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Abstract The N-system with independent Poisson arrivals and exponential server-
dependent service times under the first come first served and assign to the longest idle
server policy has an explicit steady-state distribution. We scale the arrival rate and the
number of servers simultaneously, and obtain the fluid and central limit approximation
for the steady state. This is the first step toward exploring themany-server scaling limit
behavior of general parallel service systems.
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1 Introduction

In this paper we study themany-server N-system shown in Fig. 1, with Poisson arrivals
and exponential service times, under the first come first served and assign to the longest
idle server policy (FCFS–ALIS), as the number of servers becomes large. Before
describing the model in detail, we will first discuss our motivation for studying this
system.
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Fig. 1 The multi-server
N-system
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The N-system is one of the simplest special cases of skill-based routing in parallel
server systems, as defined in [9,15] and further studied in [4,6,7,12–14,17,19,20,
22,23]. The general model has customers of types i = 1, . . . , I , servers of types
j = 1, . . . , J , and a bipartite compatibility graph G, where (i, j) ∈ G if customer
type i can be served by server type j . Arrivals are renewalwith rateλ, where successive
customer types are i.i.d. with probabilities αi . There are a total of n servers, of which
nθ j are of type j , and service times are generally distributed with rates μi, j . Assume
the system is operated under the FCFS–ALIS policy, that is, servers take on the longest
waiting compatible customer, and arriving customers are assigned to the longest idle
compatible server. For this general system, necessary and sufficient conditions for
stability (positive Harris recurrence for given λ), or for complete resource pooling
(there exists a critical λ0 such that the system is stable for λ < λ0, and the queues
of all customer types diverge for λ > λ0) cannot be determined by the first moment
information alone (as conjectured by an example of Foss and Chernova [9], which is
further discussed in [16]). In particular, under FCFS–ALIS, calculation of thematching
rates ri, j , which are the long-term average fractions of services performed by servers
of type j on customers of type i , in general, is intractable.

In the special case that service rates depend only on the server type, and not on the
customer type, with Poisson arrivals and exponential service times, the system has a
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product form stationary distribution, as given in [2]. In that case matching rates can
be computed from the stationary distribution.

The following conjecture was made in [4]. If the system is stable and has complete
resource pooling for given λ, n, and we let both become large together, the behavior of
the system simplifies: there will exist β j such that servers of type j perform a fraction
β j of the services, and the matching rates ri, j will converge to the rates for the FCFS
infinitematchingmodel with G, α, β, as calculated in [1] (see also [5]). The conjecture
is based on the following heuristic argument: in steady state the times that each server
becomes available form a stationary process which is only mildly correlated with the
other servers, and so servers become available approximately as a superposition of
almost independent stationary processes, which in the many-server limit becomes a
Poisson process, and server types are then i.i.d. with probabilities β j , while customer
types arrive as an i.i.d. sequence with probabilities αi . This corresponds exactly to the
model of FCFS infinite matching. Under FCFS–ALIS it is also possible that while the
system is stable, service by all the servers is not pooled. Instead it is decoupled: the
bipartite compatibility graph breaks into two or more subgraphs, and when the system
is operated under FCFS–ALIS the links connecting the subgraphs are only rarely used.
The conjecture then is that under many-server scaling this decoupling is the same as
in the FCFS infinite matching model, with the same matching rates.

In our current study of the many-server N-system we shall verify the conjectured
many-server behavior for this simple parallel server system. To do so we start from
the known stationary distribution of the N-system with many servers, as derived in
[2], and study its behavior as n → ∞. As it turns out, the product form stationary
distribution, even for this simple case, is far from simple, and the derivations of limits,
which use summations over server permutations and asymptotic expansions of various
expressions, are quite laborious.We feel that this emphasizes the difficulty in verifying
the conjectured behavior of the general system, which remains intractable at this time.

We mention that the N-system with just two servers has been the subject of several
papers, including [3,10,11,19,20]. In this paper, our focus is on the N-system with
many servers under FCFS–ALIS and its limiting behavior.

The rest of the paper is structured as follows. In Sect. 2 we describe the model, and
in Sect. 3 we use some heuristic arguments to obtain a guess at the limiting behavior,
where we distinguish between pooled and decoupled modes. In Sect. 4 we verify the
heuristic guess and obtain the stationary behavior undermany-server scaling. In Sect. 5
we illustrate our results with some numerical examples. To improve the readability of
the paper we have put all the proofs for Sect. 4 in the Appendix.

2 The model

In our N-system, customers of types c1 and c2 arrive as independent Poisson streams,
with rates λ1, λ2. There are skill-based parallel servers, n1 servers of type s1 which
are flexible and can serve both types, and n2 servers of type s2 which can only serve
type c1 customers. In our notation, c1 customers and s1 servers are flexible, while c2
customers and s2 servers are inflexible. (s2 servers cannot serve c2 customers.) We
assume service times are all independent exponential, with server-dependent rates.
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Fig. 2 State description under FCFS–ALIS

The service rate of an s1 server is μ1; the service rate of an s2 server is μ2. See Fig. 1.
We let λ = λ1 + λ2, n = n1 + n2. The service policy is FCFS–ALIS.

The system is Markovian. In [2,3,21] the following state description for the
skill-based parallel server systems under the FCFS–ALIS policy was used: imag-
ine the customers arranged in a single queue by order of arrival, and servers are
attached to the customers which they serve, and the remaining idle servers are
arranged by increasing idle time in front of the queue; see Fig. 2. The state is then
s = (S1, q1, S2, q2, . . . , Sn−i , qn−i , Sn−i+1, . . . , Sn), where S1, . . . , Sn is a permu-
tation of the n servers; the first n − i servers are the ordered busy servers, and the
last i servers are the ordered idle servers, and where q j , j = 1, . . . , n − i , are the
queue lengths of the customers waiting for one of the servers S1, . . . , S j , and skipped
(could not be served) by servers S j+1, . . . , Sn . When service rates depend only on the
servers, arrivals are Poisson, and services are exponential, this description is Marko-
vian, as shown in [21]. The reason is as follows: given the permutation of servers, we
know for each q j exactly what types of customers may be present, and since those
customers are in the order in which they arrived, the type of each of them is randomly
distributed according to the initial frequencies of customer types, and independent of
all others. Hence, each server with a queue in front will have to go through an inde-
pendent sequence of trials as he scans the customers FCFS until finding a match, and
the specific sequences of customer types in the queues are not relevant to the steady
state of the scan. This yields Markovian transition probabilities.

For the special case of the N-system, in steady state, the following three random
quantities are important: i1 = I1(s), the number of idle servers of type s1, i2 = I2(s),
the number of idle servers of type s2, and k = K (s) ≥ 0, the number of servers
of type s2 which follow the last server of type s1 in the sequence S1, . . . , Sn . An
incoming c2 customer has to skip k s2 servers and find the last s1 server to be served.
We let i = I (s) be the total number of idle servers in steady state. Because of the
structure of the N-system and the FCFS–ALIS policy, the following properties hold
for i = 0, . . . , n and k = 0, . . . , n2:

(i) There are no customers waiting for any server which precedes the last s1 server
in the permutation. In other words, for all j < min(n −k, n − i)we have q j = 0.
In particular, if there is an idle server of type s1 (meaning i > k), then there are
no waiting customers at all.

(ii) If there are any idle servers, then there are no type c1 customers waiting for
service; in other words, if i > 0, then all the waiting customers are of type c2.

(iii) If there are no idle servers (all servers are busy), then only the last queue can
contain type c1 customers; in other words, if i = 0, then the last queue may
contain customers of both types, but all the other waiting customers are of type
c2.
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Denote

α = λ1

λ
, θ = n1

n
, ρ = λ

n1μ1 + n2μ2
, δ = λ2

n1μ1
, r = λ

n
.

Then a necessary and sufficient condition for stability is

ρ < 1, δ < 1.

Throughout the paper, we assume the above stability condition. For the stable system,
define β as the long-term fraction of customers served by servers of type s1, and
1 − β the long-term fraction of customers served by servers of type s2. Since type s1
servers are the only ones that can serve type c2 servers, we must have β ≥ 1 − α, or,
equivalently, α + β ≥ 1. The stable system under FCFS–ALIS may operate in two
different modes: it may be that servers of both types share the service of customers of
type c1, in which case β > 1− α and we say that resource pooling occurs for large n,
or it may be the case that servers of type s1 serve almost exclusively only customers
of type c2, and almost all the service of customers of type c1 is done by servers of type
s2, in which case β ≈ 1 − α for large n, and we say that the system is decoupled.

Using the results of [1,2] we can then write the exact stationary distribution of this
system. We wish to show that, as the arrival rate and the number of servers increase,
the system simplifies, and we get very precise many-server scaling limits, and in
particular we find sharp conditions for pooled or decoupled modes of operation. We
will investigate the behavior of the system when we fix the values of α, θ, ρ, and
let n → ∞. To be precise, we shall then have n, n1 = �θn�, n2 = n − n1,λ =
ρ(μ1n1 + μ2n2), λ1 = αλ, λ2 = (1 − α)λ, all of which go to infinity. Average
processing times 1/μ1, 1/μ2 are fixed and not scaled.

3 Heuristic fluid calculations

In this section we use some heuristic arguments to guess at the fluid behavior of the
many-server system. In particular, we calculate a guess for some key quantities. Using
these quantities we give a heuristic description of how the system will behave under
the FCFS–ALIS policy, in the many-server case, distinguishing between pooled and
decoupled modes of operation. Themain part of the paper, in Sect. 4, is the verification
of these guesses.

We assume some fixed ρ < 1, δ < 1 so that the system under FCFS–ALIS is stable.
We then observe that under many-server scaling there will almost always be some idle
servers available of both types and customers will almost never wait, so that they will
enter service immediately upon arrival. At the same time, when a server completes
a service there will almost never be any waiting customers, so, after almost every
service completion, the server will experience some idle time. Because our policy is
ALIS, when a server becomes idle, he always joins the end of a queue of idle servers.
In a slight abuse of the notation, we reuse I1, I2 and K to denote, respectively, the
stationary numbers of servers of type s1, s2 and the servers of type s2 which follow
the last server of type s1 in s.
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When the system is stationary, the sample path of each server will consist of a
sequence of cycles, each of which consists of a single service period followed by an
idle period (which can be equal to 0). We denote the generic idle periods between
services by Y1, Y2. We can bound the values of T1, T2 as follows: servers of type s2
can serve only customers of type c1, some of which may also be served by servers of
type s1. Hence, the arrival rate per server is no larger than λ1/n2, and so the average
interval between arrivals is no less than n2/λ1, and the average service time per arrival
is 1/μ2, hence T2 ≥ n2/λ1 − 1/μ2. Servers of type s1 serve all customers of type
c2 and may in addition serve some customers of type c1. Hence, the arrival rate per
server is no less than λ2/n1, and so the average interval between arrivals is no larger
than n1/λ2. The average service time per arrival is 1/μ1; hence, T1 ≤ n1/λ2 − 1/μ1.
Hence, we have found that the stationary expected idle time satisfies

T1 = E(Y1) ≤ n1

λ2
− 1

μ1
, T2 = E(Y2) ≥ n2

λ1
− 1

μ2
. (1)

We now distinguish three cases for the values of the parameters:

Case I
n2

λ1
− 1

μ2
>

n1

λ2
− 1

μ1

Case II
n2

λ1
− 1

μ2
<

n1

λ2
− 1

μ1

Case III
n2

λ1
− 1

μ2
= n1

λ2
− 1

μ1

Case I
In this case, by (1) we will have T2 > T1, and the system will decouple. The

reasoning is as follows: because our policy is ALIS, each server, on completion of
service, joins the end of the queue of idle servers, and his idle period consists of waiting
until all the servers ahead of him who are of his type, as well as all the other servers
that can serve customers who are compatible with him, are assigned to customers, and
he is then assigned to the next compatible customer.

At the end of his idle period, a server of type si has been idle for Yi , and he is then
the longest idle server of his type. If we assume the idle times Yi converge to their
means Ti as the system becomes large, i = 1, 2, then since T2 > T1, we can say that
most of the time the longest idle server will be of type s2. Therefore almost all the
arriving customers of type c1 will be assigned to a server of type s2, and so servers of
type c1 will serve almost only customers of type c2.

This implies that in Case I the system under many-server scaling will behave like
two separate M /M /s queues. Because servers of type s2 serve almost all customers of
type c1, and servers of type s1 serve all customers of type c2 and almost none of the
customers of type c1, we have, for large n,

α + β ≈ 1
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and inequalities (1) will be close to equalities, and we will have (by Little’s law)

E(I1) = λ2T1 ≈ n1 − λ2

μ1
, E(I2) = λ1T2 ≈ n2 − λ1

μ2
.

We can also estimate the value of K , the location of the first type s1 server. Since
service completions of customers of type c1 occur at rate λ1 and almost all of those
are served by type s2, and service completions of customers of type c1 occur at rate λ1
and all of those and almost no others are served by type s2, servers of type s2 and s1
join the end of the queue of idle servers at the ratio of λ1/λ2, so (I2 − K )/I1 ≈ λ1/λ2
and

E(K ) ≈ E(I2) − E(I1)
λ1

λ2
= λ1

(
T2 − T1) ≈ λ1

(
n2

λ1
− 1

μ2
− n1

λ2
+ 1

μ1

)
.

