that li0,ki0 (t)(t) is
the smallest of the lead times of the flows present in the system at time t . Here and
elsewhere we assume that ties between routes are broken in an arbitrary deterministic
and time-independent manner, for example here we may choose the smallest index
i0 with the required properties. The flow ki0(t) on route i0 is chosen for transmission
with the maximal (i.e., unit) rate at time t . If i0 = J + 1, then the assignment of flows
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for transmission at time t is finished, because no more flows can be transmitted at that
time. Otherwise, for each i ∈ {1, . . . , J }\{i0} such that Qi (t) > 0, the flow ki (t) on
route i is also chosen for transmission with the unit rate at time t . This assignment is
effective until either one of the ongoing transmissions is finished, or a new flow arrives
to the system, when, subject to the same rules, a rearrangement may happen.

3 Main result

In this section, after the definition of a suitableMarkov process describing the evolution
of an EDF resource sharing network, we state our main result, Theorem 1, and provide
a sketch of its proof. The details of the proof will be presented in Sects. 4–7.

3.1 Markov process background

Let K = (R+ × R)∞ and let

S =
{(

(qi )i∈I, (hi )i∈I, (ri )i∈I
) ∈ N

I × K I × R
I+ : (hi ) j = (0, 0) ∀i ∈ I, j > qi

}

be the state space. Under the product topology, S is a locally compact Polish space. The
state of the network at any time is given by a point x = ((qi )i∈I, (hi )i∈I, (ri )i∈I) ∈ S,

where, for i ∈ I, qi is the number of flows (i.e., the queue length) on route i , hi

describes all flows present on route i at this time so that each of them is listed in terms
of its residual transmission time and lead time, and ri is the residual interarrival time
for route i . We assume that the flows in hi are listed in the order of their arrivals to
the route, ties are broken in an arbitrary manner and the empty spaces on the list hi

(i.e., not corresponding to any flow present on the route) are positioned after all the
listed flows and they are filled with zeros. Let w = (wi )i∈I, where wi is the sum of
the residual transmission times of the flows listed in hi . Let q = (qi )i∈I, r = (ri )i∈I
and let � be the greatest lead time. For x ∈ S, let |x | = |q| + |w| + |r | + �+ be the
“norm” of x .

The S-valued process describing the evolution of the EDF resource sharing network
is denoted by X = (X (t), t ≥ 0), where

X (t) = (Q(t), H(t), R(t)) = ((Qi (t))i∈I, (Hi (t))i∈I, (Ri (t))i∈I)

is the state of the network at time t . By definition, the process X has right-continuous
sample paths. It is easy to see that X is aMarkovprocess. The evolution of the process X
between arrivals and departures is deterministic. Thus, X is a piecewise-deterministic
Markov process, so it is actually strong Markov (see [10]).

We will sometimes use a superscript x ∈ S for various performance processes
describing the evolution of an EDF resource sharing network to indicate that the state
process X corresponding to this network starts at state x . Also, for x ∈ S, by Px

and Ex we denote the probability and the expectation operator, respectively, under the
condition that X (0) = x .
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A Markov process X on the state space S is Harris recurrent if there exists a σ -
finite measure ν on B(S) such that whenever A ∈ B(S) and ν(A) > 0, we have
Px (τA < ∞) = 1 for all x ∈ S, where τA = inf{t ≥ 0 : X (t) ∈ A}. It is known that
Harris recurrence implies the existence of a unique (up to a multiplicative constant)
invariant measure; see, for example, [16]. If this measure is finite, X is called positive
Harris recurrent.

The following proposition is a variant of Theorem 3.1 in [9], which is very useful
in stability theory for queueing networks. It reduces the problem of proving positive
Harris recurrence of aMarkov process to checking the condition (10) on the asymptotic
behavior of this process as the initial condition gets large.

Proposition 1 If there exists γ > 0 such that

lim|x |→∞
1

|x |Ex |X (γ |x |)| = 0, (10)

then X is positive Harris recurrent.

The proof of this proposition is the same as the proof of Theorem 3.1 in [9] (see also
the proof of Theorem 2.1 (ii) in [35]).

3.2 Main theorem

Recall that a queueing network is stable when the underlying Markov process is
positive Harris recurrent. The following theorem is the main result of this paper.

Theorem 1 All linear, strictly subcritical EDF resource sharing networks with pre-
emption which satisfy (1)–(5) are stable.

The rest of this paper is devoted to the proof of Theorem 1. It is long and it proceeds
in several steps. Along the way, we provide several auxiliary results, which may be of
independent interest. To aid the reader, we first present an outline of our argument.

Our goal is to verify that, for a suitable γ > 0, the condition (10) of Proposition
1 holds. To this end, due to uniform integrability of the random variables involved, it
suffices to check that each sequence xn of initial states such that |xn| → ∞ contains
a subsequence (also denoted by xn for convenience), along which

lim
n→∞

∣
∣
∣X xn

(γ |xn|)
∣
∣
∣
/

|xn| = 0 (11)

almost surely (a.s.). A state space collapse result established in Sect. 6 reduces the
justification of (11) to proving the a.s. convergence

lim
n→∞

∣
∣
∣W xn

(γ |xn|)
∣
∣
∣
/

|xn| = 0. (12)

In order to establish (12), we show that there exist a route î ∈ {1, . . . , J } and a constant
τ0 such that, for t ≥ τ0|xn|, the workload on route î asymptotically dominates the
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workloads on routes 1, . . . , J , i.e.,

W xn

î
(t) = max

i=1,...,J
W xn

i (t) + o(|xn|), t ≥ τ0|xn|; (13)

see Lemma 13 and Remark 2. On the other hand, because the network is strictly
subcritical, if the constant γ is large enough, there exists a (random) time σ ∈ [τ0, γ ]
such that W xn

î
(σ |xn|) = 0; see Lemma 14. Let σ̂ be the supremum of such times. By

(13),
W xn

i (σ̂ |xn|) = o(|xn|), i = 1, . . . , J. (14)

The results (13)–(14) are general properties of linear, strictly subcritical resource
sharing networks, which hold for a broad range of service policies, satisfying a mild
“weak non-idleness” condition, defined at the beginning of Sect. 5. We want to prove
that, under the EDF discipline, we also have

W xn

J+1(σ̂ |xn|) = o(|xn|). (15)

This follows from (14), together with a crucial current lead time estimate (Proposition
3), implying that

Cxn

J+1(σ̂ |xn|) = min
i=1,...,J

Cxn

i (σ̂ |xn|) + o(|xn|).

The estimate from Proposition 3, relying heavily on properties of the EDF service
protocol, is the heart of our stability proof. Once (13)–(15) are established, (12) follows
easily from these three relations, together with the definition of σ̂ and the fact that the
network is strictly subcritical.

4 Current lead time estimates

The aim of this section is to prove Proposition 3, stating that after all the initial flows
are fully transmitted in a linear EDF resource sharing network, the current lead time on
route J + 1 is close to the minimum of the current lead times on routes 1, . . . , J . This
excludes the possibility of having a largeworkload on route J +1,while all other routes
are almost empty, and therefore it provides a key ingredient of our stability argument.
The proof of Proposition 3, given in Sect. 4.2, is somewhat involved. Therefore, to aid
the reader, in Sect. 4.1 we show a corresponding result for a linear FISFO network.
The proof for the latter case uses the same ideas as the general one from Sect. 4.2,
while being notably simpler. The arguments presented in this section are pathwise,
requiring no distributional assumptions on the model stochastic primitives.

Throughout this section, we use the notation introduced in Sect. 2.5.

4.1 Current lead times in linear FISFO networks

In this subsection, we additionally assume that the network protocol is FISFO, i.e., (6)
holds.We also assume the compatibility condition (7). Our aim is to prove Proposition
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2, assuring that if at least one flow on every route has already been transmitted, then the
current lead time on the long route is close to the minimum of the current lead times
on the short routes. The analysis is divided into five cases, considered in Lemmas 1–5,
respectively. Note that, by (8) and the explanation following it, the cases in which
some of the queues under consideration are empty have to be analyzed separately; see
Lemmas 3–5.

