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Abstract Motivated by applications in biological systems, we show for certain mul-
ticlass queueing networks that time-dependent distributions for the multiclass queue-
lengths can have a factorized form which reduces the problem of computing such
distributions to a similar problem for related single-class queueing networks. We give
an example of the application of this result to an enzymatic processing network.
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1 Introduction

Recent advances in single-cell experimental techniques in molecular biology have
provided strong impetus for the development and analysis of dynamic stochastic
models for intracellular reaction networks. Of particular importance is the need to
allow for the fact that some molecular species, such as transcripts, transcription fac-
tors, or housekeeping enzymes, may only be present in small numbers. Frequently,
Markov chain models accompanied by discrete-event simulation [12] are used for
such stochastic modeling. However, the computational burden grows rapidly with the
complexity of the systems being modeled. Accordingly, there is considerable interest
in methods that reduce the dimensionality of such models. Some authors have ex-
plored a multiscaling approach, for example, see [3] for recent work on a model of
intracellular viral kinetics. We have been investigating an alternative approach using
dimension reduction results for multiclass queueing networks.

In recent work [17], we used results from Kelly [16] on the factorized form of
the stationary distribution for a certain multiclass queue to study the steady-state be-
havior of a stochastic model for coupled enzymatic processing of multiple protein
species. In this application, protein species corresponded to job classes, copies of
an enzyme were analogous to servers, and dilution corresponded to reneging. We
developed formulas for correlations between the numbers of molecules of different
protein species in steady-state in terms of the steady-state Fano factor (variance di-
vided by the mean) for the total number of molecules in the system. Exploration of
these formulae for sample parameters showed that the correlations could be tuned by
adjusting the overall exogenous arrival rate. In particular, we observed that for small
dilution rate, the correlations peaked near the balance point where the total rate of in-
flux of new proteins into the system was equal to the maximum processing capacity
of the enzymatic processors. In the current paper, motivated by the desire to consider
time-dependent and network analogues of the stochastic model studied in [17], we
extend the single-station multiclass queueing result to certain networks of multiclass
queues and to time-dependent as well as stationary distributions. In particular, for
certain multiclass queueing networks, we show that time-dependent (and stationary)
distributions for the queue compositions can have a factorized form which reduces
the problem of computing these distributions to a similar problem for related single-
class queueing networks. We think of this as a kind of state space collapse [6, 21] at
the level of distributions. We illustrate the use of this result with an example of an
enzymatic processing network and explore tuning of correlations there, by adjusting
an internal processing rate parameter.

Our paper is organized as follows. We define our multiclass queueing network
model precisely in Sect. 2. A Markovian state descriptor, S, for this model tracks the
ordered list of jobs of multiple types waiting for service at each station. Under our
model assumptions, the derived process, N , that tracks the total number of jobs at
each station is Markov, being a multidimensional birth–death process. The forward
Kolmogorov equations for the evolution of the transition probabilities of S and N are
given in Sect. 3. Our main result is stated and proved in Sect. 4. This result is codified
in Theorem 4.1, which states that if the initial distribution of S has a certain factorized
form, then this form is preserved in the time-dependent distributions of S. This re-
duces the problem of computing such distributions to the equivalent problem for the
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simpler process N . In particular, this implies that if a stationary distribution for N is
known, then a stationary distribution for S follows immediately. We deduce from our
main result that correlations between numbers of jobs of different types at a given
station can be computed in terms of the Fano factor for the total number of jobs at the
station. In Sect. 5, we apply our results to an example of an enzymatic processing net-
work. To simplify our presentation, we first develop our main results when the arrival
rates are constant, and the service effort, effort allocations, and routing probabilities
at a station depend only on the current number of jobs at the station. We then observe
(see Remark 1 following Theorem 4.1) that the same derivations extend immediately
to the case where these parameters can depend on time and on the numbers of jobs
at each of the stations in the network, provided that the arrival rates at each station
still satisfy a key proportionality relation (1). The case of time-dependent rates is of
particular interest for applications to biological systems involving signalling. We plan
to pursue such applications involving time-dependent internal processing rates in fu-
ture work. The relationship between the multiclass queue-length and waiting time
processes is a further topic that we have not addressed, but which is worthy of inves-
tigation, especially for queues with random order of service (see [5] and references
therein for a start on this topic).