It is worthwhile to note that the condition of Case I that implies decomposition is
not simply that δ > ρ, which is equivalent to λ2

n1μ1
> λ1

n2μ2
(the load of customers of

type c2 on servers of type s1 is higher than the load of customers of type c1 on servers
of type s2). In fact, under FCFS, servers of both types may share service of customers
of type c1 even when δ > ρ. To explain, when δ > ρ, under decoupled service, the
load and therefore the busy time percentage of type s2 servers is smaller than the load
of type s1 servers, but, ifμ1 < μ2, the idle time of type s2 servers (Y2) could be shorter
than that of type s1 servers (Y1). In that case, under FCFS the work of c1 customers
will be shared by both types of servers.

The stationary behavior of the decoupled system is described in Fig. 3. In this
figure we have, from left to right, a section of busy servers of both types serving
all the customers in the system, followed by a section of more recent queueing idle
servers of mixed types, followed by a section of the oldest idle servers, all of which
are of type s2. Servers that complete service join the queue of idle servers at its left
end. Arriving customers of type c1 pick the oldest waiting server, which is of type c2;
arriving customers of type c2 skip all the K servers of type s2, and pick the oldest
idle server of type s1. Note that the idle servers of both types are mixed in the middle
section, and I2 
= I1 + K .

The exact limiting behavior under many-server scaling for Case I is derived in
Sect. 4.4, where the heuristic calculations are verified. Our main results for Case I are:

• The probability that K = 0 converges to 0 as n → ∞, and so every customer of
type c1 is served by a server of type s2.

Busy servers
Arrivals of c1

Arrivals of c2

Completed Service

Idle type s1
Idle type s2

K

Fig. 3 FCFS–ALIS many-server system, queues of idle servers decoupled
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• The two sets of servers and their customers behave like independent M/M/n1 and
M/M/n2 queues.

Case II
In this case, we argue that T1 → T2 as n → ∞. Assume to the contrary that T1 > T2

as n → ∞. Then, for large n, we should have that most of the time the longest idle
server will be of type s1. But s1 servers can serve all customers, and so by ALIS s1
servers will serve almost all the customers in the system, which is a contradiction.
Now assume that T2 > T1 as n → ∞. But in that case we already argued that the
system will decouple and so the inequalities in (1) will hold as equalities, which, since
we are in Case II, contradicts T2 > T1. Therefore, there is no decoupling in Case II,
and we conclude that, for large n,

n2

λ1
− 1

μ2
< T2 ≈ T1 <

n1

λ2
− 1

μ1
.

Our first conclusion from T2 > n2
λ1

− 1
μ2

is that servers of type s2 do not serve all

the customers of type c1, so 1 − β < α, i.e., α + β > 1, and from T1 < n1
λ2

− 1
μ1

we
conclude that servers of type s1 serve some customers of type c1 as well as customers
of c2 (again, β > 1 − α).

The following is a heuristic description of the behavior of the system in Case II
under many-server scaling. When n increases, the (random) number of idle servers
becomes large, of order O(n), and successive servers join the queue of idle servers at
short intervals (of expected length 1/λ, which is O(1/n)). They will spend a time of
O(1) to traverse the queue and will then reach the head of the queue of idle servers
with short intervals between them. At this point they will need to wait for a compatible
customer, and this waiting time does depend on the type of server, but because λ is
large, once a server is at the head of the line his wait for a compatible customer will
be short; hence, successive server arrivals to the idle queue are close to each other and
so are their departures from the idle queue. So, as n → ∞, not only does T1 = T2,
but also the idle times, Y1 and Y2, have the same distribution, and K is of order O(1).
This heuristic description will be verified in Sect. 4.

We denote by T the presumed common value of T1 and T2. We now calculate the
value of T . Let T be the average length of the idle time, common to all servers. The
average cycle times will be 1/μ1 + T and 1/μ2 + T . We defined β as the long-run
fraction of services performed by s1 servers, with 1−β services by type s2. The cycle
rate of one type s1 server is 1/(1/μ1 + T ); hence, the processing rate of all type s1
servers is n1/(1/μ1 + T ), which should equal λβ. Similarly, the flow rate out of all
type s2 servers should equal λ(1 − β). That is,

λβ = n1/(1/μ1 + T ), λ(1 − β) = n2/(1/μ2 + T ).

Now we solve for T and β to obtain

β = n1

λ

1

1/μ1 + T
, 1 − β = n2

λ

1

1/μ2 + T
(2)
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Busy servers
Arrivals

Completed Service

Idle type s1
Idle type s2

Fig. 4 FCFS–ALIS many-server system, queues of idle servers pooled

and a quadratic equation for T :

g(T ) = λμ1μ2T 2 + (λ(μ1 + μ2) − (n1 + n2)μ1μ2
)
T + λ − n1μ1 − n2μ2 = 0.

Here g(0) < 0 because ρ < 1, so the equation has one positive and one negative root.
Solving for positive T we get

T = 1

2

⎛

⎝ n

λ
− 1

μ1
− 1

μ2
+
√

n2

λ2
+ 2

n1 − n2
λ

(
1

μ1
− 1

μ2

)
+
( 1

μ1
− 1

μ2

)2
⎞

⎠

= 1

2

(
1

ρ(θμ1 + (1 − θ)μ2)
− 1

μ1
− 1

μ2

+
√

1

ρ2(θμ1 + (1 − θ)μ2)
2 + 4θ − 2

ρ(θμ1 + (1 − θ)μ2)

(
1

μ1
− 1

μ2

)
+
(

1

μ1
− 1

μ2

)2
⎞

⎠ .

(3)

Note: for the case of μ1 = μ2 = μ we get T = 1−ρ
ρ

1
μ
.

From T and Little’s law we can obtain mi , the approximate average number of idle
servers in pool i, i = 1, 2:

m1 = T λβ = T n1

T + 1/μ1
, m2 = T λ(1 − β) = T n2

T + 1/μ2
. (4)

When T1 = T2, servers are pooled. Servers share the load, and both types of
customers receive similar levels of service. The pooled behavior of the system for
FCFS–ALIS under many-server scaling is our main interest in this paper. Figure 4
shows the analog of Fig. 3 for the pooled system. Note that the idle servers of both
types are mixed, and I2 
= I1.
Case III

This case lies on the boundary of the other two cases. As a sanity check, on the one
hand, we see that setting T1 = n2

λ1
− 1

μ2
and T2 = n2

λ1
− 1

μ2
would correspond to the

values for Case I, and result in T1 = T2. On the other hand, considering the equation
(2) for Case II, if we substitute

β = n1

λ

1

1/μ1 + T
= n1

λ

1

1/μ1 + T1
= n1

λ

1

1/μ1 + n1/λ2 − 1/μ1
= λ2

λ
= 1 − α,

1 − β = n2

λ

1

1/μ2 + T
= n2

λ

1

1/μ1 + T2
= n2

λ

1

1/μ2 + n2/λ1 − 1/μ2
= λ1

λ
= α,
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therefore, α + β = 1.

4 Many-server limit of the stationary distribution

In this section, we keep the stability assumption ρ < 1, δ < 1 and derive the many-
server limit from the exact stationary distributions.

4.1 Exact stationary distributions

We first obtain the stationary distribution for each state s. We note that the stationary
probabilities depend mainly on the values of k, i1, i2. Let μ(S j ) denote the service
rate of the server at position j .

Theorem 1 The stationary distribution of the state s of the FCFS–ALIS many-server
N-system is given by

π(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
n−i1−i2∏

l=1

⎛

⎝
l∑

j=1

μ(S j )

⎞

⎠

−1 (
1

λ

)i1+i2−k ( 1

λ1

)k

,

k = 0, . . . , n2,

i1 = 1, . . . , n1,

i2 = k, . . . , n2,

B
n−k−1∏

l=1

⎛

⎝
l∑

j=1

μ(S j )

⎞

⎠

−1
n−i2∏

j=n−k

λ
q j
2

(μ1n1 + μ2( j − n1))
q j +1

(
1

λ1

)i2
,

k = 1, . . . , n2,

i1 = 0,
i2 = 1, . . . , k,

B
n−k−1∏

l=1

⎛

⎝
l∑

j=1

μ(S j )

⎞

⎠

−1
n−1∏

j=n−k

λ
q j
2

(μ1n1 + μ2( j − n1))
q j +1

λqn

(μ1n1 + μ2n2)qn+1 ,
k = 0, . . . , n2,

i1 = i2 = 0,

(5)

where B is a normalizing constant.

Proof This follows for all three parts of (5) by utilizing properties (i),(ii),(iii) in Sect. 2
and substituting into Equation (2.1), Theorem 2.1, in [2]. ��

Before we manipulate Eq. (5), we introduce a lemma to facilitate the calculation.

Lemma 1 Letting A1, . . . , Am denote a permutation of m given positive real numbers
a1, . . . , am, we have

∑

(A1,...,Am )∈P(a1,...,am )

m∏

l=1

⎛

⎝
l∑

j=1

A j

⎞

⎠

−1

=
(

m∏

l=1

al

)−1

where P(a1, . . . , am) denotes the set of all the permutations of a1, . . . , am.

Now we can get the joint stationary distribution of K , I1, I2. We denote by
π(k, i1, i2) the stationary probability of K = k, I1 = i1 and I2 = i2.
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Theorem 2 The steady-state joint distribution of K , I1, I2 is given by

π(k, i1, i2)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1

(
n1

i1

)(
n2

i2

)
i1i2!(i1 + i2 − k − 1)!

(i2 − k)! μ
i1
1 μ

i2
2

(
1

λ

)i1+i2 ( λ

λ1

)k

,

k = 0, . . . , n2,

i1 = 1, . . . , n1,

i2 = k, . . . , n2,

B1
n1 n2!

(n2 − k)!μ1μ
k
2

n−i2∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

(
1

λ1

)i2
,

k = 1, . . . , n2,

i1 = 0,
i2 = 1, . . . , k,

B1
n1 n2!

(n2 − k)!μ1μ
k
2

n−1∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

1

μ1n1 + μ2n2 − λ
,

k = 0, . . . , n2,

i1 = i2 = 0,

(6)

where B1 is a normalizing constant.

4.2 The distribution of (I1, I2) given K

In this section we obtain the asymptotic distribution of (I1, I2) conditional on K = k,
as n → ∞. We first show that, as n → ∞, the probability of no idle servers of type
s1 goes to zero, and so the probability that customers need not wait goes to 1. Next

we condition on K = k and show I1/n
p−→ f1, I2/n

p−→ f2, where

f1 = m1

n
= T θ

T + 1/μ1
, f2 = m2

n
= T (1 − θ)

T + 1/μ2
,

where T is given in (3). Finally, we condition on K = k and show that the scaled and
centered values of (I1, I2) converge in distribution to a bivariate normal distribution.
Proofs of the following theorems can be found in the Appendix.

Theorem 3 When n → ∞, there exists an ε > 0 such that

P(I1 = 0) = o (exp(−εn)) .

From this theorem we see that when n → ∞, P(I1 > 0) → 1. Therefore, P(K =
k, I1 > 0) → P(K = k) for any 0 ≤ k ≤ I2. From Eq. (6), given K = k, the limiting
stationary distribution as n → ∞ is

P(I1 = i1, I2 = i2|K = k) → P(I1 = i1, I2 = i2|K = k, I1 > 0)

= B1

(
n1

i1

)(
n2

i2

)
i1(i1 + i2 − k − 1)! i2!

(i2 − k)!μ
i1
1 μ

i2
2 λ−i1−i2−kλ−k

1
1

P(K = k)
.

Theorem 4 Conditional on K = k,
(

I1
n , I2

n

)
converges to ( f1, f2) in probability for

any k ≥ 0. That is, for any ε > 0, when n → ∞, we have

P (|I1 − f1n| ≥ εn or |I2 − f2n| ≥ εn|K = k) → 0.

After showing the fluid limit result, we are now ready to show the central limit
result.
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Theorem 5 For any k ≥ 0, when n → ∞, we have
(

I1 − f1n√
n

,
I2 − f2n√

n

∣∣∣∣ K = k

)
⇒ N

(
0,

[
σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

])
, (7)

where

ρ =
(

(θ − f1)(1 − θ − f2) f1 f2(
θ f2 + f 21

) (
(1 − θ) f1 + f 22

)

) 1
2

,

σ1 =
(

(θ − f1) f1
(
(1 − θ) f1 + f 22

)

θ f 22 + (1 − θ) f 21

) 1
2

,

σ2 =
(

(1 − θ − f2) f2
(
θ f2 + f 21

)

θ f 22 + (1 − θ) f 21

) 1
2

.

Note that the above is consistent with the bivariate normal distribution stated in
Sect. 3.