Lemma 1 Let t ≥ 0 be such that Q J+1(t) > 0, i0 = i0(t) ∈ {1, . . . , J } and
kJ+1(t) > 1. Then

CJ+1(t) ≥ Ci0(t) ≥ CJ+1(t) − u J+1,kJ+1(t)−Q J+1(0). (16)

Proof The first inequality in (16) follows from the definition of i0 (see Sect. 2.5). For
the proof of the second one, note that, by the definition of the FISFO service protocol,
the flow kJ+1(t) − 1 on route J + 1 has already been fully transmitted. We will show
that

Ci0(t) ≥ l J+1,kJ+1(t)−1(t). (17)

Indeed, if Ci0(t) = li0,ki0 (t)(t) < l J+1,kJ+1(t)−1(t), then the flow ki0(t) on route i0
arrived at the system no later than the flow kJ+1(t) − 1 on route J + 1 (in fact,
earlier, unless both of them were already present in the system at time zero). However,
R(J + 1) ∩ R(i0) �= ∅ and thus, by the network topology and the FISFO service
discipline, the flow kJ+1(t) − 1 on route J + 1 cannot be transmitted as long as the
flow ki0(t) on route i0 is present in the system. We have obtained a contradiction,
proving (17).

By (17), we get

Ci0(t) ≥ l J+1,kJ+1(t)−1(t) = l J+1,kJ+1(t)(t) − u J+1,kJ+1(t)−Q J+1(0)

= CJ+1(t) − u J+1,kJ+1(t)−Q J+1(0).

��
Lemma 2 Let t ≥ 0 be such that Q(t) �= 0, i0 = i0(t) = J + 1 and the set

Bt = {s ∈ [0, t] : Q(s) �= 0, i0(s) �= J + 1} (18)

is nonempty. Let τ = τ(t) = sup Bt and let ι = i0(τ−). If Qι(t) > 0 and kι(t) > 1,
then

Cι(t) ≥ CJ+1(t) ≥ Cι(t) − uι,kι(t)−Qι(0). (19)

Proof The argument is similar to the proof of Lemma 1. The main step is to show that

CJ+1(t) ≥ lι,kι(t)−1(t) (20)

(compare (17)). If
CJ+1(t) = l J+1,kJ+1(t)(t) < lι,kι(t)−1(t), (21)
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then the flow kJ+1(t) on route J +1 arrived at the system no later than the flow kι(t)−1
on route ι (in fact, earlier, unless both of them were already present in the system at
time zero). However, by the network topology and the FISFO service discipline, the
flow kι(t)−1 on route ι can be transmitted at time s only if i0(s) �= J +1, i.e., s ∈ Bt .
By the definitions of τ , ι, kι(t) and the FISFO service discipline, the transmission
of the flow kι(t) − 1 on route ι was completed at time τ and ι = i0(τ−). Hence,
Cι(τ−) = lι,kι(t)−1(τ ) ≤ CJ+1(τ−) ≤ l J+1,kJ+1(t)(τ ), which implies

lι,kι(t)−1(t) = lι,kι(t)−1(τ ) − (t − τ) ≤ lJ+1,kJ+1(t)(τ ) − (t − τ) = lJ+1,kJ+1(t)(t).

This contradicts (21), proving (20). Next, we argue as in the proof of Lemma 1. ��
Lemma 3 Let t ≥ 0 be such that Q(t) �= 0, i0 = i0(t) = J + 1 and Bt �= ∅, where
Bt is given by (18). Let τ and ι be as in Lemma 2. If Qι(t) = 0, then

CJ+1(t) > −uι,Nι(t)+1. (22)

Proof We have Aι(t) > 0, because ι = i0(τ−) and τ ≤ t . Moreover,

uι,Nι(t)+1 = Uι,Nι(t)+1 − t − (Uι,Nι(t) − t) > − (Uι,Nι(t) − t) (23)

= − lι,Aι(t)(t). (24)

On the other hand, by an argument similar to the proof of (20), CJ+1(t) ≥ lι,Aι(t)(t).
This, together with (23)–(24), implies (22). ��
Lemma 4 Let t ≥ 0 be such that Q(t) �= 0, Q J+1(t) = 0 and AJ+1(t) > 0. Then

Ci0(t) > − u J+1,NJ+1(t)+1. (25)

Proof By assumption, i0 = i0(t) ∈ {1, . . . , J } and the flow AJ+1(t) on the route
J + 1 has already been fully transmitted by time t . Mimicking the proof of (17), we
get

Ci0(t) ≥ l J+1,AJ+1(t)(t). (26)

Replacing ι by J + 1 in (23)–(24), we get u J+1,NJ+1(t)+1 > − lJ+1,AJ+1(t)(t) which,
together with (26), implies (25). ��
Lemma 5 Let t ≥ 0, i ∈ I be such that Ai (t) > 0 and Qi (t) = 0. Then

1 − ui,Ni (t)+1 < Ci (t) ≤ 1. (27)

Proof By (8) and the assumption that Qi (t) = 0, under the FISFO service discipline,

Ci (t) = li,Ai (t)(t) + 1 = Ui,Ni (t) − t + 1

= Ui,Ni (t)+1 − t + 1 − ui,Ni (t)+1 > 1 − ui,Ni (t)+1,

which proves the first inequality in (27). The second one is an immediate consequence
of (6)–(8). ��
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Proposition 2 Let t ≥ 0 be such that Ai (t) > Qi (t) for each i ∈ I. Then

| min
i=1,...,J

Ci (t) − CJ+1(t)| ≤ 1 + max
i∈I

max
((2−Qi (0))∧1) ≤ k ≤ Ni (t)+1

ui,k . (28)

This result follows directly from Lemmas 1–5, because the condition Ai (t) > Qi (t)
implies that Ai (t) > 0 and, in the case of Qi (t) > 0, also ki (t) > 1. Moreover, by
the network topology, if Ai (t) > Qi (t) for some i ∈ {1, . . . , J }, then Bt �= ∅.

4.2 Current lead times in linear EDF networks

Now we shall present counterparts of the results of Sect. 4.1 for more general linear
EDF resource sharing networks. In particular, we no longer require that the conditions
(6)–(7) hold. In this subsection, we make repeated use of nonnegativity of initial lead
times for incoming flows, without explicit reference.

First note that in an EDF resource sharing network, initial flows, together with flows
arriving after time zero with deadlines not greater than

l̃max =
(

max
i∈I

l̃i,Qi (0)

)+
, (29)

form a priority class, i.e., as long as these flows are present in the network, at least
one of them is transmitted with unit rate (compare a similar remark in the proof of
Lemma 5.2 in [24]). All of these priority flows arrive at the network by the time l̃max.
Accordingly, the sum of the transmission times of the priority flows is not greater than
∑

i∈I
(∑Qi (0)

k=1 ṽi,k +∑Ni (l̃max)
k=1 vi,k

)
, and hence all the priority flows leave the network

by the time

l̃max +
∑

i∈I

⎛

⎝
Qi (0)∑

k=1

ṽi,k +
Ni (l̃max)∑

k=1

vi,k

⎞

⎠ .

By the same argument, at least one flow coming to each route after time zero, in
addition to all the initial flows, is fully transmitted by the time

T = L̃max +
∑

i∈I

⎛

⎝
Qi (0)∑

k=1

ṽi,k +
Ni (L̃max)∑

k=1

vi,k

⎞

⎠ , (30)

where
L̃max = l̃max ∨ max

i∈I
(Ui,1 + li,1). (31)

As in Sect. 4.1, in order to prove Proposition 3, the main result of this subsection,
we analyze five different cases in the following Lemmas 6–10, respectively. Again, the
cases in which some relevant queues are empty require special attention; see Lemmas
8–10.
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Lemma 6 Let t > T be such that Q J+1(t) > 0 and i0 = i0(t) ∈ {1, . . . , J }. Then

CJ+1(t) ≥ Ci0(t) ≥ CJ+1(t) − max
k=1,...,NJ+1(t)+1

u J+1,k − max
k=1,...,NJ+1(t)+1

l J+1,k .

(32)

Proof The first inequality in (32) follows from the definition of i0 (see Sect. 2.5). For
the proof of the second one, let η be the largest index of a flow on route J + 1 that has
been fully transmitted by time t . We have η > Q J+1(0), because t > T. Let τ be the
time when the transmission of the flow η on the route J + 1 was completed.