2 Multiclass queueing network model

The multiclass queueing networks considered here have many similarities and a few
important differences from the models considered in Sect. 3.1 of Kelly’s book [16] on
Reversibility and Stochastic Networks. To help the reader appreciate the commonali-
ties and differences, we give a description of these here. A full detailed description of
the multiclass queueing networks that we consider is given further below. In terms of
similarities, in our model jobs will remain of one type throughout their entire sojourn
in the network, all jobs at a given station form an ordered queue, exogenous arrivals
to the queue occur according to independent Poisson arrival processes (one for each
type), and these arrivals are inserted into the queue in such a way that the insertion
position does not depend on job type, and service effort provided to a job will be
blind to its type although this effort could depend on the position of the job in the
queue. In terms of differences, in contrast to the deterministic routing depending on
type in [16], we allow routing to be probabilistic, and our routing probabilities can
depend on the state of the queue that a job is leaving from, although the probabil-
ities must be blind to type. Thus, our model can incorporate reneging of jobs from
a queue where the reneging rate and other routing probabilities can depend on the
total number of jobs in the queue, but not on the composition in terms of types. An
important assumption is that we allow arrivals of any type at any station; however, at
each station with nonzero arrivals, the ratio of the arrival rates for different types is
fixed and the same for all stations. This is a restrictive assumption in general but is
not an additional restriction if arrivals only occur at one station.

We consider a multiclass queueing network model with the following structure.
The network has finitely many stations labeled by k = 1, . . . ,K . Jobs enter the net-
work from outside, receive processing at a succession of stations in the network, and



316 Queueing Syst (2011) 69:313–328

eventually depart the network. We assume that there are finitely many types of job
labeled by i = 1, . . . , I . A job remains of the same type during its entire sojourn
through the network. At each station there is a single ordered queue of jobs to be
processed by the station; this queue typically contains multiple types of job. Jobs are
kept in the queue while they are being processed. For station k, jobs of type i arrive
to the station from outside the network according to a Poisson process with rate λk

i .
Each time a job visits a station, it requires an exponentially distributed amount of
“service” with a mean of one. When a job arrives to station k (whether from inside or
outside the network) and there are n jobs in the queue there already, with probability
δk(�, n+1), the new job is placed in position � in the updated queue, and if � ≤ n, jobs
previously in positions �, � + 1, . . . , n move to positions � + 1, � + 2, . . . , n + 1, re-
spectively. Here δk(�, n+1) ∈ [0,1] for � = 1, . . . , n+1, and

∑n+1
�=1 δk(�, n+1) = 1.

When there are n jobs in the queue at station k, total “service effort” is supplied to
jobs at station k at the rate φk(n), where φk(n) ≥ 0. This is the overall rate at which
jobs are departing from station k when there are n jobs there. A proportion γ k(�,n)

of this effort is directed to the job in position �, where γ k(�,n) ∈ [0,1] for each
� ∈ {1, . . . , n}, and

∑n
�=1 γ k(�,n) = 1. A job departs from the queue at station k

whenever the amount of service effort it has received is equal to its random expo-
nentially distributed service requirement. When a job in position � ∈ {1, . . . , n} at
station k departs and there were n jobs at the station just before the departure, the
job goes to station l with probability βk

l (�, n), l = 1, . . . ,K , and it departs the sys-
tem with probability βk

0 (�, n). Here βk
l (�, n) ∈ [0,1] for l = 0,1, . . . ,K , βk

k = 0, and
∑K

l=0 βk
l (�, n) = 1. (Here, as in [16], with the assumption that βk

k = 0, we do not
allow immediate self-feedback to a station.) When the job departs from position � in
the queue, the jobs in positions � + 1, . . . , n move to positions �, � + 1, . . . , n − 1,
respectively. We assume that the interarrival times for all exogenous arrivals and all
service times are mutually independent.