4.3 Case II: Pooled system

NowweconsiderCase II,where n2
λ1

− 1
μ2

< n1
λ2

− 1
μ1
. Firstwe show the limit distribution

of K , the location of the first type s1 server.

Theorem 6 In Case II, for any k ≥ 0, as n → ∞,

P(K = k) →
(
1 − 1 − β

α

)(
1 − β

α

)k

. (8)

Theorem 6 shows that K converges in distribution to a geometric distribution in
Case II, so P(K < ∞) = 1. Therefore, we can extend Theorems 4 and 5 into
unconditional versions.

Theorem 7 In Case II, as n → ∞, K becomes independent of I1 and I2.(
I1− f1n√

n
,

I2− f2n√
n

)
converges in distribution to the bivariate normal distribution

described in (10).

Consider the special case when μ1 = μ2 = μ. Then θ = β, f1 = (1 − ρ)θ

and f2 = (1 − ρ)(1 − θ). When n → ∞,
(

I1−(1−ρ)n1√
n

,
I2−(1−ρ)n2√

n

)
converges in

distribution to a bivariate normal distribution with mean (0, 0), variance

( ρθ(1 − ρ(1 − θ)), ρ(1 − θ)(1 − ρθ) ) ,

and correlation

ρ
√

θ(1 − θ)√
(1 − ρ(1 − θ))(1 − ρθ)

.
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The total idleness has mean of (1 − ρ)n and variance of

V ar(I1) + V ar(I2) + 2Cov(I1, I2) = ρn.

4.4 Case I: Decoupling to two independent systems

We now assume n2
λ1

− 1
μ2

> n1
λ2

− 1
μ1
, where we find that under many-server scaling

the system decouples into two independent M /M /s service systems. We first show the
following proposition:

Proposition 1 In Case I, as n → ∞, we have P(α I1 ≥ (1 − α)I2) = o
(

1√
n

)
.

We next obtain the conditional distribution K |(I1, I2).

Theorem 8 Given I1 = i1n, I2 = i2n, where i1 ∈ (0, θ), i2 ∈ (0, 1 − θ), and
i2 > α

1−α
i1, we have

K −
(

i2 − α
1−α

i1
)

n
√

n

∣
∣∣∣∣∣
(I1 = i1n, I2 = i2n) ⇒ N

(
0,

αi1
(1 − α)2

)
, as n → ∞.

Therefore, given (1 − α)I2 > α I1, P(K = 0|I1, I2) = o
(

1√
n

)
. Now we have

P(K = 0) < P(K = 0|I1, I2) + P((1 − α)I2 ≤ α I1) = o

(
1√
n

)
.

That means the number of type c1 customers served by s1 servers is no more than
o(

√
n), which cannot affect the fluid scaled mean or the diffusion scaled variance of

two independent decoupled systems.

Theorem 9 In Case I, as n → ∞,

⎛

⎝
I1 −

(
n1 − λ2

μ1

)

√
n

,
I2 −

(
n2 − λ1

μ2

)

√
n

⎞

⎠⇒ N
(

0,

[
λ2

nμ1
0

0 λ1
nμ2

])

. (9)

This is exactly the many-server scaling limiting distribution of the number of idle
servers in two independent M /M /s queues, one of which has arrival rate λ2, service
rate μ1, and n1 servers; the other has arrival rate λ1, service rate μ2, and n2 servers.

Furthermore, K will then consist of I2 minus the idle servers of type s2 which are
mingled with the I1 servers of type s1. The following calculation obtains the mean
and variance of K under many-server scaling. We denote by I2,1 the number of idle
servers of type s2 that are mingled with the I1 idle servers of type s1. Since the type s1
servers join the idle servers with rate λ2 and type s2 servers join the idle servers with
rate λ1, we have
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I2,1 =
I1∑

j=1

Wi ,

where Wi are i.i.d. random variables independent of I1, each of them having the
distribution of the number of failures before the first success in a sequence of Bernoulli
trials with probability of success λ2

λ1+λ2
. We have

E(Wi ) = λ1

λ2
,

Var(Wi ) = λ1(λ1 + λ2)

λ22
,

E(I2,1) = E(I1)
λ1

λ2
=
(

n1 − λ2

μ1

)
λ1

λ2
,

Var(I2,1) = E(I1)
λ1(λ1 + λ2)

λ22
+ Var(I1)

(
λ1

λ2

)2

=
(

n1 − λ2

μ1

)
λ1(λ1 + λ2)

λ22
+ λ2

μ1

(
λ1

λ2

)2
.

Furthermore, as n → ∞, centered and scaled I2,1 converges to a normal distribution,
and is independent of I2.

It now follows that centered and scaled K also converges to a normal distribution,
and centered and scaled (I1, I2, K ) converge to a multivariate normal distribution.
The relevant parameters are

E(K ) = E(I2) − E(I2,1) = n2 − λ1

μ2
−
(

n1 − λ2

μ1

)
λ1

λ2

= λ1

(
n2

λ1
− 1

μ2
− n1

λ2
+ 1

μ1

)
,

Var(K ) = Var(I2) + Var(I2,1) = λ1

μ2
+
(

n1 − λ2

μ1

)
λ1(λ1 + λ2)

λ22
+ λ2

μ1

(
λ1

λ2

)2

= n1
λ1λ

λ22
+ λ1

(
1

μ2
− 1

μ1

)
.

K is correlated with both I1 and I2:

Cov(I2, K ) = Cov(I2, I2 − I2,1) = Var(I2),

Cov(I1, K ) = Cov(I1, I2 − I2,1) = Cov(I1,−I2,1) = −λ1

λ2
Var(I1).
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4.5 Case III: Slowly decoupling as system becomes large

As n → ∞, we have seen that when n2
λ1

− 1
μ2

< n1
λ2

− 1
μ1

(Case II), then K
n → 0

in probability, and in fact K = O(1); when n2
λ1

− 1
μ2

> n1
λ2

− 1
μ1

(Case I), then
K
n → λ1

n

(
n2
λ1

− 1
μ2

− n1
λ2

+ 1
μ1

)
> 0 in probability, and in fact K = O(n). We now

examine Case III, where n2
λ1

− 1
μ2

= n1
λ2

− 1
μ1
. We will show that in this case, as n

becomes large, with fluid scaling the queues decouple, but with diffusion scaling K
has nontrivial behavior.

We first prove a monotonicity result on K as a function of α, which holds for all
three cases, I, II, and III. To mark dependence on α we use the notation Kα .

Proposition 2 Keep all the other parameters fixed and change α. If α1 < α2, then
Kα1 stochastically dominates Kα2 .

From the monotonicity and the previous statements for Cases I and II, we conclude:

Corollary 1 In Case III, as n → ∞, K
n → 0 in probability.

We can in fact derive more precise asymptotic results for I1, I2, K in case
III. We note first that the result of Theorem 5 on the limiting distribution of(

I1−m1√
n

, I2−m2√
n

∣∣∣ K = k
)
as n → ∞, for any fixed k, is valid not just in Case II,

but also in Cases I and III. In the following theorem we investigate the limit, for fixed

k, as n → ∞, of
(

I1−m1√
n

, I2−m2√
n

∣∣∣ K = kn
)
.

Theorem 10 For any k ∈
[
0, 1 − θ −

[
r−θμ1

μ2

]+)
, as n → ∞, we have

(
I1 − f1,kn√

n
,

I2 − f2,kn√
n

∣∣∣∣ K = kn

)
⇒ N

(
0,

[
σ 2
1,k ρkσ1,kσ2,k

ρkσ1,kσ2,k σ 2
2,k

])
, (10)

where

ρk =
(

f1,k( f2,k − k)(θ − f1,k)(1 − θ − f2,k)

( f 21,k + ( f2,k − k)θ)(( f2,k − k)2 + f1,k(1 − θ − k))

) 1
2

,

σ1,k =
(

(θ − f1,k) f1,k(( f2,k − k)2 + f1,k(1 − θ − k))

f 21,k(1 − θ − k) + ( f2,k − k)2θ

) 1
2

,

σ2,k =
(

(1 − θ − f2,k)( f2,k − k)( f 21,k + ( f2,k − k)θ)

f 21,k(1 − θ − k) + ( f2,k − k)2θ

) 1
2

,

where f1,k = T θ
T +1/μ1

, f2,k = T (1−θ−k)
T +1/μ2

+ k, and T > 0 solves

n1

λ

1

1/μ1 + T
+ n2 − kn

λ

1

1/μ2 + T
= 1.
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Note that fi,0 equals fi , defined in Sect. 4.2, for i = 1, 2. So when k = 0, Theorem
10 agrees with Theorem 5. We can now use these results to obtain the centered and
scaled limiting behavior of K in Case III.

Theorem 11 In Case III, as n → ∞, K√
n

converges to a half truncated normal

distribution with density function

√
2

σ 2
K π

exp

(

− x2

2σ 2
K

)

,∀x ≥ 0,

where σ 2
K = α

(
λ
n

(
1
μ2

− 1
μ1

)
+ θ

(1−α)2

)
.

The result of Theorem11 in combinationwithTheorem 10 should in principle allow
us to obtain the joint distribution of (I1, I2). Its centered and scaled limit is, however,
not a bivariate normal distribution, and too messy to write down. Theorem 11 directly
implies that P(K = 0) → 0 as n → ∞. That means the proportion of type c1
customers who are served by type s1 servers goes to 0. Therefore, we can obtain the
following fluid limit result:

Corollary 2 In Case III,

lim
n→∞

I1 −
(

n1 − λ2
μ1

)

n
→ 0, lim

n→∞
I2 −

(
n2 − λ1

μ2

)

n
→ 0,

which is the same as in Case I.

4.6 Comparison to the bipartite FCFS infinite matching model

The infinite matching model was defined and studied in [1,5,8] and is as follows: there
are a set of customer typesC = {c1, . . . , cI } and a probability vectorα = (α1, . . . , αI ),
a set of server typesS = {s1, . . . , sJ } and a probability vectorβ = (β1, . . . , βJ ), and a
bipartite compatibility graph G ⊆ C×S. There are two infinite sequences C1, C2, . . .

where Cm are i.i.d. drawn from C with probabilities α, and S1, S2, . . . where Sn are
i.i.d. drawn from S with probabilities β. The two sequences are matched according to
the compatibility graph, using FCFS. That is, C1 is matched to the earliest Sn in the
server sequence that is compatible with it, and thereafter Cm is matched to the earliest
Sn in the server sequence that is compatible with it, and that was not matched to one
of the customers C1, . . . , Cm−1. This model is much simpler than a parallel servers
queueing model; because there are no arrival times, no busy or idle servers (only a
sequence of service types), and no processing times, only ordered customer types and
ordered service types matched in the FCFS manner. This model is tractable: under
a condition of complete resource pooling the system reaches a steady state, and in
particular it is possible to calculate the matching rate for each compatible pair rs j ,ci ,
the frequency of matches that happen between server type s j and customer type ci .

In the special case of the infinite matching model corresponding to the N-system,
there are an infinite sequence of customers of types c1, c2, where the customer types are
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i.i.d., the type is c1 with probabilityα and c2 with probability 1−α, and an independent
infinite sequence of servers of types s1, s2, where the server types are i.i.d., the type
is s1 with probability β and s2 with probability 1 − β, and the compatibility graph G
has arcs {(c1, s1), (c1, s2), (c2, s1)}. The condition for complete resource pooling is
then α + β > 1, corresponding to Case II in our queueing model. Based on the exact
formula in [1], successive customers and servers are matched according to FCFS, with
matching rates rc1,s1 = α + β − 1, rc1,s2 = 1 − β, rc2,s1 = 1 − α.

After n customers have arrived and been matched, there may be some unmatched
s2 servers skipped by the customers. We define Kn to be the number of unmatched
s2 servers before the first unmatched s1 server after the first n customers have been
matched. We can see that (Kn)∞n=1 is a Markov chain. If Kn = 0, that means server
Sn+1 is of type s1, and then a new customer Cn+1 will be matched to Sn+1 and will
add a geometrically distributed number with parameter β to Kn . If Kn > 0, then a new
customer Cn+1 of type c1 will reduce Kn by 1, and a new customer Cn+1 of type c2
will add a geometrically distributed number with parameter β to Kn . The steady-state

distribution for this Markov chain is that P(K∞ = k) =
(
1 − 1−β

α

) (
1−β
α

)k
, k ≥ 0,

which is exactly the limiting distribution of K in (6). This supports our intuition
that when the large N-system is underloaded with resource pooling in Case II, the
replenishment of idle servers of types s1 and s2 becomes i.i.d with probability β and
1 − β, respectively.

In the infinite matching model, if complete resource pooling fails then there is a
subset of customer types whose frequency is larger or equal to the frequency of all the
compatible server types. In that case the infinite matching model will not reach steady
state. However, in such cases there will be a unique decomposition of the model, so
that each component on its own is an infinite matching model with complete resource
pooling. In the case of the N-model this will happen when α + β ≤ 1, and then the
model will decouple to two subsystems, one consisting of customers and servers of
types c1, s2, and the other of customers and servers of types c2, s1. This is exactly the
same decomposition that we observe in Cases I and III.