If the flow ki0(t) on the route i0 arrived at the system before time τ , then
li0,ki0 (t)(τ−) ≥ l J+1,η(τ−) (otherwise, the system could not finish the transmission
of the flow η on the route J + 1 before the departure of ki0(t) from the route i0).
Consequently,

Ci0(t) = li0,ki0 (t)(t) ≥ l J+1,η(t). (33)

If η < AJ+1(t), then the flow η + 1 is still on the route J + 1 at time t , so

CJ+1(t) ≤ l J+1,η+1(t)

= l J+1,η(t) − l J+1,η−Q J+1(0) + l J+1,η+1−Q J+1(0) + u J+1,η+1−Q J+1(0)

≤ l J+1,η(t) + l J+1,η+1−Q J+1(0) + u J+1,η+1−Q J+1(0)

≤ Ci0(t) + l J+1,η+1−Q J+1(0) + u J+1,η+1−Q J+1(0), (34)

where (33) was used in the last line.
If η = AJ+1(t), let κ be a flow present on the route J +1 at time t . Then Q J+1(0) <

κ < AJ+1(t), because t > T, and hence

CJ+1(t) ≤ l J+1,κ (t)

= lJ+1,AJ+1(t)(t) − l J+1,NJ+1(t) + l J+1,κ−Q J+1(0)

+ UJ+1,κ−Q J+1(0) − UJ+1,NJ+1(t)

≤ l J+1,η(t) + l J+1,κ−Q J+1(0)

≤ Ci0(t) + l J+1,κ−Q J+1(0), (35)

where again (33) was used in the last line.
If the flow ki0(t) on the route i0 arrived at the system no earlier than at the time τ ,

then
Ci0(t) = li0,ki0 (t)(t) ≥ li0,ki0 (t)−Qi0 (0) − (t − τ). (36)

In this case, we have two possibilities. If τ is so large that AJ+1(τ ) = AJ+1(t), then
t − τ < u J+1,NJ+1(t)+1, so (36) implies

Ci0(t) ≥ li0,ki0 (t)−Qi0 (0) − u J+1,NJ+1(t)+1. (37)
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Since t > T, the flow kJ+1(t) on route J + 1 is not an initial one, so

CJ+1(t) = l J+1,kJ+1(t)(t) = l J+1,kJ+1(t)−Qi (0) + UJ+1,kJ+1(t)−Qi (0) − t

≤ lJ+1,kJ+1(t)−Qi (0) = li0,ki0 (t)−Qi0 (0) − u J+1,NJ+1(t)+1

+ (l J+1,kJ+1(t)−Qi (0) − li0,ki0 (t)−Qi0 (0)) + u J+1,NJ+1(t)+1

≤ Ci0(t) + l J+1,kJ+1(t)−Qi (0) + u J+1,NJ+1(t)+1, (38)

where (37) was used in the last line.
If AJ+1(τ ) < AJ+1(t), then the flow AJ+1(τ ) + 1 on the route J + 1 arrived at

the system in the time interval (τ, t] and, by the definition of τ , it is still in the system
at time t . Thus,

CJ+1(t) ≤ l J+1,AJ+1(τ )+1(t) = l J+1,NJ+1(τ )+1 − (t − UJ+1,NJ+1(τ )+1)

≤ lJ+1,NJ+1(τ )+1 − (t − τ) + u J+1,NJ+1(τ )+1. (39)

From (36) and (39), we have

Ci0(t) ≥ CJ+1(t) + li0,ki0 (t)−Qi0 (0) − l J+1,NJ+1(τ )+1 − u J+1,NJ+1(τ )+1

≥ CJ+1(t) − l J+1,NJ+1(τ )+1 − u J+1,NJ+1(τ )+1. (40)

Summarizing, the inequalities (34)–(35), (38) and (40) imply that if t > T, then,
irrespective of the case, (32) holds. ��

Lemma 7 Let t > T be such that Q(t) �= 0 and i0 = i0(t) = J + 1. Let τ = τ(t) =
sup Bt , where Bt is as in (18), and let ι = i0(τ−). If Qι(t) > 0 and τ > T, then

Cι(t) ≥ CJ+1(t) ≥ Cι(t) − max
k=1,...,Nι(t)+1

uι,k − max
k=1,...,Nι(t)+1

lι,k . (41)

Proof The argument is similar to the proof of Lemma 6. By the definition of ι, we have
ι ∈ {1, . . . , J }. Let η = kι(τ−). Then η > Qι(0), because τ > T. The subsequent
analysis is divided into the following cases.

If the flow kJ+1(t) on the route J + 1 arrived at the system before time τ , then

l J+1,kJ+1(t)(τ−) ≥ lι,η(τ−). (42)

Indeed, by the definitions of ι and η, lι,η(τ−) = Cι(τ−) = mini∈I Ci (τ−), so if
lJ+1,kJ+1(t)(τ−) < lι,η(τ−), then CJ+1(τ−) < mini∈I Ci (τ−), which is a contradic-
tion. The inequality (42) implies that

CJ+1(t) = l J+1,kJ+1(t)(t) ≥ lι,η(t) (43)

(compare (33)).
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First assume that there is a flow κ present on the route ι at time t which has arrived
at the system no later than the deadline for the flow η on the same route, i.e., such that

Uι,κ−Qι(0) ≤ Uι,η−Qι(0) + lι,η−Qι(0). (44)

In this case,

Cι(t) ≤ lι,κ (t) = lι,κ−Qι(0) + Uι,κ−Qι(0) − t

≤ lι,κ−Qι(0) + Uι,η−Qι(0) + lι,η−Qι(0) − t = lι,κ−Qι(0) + lι,η(t),

which, together with (43), yields

CJ+1(t) ≥ Cι(t) − lι,κ−Qι(0). (45)

We now consider the case in which there is no flow satisfying (44) on the route ι at
time t . Observe that every flow κ arriving at the route ι after the deadline for the flow
η, but no later than the time t (i.e., such that Uι,η−Qι(0) + lι,η−Qι(0) < Uι,κ−Qι(0) ≤ t),
is still in the system at time t . Indeed, such a flow cannot preempt the flow η on route ι,
so it cannot be transmitted before the time τ . On the other hand, only flows on the route
J +1 are transmitted in the time interval [τ, t], so a flow κ on route ι is not transmitted
at any time in this interval, either. In particular, flow κ = Aι(Uι,η−Qι(0)+lι,η−Qι(0))+1
is still on the route ι at time t , so

Cι(t) ≤ lι,Aι(Uι,η−Qι(0)+lι,η−Qι(0))+1(t)

= Uι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1 + lι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1 − t

≤ Uι,η−Qι(0) + lι,η−Qι(0) + uι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1

+ lι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1 − t

= lι,η(t) + uι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1 + lι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1.

This, together with (43), yields

CJ+1(t) ≥ Cι(t) − uι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1 − lι,Nι(Uι,η−Qι(0)+lι,η−Qι(0))+1. (46)

The inequalities (45)–(46) imply that in both cases analyzed so far, the estimate
(41) holds.

The analysis for the case in which the flow kJ+1(t) on the route J +1 arrived at the
system no earlier than at the time τ is completely analogous to the proof of Lemma 6
for the corresponding case. ��
Lemma 8 Let t ≥ L̃max be such that Q(t) �= 0, i0 = i0(t) = J + 1 and Bt �= ∅,
where Bt is given by (18). Let τ and ι be as in Lemma 2. If Qι(t) = 0, then (22) holds.

Proof As in the proof of Lemma 7, we first observe that ι ∈ {1, . . . , J } and put
η = kι(τ−).
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If the flow kJ+1(t) on the route J +1 arrived at the system before time τ , then (43)
holds by the same argument as in the proof of Lemma 7. We claim that

CJ+1(t) ≥ lι,Aι(t)(t). (47)

If η = Aι(t), (47) follows immediately from (43). Assume that η < Aι(t). By the
definitions of τ and η, the flow ηwas the last one to leave the route ι by time t , while the
flow Aι(t)was the last one to arrive at ι by that time. This, together with the assumption
that Qι(t) = 0 and the definition of the EDF protocol, implies that lι,η(t) > lι,Aι(t)(t),
so again (43) implies (47). However, Nι(t) > 0, because t ≥ L̃max, and hence, by
(23),

lι,Aι(t)(t) = lι,Nι(t) + Uι,Nι(t) − t ≥ Uι,Nι(t) − t > −uι,Nι(t)+1.

This, together with (47), implies (22).
It remains to consider the situation in which the flow kJ+1(t) on the route J + 1

arrived at the system no earlier than τ . In this case, we have

Uι,Nι(t)+1 > t ≥ UJ+1,kJ+1(t)−Q J+1(0) ≥ τ. (48)

By the definition of τ , there is no transmission on the route ι in the time interval [τ, t],
so the assumption that Qι(t) = 0 implies Qι ≡ 0 on [τ, t]. In particular, Uι,Nι(t) < τ .
This, together with (48), yields uι,Nι(t)+1 > t − UJ+1,kJ+1(t)−Q J+1(0). Consequently,

CJ+1(t) = l J+1,kJ+1(t)(t) = l J+1,kJ+1(t)−Q J+1(0) + UJ+1,kJ+1(t)−Q J+1(0) − t

≥ UJ+1,kJ+1(t)−Q J+1(0) − t > −uι,Nι(t)+1,

and (22) follows. ��
Lemma 9 Let t ≥ 0 be such that Q(t) �= 0, Q J+1(t) = 0 and NJ+1(t) > 0. Then
(25) holds.