5 Numerical examples

We test our results by investigating an N-system with λ = 100, n1 = n2 = 100,
μ1 = μ2 = 1, ρ = 0.5. In this example β = 0.5, θρ(1 − ρ + θρ)n = (1 − θ)ρ(1 −
ρ + (1 − θ)ρ)n = 37.5. We use the exact stationary distribution to verify this. We
calculate the expectation and variance of the idle number in each pool exactly, listed
in the following table. In this example β = 0.5. When α > 0.5 (Case II), so the
average number of idle servers in each pool is close to 50, with variance close to
θρ(1 − ρ + θρ)n = (1 − θ)ρ(1 − ρ + (1 − θ)ρ)n = 37.5; when α < 0.5 (Case I),
resource pooling disappears, and s1 servers seldom serve c1 customers. The N-system
operates like two separate queues: s1 servers server c2 customers, and s2 servers serve
c1 customers. The utilization of the s1 server pool is

(1−α)λ
n1

, and the utilization of the

s2 server pool is αλ
n2
. When α = 0.4, almost zero portion of services performed by s1

servers are for c1 customers, the number of idle s1 servers can be approximated by
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Table 1 The exact calculation
α E[I1] Var[I1] E[I2] Var[I2]
0.8 49.838 37.705 50.162 37.381

0.7 49.648 38.078 50.352 37.374

0.6 49.179 39.215 50.821 37.572

0.55 48.606 40.871 51.395 38.082

0.5 47.333 44.883 52.667 39.549

0.4 39.981 59.821 60.019 39.785

a normal distribution with mean n1 − (1 − α)λ = 40 and variance (1 − α)λ = 60,
whereas the number of idle s2 servers can be approximated by a normal distribution
with mean n2 −αλ = 60 and variance αλ = 40; when α = 0.5 (Case III), we can see
that the means are somewhat close to the fluid prediction 50, whereas we do not have
analytic approximation for the variances (Table 1).
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A Appendix: Proofs for Sect. 4.1

Proof of Lemma 1 We prove this lemma by induction. Define the left-hand side as
Cm .

C2 = 1

a1(a1 + a2)
+ 1

a2(a1 + a2)
= a1 + a2

a1a2(a1 + a2)
= 1

a1a2
.

Cm =
∑

(A1,...,Am )∈P(a1,...,am )

m∏

l=1

⎛

⎝
l∑

j=1

A j

⎞

⎠

−1

= 1
∑m

l=1 al

m∑

p=1

∑

(A1,...,Am−1)∈P(a j : j 
=p)

m−1∏

l=1

⎛

⎝
l∑

j=1

A j

⎞

⎠

−1

= 1
∑m

l=1 al

m∑

p=1

⎛

⎝
∏

j 
=p

a j

⎞

⎠

−1

= 1
∑m

l=1 al

∑m
p=1 ap

∏m
j=1 a j

=
(

m∏

l=1

al

)−1

.

��
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Proof of Theorem 2 Summation over the geometric terms q j = 0, . . . ,∞ in (5) gives

∑

q1,...,qn−i

π(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
n−i1−i2∏

l=1

⎛

⎝
l∑

j=1

μ(S j )

⎞

⎠

−1 (
1

λ

)i1+i2−k ( 1

λ1

)k

,

k = 0, . . . , n2,

i1 = 0, . . . , n1

i2 = k, . . . , n2,

B
n−k−1∏

l=1

⎛

⎝
l∑

j=1

μ(S j )

⎞

⎠

−1
n−i2∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

(
1

λ1

)i2
,

k = 1, . . . , n2,

i1 = 0,
i2 = 1, . . . , k,

B
n−k−1∏

l=1

⎛

⎝
l∑

j=1

μ(S j )

⎞

⎠

−1
n−1∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

1

μ1n1 + μ2n2 − λ
,

k = 0, . . . , n2,

i1 = i2 = 0.

Nextwe see that in this expression, permutations of S1, . . . , Sn with the same (k, i1, i2)
have a similar structure. We now sum over all the permutations of the appropriate
S j , 1 ≤ j ≤ n − max{k + 1, i1 + i2}. By Lemma 1 we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bμ
i1−n1
1 μ

i2−n2
2

(
1

λ

)i1+i2−k ( 1

λ1

)k
,

k = 0, . . . , n2,
i1 = 1, . . . , n1,
i2 = k, . . . , n2,

Bμ
1−n1
1 μ

k−n2
2

n−i2∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

(
1

λ1

)i2
,

k = 1, . . . , n2,
i1 = 0,
i2 = 1, . . . , k,

Bμ
1−n1
1 μ

k−n2
2

n−1∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

1

μ1n1 + μ2n2 − λ
,

k = 0, . . . , n2,
i1 = i2 = 0.

(11)
Each permutation of the remaining servers, S j , n − max{k + 1, i1 + i2} < j ≤ n
has the same stationary probability. It remains to count the number of permutations.
When i1 = 0 we have i2 ≤ k. For each permutation we choose 1 type s1 server and k
out of n2 type s2 servers to form the last k +1 servers. The number of permutations is

n1

(
n2

k

)
k! = n1 n2!

(n2 − k)! .

When i1 > 0, we have i2 ≥ k. For each permutation, we choose i1 out of n1 type s1
servers and i2 out of n2 type s2 servers. We then choose 1 from the i1 idle servers of
type s1, and k from the i2 idle servers of type s2 to obtain the last k + 1 servers. The
number of permutations is

(
n1

i1

)(
n2

i2

)
i1

(
i2
k

)
(i1 + i2 − k − 1)!k! =

(
n1

i1

)(
n2

i2

)
i1i2!(i1 + i2 − k − 1)!

(i2 − k)! .

Multiplying the terms in (11) by the appropriate number of permutations and defining
B1 = Bμ

−n1
1 μ

−n2
2 gives (6). ��

B Appendix: Proofs for Sect. 4.2

Proof of Theorem 3 We prove the theorem in three steps:
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(i) We show that

P (I1 = 0) ∼ B1
1

1 − δ
×
⎧
⎨

⎩

√
2πn2 exp (n2 (− log κ + κ − 1)) , 0 < κ < 1,√
2πn2/2, κ = 1,

1−(1−α)ρ
1−ρ

+ 1
κ−1 , κ > 1,

where κ = λ1
μ2n2

. Note that − log κ + κ − 1 ≥ 0.
(ii) We show that

P(I1 = �m1�, I2 = �m2�, K = 0)

∼ B1

(
2πβn1n2

(n1 − m1)(n2 − m2)m2

)1/2
exp

[
−n1

(
log

(
1 − m1

n1

)
+ m1

n1

)]

exp

[
−n2

(
log

(
1 − m2

n2

)
+ m2

n2

)]
,

where ∼ means the ratio of the two sides converges to 1 when n → ∞, m1 and
m2 are defined in (4). Note that the definition in (4) does not require a specific
case. And for all cases, we have m1

m2
= β

1−β
.

(iii) We show that, as n → ∞,

P (I1 = 0)

P(I1 = �m1�, I2 = �m2�, K = 0)
= o(exp(−εn)),

for some ε > 0, which proves the theorem.

The details of the proofs of these three steps are as follows:
Proof of (i):

First we calculate

P(I1 = 0, I2 = 0) =
n2∑

k=0

π(k, 0, 0)

=
n2∑

k=0

B1
n1 n2!

(n2 − k)!μ1μ
k
2

n−1∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

1

μ1n1 + μ2n2 − λ
.

We use induction to calculate

Um =
n2∑

k=m

μk
2

(n2 − k)!
n−1∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

from m = n2 to m = 1. When m = n2,

Un2 = μ
n2
2

(n2 − n2)!
1

μ1n1 − λ2

n−1∏

j=n−n2+1

1

μ1n1 + μ2( j − n1) − λ2
.
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Suppose

Um+1 = μm+1
2

(n2 − m − 1)!
1

μ1n1 − λ2

n−1∏

j=n−m

1

μ1n1 + μ2( j − n1) − λ2
,

then

Um = μm+1
2

(n2 − m − 1)!
1

μ1n1 − λ2

n−1∏

j=n−m

1

μ1n1 + μ2( j − n1) − λ2

+ μm
2

(n2 − m)!
n−1∏

j=n−m

1

μ1n1 + μ2( j − n1) − λ2

= μm
2

(n2 − m)!
n−1∏

j=n−m

1

μ1n1 + μ2( j − n1) − λ2

(
μ2(n2 − m)

μ1n1 − λ2
+ 1

)

= μm
2

(n2 − m)!
1

μ1n1 − λ2

n−1∏

j=n+1−m

1

μ1n1 + μ2( j − n1) − λ2
.

Therefore, the induction is valid and we have

U1 = μ2

(n2 − 1)!
1

μ1n1 − λ2
.

P(I1 = 0, I2 = 0) = U1B1n1n2! μ1

μ1n1 + μ2n2 − λ
+ π(0, 0, 0)

= B1
μ2n2

μ1n1 − λ2

μ1n1

μ1n1 + μ2n2 − λ
+ B1

μ1n1

μ1n1 + μ2n2 − λ

= B1
μ1n1

μ1n1 − λ2

μ1n1 + μ2n2 − λ2

μ1n1 + μ2n2 − λ

= B1
1

1 − δ

1 − (1 − α)ρ

1 − ρ
.

Next we calculate

P(I1 = 0, I2 > 0) =
n2∑

k=1

k∑

i2=1

π(k, 0, i2) =
n2∑

i2=1

n2∑

k=i2

π(k, 0, i2).
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Similar to the induction calculating Um above, we can obtain

n2∑

k=i2

π(k, 0, i2) = B1

(
1

λ1

)i2
n1μ1n2!

n2∑

k=i2

μk
2

(n2 − k)!
n−i2∏

j=n−k

1

μ1n1 + μ2( j − n1) − λ2

= B1

(
1

λ1

)i2
n1μ1 n2! μ

i2
2

(n2 − i2)!
1

μ1n1 − λ2

= B1
1

1 − δ

(
μ2

λ1

)i2 n2!
(n2 − i2)! .

Therefore,

P(I1 = 0, I2 > 0) = B1
1

1 − δ
n2!

n2∑

i2=1

(
λ1

μ2

)−i2 1

(n2 − i2)!

= B1
1

1 − δ
n2!
(

λ1

μ2

)−n2 n2−1∑

i
′
1=0

(
λ1

μ2

)i
′
2 1

i
′
2!

= B1
1

1 − δ
n2!
(

μ2

λ1

)n2
exp

(
λ1

μ2

)
P(X < n2)

= B1
1

1 − δ

P(X < n2)

P(X = n2)
,

where X is a Poisson random variable with parameter λ1
μ2
. Using Stirling’s approxi-

mation,

P(X = n2) = 1

n2!
(

λ1

μ2

)n2
exp

(
− λ1

μ2

)

∼ 1√
2πn2

(
λ1

μ2n2

)n2
exp

(
n2 − λ1

μ2

)

= 1√
2πn2

exp

(
n2

(
log

(
λ1

μ2n2

)
+ 1 − λ1

μ2n2

))

= 1√
2πn2

exp (n2 (log κ + 1 − κ)) .

Recall that κ = λ1
μ2n2

and note that log κ + 1 − κ ≤ 0. Note also that, when n → ∞,

X can be approximated by a normal distribution with mean λ1
μ2

and variance λ1
μ2
. Next

we analyze P(X<n2)
P(X=n2)

in three cases depending on κ .

• When 0 < κ < 1, from the normal distribution approximation, when n → ∞,
P(X < n2) → 1. Therefore,

P (I1 = 0, I2 > 0) ∼ B1
1

1 − δ

(√
2πn2 exp (−n2 (log κ + 1 − κ))

)
.
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• When κ = 1, − log κ + κ − 1 = 0. When n → ∞, the normal distribution
approximation gives P(X < n2) → 1

2 .

P (I1 = 0, I2 > 0) ∼ B1
1

1 − δ

1

2

√
2πn2.

• When κ > 1, when n → ∞, the normal distribution approximation gives P(X <

n2) → 0. We need more care to treat this case. For any 1 ≤ j ≤ n2,

P(X = n2 − j)

P(X = n2)
=
(

λ1
μ2

)n2− j
1

(n2− j)!
(

λ1
μ2

)n2 1
n2!

= n2!
κ j n j

2(n2 − j)!
<

1

κ j
.

Therefore,

P(X < n2)

P(X = n2)
≤

n2∑

j=1

1

κ j
<

1

κ − 1
.

In fact, for any fixed j , when n → ∞,

P(X = n2 − j)

P(X = n2)
→ 1

κ j
.

For any ε > 0, let J = �− log ε
log κ

�. We have ε ≥ κ−J . There exists an N such that,
when n > N , for any 1 ≤ j ≤ J ,

P(X = n2 − j)

P(X = n2)
− 1

κ j
> − ε

J
.

Therefore,

P(X < n2)

P(X = n2)
>

J∑

j=1

1

κ j
− ε = 1 − κ−J

κ − 1
− ε ≥ 1

κ − 1
− κε

κ − 1
.

Therefore, when n → ∞,

P(X < n2)

P(X = n2)
→ 1

κ − 1
.

We have

P (I1 = 0, I2 > 0) ∼ B1
1

1 − δ

1

κ − 1
.
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In summary, when κ ≤ 1, P (I1 = 0, I2 = 0) is negligible compared with
P (I1 = 0, I2 > 0) when n → ∞. We have

P (I1 = 0) ∼ B1
1

1 − δ
×
⎧
⎨

⎩

√
2πn2 exp (n2 (− log κ + κ − 1)) , 0 < κ < 1,√
2πn2/2, κ = 1,

1−(1−α)ρ
1−ρ

+ 1
κ−1 , κ > 1.

Proof of (ii):
From Eq. (6) we have

P(I1 = �m1�, I2 = �m2�, K = 0)

= B1

(
n1

�m1�
)(

n2

�m2�
)

�m1�(�m1� + �m2� − 1)!μ�m1�
1 μ

�m2�
2

(
1

λ

)�m1�+�m2�

>
B1

m2
1m2(m1 + m2)2μ1μ2

(
n1

m1

)(
n2

m2

)
m1(m1 + m2 − 1)!μm1

1 μ
m2
2

(
1

λ

)m1+m2

>
B1

n5μ1μ2

(
n1

m1

)(
n2

m2

)
m1(m1 + m2 − 1)!μm1

1 μ
m2
2

(
1

λ

)m1+m2

∼ B1

n5μ1μ2

m1

m1 + m2

n1!n2!
(n1 − m1)!m1!(n2 − m2)!m2! (m1 + m2)!μm1

1 μ
m2
2 λ−m1−m2

∼ B1

n5μ1μ2

(
2πm1n1n2

(m1 + m2)(n1 − m1)(n2 − m2)m2

)1/2 nn1
1 nn2

2

(n1 − m1)n1−m1mm1
1 (n2 − m2)n2−m2mm2

2

×
(

m1 + m2

e

)m1+m2 (μ1

λ

)m1
(μ2

λ

)m2

= B1

n5μ1μ2

(
2πm1n1n2

(m1 + m2)(n1 − m1)(n2 − m2)m2

)1/2

×
(

n1

n1 − m1

)n1 ( n2

n2 − m2

)n2 (m1 + m2

m1

)m1
(

m1 + m2

m2

)m2

× exp(−m1 − m2)

(
μ1(n1 − m1)

λ

)m1
(

μ2(n2 − m2)

λ

)m2

= B1

n5μ1μ2

(
2πβn1n2

(n1 − m1)(n2 − m2)m2

)1/2 ( n1

n1 − m1

)n1 ( n2

n2 − m2

)n2
exp(−m1 − m2)

= B1

n5μ1μ2

(
2πβn1n2

(n1 − m1)(n2 − m2)m2

)1/2
exp

(
−n1

(
log

(
1 − m1

n1

)
+ m1

n1

))

× exp

(
−n2

(
log

(
1 − m2

n2

)
+ m2

n2

))
.

The second equality is due to m1
m1+m2

= β, m2
m1+m2

= 1 − β, μ1(n1−m1)
λ

= β,
μ2(n2−m2)

λ
= 1 − β.

Proof of (iii):

Since log(1 − x) + x < 0 when 0 < x < 1, we have

log

(
1 − m1

n1

)
+ m1

n1
< 0 and log

(
1 − m2

n2

)
+ m2

n2
< 0.
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When n → ∞, note that
(

2πβn1n2
(n1−m1)(n2−m2)m2

)1/2
is of the order of n−1/2. Therefore,

P(I1 = �m1�, I2 = �m2�, K = 0)/B1 increases exponentially. When κ > 1, P(I1 =
0)/B1 converges to a constant; when κ = 1, P(I1 = 0)/B1 increases in the order of√

n. Therefore, when n → ∞ and κ ≥ 1,

P (I1 = 0)

P(I1 = �m1�, I2 = �m2�, K = 0)
= o(exp(−εn)),

for some ε > 0. When κ < 1,

P (I1 = 0)

P(I1 = �m1�, I2 = �m2�, K = 0)
∼
(

(n1 − m1)(n2 − m2)m2

βn1(1 − δ)2

)1/2

× exp

(
n1

(
log

(
1 − m1

n1

)
+ m1

n1

))

× exp

(
n2

(
log

(
1 − m2

n2

)
+ m2

n2
− log κ + κ − 1

))
.

We have that

log

(
1 − m2

n2

)
+ m2

n2
− log κ + κ − 1 = log

(
n2 − m2

n2

μ2n2

λ1

)
+λ1−(n2 − m2)μ2

n2μ2

= log

(
(n2 − m2)μ2

λ1

)
+λ1 − (n2−m2)μ2

λ1
κ

< log

(
1 − β

α

)
+ α − (1 − β)

α

= log

(
1 − α + β − 1

α

)
+ α + β − 1

α
,

which is nonpositive no matter whether α + β is larger than, equal to, or small than 1.
Therefore, when n → ∞,

P (I1 = 0)

P(I1 = �m1�, I2 = �m2�, K = 0)
= o(exp(−εn)),

for some ε > 0. This completes the proof. ��
Proof of Theorem 4 First we show that the weak convergence is valid given K = 0.
Then we show that the same holds when K = k, for any fixed k. When K = 0, we
prove the convergence in probability in two steps:

(i) We show that for all states |I1−m1| ≥ εn or |I2−m2| ≥ εn, the conditional prob-
ability is dominated by a bounded constant multiple of the conditional probability
of some point on the boundary of the rectangle |I1 −m1| ≤ εn × |I2 −m2| ≤ εn.

(ii) When n → ∞, we approximate the conditional probability of the points in the
rectangle |I1 − m1| ≤ εn × |I2 − m2| ≤ εn. We then show that the probability
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of points on the boundary is negligible compared with the conditional probability
at (�m1�, �m2�).

Proof of (i):

P(I1 = i1, I2 = i2|K = 0)

= B2

(
n1

i1

)(
n2

i2

)
i1(i1 + i2 − 1)!μi1

1 μ
i2
2 λ−i1−i2

= B2
n1! n2!

(n1 − i1)!(i1 − 1)!(n2 − i2)!i2! (i1 + i2 − 1)!
(μ1

λ

)i1 (μ2

λ

)i2
,

where B2 = B1/P(K = 0).

P(I1 = i1 + 1, I2 = i2|K = 0)

P(I1 = i1, I2 = i2|K = 0)
= (i1 + i2)(n1 − i1)μ1

i1λ
= β

n1 − i1
n1 − m1

i1 + i2
i1

.

P(I1 = i1, I2 = i2 + 1|K = 0)

P(I1 = i1, I2 = i2|K = 0)
= (i1 + i2)(n2 − i2)μ2

(i2 + 1)λ
=(1 − β)

n2 − i2
n2−m2

i1 + i2
i2 + 1

.

We look at several cases:

• when i1 ≤ m1 and (1 − β)i1 < βi2, we have i1+i2
i1

> 1
β
. Therefore,

P(I1=i1+1,I2=i2|K=0)
P(I1=i1,I2=i2|K=0) > 1;

• when i2 ≤ m2 and (1 − β)i1 > βi2 + 1, we have i1+i2
i2+1 > 1

1−β
. Therefore,

P(I1=i1,I2=i2+1|K=0)
P(I1=i1,I2=i2|K=0) > 1;

• when i1 > m1, i2 > m2 and (1 − β)i1 ≥ βi2, we have i1+i2
i1

≤ 1
β
. Therefore,

P(I1=i1+1,I2=i2|K=0)
P(I1=i1,I2=i2|K=0) < 1;

• when i1 > m1, i2 > m2 and (1−β)i1 ≤ βi2+1, we have i1+i2
i2+1 ≤ 1

1−β
. Therefore,

P(I1=i1,I2=i2+1|K=0)
P(I1=i1,I2=i2|K=0) < 1;

• when βi2 ≤ (1 − β)i1 ≤ βi2 + 1, i1 ≤ m1 − εn and i2 ≤ m2 − εn, as long as
n2−i2
n2−m2

i2
i2+1 > 1, we have P(I1=i1,I2=i2+1|K=0)

P(I1=i1,I2=i2|K=0) > 1. When n is large, this requires

i2 > i∗2 = 1 − θ − f2
f2

.

As long as n1−i1
n1−m1

i1−1
i1

> 1, we have P(I1=i1+1,I2=i2|K=0)
P(I1=i1,I2=i2|K=0) > 1. When n is large,

this requires

i1 > i∗1 = θ

f1
.

For all i1 > i∗1 or i2 > i∗2 , we can move the state to a neighbor state with larger
steady-state probability, as shown in Fig. 5.
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(m1,m2)

(0,0) i1

i2
(n1,n2)

εn

εn

(i1*, i2*)

(1-β)i1=βi2
(1-β)i1=βi2+1

Fig. 5 The dominance of steady-state probability

Eventually the movement stops at the boundary which is εn away from (m1, m2).
Therefore, the probability of any state (i1, i2) satisfying i1 > i∗1 or i2 > i∗2 would be
dominated by the probability of some point at the boundary.

For any (i1, i2) satisfying i1 ≤ i∗1 and i2 ≤ i∗2 , since

P(I1 = i1 + 1, I2 = i2|K = 0)

P(I1 = i1, I2 = i2|K = 0)
> β and

P(I1 = i1, I2 = i2 + 1|K = 0)

P(I1 = i1, I2 = i2|K = 0)
> 1 − β,

we have

P(I1 = i1, I2 = i2|K = 0) <
1

β i∗1+1(1 − β)i∗2+1
P(I1 = i∗1 + 1, I2 = i∗2 + 1|K = 0)

and P(I1 = i∗1 +1, I2 = i∗2 +1|K = 0) is dominated by the probability of some point
at the boundary.

Proof of (ii):

When i1 ∈ [m1 − εn, m1 + εn] and i2 ∈ [m2 − εn, m2 + εn], and n grows large,
we can use Stirling’s approximation.

P(I1 = i1, I2 = i2|K = 0)

= B2

(
n1

i1

)(
n2

i2

)
i1(i1 + i2 − 1)!μi1

1 μ
i2
2 λ−i1−i2

= B2
i1

i1 + i2

n1!n2!
(n1 − i1)!i1!(n2 − i2)!i2! (i1 + i2)!

(μ1

λ

)i1 (μ2

λ

)i2

∼ B3

(
i1

(i1 + i2)(n1 − i1)(n2 − i2)i2

)1/2
(i1 + i2)i1+i2 exp(−i1 − i2)

(n1 − i1)n1−i1 i i1
1 (n2 − i2)n2−i2 i i2

2

(μ1

λ

)i1 (μ2

λ

)i2

= B3

(
i1

(i1 + i2)(n1 − i1)(n2 − i2)i2

)1/2
exp
(
(i1 + i2) log(i1 + i2)
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−(n1 − i1) log(n1 − i1) − i1 log(i1)

−(n2 − i2) log(n2 − i2) − i2 log(i2) + i1 log
(μ1

λ

)
+ i2 log

(μ2

λ

)
− i1 − i2

)

= B3

(
i1

(i1 + i2)(n1 − i1)(n2 − i2)i2

)1/2
exp
(
n
(
(x1 + x2) log(x1 + x2)

−(θ − x1) log(θ − x1) − x1 log(x1)

−(1 − θ − x2) log(1 − θ − x2) − x2 log(x2) + x1 log
(μ1

r

)

+x2 log
(μ2

r

)
− x1 − x2 − log(n)

))
,

where B3 = B2n1!n2!(2π)− 3
2 en , x1 = i1

n , x2 = i2
n . We have x1 ∈ [ f1 − ε, f1 + ε]

and x2 ∈ [ f2 − ε, f2 + ε]. We define

F(x1, x2) = (x1 + x2) log(x1 + x2) − (θ − x1) log(θ − x1)

−(1 − θ − x2) log(1 − θ − x2)

+x1(logμ1 − log r − log x1) + x2(logμ2 − log r − log x2) − x1 − x2.

The first-order derivatives on x1 and x2 are

∂ F

∂x1
= log(x1 + x2) + log(θ − x1) − log(x1) − log

μ1

r
= 0,

∂ F

∂x2
= log(x1 + x2) + log(1 − θ − x2) − log(x2) − log

μ2

r
= 0.

Solving the first-order conditions gives

x1 = f1, x2 = f2.

Consider the second-order derivatives:

∂2F

∂x21
= − 1

θ − x1
− 1

x1
+ 1

x1 + x2
< 0,

∂2F

∂x22
= − 1

1 − θ − x2
− 1

x2
+ 1

x1 + x2
< 0,

∂2F

∂x1∂x2
= 1

x1 + x2
,

∂2F

∂x21

∂2F

∂x22
−
(

∂2F

∂x1∂x2

)2
= x21 (1 − θ) + x22θ

x1x2(x1 + x2)(θ − x1)(1 − θ − x2)
> 0.