Proof If the flow ki0(t) on route i0 arrived at the network no later than the flow AJ+1(t)
on route J + 1, then we have (26), by the same reason as in the proof of Lemma 4.
By (23), with ι replaced by J + 1, we get

lJ+1,AJ+1(t)(t) = l J+1,NJ+1(t) + UJ+1,NJ+1(t) − t ≥ UJ+1,NJ+1(t) − t

> − u J+1,NJ+1(t)+1,

which, together with (26), implies (25).
If the flow ki0(t) on route i0 arrived at the network later than the flow AJ+1(t)

on route J + 1, then UJ+1,NJ+1(t)+1 > t ≥ Ui0,ki0 (t)−Qi0 (0) > UJ+1,NJ+1(t), so
u J+1,NJ+1(t)+1 > t − Ui0,ki0 (t)−Qi0 (0). This, together with the fact that the flow ki0(t)
on route i0 is not an initial one, implies that

Ci0(t) = li0,ki0 (t)(t) = li0,ki0 (t)−Qi0 (0) + Ui0,ki0 (t)−Qi0 (0) − t > −u J+1,NJ+1(t)+1,
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so again (25) holds. ��
Lemma 10 Let t ≥ L̃max and i ∈ I be such that Qi (t) = 0. Then

1 − ui,Ni (t)+1 < Ci (t) ≤ max
k≤Ni (t)

li,k + 1. (49)

Proof By (8), for every t ≥ 0,

Ci (t) ≤ max
k≤Ai (t)

li,k(t) + 1 ≤ (
(l̃i,Qi (0) − t) ∨ max

k≤Ni (t)
li,k

) + 1, (50)

so for t ≥ L̃max the second inequality in (49) follows. If t ≥ L̃max is such that
Qi (t) = 0, then Ni (t) > 0 and the first inequality in (50) is actually an equality.
Thus,

Ci (t) ≥ li,Ai (t)(t) + 1 = li,Ni (t) + Ui,Ni (t) − t + 1 ≥ Ui,Ni (t) − t + 1

> 1 − ui,Ni (t)+1,

where the last inequality follows from (23), with i substituted for ι. ��
Proposition 3 For t > T, we have

∣
∣
∣
∣ min
i=1,...,J

Ci (t) − CJ+1(t)

∣
∣
∣
∣ ≤ 1 + max

i∈I
max

1≤k≤Ni (t)+1
ui,k + max

i∈I
max

k≤Ni (t)
li,k . (51)

Proof The estimate (51) follows from Lemmas 6–10. We will provide a detailed
analysis under the assumptions of Lemma 6 (the proof in other cases is similar). Let
ī ∈ {1, . . . , J } be such that Cī (t) = mini=1,...,J Ci (t). If Qī (t) > 0, then Cī (t) =
Ci0(t) and Lemma 6 immediately implies (51). Assume that Qī (t) = 0. Then (8), the
first inequality in (32), Lemma 10 and the assumption t > T > l̃max imply that

max
k≤NJ+1(t)

l J+1,k + 1 ≥ CJ+1(t) ≥ Cī (t) > 1 − uī,Nī (t)+1,

and again (51) follows. ��

5 Workload evolution in linear networks

In this section, we investigate properties of the workload process in linear resource
sharing networks. The results presented here do not depend on the service protocol,
and hence, they are fairly general. We do assume, however, the following weak form
of non-idleness: for any t ≥ 0 and any route i = 1, . . . , J , if Qi (t) > 0, then the
sum of the transmission rates on the routes i and J + 1 at time t equals 1. (Recall that
we have assumed the unit maximal service rate for every resource.) This “weak non-
idleness” assumption, mathematically expressed by Eqs. (52)–(54), is clearly satisfied
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by the EDF service protocol described in Sect. 2.5, but it also holds for any other
“reasonable” policy in a linear network.

The main results of this section are Lemmas 13 and 14. Lemma 13 shows that there
exists a route î ∈ {1, . . . , J } such that, after a time proportional to the “norm” of the
initial condition, the workload on this route asymptotically dominates the workloads
on other routes belonging to the set {1, . . . , J }. Lemma 14 provides an upper bound
for the time at which a route chosen from {1, . . . , J } becomes empty in a strictly
subcritical network. Along the way, we establish a simple comparison result for the
Skorokhod map on R+ (Lemma 11).

We first introduce some auxiliary performance processes. The cumulative transmis-
sion time on route i ∈ I by time t will be denoted by Ti (t). Note that Ti (t) = ∫ t

0 ri (s)ds,
where ri (s) is the transmission rate on route i at time s. Then the available bandwidth
for routes i ∈ {1, . . . , J } is defined as

E(t) = t − TJ+1(t). (52)

The netput for each route i ∈ {1, . . . , J } is given by

Pi (t) = Vi (t) − E(t). (53)

This is the total time necessary to complete the transmission of all the flows which are
present on this route at time t if it has never been empty prior to time t . Because route
i might have been empty, the actual time necessary to complete the transmission of
all the flows which are present on route i ∈ {1, . . . , J } at time t equals

Wi (t) = Γ0(Pi )(t), (54)

where

Γ0(ψ)(t) = ψ(t) + sup
s∈[0,t]

[−ψ(s)]+, ψ ∈ D[0,∞), t ≥ 0,

is the Skorokhod map on [0,∞). It is well-known (see, for example, [30], Definition
1.1) that, for a given ψ ∈ D[0,∞), the functions

φ = Γ0(ψ), η = φ − ψ, (55)

satisfy
1. φ(t) = ψ(t) + η(t) ≥ 0 for every t ≥ 0,
2. η is nondecreasing on [0,∞), η(0) ≥ 0 and

∫ ∞
0 I[φ(s)>0]dη(s) = 0, where, by

convention, η(0−) = 0.
Moreover, the pair (φ, η) given by (55) is the only element of D[0,∞) × D[0,∞)

enjoying the above two properties. In what follows, the pair (φ, η) defined by (55) is
said to solve the Skorokhod problem on [0,∞) for ψ .
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Lemma 11 Given c0, c′
0 ≥ 0, a > 0 and ψ ′ ∈ D[0,∞) with ψ ′(0) = 0, let τ =

[c′
0 − c0]+/a and let ψ(t) = ψ ′(t)+ at for all t ≥ 0. Suppose that (φ, η) and (φ′, η′)

solve the Skorokhod problem on [0,∞) for c0 + ψ and c′
0 + ψ ′, respectively. Then

φ′(t) ≤ φ(t), t ≥ τ. (56)

Proof If c0 ≥ c′
0, then τ = 0 and (56) follows from Theorem 6 (i) in [22].

Suppose that c′
0 > c0 and let τ0 = inf{t ≥ 0 : φ′(t) ≤ φ(t)}. Then τ0 > 0, because

φ(0) = c0 < c′
0 = φ′(0) and φ, φ′ are right-continuous. For t ∈ [0, τ0), we have

φ′(t) > φ(t) ≥ 0. Consequently, η′(t) ≡ 0 on [0, τ0), because η′ increases only when
φ′ = 0. Thus, for t ∈ [0, τ0),

φ′(t) − c′
0 = φ′(t) − φ′(0) = ψ ′(t) − ψ ′(0) = ψ(t) − ψ(0) − at

= φ(t) − η(t) − φ(0) + η(0) − at ≤ φ(t) − φ(0) − at

= φ(t) − c0 − at.

Letting t ↑ τ0, we get φ′(τ0−) − c′
0 ≤ φ(τ0−) − c0 − aτ0, so

aτ0 ≤ c′
0 − c0 + φ(τ0−) − φ′(τ0−) ≤ c′

0 − c0,

where the last inequality follows from the definition of τ0. Therefore,

τ0 ≤ (c′
0 − c0)/a = τ. (57)

Put c1 = φ(τ0), c′
1 = φ′(τ0). For t ≥ 0, let

ψ1(t) = ψ(t + τ0) − ψ(τ0), φ1(t) = φ(t + τ0), η1(t) = η(t + τ0) − η(τ0),

ψ ′
1(t) = ψ ′(t + τ0) − ψ ′(τ0), φ′

1(t) = φ′(t + τ0), η
′
1(t) = η′(t + τ0) − η′(τ0).