The Hessian matrix is negative definite. Therefore, F(x1, x2) is strictly concave on
(0, θ)× (0, 1− θ) and reaches its unique global maximum at ( f1, f2). The maximum
of F(x1, x2) on [δ, θ − δ]× [δ, 1− θ − δ]\( f1 − ε, f1 + ε)× ( f2 − ε, f2 + ε) is on the
boundary {(x1, x2)||x1 − f1| = ε, |x2 − f2| = ε}. Since the boundary is a compact
set, the maximum is attainable, denoted by F( f1, f2) − η, where η > 0.
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Note that

(
i1

(i1 + i2)(n1 − i1)(n2 − i2)i2

)1/2
=
(

x1
(x1 + x2)(θ − x1)(1 − θ − x2)x2

)1/2
n−1

changes slowly when x1 and x2 change, compared with exp (nF(x1, x2)). We have

P(I1 = i1, I2 = i2|K = 0)

P(I1 = �m1�, I2 = �m2�|K = 0)
∼ exp (n(F(x1, x2) − F( f1, f2))) < exp(ηn).

Therefore,

∑
|i1−m1|>εn or |i2−m2|>εn P(I1 = i1, I2 = i2|K = 0)

P(I1 = �m1�, I2 = �m2�|K = 0)

<

(
n1n2 + (i∗1 + 1)(i∗2 + 1)

β i∗1+1(1 − β)i∗2+1

)
exp(ηn).

It converges to 0 when n → ∞.
When K = k > 0, and n → ∞, similarly,

P(I1 = i1, I2 = i2|K = k)

= B1

(
n1

i1

)(
n2

i2

)
i1(i1 + i2 − k − 1)! i2!

(i2 − k)!μ
i1
1 μ

i2
2 λ−i1−i2−kλk

1

/
P(K = k)

P(I1 = i1 + 1, I2 = i2|K = k)

P(I1 = i1, I2 = i2|K = k)

= (i1 + i2 − k)(n1 − i1)μ1

i1λ
= β

n1 − i1
n1 − m1

i1 + i2 − k

i1
P(I1 = i1, I2 = i2 + 1|K = k)

P(I1 = i1, I2 = i2|K = k)

= (i1 + i2 − k)(n2 − i2)μ2

(i2 + 1 − k)λ
= (1 − β)

n2 − i2
n2 − m2

i1 + i2 − k

i2 + 1 − k
.

We can use a similar two-step argument to show that (I1/n, I2/n) converges to
( f1, f2) in probability given K = k. ��

Proof of Theorem 5 To obtain the asymptotic distribution of I1, I2 as n → ∞, we
need to consider, by Theorem 4, only values i1, i2 for which (i1 − m1)/n → 0 and
(i2 − m2)/n → 0. We write i1 = m1 + z1

√
n, i2 = m2 + z2

√
n, with z1/

√
n → 0,

z2/
√

n → 0. Note that m1, m2, n1−m1, n2−m2 are of the same order of magnitude
as n, n1, n2, and we only consider i1, i2 of the same order of magnitude.
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P(I1 = i1, I2 = i2|K = 0)

= B2
i1

i1 + i2

n1!n2!
(n1 − i1)!i1!(n2 − i2)!i2! (i1 + i2)!μi1

1 μ
i2
2 λ−i1−i2

∼ B3i−i1
1 (n1 − i1)

−(n1−i1)i−i2
2 (n2 − i2)

−(n2−i2)
(

i1 + i2
e

)i1+i2
μ

i1
1 μ

i2
2 λ−i1−i2

×
(

i1
(i1 + i2)i2(n1 − i1)(n2 − i2)

)1/2
,

where the use of Stirling’s approximation is justified for large n. Here B2 =
B1/P(K = 0) and B3 = B2n1!n2!(2π)− 3

2 en .
We clearly have

(
i1

(i1 + i2)i2(n1 − i1)(n2 − i2)

)1/2
∼
(

m1

(m1 + m2)m2(n1 − m1)(n2 − m2)

)1/2
,

so we can treat that part as a constant. Consider

i i1
1 = (m1 + z1

√
n)m1+z1

√
n = mm1+z1

√
n

1

(
1 + z1

√
n

m1

)m1+z1
√

n

.

Then from the Taylor expansion of the logarithm function, we have

log

((
1 + z1

√
n

m1

)m1+z1
√

n
)

= (m1 + z1
√

n) log

(
1 + z1

√
n

m1

)

= (m1 + z1
√

n)

(
z1

√
n

m1
− z21n

2m2
1

+ o

(
1

n

))

= z1
√

n + z21n

2m1
+ o(1).

Therefore,

log
(

i i1
1

)
∼ m1 log(m1) + z1

√
n(log(m1) + 1) + z21n

2m1
.

Similar expansions are valid for i2, n1 − i1, n2 − i2 and i1 + i2:

log(i i2
2 ) ∼ m2 log(m2) + z2

√
n(log(m2) + 1) + z22n

2m2
.

log((ni − i1)
n1−i1) ∼ (n1 − m1) log(n1 − m1)

− z1
√

n(log(n1 − m1) + 1) + z21n

2(n1 − m1)
.

log((n2 − i2)
n2−i2) ∼ (n2 − m2) log(n2 − m2)

− z2
√

n(log(n2 − m2) + 1) + z22n

2(n2 − m2)
.
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log((i1 + i2)
i1+i2) ∼ (m1 + m2) log(m1 + m2)

+(z1 + z2)
√

n(log(m1 + m2) + 1) + (z1 + z2)2n

2(m1 + m2)
.

We now use the calculations in Sect. 3 to evaluate all the
√

n coefficients. By (4) we
have

(n1 − m1)μ1

λm1
= 1

λT
,

(n2 − m2)μ2

λm2
= 1

λT
,

m1 + m2 = T

(
n1

T + 1/μ1
+ n2

T + 1/μ2

)
= λT .

Therefore, we have

(m1 + m2)(n1 − m1)μ1

m1λ
= 1,

(m1 + m2)(n2 − m2)μ2

m2λ
= 1,

log (P(I1 = i1, I2 = i2|K = 0)) ∼ B4

+ (z1 + z2)2n

2(m1 + m2)
− z21nn1

2(n1 − m1)m1
− z22nn2

2(n2 − m2)m2
,

where B4 = log

(
B3

(
m1

(m1+m2)m2(n1−m1)(n2−m2)

)1/2)−n1 log(n1−m1)−n2 log(n2−
m2) − m1 − m2. Define

ρ =
(

(n1 − m1)(n2 − m2)m1m2

(n1m2 + m2
1)(n2m1 + m2

2)

) 1
2

=
(

(θ − f1)(1 − θ − f2) f1 f2
(θ f2 + f 21 )((1 − θ) f1 + f 22 )

) 1
2

,

σ1 =
(

(n1 − m1)m1(n2m1 + m2
2)

n1m2
2 + n2m2

1

) 1
2

=
(

(θ − f1) f1((1 − θ) f1 + f 22 )

θ f 22 + (1 − θ) f 21

) 1
2

,

σ2 =
(

(n2 − m2)m2(n1m2 + m2
1)

n1m2
2 + n2m2

1

) 1
2

=
(

(1 − θ − f2) f2(θ f2 + f 21 )

θ f 22 + (1 − θ) f 21

) 1
2

.

We have

P(I1 = i1, I2 = i2|K = 0)

∼ exp(B4) exp

(

− 1

2(1 − ρ2)

(
z21n

σ 2
1

+ z22n

σ 2
2

− 2ρz1z2n

σ1σ2

))

.

Therefore, ( I1−m1√
n

, I2−m2√
n

) given K = 0 converges in distribution as n → ∞ to the
bivariate normal distribution as stated in (10).
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When K = k > 0, and n → ∞, similarly,

P(I1 = i1, I2 = i2|K = k)

= B1

(
n1

i1

)(
n2

i2

)
i1(i1 + i2 − k − 1)! i2!

(i2 − k)!μ
i1
1 μ

i2
2 λ−i1−i2−kλk

1

/
P(K = k)

∼ B1α
k i1 i k

2

(i1 + i2)k+1

n1!n2!
(n1 − i1)!i1!(n2 − i2)!i2! (i1 + i2)!μi1

1 μ
i2
2 λ−i1−i2

/
P(K = k).

We again write i1 = m1 + z1
√

n, i2 = m2 + z2
√

n, with z1/
√

n → 0, z2/
√

n → 0.
We then have

i1 i k
2

(i1 + i2)k+1 → m1 mk
2

(m1 + m2)k+1 = β(1 − β)k .

We can now use the same approximation as for k = 0 to show that
(

I1−m1√
n

, I2−m2√
n

)

converges to the same bivariate normal distribution. ��

C Appendix: Proofs for Sect. 4.3

Proof of Theorem 6 From (4),

f2
f1 + f2

= m2

m1 + m2
= T λ(1 − β)

T λβ + T λ(1 − β)
= 1 − β.

Take a fixed arbitrary ε ∈ (0,min{ f1, f2}). Fix k > 0. For any i1, i2 satisfying
|i1/n − f1| < ε, |i2/n − f2| < ε and i1 ≥ 1, from (6), noting a+c

b+c ≥ a
b for any

0 < a ≤ b and c > 0, we have

π(k, i1, i2)

π(k − 1, i1, i2)
= i2 − k + 1

i1 + i2 − k

1

α
≤ i2 + 1

i1 + i2

1

α
≤ ( f2 + ε)n + 1

i1 + ( f2 + ε)n

1

α

<
( f2 + ε)n + 1

( f1 − ε)n + ( f2 + ε)n

1

α

= ( f2 + ε)n + 1

( f1 + f2)n

1

α
= f2

( f1 + f2)α

(
1 + ε

f2
+ 1

f2n

)
=1 − β

α

(
1 + ε

f2
+ 1

f2n

)
.

(12)

Therefore,

π(k, i1, i2) < π(0, i1, i2)

(
1 − β

α

)k (
1 + ε

f2
+ 1

f2n

)k

.
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For fixed k0 > 0,

P (K ≥ k0, I1 = i1, I2 = i2) < π(0, i1, i2)

(
1−β
α

)k0 (
1 + ε

f2
+ 1

f2n

)k0

1 −
(
1−β
α

) (
1 + ε

f2
+ 1

f2n

) .

Note the above inequality is valid for any i1, i2 satisfying |i1/n− f1| < ε, |i2/n− f2| <

ε. We have

P (K ≥ k0, |I1/n − f1| < ε, |I2 − f2| < ε)

P (K = 0, |I1/n − f1| < ε, |I2 − f2| < ε)
<

(
1−β
α

)k0 (
1 + ε

f2
+ 1

f2n

)k0

1 −
(
1−β
α

) (
1 + ε

f2
+ 1

f2n

) .

From Theorem 4, there exists an N1 such that, when n > N1,

P(|I1/n − f1| < ε, |I2/n − f2| < ε) > 1 − ε.

Then we have,

P(K ≥ k0) < P ( K ≥ k0| |I1/n − f1| ≥ ε, |I2/n − f2| ≥ ε)

× P (|I1/n − f1| < ε, |I2/n − f2| < ε)

+ P (|I1/n − f1| ≥ ε, |I2/n − f2| ≥ ε)

< P ( K = 0| |I1/n − f1| ≥ ε, |I2/n − f2| ≥ ε)
(
1−β
α

)k0 (
1 + ε

f2
+ 1

f2n

)k0

1 −
(
1−β
α

) (
1 + ε

f2
+ 1

f2n

) (1 − ε) + ε

<

(
1−β
α

)k0 (
1 + ε

f2
+ 1

f2n

)k0

1 −
(
1−β
α

) (
1 + ε

f2
+ 1

f2n

) (1 − ε) + ε.

This upper bound can be arbitrarily close to 0 when choosing ε, n > N1, and k0.
Therefore, we have shown the tightness of K ; that is,

∞∑

k=0

lim
n→∞ P (K = k) = 1. (13)

Using

P(K = k) = P (K = k, |I1/n − f1| < ε, |I2/n − f2| < ε)

+P (K = k, |I1/n − f1| ≥ ε, |I2/n − f2| ≥ ε) ,
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for fixed k > 0, when n > N1, the ratio
P(K=k)

P(K=k−1) is lower bounded by

P (K = k, |I1/n − f1| < ε, |I2/n − f2| < ε)

P (K = k − 1, |I1/n − f1| < ε, |I2/n − f2| < ε) + ε

and upper bounded by

P (K = k, |I1/n − f1| < ε, |I2/n − f2| < ε) + ε

P (K = k − 1, |I1/n − f1| < ε, |I2/n − f2| < ε)
.

For any i1, i2 satisfying |i1/n − f1| < ε, |i2/n − f2| < ε and i1 ≥ 1, in addition to
(12), we have the lower bound

π(k, i1, i2)

π(k − 1, i1, i2)
= i2 − k + 1

i1 + i2 − k

1

α
≥ ( f2 − ε)n − k + 1

i1 + ( f2 − ε)n − k

1

α

>
( f2 − ε)n − k + 1

( f1 + ε)n + ( f2 − ε)n − k

1

α
= ( f2 − ε)n − k + 1

( f1 + f2)n − k

1

α
.

Now we have

π(k, i1, i2)

π(k − 1, i1, i2)
∈
[
( f2 − ε)n − k + 1

( f1 + f2)n − k

1

α
,
( f2 + ε)n + 1

( f1 + f2)n

1

α

]
.

Therefore,

∑
|i1/n− f1|<ε,|i2/n− f2|<ε π(k, i1, i2)

∑
|i1/n− f1|<ε,|i2/n− f2|<ε π(k − 1, i1, i2)

∈
[
( f2 − ε)n − k + 1

( f1 + f2)n−k

1

α
,
( f2 + ε)n+1

( f1 + f2)n

1

α

]
,

that is,

P (K = k, |I1/n − f1| < ε, |I2/n − f2| < ε)

P (K = k − 1, |I1/n − f1| < ε, |I2/n − f2| < ε)

∈
[
( f2 − ε)n − k + 1

( f1 + f2)n − k

1

α
,
( f2 + ε)n + 1

( f1 + f2)n

1

α

]
. (14)

For fixed k, as n → ∞, the lower bound and the upper bound in (14) both converge
to 1−β

α
. Noting that ε can be arbitrarily close to 0, we have

lim
n→∞

P(K = k)

P(K = k − 1)
= 1 − α

β
.

This, together with the tightness (13), proves (8). ��
Proof of Theorem 7 When n1

λ2
− 1

μ1
> n2

λ1
− 1

μ2
, the unscaled K converges to a geo-

metric distribution. As we saw in Theorems 4 and 5, as n → ∞, the distribution
of the scaled deviations of I1, I2 conditional on the value of K = k converges to a
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normal distribution, with mean and variance that do not depend on k. We can now
use the law of total probability and find N0 large enough so that the unconditional
probability distribution of the scaled I1, I2 is close to the specified normal distribution
when n > N0. One more step then shows that, as n → ∞, the conditional distribution
given K is the same, so we have the asymptotic independence. ��

D Appendix: Proofs for Sect. 4.4

Proof of Proposition 1 Let A1(t) be the arrival stream of customers that are served
eventually by servers of type s1, and let I1(t) be, as defined above, the number of idle
servers of type s1. We now compare this to an M /M /n1 system, with type s1 servers,
whose processing times are exponential with rate μ1, and with arrival stream Ã1(t)
which consists of all the arrivals of the stream A1(t) which are customers of type
c2, but excludes arrivals of type c1. Clearly, A1(t) ≥ Ã1(t) a.s. Denote by Ĩ1(t) the
number of idle servers in the M /M /n1 system at time t . It then follows directly from
Theorem 1 of Shanthikumar and Yao [18] that the stationary distributions of I1 and Ĩ1
satisfy Ĩ1 ≥ST I1.

Define similarly an M /M /n2 system with type s2 servers, whose processing times
are exponential with rate μ2 and arrivals Ã2(t) of all the customers of type c1. Then
A2(t) ≤ Ã2(t) a.s. and, by the same argument, Ĩ2 ≤ST I2.

As n becomes large, the numbers of idle servers in the two independent M /M /N
systems ( Ĩ1(∞), Ĩ2(∞)) can be approximated by normal distributions with means

n1 − λ2

μ1
, n2 − λ1

μ2

and standard deviations
√

λ2
μ1

and
√

λ1
μ2
, respectively. Since, in Case I,

c =
(

n2

λ1
− 1

μ2

)
−
(

n1

λ2
− 1

μ1

)
> 0,

we have

(1 − α)

(
n2 − λ1

μ2

)
− α

(
n1 − λ2

μ1

)
= α(1 − α)λc = O(n),

while the standard deviations are O(
√

n). Define the middle point

M =
(
(1 − α)

(
n2 − λ1

μ2

)
+ α

(
n1 − λ2

μ1

))/
2. As n → ∞, we have P(α Ĩ1 ≥ M) =

o
(

1√
n

)
and P((1 − α) Ĩ2 ≤ M) = o

(
1√
n

)
. Therefore,

P(α I1 ≥ (1 − α)I2) ≤ P(α I1 ≥ M) + P((1 − α)I2 ≤ M) ≤ P(α Ĩ1 ≥ M)

+P((1 − α) Ĩ2 ≤ M) = o

(
1√
n

)
.

��
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Proof of Theorem 8 Given i1 ∈ (0, θ), i2 ∈ (0, 1 − θ), and i2 > α
1−α

i1, for 0 ≤ k <

i2,

P(K = kn|I1 = i1n, I2 = i2n)

= B2

(
n1

i1n

)(
n2

i2n

)
i1n(i2n)!(i1n + i2n − kn − 1)!

(i2n − kn)! μ
i1n
1 μ

i2n
2 λ−i1n−i2nα−kn

∼ B3 ((i1 + i2 − k)(i2 − k))−1/2 ((i1 + i2 − k)n)(i1+i2−k)n

((i2 − k)n)(i2−k)n
α−kn,

where B2 = B1/P(I1 = i1n, I2 = i2n), B3 = B2
( n1

i1n

)( n2
i2n

)
i1(i2n)! (μ1

λ

)i1n (μ2
λ

)i2n

exp(−i1n). Choose k to maximize

((i1 + i2 − k)n) log((i1 + i2 − k)n) − ((i2 − k)n) log((i2 − k)n) − kn logα.

The first-order condition is

− log((i1 + i2 − k)n) + log((i2 − k)n) − logα = 0.

Therefore, the optimal value is

k = k̄ = i2 − α

1 − α
i1.

Given K = k̄n + x
√

n,

((i1 + i2)n − (k̄n + x
√

n)) log((i1 + i2)n − (k̄n + x
√

n))

= ((i1 + i2 − k̄)n) log((i1 + i2 − k̄)n) − x
√

n(log((i1 + i2 − k̄)n) + 1)

+ x2

2(i1 + i2 − k̄)
, (i2n − (k̄n + x

√
n)) log(i2n − (k̄n + x

√
n))

= ((i2 − k̄)n) log((i2 − k̄)n) − x
√

n(log((i2 − k̄)n) + 1) + x2

2(i2 − k̄)
.

Therefore,

log
P(K = k̄n + x

√
n|I1 = i1n, I2 = i2n)

P(K = k̄n|I1 = i1n, I2 = i2n)
∼ − i1x2

2(i1 + i2 − k̄)(i2 − k̄)

= − x2

2αi1/(1 − α)2
.

Therefore, K−k̄n√
n

∣∣∣ I1 = i1n, I2 = i2n is a normal distributionwithmean 0 and variance

σ 2
K = αi1

(1 − α)2
.

��

123



Queueing Syst (2018) 88:27–71 63

Proof of Theorem 9 From Theorem 8, we know that, as n → ∞, the percentage of
type c1 customers served by type s1 servers goes to 0 faster than O( 1√

n
). Therefore, as

n → ∞, the two server pools are decoupled in the sense that type s1 servers serving
type c1 customers do not affect the fluid and diffusion limits of the decoupled systems.
From the proof of Proposition 1, we know

(
I1− (n1− λ2

μ1
)
)
/
√

n converges to a normal

distribution with mean 0 and variance λ2
nμ1

; independently,
(
I2 − (n2 − λ1

μ2
)
)
/
√

n

converges to a normal distribution with mean 0 and variance λ1
nμ2

. ��

E Appendix: Proofs for Sect. 4.5

Proof of Proposition 2 We want to show P(K (α2)=k)
P(K (α1)=k)

is decreasing in k. Note that

P(K (α) = k) =
n1∑

i1=1

n2∑

i2=k

π(k, i1, i2) +
k∑

i2=1

π(k, 0, i2) + π(k, 0, 0).

From Theorem 2, given k, for any i1 ∈ {1, . . . , n1}, i2 ∈ {k, . . . , n2},

πα2(k, i1, i2)

πα1(k, i1, i2)
= B1(α2)

B1(α1)

(
α1

α2

)k

,

which is decreasing in k; for any i2 = {1, . . . , k},

πα2(k, 0, i2)

πα1(k, 0, i2)
= B1(α2)

B1(α1)

n−i2∏

j=n−k

μ1n1 + μ2( j − n1) − (1 − α1)λ

μ1n1 + μ2( j − n1) − (1 − α2)λ

(
α1

α2

)i2
,

which is decreasing in k;

πα2(k, 0, 0)

πα1(k, 0, 0)
= B1(α2)

B1(α1)

n−1∏

j=n−k

μ1n1 + μ2( j − n1) − (1 − α1)λ

μ1n1 + μ2( j − n1) − (1 − α2)λ
,

which is decreasing in k. Therefore, P(K (α2)=k)
P(K (α1)=k)

is decreasing in k, that is,

P(K (α1) = k + 1)

P(K (α2) = k + 1)
>

P(K (α1) = k)

P(K (α2) = k)
,

meaning K (α1) is larger than K (α2) in the likelihood ratio order, implying K (α1)

stochastically dominates K (α2). ��
Proof of Corollary 1 The condition n2

λ1
− 1

μ2
= n1

λ2
− 1

μ1
is equivalent to α = 1 − β.

By Proposition 2 Kα1 ≥ST K1−β ≥ST Kα2 whenever α1 < 1 − β < α2. But, for all
1 − β < α2, Kα2/n → 0, and for α1 < 1 − β, limα1→1−β limn→∞ Kα1/n = 0, and
the corollary follows. ��
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Proof of Theorem 10 We prove this theorem in two steps:

• Prove that fluid limits are limn→∞ I1/n = f1,k , limn→∞ I2/n = f2,k .
• Prove the central limit behavior.

When i1 ∈ [m1 − εn, m1 + εn] and i2 ∈ [m2 − εn, m2 + εn], and n grows large, we
can use Stirling’s approximation:

P(I1 = i1, I2 = i2|K = kn)

= B2,k

(
n1

i1

)(
n2

i2

)
i1i2!(i1 + i2 − kn − 1)!

(i2 − kn)! μ
i1
1 μ

i2
2 λ−i1−i2α−kn

= B2,k
i1

i1 + i2 − kn

n1!n2!(i1 + i2 − kn)!
(n1 − i1)!i1!(n2 − i2)!(i2 − kn)!

(μ1

λ

)i1 (μ2

λ

)i2
α−kn

∼ B3,k

(
i1

(i1 + i2 − kn)(n1 − i1)(n2 − i2)(i2 − kn)

)1/2

(i1 + i2 − kn)i1+i2−kn exp(−i1 − i2)

(n1 − i1)n1−i1 i i1
1 (n2 − i2)n2−i2(i2 − kn)i2−kn

(μ1

λ

)i1 (μ2

λ

)i2

= B3,k

(
i1

(i1 + i2 − kn)(n1 − i1)(n2 − i2)(i2 − kn)

)1/2

exp
(
(i1 + i2 − kn) log(i1 + i2 − kn) − (n1 − i1) log(n1 − i1)

− i1 log(i1) − (n2 − i2) log(n2 − i2) − (i2 − kn) log(i2 − kn)

+ i1 log
(μ1

λ

)
+ i2 log

(μ2

λ

)
− i1 − i2

)

= B4,k exp
(
n
(
(x1 + x2 − k) log(x1 + x2 − k) − (θ − x1) log(θ − x1)

− x1 log(x1) − (1 − θ − x2) log(1 − θ − x2)

− (x2 − k) log(x2 − k) + x1 log
(μ1

r

)
+ x2 log

(μ2

r

)
− x1 − x2

))
,

where B2,k = B1/P(K = kn), B3,k = B2,kn1!n2!(2π)− 3
2 enα−kn , B4,k =

B3n−n−3/2
(

x1
(x1+x2−k)(θ−x1)(1−θ−x2)(x2−k)

)1/2
, x1 = i1

n , x2 = i2
n . We define

F(x1, x2) = (x1 + x2 − k) log(x1 + x2 − k) − (θ − x1) log(θ − x1)

− (1 − θ − x2) log(1 − θ − x2) + x1(logμ1 − log r − log x1)

+x2(logμ2 − log r − log x2) − x1 − x2.

The first-order derivatives on x1 and x2 are

∂ F

∂x1
= log(x1 + x2 − k) + log(θ − x1) − log(x1) − log

μ1

r
= 0,

∂ F

∂x2
= log(x1 + x2 − k) + log(1 − θ − x2) − log(x2 − k) − log

μ2

r
= 0.
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We can solve

x1 = f1,k, x2 = f2,k .

Look at the second-order derivatives:

∂2F

∂x21
= − 1

θ − x1
− 1

x1
+ 1

x1 + x2 − k
< 0,

∂2F

∂x22
= − 1

1 − θ − x2
− 1

x2 − k
+ 1

x1 + x2 − k
< 0,

∂2F

∂x1∂x2
= 1

x1 + x2 − k
,

∂2F

∂x21

∂2F

∂x22
−
(

∂2F

∂x1∂x2

)2
= x21 (1 − θ − k) + (x2 − k)2θ

x1(x2 − k)(x1 + x2 − k)(θ − x1)(1 − θ − x2)
> 0.