It is easy to see that the pairs (φ1, η1) and (φ′
1, η

′
1) solve the Skorokhod problem

on [0,∞) for c1 + ψ1 and c′
1 + ψ ′

1, respectively. By the definition of τ0, we have
c′
1 = φ′(τ0) ≤ φ(τ0) = c1. Moreover,

ψ1(t) = ψ(t + τ0) − ψ(τ0) = ψ ′(t + τ0) + a(t + τ0) − ψ ′(τ0) − aτ0 = ψ ′
1(t) + at.

Thus, by the first part of this proof, φ′
1 ≤ φ1 on [0,∞), so φ′ ≤ φ on [τ0,∞). This,

together with (57), shows (56). ��
Let G be the set of elementary events ω ∈ Ω for which

lim
N→∞

1

N

N∑

k=1

ui,k(ω) = 1

αi
, i ∈ I, (58)

lim
N→∞

1

N

N∑

k=1

vi,k(ω) = mi , i ∈ I, (59)
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lim
N→∞

1

N

N∑

k=1

li,k(ω) = E li,1, i ∈ I. (60)

By the strong law of large numbers, P(G) = 1.
To proceed further, let xn ∈ S be a sequence of initial states, with the corresponding

initial workloads (total transmission times) wn = (wn
i )i∈I and residual interarrival

times rn = (rn
i )i∈I, such that

lim
n→∞ |xn| = ∞, lim

n→∞
rn

|xn| = r , lim
n→∞

wn

|xn| = w (61)

for some r = (r i )i∈I ∈ [0, 1]I , w = (wi )i∈I ∈ [0, 1]I . By (58) and (61), on G

N
n
i (t) = 1

|xn| N xn

i (|xn|t) → αi (t − r i )
+, i ∈ I, (62)

uniformly on compacts (u.o.c.) in t (see Lemma 4.2 in [9]). Also, by (59) and the
functional strong law of large numbers, for every i ∈ I, we have the convergence

Sn
i (t) = 1

|xn|
�|xn |t�∑

k=1

vi,k → mi t, n → ∞, (63)

u.o.c. in t ≥ 0 on the set G.
The following simple lemma shows that both the initial lead times of the incoming

flows and their interarrival times become negligible under fluid scaling.

Lemma 12 Let T > 0. Let a sequence xn ∈ S satisfy (61) and let

Ln = max
i∈I

max
1≤k≤N xn

i (|xn |T )

li,k, Un = max
i∈I

max
1≤k≤N xn

i (|xn |T )+1
ui,k . (64)

Then limn→∞ Ln(ω)/|xn| = 0 and limn→∞ Un(ω)/|xn| = 0 for every ω ∈ G.

The proof of the first statement of this lemma is the same as the proof of Lemma 4.1
in [24]. The proof of the second one follows by a similar argument.

For i ∈ I and t ≥ 0, we define

V
n
i (t) = 1

|xn| V xn

i (|xn|t) = wn
i

|xn| + 1

|xn|
N xn

i (|xn |t)∑

k=1

vi,k,

V i (t) = wi + ρi (t − r i )
+. (65)

By (61)–(63), for each i , on the set G,

V
n
i (t) = wn

i

|xn| + Sn
i

(
N

n
i (t)

)
→ V i (t)
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u.o.c. in t ≥ 0, or, equivalently,

en
i (t) := V

n
i (t) − V i (t) → 0 (66)

u.o.c. in t ≥ 0. Next, for t ≥ 0, define

T
n
i (t) = 1

|xn|T xn

i (|xn|t), i ∈ I, (67)

E
n
(t) = 1

|xn| E xn
(|xn|t) = t − T

n
J+1(t), (68)

P
n
i (t) = 1

|xn| Pxn

i (|xn|t) = V
n
i (t) − E

n
(t), i = 1, . . . , J, (69)

W
n
i (t) = 1

|xn|W xn

i (|xn|t) = Γ0(P
n
i )(t), i = 1, . . . , J, (70)

W
n
J+1(t) = 1

|xn|W xn

J+1(|xn|t), (71)

Q
n
i (t) = 1

|xn| Qxn

i (|xn|t), i ∈ I. (72)

By (65)–(66), (68)–(70) and Lipschitz continuity of Γ0 with respect to the supremum
norm (see, for example, [41], Lemma 13.5.1), for i = 1, . . . , J , we have

W
n
i (t) = W̃ n

i (t) + ẽn
i (t), (73)

where

W̃ n
i (t) = Γ0(P̃n

i )(t), (74)

P̃n
i (t) = V i (t) − E

n
(t) = wi + ρi (t − r i )

+ − t + T
n
J+1(t), (75)

ẽn
i (t) = W

n
i (t) − W̃ n

i (t) = Γ0(P
n
i )(t) − Γ0(P̃n

i )(t) → 0, (76)

and the latter convergence is u.o.c. in t ≥ 0 on the set G.

Lemma 13 Let

Ĩ = {i ′ ∈ {1, . . . , J } : ρi ′ = max
i=1,...,J

ρi }, Ĩc = {1, . . . , J }\Ĩ,

Ĩmax = {i ′ ∈ Ĩ : W̃ n
i ′ (1) = max

i∈Ĩ
W̃ n

i (1)}.

Let î ∈ Ĩmax and let

τ(w) =
⎧
⎨

⎩

1 + ρ î +maxi=1,...,J wi

ρ î −maxi∈Ĩc ρi
, if Ĩc �= ∅,

1, otherwise.
(77)
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Then
W̃ n

î
(t) = max

i=1,...,J
W̃ n

i (t), t ≥ τ(w). (78)

Remark 1 If |Ĩ| > 1, then the set Ĩmax depends, in general, on both n ∈ N (i.e., the
starting state xn) and ω ∈ Ω . Consequently, the index î may also depend on n and ω.
In what follows, when we want to stress this dependence, we write Ĩn

max(ω) instead of
Ĩmax and î n(ω) instead of î .

Remark 2 As indicated by the notation, the constant τ(w) defined by (77) depends
on the vector w, and hence on the sequence xn of initial states under consideration.
However, since wi ≤ 1 for all i , regardless of the sequence xn , we have

τ(w) ≤ τ0, (79)

where

τ0 =
⎧
⎨

⎩

1 + ρ î +1

ρ î −maxi∈Ĩc ρi
= 1 + 1+maxi=1,...,J ρi

maxi=1,...,J ρi −maxi∈Ĩc ρi , if Ĩc �= ∅,

1, otherwise.
(80)

Proof of Lemma 13. Fix n ≥ 1 and ω ∈ Ω , determining î = î n(ω). In the remainder
of the proof, all the random objects under consideration are evaluated at this ω. Let
i ∈ {1, . . . , J }\{î}, c0 = W̃ n

î
(1) and c′

0 = W̃ n
i (1). For t ≥ 0, let

ψ(t) = P̃n
î
(t)(t + 1) − P̃n

î
(t)(1), φ(t) = W̃ n

î
(t + 1), (81)

ψ ′(t) = P̃n
i (t)(t + 1) − P̃n

i (t)(1), φ′(t) = W̃ n
i (t + 1). (82)

It is easy to see that, by (74), we have φ = Γ0(c0 + ψ) and φ′ = Γ0(c′
0 + ψ ′).