The Hessian matrix is negative definite. Therefore, F(x1, x2) is strictly concave on
(0, θ) × (0, 1 − θ) and reaches its unique global maximum at ( f1,k, f2,k). Similar to
the proof of Theorem 4, we can show that

lim
n→∞

I1
n

→ f1,k, lim
n→∞

I2
n

→ f2,k .

To obtain the asymptotic distribution of I1, I2 as n → ∞, we only need to consider
i1, i2 for which i1/n → f1,k and i2/n → f2,k . Similar to the proof of Theorem 5, we
write i1 = f1,kn + z1

√
n, i2 = f2,kn + z2

√
n, with z1/

√
n → 0, z2/

√
n → 0.

P(I1 = i1, I2 = i2|K = kn) ∼
B3,k

(
i1

(i1 + i2 − kn)(n1 − i1)(n2 − i2)(i2 − kn)

)1/2

exp
(
(i1 + i2 − kn) log(i1 + i2 − kn) − (n1 − i1) log(n1 − i1)

− i1 log(i1) − (n2 − i2) log(n2 − i2) − (i2 − kn) log(i2 − kn)

+ i1 log
(μ1

λ

)
+ i2 log

(μ2

λ

)
− i1 − i2

)
.

From the definitions of f1,k and f2,k in Theorem 10,

(θ − f1,k)μ1

λ f1,k
= (1 − θ − f2,k)μ2

λ( f2,k − k)
= 1

n( f1,k + f2,k − k)
,
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Therefore, similar to the proof of Theorem 5, we can obtain

log (P(I1 = i1, I2 = i2|K = kn)) ∼ B5,k + (z1 + z2)2

2( f1,k + f2,k − k)

− z21θ

2(θ − f1,k) f1,k
− z22(1 − θ − k)

2(1 − θ − f2,k)( f2,k − k)
, (15)

where B5,k = log

(
B3,k

(
f1,k

( f1,k+ f2,k−k)( f2,k−k)(θ− f1,k )(1−θ− f2,k )

)1/2) − 5
2n log n −

n(θ log(θ − f1,k) + (1 − θ) log(1 − θ − f2,k) + f1,k + f2,k) + kn(log( f2,k − k) −
log( f1,k + f2,k − k)). Therefore, organizing the formula, we have

(
I1 − f1,kn√

n
,

I2 − f2,kn√
n

∣∣∣∣ K = kn

)
⇒ N

(
0,

[
σ 2
1,k ρkσ1,kσ2,k

ρkσ1,kσ2,k σ 2
2,k

])
,

where

ρk =
(

f1,k( f2,k − k)(θ − f1,k)(1 − θ − f2,k)

( f 21,k + ( f2,k − k)θ)(( f2,k − k)2 + f1,k(1 − θ − k))

) 1
2

,

σ1,k =
(

(θ − f1,k) f1,k(( f2,k − k)2 + f1,k(1 − θ − k))

f 21,k(1 − θ − k) + ( f2,k − k)2θ

) 1
2

,

σ2,k =
(

(1 − θ − f2,k)( f2,k − k)( f 21,k + ( f2,k − k)θ)

f 21,k(1 − θ − k) + ( f2,k − k)2θ

) 1
2

.

��

Proof of Theorem 11 The density of the highest point of the approximating binormal
distribution in Theorem 10 is

1
√
2π(1 − ρ2

k )σ1,kσ2,k

=
√

( f2,k − k)2θ + f 21,k(1 − θ − k)

2π f1,k( f2,k − k)(θ − f1,k)(1 − θ − f2,k)( f1,k + f2,k − k)
.

For a large n, letting �x� be the ceiling of a real number x , and from Theorem 10,

P(I1 = � f1,kn�, I2 = � f2,kn�|K = kn)

∼ 1

n

√
( f2,k − k)2θ + f 21,k(1 − θ − k)

2π f1,k( f2,k − k)(θ − f1,k)(1 − θ − f2,k)( f1,k + f2,k − k)
.
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Combined with (15), we have

B5,k ∼ − log n + 1

2
log

(
( f2,k − k)2θ + f 21,k(1 − θ − k)

2π f1,k( f2,k − k)(θ − f1,k)(1 − θ − f2,k)( f1,k + f2,k − k)

)

.

Recall that

B5,k = log

(

B3,k

(
f1,k

( f1,k + f2,k − k)( f2,k − k)(θ − f1,k)(1 − θ − f2,k)

)1/2)

− 5

2
n log n

− n(θ log(θ − f1,k) + (1 − θ) log(1 − θ − f2,k) + f1,k + f2,k)

+ kn(log( f2,k − k) − log( f1,k + f2,k − k))

= − log(P(K = kn)) + log
(

B1n1!n2!(2πn)−3/2
)

+ 1

2
log

(
f1,k

( f1,k + f2,k − k)( f2,k − k)(θ − f1,k)(1 − θ − f2,k)

)

+ n − 5

2
n log n − n(θ log(θ − f1,k) + (1 − θ) log(1 − θ − f2,k) + f1,k + f2,k)

+ kn(log( f2,k − k) − log( f1,k + f2,k − k)) − kn logα.

Therefore,

log P(K = kn) ∼ B6 + log( f1,k) − 1

2
log
(
( f2,k − k)2θ + f 21,k(1 − θ − k)

)

− n
(
θ log(θ − f1,k) + (1 − θ) log(1 − θ − f2,k) + f1,k + f2,k − k log( f2,k − k)

+ k log( f1,k + f2,k − k) + k logα
)
,

where

B6 = log
(

B1n1!n2!(2π)−1
)

+ n − 5

2
n log n − 3

2
log n.

Define

G(k) = θ log(θ − f1,k) + (1 − θ) log(1 − θ − f2,k) + f1,k + f2,k
− k log( f2,k − k) + k log( f1,k + f2,k − k) + k logα.

From Theorem 10, we can denote k by T ,

k = (μ1 − μ2)θ − (1 + μ1T )(r − μ2 + rμ2T )

μ2(1 + μ1T )
.

Note that T is nonnegative and no larger than the value in (3), denoted by T . Note
also that f1,k = T θ

T +1/μ1
, f2,k = T (1−θ−k)

T +1/μ2
+ k. Algebra gives

dG

dT
=
(
rμ2(1 + μ1T )2 + μ1(μ1 − μ2)θ

) (
log
(

r − μ1θ
1+μ1T

)
− log(αr)

)

μ2(1 + μ1T )2
.
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Solving dG
dT

= 0 gives

T = θ

(1 − α)r
− 1

μ1
.

If

n2

λ1
− 1

μ2
<

n1

λ2
− 1

μ1
,

then

T <
n1

λ2
− 1

μ1
= θ

(1 − α)r
− 1

μ1
,

and G(T ) is minimized at T � = T ; otherwise,

T ≥ n1

λ2
− 1

μ1
= θ

(1 − α)r
− 1

μ1
,

and G(T ) is minimized at T � = θ
(1−α)r − 1

μ1
. When G(T ) is minimized at T � = T ,

the corresponding k� = 0, we go back to the pooled system case; when G(T ) is
minimized at T � = θ

(1−α)r − 1
μ1
, the corresponding

k� = αr

(
n2

λ1
− 1

μ2
− n1

λ2
+ 1

μ1

)
.

By now we have shown that, for any ε > 0,

lim
n→∞ P

(∣∣∣∣
K

n
− k�

∣∣∣∣ > ε

)
= 0.

Therefore,

lim
n→∞ P

(∣∣∣∣
I1
n

− f �
1

∣∣∣∣ > ε

)
= 0, lim

n→∞ P

(∣∣∣∣
I2
n

− f �
2

∣∣∣∣ > ε

)
= 0,

f �
1 = θ − (1 − α)r

μ1
, f �

2 = 1 − θ − αr

μ2
.

This is consistent with our intuitive calculation in Sect. 3.
Suppose T changes from T � = θ

(1−α)r − 1
μ1

to T � + x/
√

n; then f1,k changes

δ f1 = f
′
1,k

x√
n

+ f
′′
1,k

x2
2n + o

( 1
n

)
, f2,k changes δ f2 = f

′
2,k

x√
n

+ f
′′
2,k

x2
2n + o

( 1
n

)
, and k

changes δk = k
′ x√

n
+ k

′′ x2
2n + o

( 1
n

)
,

123



Queueing Syst (2018) 88:27–71 69

nG(T ) = n1 log(θ − f1,k) + n2 log(1 − θ − f2,k) + f1,kn + f2,kn − kn log( f2,k − k)

+ kn log( f1,k + f2,k − k) + kn logα

= n1

(

log(θ − f �
1 ) − δ f1

θ − f �
1

− (δ f1)
2

2(θ − f �
1 )2

)

+ n2

(

log(1 − θ − f �
2 ) − δ f2

(1 − θ − f �
2 )

− (δ f2)
2

2(1 − θ − f �
2 )2

)

+ ( f �
1 + f �

2 )n + (δ f1 + δ f2)n + (k� + δk
)

n logα

− (k� + δk
)

n

(

log( f �
2 − k�) + δ f2 − δk

f �
2 − k�

− (δ f2 − δk)2

2( f �
2 − k�)2

)

+ (k�+δk
)

n

(

log( f �
1 + f �

2 − k�)+ δ f1+δ f2 − δk

f �
1 + f �

2 − k�
− (δ f1 + δ f2 − δk)2

2( f �
1 + f �

2 − k�)2

)

+ o(1).

The coefficient of the x
√

n term is

− θ f
′
1,k

θ − f �
1

− (1 − θ) f
′
2,k

1 − θ − f �
2

+ f
′
1,k + f

′
2,k + k

′
logα − k

′
log
(

f �
2 − k�

)

− ( f
′
2,k − k

′
)k�

f �
2 − k�

+ k
′
log
(

f �
1 + f �

2 − k�
)+

(
f

′
1,k + f

′
2,k − k

′)
k�

f �
1 + f �

2 − k�
,

which equals 0. The O(1) term is

⎛

⎜
⎝−

(
f

′
1,k

)2
θ

2
(
θ − f �

1

)2 − θ f
′′
1,k

2
(
θ − f �

1

) −
(

f
′
2,k

)2
(1 − θ)

2
(
1 − θ − f �

2

)2 − (1 − θ) f
′′
2,k

2
(
1 − θ − f �

2

)

+k
′′

2

(
logα − log( f �

2 − k�) + log
(

f �
1 + f �

2 − k�
))

+ f
′′
1,k + f

′′
2,k

2
−
(

f
′
2,k − k

′)
k

′

f �
2 − k�

+
(

f
′
2,k − k

′)2
k�

2
(

f �
2 − k�

)2 −
k�
(

f
′′
2,k − k

′′)

2
(

f �
2 − k�

)

+
(

f
′
1,k + f

′
2,k − k

′)
k

′

f �
1 + f �

2 − k�
−
(

f
′
1,k + f

′
2,k − k

′)2
k�

2
(

f �
1 + f �

2 − k�
)2 +

k�
(

f
′′
1,k + f

′′
2,k − k

′′)

2
(

f �
1 + f �

2 − k�
)

⎞

⎟
⎠ x2.

The above equals

(1 − α)2r2((1 − α)2r(μ1 − μ2) + μ1μ2θ)

2αμ1μ2θ2
x2.
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Noting that

k
′ ∣∣

T =T � = −λ((1 − α)2r(μ1 − μ2) + μ1μ2θ)

μ1μ2θ
,

the change from k� to k� + y
√

n gives

y = k
′ ∣∣

T =T � x .

Therefore, we have

P(K = k�n + y
√

n)

P(K = k�)
∼ (1 − α)2r2((1 − α)2r(μ1 − μ2) + μ1μ2θ)

2αμ1μ2θ2

(
− μ1μ2θ

λ((1 − α)2r(μ1 − μ2) + μ1μ2θ)
y

)2

= y2(1 − α)2μ1μ2

2α((1 − α)2r(μ1 − μ2) + μ1μ2θ)
.

Therefore, as n → ∞, the variance of K−k�n√
n

converges to

σ 2
K = α((1 − α)2r(μ1 − μ2) + μ1μ2θ)

(1 − α)2μ1μ2
= α

(
r

(
1

μ2
− 1

μ1

)
+ θ

(1 − α)2

)
;

K − k�n√
n

→ N
(
0, σ 2

K

)
.

This is consistent with our calculation in Sect. 4.4.
If

n2

λ1
− 1

μ2
= n1

λ2
− 1

μ1
,

k� = 0, the above calculation is valid only for x < 0, and K√
n
converges to a truncated

normal distribution. The density function is

f K√
n
(k) = 2

√
2σ 2

K π

exp

(

− k2

2σ 2
K

)

,∀k ≥ 0.

Note that P(K = 0) ∼ 2

n
√
2σ 2

K π
→ 0 as n → ∞.

If

n2

λ1
− 1

μ2
<

n1

λ2
− 1

μ1
,
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k� = 0, the above calculation is no longer valid because the coefficient of the x
√

n term
is nonzero. From Theorem 6 we know that K converges to a geometric distribution
when n → ∞. ��
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