Suppose that i ∈ Ĩ. Recalling that î ∈ Ĩmax and using Lemma 4.1 from [30], with
ν ≡ 0, we get φ′(t) ≤ φ(t) for all t ≥ 0, i.e.,

W̃ n
i (t) ≤ W̃ n

î
(t), t ≥ 1. (83)

Now assume that i ∈ Ĩc. Recall that r i ′ ≤ 1, i ′ ∈ I. Thus, (75) and (81)–(82) imply

that ψ(t) = ψ ′(t) + (ρ î − ρi )t for every t ≥ 0. An application of Lemma 11 yields

φ′(t) ≤ φ(t) for t ≥ [W̃ n
i (1) − W̃ n

î
(1)]+/(ρ î − ρi ), i.e.,

W̃ n
i (t) ≤ W̃ n

î
(t), t ≥ 1 + [W̃ n

i (1) − W̃ n
î
(1)]+/(ρ î − ρi ). (84)

For all t ≥ 0, we have 0 ≤ T
n
J+1(t) ≤ t , so the equations (74)–(75) imply that

0 ≤ W̃ n
i ′ (t) ≤ wi ′ + ρi ′ t for i ′ = 1, . . . , J and t ≥ 0. This, together with (84) and the
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fact that î ∈ Ĩ, gives

W̃ n
i (t) ≤ W̃ n

î
(t), t ≥ 1 + ρ î + maxi=1,...,J wi

ρ î − ρi
. (85)

Finally, the equations (83) and (85) imply (78) with τ(w) defined by (77). ��
Lemma 14 Assume that the network is strictly subcritical. Let xn be a sequence of
initial states satisfying (61). Let C ≥ 0 and

δ = δ(w) = 1 + w J+1 + maxi=1,...,J wi + C

1 − max j=1,...,J ρ j
. (86)

Let σ n
i = inf{t ≥ C : W

n
i (t) = 0}, i = 1, . . . , J . Then for each i ∈ {1, . . . , J } and

ω ∈ G, there exists n0 = n0(i, ω) such that, for every n ≥ n0,

σ n
i (ω) < δ. (87)

Proof Fix i ∈ {1, . . . , J } and ω ∈ G. In what follows, all the random objects under
consideration are evaluated at this ω. By (66), there exists n0 such that

en
i (δ) + en

J+1(δ) < 1 − max
j=1,...,J

ρ j , n ≥ n0. (88)

Let n ≥ n0. We claim that (87) holds. Indeed, if σ n
i ≥ δ, then W xn

i (t) > 0 for
all t ∈ [C |xn|, δ|xn|) and consequently, by the network topology, the i-th resource
transmits with unit rate on the entire time interval [C |xn|, δ|xn|). This implies

0 ≤ W
n
i (δ) + W

n
J+1(δ) ≤ V

n
i (δ) + V

n
J+1(δ) − (δ − C)

= V i (δ) + V J+1(δ) + en
i (δ) + en

J+1(δ) − (δ − C)

≤ wi + w J+1 + (ρi − 1)δ + en
i (δ) + en

J+1(δ) + C

= wi + w J+1 + C + (ρi − 1)(δ − 1) + en
i (δ) + en

J+1(δ) + (ρi − 1)

≤ en
i (δ) + en

J+1(δ) + (ρi − 1) < 0,

where the first equality is a consequence of (66), the third inequality follows from
(65), the fourth inequality is a consequence of (86) and the last inequality follows
from (88). We have obtained a contradiction, proving (87). ��

6 State space collapse

In this section, we provide an upper bound for the time of transmission completion
of all the initial flows (Lemma 15). We also show that after this time, the workload
on any route is approximately equal to a fixed multiple of the corresponding queue
length, thus establishing state space collapse (Proposition 4).
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Recall the set G from Sect. 5 (see, in particular, (58)–(60)) and the random variable
T defined by (29)–(31).

Lemma 15 Let
τ1 = 2 + 2I + 4

∑

i∈I

ρi , (89)

and let xn ∈ S be a sequence satisfying (61). For every ω ∈ G and all n sufficiently
large, we have

Txn
(ω) < τ1|xn|. (90)

Proof By the definition of the “norm” of an initial state, for any starting state x ∈ S,

(
l̃max ∨ max

i∈I
Ui,1

)
+

∑

i∈I

Qi (0)∑

k=1

ṽi,k ≤ |x |. (91)

Fix ω ∈ G. In what follows, all the random objects under consideration are evaluated
at this ω. By Lemma 12, for n sufficiently large, maxi∈I li,1 ≤ Ln ≤ |xn|. This,
together with (31) and (91), implies that, for large n,

L̃ xn

max ≤ L̃ xn

max +
∑

i∈I

Qxn
i (0)∑

k=1

ṽi,k ≤ 2|xn|, (92)

and consequently, by (65)–(66), for each i ∈ I and n large enough,

Ni (L̃ xn
max)∑

k=1

vi,k ≤
Ni (2|xn |)∑

k=1

vi,k ≤ |xn|V n
i (2) < 2|xn|V i (2) ≤ 2|xn|(1 + 2ρi ). (93)

Equation (30) and the estimates (92)–(93) imply (90), with the constant τ1 given by
(89). ��
Remark 3 A careful examination of the above proof shows that the constant τ1 in
Lemma 15 (and, consequently, in the statement of Proposition 4, to follow) may be
replaced by 1 + ∑

i∈I ρi + ε for any ε > 0.

The following proposition, which may be of independent interest, is an analog of
Proposition 6.1 in [24]. The main ideas of the proofs of these two results are also
similar.

Proposition 4 (State space collapse)Let τ1 be given by (89), let T > τ1 and let xn ∈ S
be a sequence satisfying (61). Then, for each i ∈ I, on G,

lim
n→∞ sup

t∈[τ1,T ]

∣
∣
∣W

n
i (t) − mi Q

n
i (t)

∣
∣
∣ = 0. (94)
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Proof Fix ω ∈ G. In what follows, all the random objects under consideration are
evaluated at this ω. Let n ≥ 1. By Lemma 15, we may assume that n is large enough
that (90) holds. The definition ofTxn

implies that all the initial flows from the network
with initial state xn are fully transmitted by that time. Together with (90), this implies
that there are no initial flows in this network at any time t ≥ τ1|xn|.

For i ∈ I and t ∈ [τ1, T ], let an
i (t) be the arrival time at the network with initial

state xn of the flow on route i which was the last one to receive some (even partial)
transmission on this route by time t |xn|. By definition,

an
i (t) ≤ |xn|t, t ∈ [τ1, T ]. (95)

Recall the random variable Ln defined by (64). By the definition of the EDF service
protocol, every flow that arrived at route i before an

i (t)−Ln (in particular, by an
i (t)−

Ln − 1) has already been fully transmitted by time t |xn|. Similarly, a flow that arrived
at route i after an

i (t) + Ln cannot preempt the flow that arrived at time an
i (t), and

hence it has not received any transmission by time t |xn|. All these facts imply that,
for i ∈ I, t ∈ [τ1, T ] and n sufficiently large,

N xn

i (t |xn|) − N xn

i ((an
i (t) + Ln) ∧ t |xn|) ≤ Qxn

i (t |xn|)
≤ N xn

i (t |xn|) − N xn

i ((an
i (t) − Ln − 1)+),

V xn

i (t |xn|) − V xn

i ((an
i (t) + Ln) ∧ t |xn|) ≤ W xn

i (t |xn|)
≤ V xn

i (t |xn|) − V xn

i ((an
i (t) − Ln − 1)+).

Scaling these inequalities and using (62), (65)–(66), together with the fact that t ≥
τ1 > 1 ≥ r i , we get

αi

(
t − r i −

((an
i (t) + Ln

|xn| ∧ t
)

− r i

)+)
+ o(1)

= N
n
i (t) − N

n
i

(an
i (t) + Ln

|xn| ∧ t
)

≤ Q
n
i (t) ≤ N

n
i (t) − N

n
i

(
(an

i (t) − Ln − 1)+

|xn|
)

= αi

(
t − r i −

(an
i (t) − Ln − 1

|xn| − r i

)+)
+ o(1),

ρi
(

t − r i −
((an

i (t) + Ln

|xn| ∧ t
)

− r i

)+)
+ o(1)

= V i (t) − V i

(an
i (t) + Ln

|xn| ∧ t
)

+ en
i (t) − en

i

(an
i (t) + Ln

|xn| ∧ t
)

= V
n
i (t) − V

n
i

(an
i (t) + Ln

|xn| ∧ t
)

≤ W
n
i (t) ≤ V

n
i (t) − V

n
i

( (an
i (t) − Ln − 1)+

|xn|
)

= V i (t) − V i

( (an
i (t) − Ln − 1)+

|xn|
)

+ en
i (t) − en

i

( (an
i (t) − Ln − 1)+

|xn|
)

= ρi
(

t − r i −
(an

i (t) − Ln − 1

|xn| − r i

)+)
+ o(1), (96)
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where the o(1) terms are uniform with respect to t ∈ [τ1, T ]. By (95) and Lemma 12,
the above estimates imply (94). ��
Corollary 1 Let T > τ1 and let xn ∈ S be a sequence satisfying (61). For each i ∈ I
and t ≥ 0, let

f n
i (t) = W

n
i (t) − ρi

(

t − r i −
(

an
i (t)

|xn| − r i

)+)

. (97)

Then

sup
τ1≤t≤T

| f n
i (t)| ≤ 4||en

i ||T + ρi 2Ln + 1

|xn| , i ∈ I. (98)

This follows immediately from the estimates (96).

7 Proof of Theorem 1

Consider a linear, strictly subcritical, preemptive EDF resource sharing network, with
stochastic primitives satisfying (1)–(5). Let

γ = 1 + 2 + C

1 − max j=1,...,J ρ j
, (99)

with
C = (τ0 + 1) ∨ τ1, (100)

where τ0, τ1 are as in (80) and (89), respectively. We will show that (10) holds and
thus, by Proposition 1, the network is stable. If (10) is false, there exist ε > 0 and a
sequence xn ∈ S with |xn| → ∞ such that

Exn
∣
∣X (γ |xn|)∣∣ ≥ ε|xn|, n ≥ 1. (101)

Without loss of generality (extracting a subsequence if necessary), we can assume that
the sequence xn satisfies (61).

Recall the set G from Sect. 5. We will show that on G, (11) holds.
Arguing as in the proof of Lemma 4.3a in [9], one can show that

lim
n→∞

∣
∣
∣Rxn

(γ |xn|)
∣
∣
∣
/

|xn| = 0. (102)

Let L+(t) denote the positive part of the greatest lead time of a flow in the system at
time t . By (99), we have γ > 1, so the lead times at time γ |xn| of initial flows in the
system starting from state xn are negative. This, together with Lemma 12, implies that

lim
n→∞ Lxn

+ (γ |xn|)/|xn| = 0. (103)
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By (86), (99)–(100) and the fact that wi ≤ 1 for all i ∈ I, we have

γ ≥ δ(w) > C ≥ τ1. (104)

Using Proposition 4 with T = γ , together with the relations (102)–(103), we reduce
the proof of (11) to showing the convergence (12) on the set G.

If (12) is false, there exist ω ∈ G, η ∈ (0, 1) and a subsequence of the sequence xn

(still denoted by xn for convenience) such that for every n

∣
∣
∣W xn

(γ |xn|)(ω)

∣
∣
∣ ≥ η|xn|. (105)

By (61), (66), (76) and Lemma 12 with T = γ , there exists n1(ω) such that, for all
n ≥ n1(ω),

max
i∈I

||en
i ||γ (ω) ≤ η

120J
min
i∈I

ρi , (106)

max
i=1,...,J

||ẽn
i ||γ (ω) ≤ η

30J
min
i∈I

ρi , (107)

Ln(ω) + 1

|xn| ≤ η

60J
min
i∈I

ρi , (108)

Un(ω)

|xn| ≤ η

60J
min
i∈I

ρi . (109)

ByLemma15, there existsn2(ω) such that, for alln ≥ n2(ω), (90) holds. This, together
with Proposition 3, (100) and (108)–(109), implies that, for n ≥ n1(ω) ∨ n2(ω) and
t ∈ [C |xn|, γ |xn|],

∣
∣
∣
∣ min
i=1,...,J

Cxn

i (t)(ω) − Cxn

J+1(t)(ω)

∣
∣
∣
∣ ≤ 1 + Ln(ω) + Un(ω) ≤ η

30J
|xn|. (110)

Using Lemma 14 with C given by (100), for i = 1, . . . , J , we find n0(i, ω) such that
(87) holds for all n ≥ n0(i, ω), with δ = δ(w) given by (86). Fix n ≥ n1(ω)∨n2(ω)∨
maxi=1,...,J n0(i, ω) and let î = î n(ω) ∈ Ĩn

max(ω) be as in Lemma 13. By (104) and
Lemma 14, with C given by (100), we have σ n

î
(ω) < γ . The definition of σ n

î
implies

that W
n
î (σ n

î
) = 0. Let

σ̂ = σ̂ n(ω) := sup{t ∈ [C, γ ] : W
n
î (t)(ω) = 0}. (111)

We have just shown that the set on the right-hand side of (111) is nonempty, so σ̂ is
well-defined. Moreover, (111) implies W

n
î (σ̂−) = 0. Thus, by (76) and (107),

W̃ n
î
(σ̂−)(ω) = ẽn

i (σ̂−)(ω) ≤ η

30J
min
i∈I

ρi . (112)
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By (79) and (100), τ(w) ≤ τ0 ≤ C − 1, where τ(w) is given by (77), so Lemma 13
implies that

W̃ n
î
(t)(ω) = max

i=1,...,J
W̃ n

i (t)(ω), t ≥ C − 1. (113)

By definition, σ̂ ≥ C , so the relations (112)–(113) imply

W̃ n
i (σ̂−)(ω) ≤ η

30J
min
i∈I

ρi , i = 1, . . . , J. (114)

Using (76), (107) and (114), we arrive at the estimate

W
n
i (σ̂−)(ω) ≤ η

15J
min
i∈I

ρi , i = 1, . . . , J. (115)

However, for i ∈ I,

W
n
i (σ̂ ) ≤ W

n
i (σ̂−) + ui,N xn

i (|xn |σ̂ )
≤ W

n
i (σ̂−) + Un,

so (109) and (115) imply

W
n
i (σ̂ )(ω) ≤ η

12J
min
i∈I

ρi , i = 1, . . . , J. (116)

By Corollary 1 with T = γ we see that (100), (106), (108), (111) and (116) imply

σ̂ − r i −
(an

i (σ̂ )

|xn| − r i

)+ ≤ 3η

20J
, i = 1, . . . , J. (117)

(Here and below, an
i (σ̂ ) denotes an

i (σ̂ )(ω) = an
i (σ̂ n(ω))(ω)). The right-hand side of

(117) is less than 1 and σ̂ ≥ C ≥ 4, where the last inequality follows from (89), (100).
Hence, (95) (with T = γ ), (117) and the inequality r i ≤ 1 imply that

0 ≤ σ̂ |xn| − an
i (σ̂ ) ≤ 3η

20J
|xn|, i = 1, . . . , J. (118)

Our next goal is to estimate Cxn

i (σ̂ |xn|) from below for i = 1, . . . , J . We consider
two cases. If Qxn

i (σ̂ |xn|) = 0, then, by (8) and (64) (with T = γ ),

− Un ≤ li,N xn
i (σ̂ |xn |) − ui,N xn

i (σ̂ |xn |) + 1 ≤ li,Axn
i (σ̂ |xn |)(σ̂ |xn|) ≤ Cxn

i (σ̂ |xn|). (119)

If Qxn

i (σ̂ |xn|) > 0, then, recalling from the proof of Proposition 4 that each flow that
arrived at route i before an

i (σ̂ )−Ln has already been fully transmitted by time σ̂ |xn|,
and using nonnegativity of initial lead times for arriving customers, we get

an
i (σ̂ ) − Ln − σ̂ |xn| ≤ Cxn

i (σ̂ |xn|). (120)
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By (119)–(120), with the help of (108)–(109) and (118), we obtain

− η

6J
|xn| ≤ Cxn

i (σ̂ |xn|)(ω), i = 1, . . . , J. (121)

This, together with (110), shows that

− η

5J
|xn| ≤ Cxn

J+1(σ̂ |xn|)(ω). (122)

Let k be a flow on route J +1 at time σ̂ |xn| in the system starting from the state xn .
By (90) and (100), the are no initial customers at time σ̂ |xn| if the elementary event
ω occurs and hence

Cxn

J+1(σ̂ |xn|)(ω) ≤ l J+1,k(σ̂ |xn|)(ω)

= l J+1,k−Qxn
J+1(0)

(ω) + UJ+1,k−Qxn
J+1(0)

(ω) − σ̂ |xn|.

Thus, by (64), (108) and (122), for any such flow k,

UJ+1,k−Qxn
J+1(0)

(ω) − σ̂ |xn| ≥ Cxn

J+1(σ̂ |xn|)(ω) − Ln ≥ − 13η

60J
|xn|.

The latter bound, together with (65)–(66) and (106), implies that

W
n
J+1(σ̂ )(ω) ≤ V

n
J+1(σ̂ )(ω) − V

n
J+1

(

σ̂ − 13η

60J

)

(ω)

≤ VJ+1(σ̂ )(ω) − VJ+1

(

σ̂ − 13η

60J

)

(ω) + en
J+1(σ̂ )(ω) − en

J+1

(

σ̂ − 13η

60J

)

(ω)

≤ ρ J+1 13η

60J
+ η

60J
= 7η

30J
. (123)

Adding the bounds (116) and (123), we get

|W xn
(σ̂ |xn|)|(ω) ≤ 19

60
η|xn|. (124)

If γ = σ̂ , then (124) immediately implies

|W xn
(γ |xn|)|(ω) ≤ 19

60
η|xn|, (125)

which contradicts (105).
Assume that γ > σ̂ . By (111), we have W

n
î (t)(ω) > 0 for all t ∈ (σ̂ , γ ]. Conse-

quently the resource î transmits with unit rate on the time interval (σ̂ |xn|, γ |xn|] if
the elementary event ω occurs, and hence

W
n
î (γ )(ω) + W

n
J+1(γ )(ω) ≤ W

n
î (σ̂ )(ω) + W

n
J+1(σ̂ )(ω) − (γ − σ̂ )

+ V
n
î (γ )(ω) + V

n
J+1(γ )(ω) − V

n
î (σ̂ )(ω) − V

n
J+1(σ̂ )(ω).

123



Queueing Syst (2018) 88:167–203 199

This, in turn, together with (65)–(66), (106), (116) and (123), implies

W
n
î (γ )(ω) + W

n
J+1(γ )(ω) ≤ 19η

60J
− (γ − σ̂ ) + V î (γ )(ω) + V J+1(γ )(ω)

−V î (σ̂ )(ω) − V J+1(σ̂ )(ω) + en
î
(γ )(ω) + en

J+1(γ )(ω) − en
î
(σ̂ )(ω) − en

J+1(σ̂ )(ω)

≤ 19η

60J
+ (ρî − 1)(γ − σ̂ ) + η

30J
≤ 21η

60J
. (126)

For i ∈ {1, . . . , J }, i �= î , by (76), (113), (107) and (126), we get

W
n
i (γ )(ω) = W̃ n

i (γ )(ω) + ẽn
i (γ )(ω) ≤ W̃ n

î
(γ )(ω) + η

30J

= W
n
î (γ )(ω) − ẽn

î
(γ )(ω) + η

30J
≤ 21η

60J
+ η

15J
= 5η

12J
. (127)

Finally, the estimates (126)–(127) yield

|W xn
(γ |xn|)|(ω) = |W n

(γ )(ω)| |xn| ≤ 23

30
η|xn|,

which contradicts (105). We have proved (12), and hence (11).
Armed with (11), arguing similarly as in the last paragraph of the proof of Theorem

3.1 in [24], we get

lim
n→∞

1

|xn|Exn
∣
∣X (γ |xn|)∣∣ = 0,

which contradicts (101). ��

8 Conclusion

In this paper, we have shown stability of linear, strictly subcritical resource sharing
networks under the preemptiveEDF service protocol. Themain idea of the proofwas to
verify Dai’s condition (10) on the growth of the expected “norm” of the performance
process as the initial condition gets large. To this end, we used a direct argument,
based on the current lead time estimate from Sect. 4 and properties of the workload
process in linear resource sharing networks established in Sect. 5. Our approach does
not require fluid model analysis, for which the above-mentioned Dai’s criterion was
originally introduced. This seems to indicate that in some situations it might be simpler
to establish (10) by a direct analysis of the original queueing system, instead of showing
convergence to an appropriate fluid model and investigating its asymptotic properties.
The above strategy has already been applied in [24], yielding a concise stability proof
for a fairly general family ofmulticlass queueing networkswith reneging. The analysis
of this paper illustrates the applicability of this approach in a more complicated setting
of EDF resource sharing networks.
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Our results are readily applicable to the following regularization (in our context,
stabilization) of the SRPT service protocol, based on an idea of Bender, Chakrabarti
and Muthukrishnan [5]. For i ∈ I, let

l̃i,k = C ṽi,k, k = 1, . . . , Qi (0), li,k = C vi,k, k ≥ 1, (128)

where C is a large positive constant.1 It is intuitively clear that, for large C , the EDF
service discipline in a network satisfying (128) assigns priorities to flows in a way
similar to SRPT, at least as long as thewaiting times of these flows are not too large. On
the other hand, our Theorem 1 implies that every preemptive, linear, strictly subcritical
EDF resource sharing network satisfying (1)–(4), (128) is stable. In contrast, some of
these networks are known to be unstable under the SRPT protocol [40]. This indicates
that exchanging SRPT for its EDF proxy with lead times (128) has a strong long-term
smoothing effect on the transmission times of large flows, alleviating their “unfair”
discriminatory treatment by SRPT and ultimately resulting in network stability. More
general size-based (or rather size-related) scheduling disciplines may be constructed
by replacing (128) with

l̃i,k = fi (ṽi,k), k = 1, . . . , Qi (0), li,k = fi (vi,k), k ≥ 1, (129)

where fi : R → R+, i ∈ I, are given deterministic Borel functions. Theorem 1 assures
stability of the corresponding preemptive, linear, strictly subcritical EDF resource
sharing networks subject to (1)–(4), (129), provided that E fi (vi,1) < ∞ for i ∈ I.
Note that if the functions fi in (129) are decreasing, EDF gives preferential treatment
to larger flows, thus potentially increasing the corresponding queue lengths.

The analysis of this paper sheds some light on the stability issue of more general
strictly subcritical linear resource sharing networks, working under protocols satisfy-
ing the mild “weak non-idleness” assumption of Sect. 5. Recall that, by Lemmas 13,
14 and Remark 2, for each such network with initial state xn , there is a random time σ̂ ,
bounded by a constant γ , such that (14) holds. If (14) implies (15), then the argument
given in Sect. 7 shows that

|W xn
(γ |xn|)| = o(|xn|). (130)

For many service disciplines, it is possible to show state space collapse, analogous
to the one given by our Proposition 4. In the case of such protocols, (130) implies
|Qxn

(γ |xn|)| = o(|xn|), and consequently (11), which in turn, by a variant of Theorem
3.1 in [9], ensures that the system is stable. Therefore, the validity of the implication
(14) ⇒ (15) is, in many cases, sufficient for network stability. It is plausible that the
latter implication may be proved for some service disciplines other than EDF. A trivial
example is a protocol under which flows on the long route J + 1 have priority over
flows on other routes.We believe that a number of interesting applications of the above

1 Actually, Bender, Chakrabarti andMuthukrishnan [5] considered amore complex discipline, calledDEDF
(Dynamic EDF), in which the factor C was updated after each new arrival.
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methodology, in addition to the EDF case investigated in this paper, may be given.
This should be a subject of future research.

Another natural future research direction is the development of fluid and heavy
traffic approximations of critically loaded linear EDF resource sharing networks. We
believe that the estimate (51) will play a key role in this analysis.

Finally, it is desirable to show stability for a sufficiently rich class of more general
(not necessarily linear) EDF networks with resource sharing. This clearly requires
new tools and ideas, which are beyond the scope of this paper. Note that for a resource
sharing queueing system with general topology, the maximal potential stability region
must be defined in terms of the so-called network utilization rather than the “bottle-
neck utilization” max j∈J ρ j . Indeed, as was discussed in detail by Gurvich and Van
Mieghem [19,20], such systems typically exhibit unavoidable bottleneck idleness.
(Compare also Definition 2.1 of the stability region in [6] and the notion of a feasi-
ble arrival rate vector in [13].) We hope that a suitable counterpart of the inequality
(51) holds for some more general networks, for example those satisfying the local
pooling condition, and that it will turn out to be a key ingredient of the proof of the
corresponding extension of Theorem 1.

It is likely that some EDF resource sharing networks which do not satisfy the local
pooling condition are unstable. In this context, let us consider an example, provided
by Dimakis and Walrand [13], of a strictly subcritical six-cycle packet level model
with a deterministic arrival of a single packet to each queue in every time slot, which is
unstable under LQF with the “unbiased” random tie-breaking rule. If the initial queue
lengths are all equal, LQF for this particular system coincides with FISFO, so the
corresponding FISFO (and hence EDF) system is also unstable. However, it is easy
to see that if the tie-breaking rule for this network is changed so that a “big match”
(i.e., a triple of queues) is always selected for simultaneous service if possible, then
the system is actually stable as long as it is strictly subcritical. Hence, the above-
mentioned network instability is due to a suboptimal choice of the tie-breaking rule
rather than the service protocol. Nevertheless, it is plausible that an example of an
EDF resource sharing network which is unstable under any tie-breaking rule may
be constructed along this line (perhaps by replacing the six-cycle by a larger cyclic
graph). Interestingly, Dimakis and Walrand [13] have observed that if there is any
randomness in the packet arrivals, then the six-cycle system is actually stable, evenwith
the “unbiased” random tie-breaking rule, as long as it is strictly subcritical. However,
in the presence of any randomness, either in the arrivals (implied, for example, by
each of our conditions (2)–(3)), or in the transmission times, LQF no longer coincides
with FISFO (EDF), so the relation between their stability regions is not clear. These
issues should be subject to future research.
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