An important assumption in our setup is that the parameters δk,φk, γ k,βk do not
depend on the type of job being handled, although they can depend on the total num-
ber of jobs in the queue at station k and δk, γ k,βk can also depend on the position
of the job in the queue. A single-station model (in which case βk is not needed)
with this type-blind property is sometimes referred to as a multiclass homogeneous
queue of Kelly type [7]. As far as routing is concerned, in contrast to the situation
in [16] which has deterministic routing of jobs depending on type, our routing pa-
rameter βk does not depend on type but can be state-dependent by varying with the
total number of jobs in the queue at station k or even with the position in the queue
of the job being routed. This allows, for example, for the possibility that a job may
leave a station either due to completion of its processing or due to reneging and that
its routing can depend on which mechanism caused the job to leave. An important
additional assumption for our analysis to hold is that there are strictly positive prob-
abilities pi, i = 1, . . . , I , satisfying

∑I
i=1 pi = 1 such that for each k = 1, . . . ,K ,

i = 1, . . . , I ,

λk
i = piΛ

k, (1)

where Λk = ∑I
i=1 λk

i is the total exogenous arrival rate for station k, and this is
assumed to be strictly positive for at least one k. In other words, we assume that
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there are nonzero arrivals to at least one station and the proportion of the arrivals to
a given station that are due to each type is the same for all stations. If the exogenous
arrivals occur only at a single station k and λk

i > 0 for all i, then the assumption
is automatically satisfied; this situation arises, for example, from a reentrant line in
manufacturing applications.

As an illustration, we describe how FIFO stations that have finitely many servers
processing jobs, independent reneging of jobs, and probabilistic routing of processed
jobs, can be accommodated in this modeling framework. Suppose that for each k,
station k has Lk servers available for processing jobs in FIFO order with i.i.d. expo-
nential processing times having mean 1/μk , that independently each job at the sta-
tion (whether being processed or awaiting processing) can renege, where the reneg-
ing times are i.i.d. exponential random variables with mean 1/κk , and that, after
completion of processing by a server at station k, a job goes to station l �= k with
probability pkl , or if a job at station k reneges before it is processed by a server, it
leaves the system. This situation can be modeled by setting δk(n + 1, n + 1) = 1
(for FIFO order), φk(n) = min(n,Lk)μk + nκk (combining the service effects of
processing and reneging), γ k(�,n) = (μk + κk)/φ

k(n) for � = 1, . . . ,min(n,Lk)

and γ k(�,n) = κk/φ
k(n) for � = Lk + 1, . . . , n if n > Lk , and for l �= k and l ∈

{1, . . . ,K}, βk
l (�, n) = pklμk/(μk + κk) for � = 1, . . . ,min(n,Lk) and βk

l (�, n) = 0
for � = Lk + 1, . . . , n if n > Lk .

For k = 1, . . . ,K and t ≥ 0, let Nk(t) denote the total number of jobs (of all types)
that are at station k at time t , and let Sk(t) denote the vector of length Nk(t) where the
�th component of this vector is the type (a member of the set {1, . . . , I }) of the job that
is in position � in the queue at station k at time t . (A vector of length zero corresponds
to an empty queue.) Let N = (N1, . . . ,NK) and S = (S1, . . . , SK). Then both N and
S are continuous-time Markov chains. The process N is a K-dimensional birth–death
process. We let N and S denote the state spaces for N and S, respectively, and we
let n = (n1, . . . , nK) and s = (s1, . . . , sK) denote generic values in these two spaces.

3 Kolmogorov forward equations

Henceforth, we assume that the multidimensional birth–death process N does not
explode in finite time. Since there are only finitely many states of S associated with
each state of N and N is assumed not to explode, it follows that S does not explode
in finite time.

Let πo be an initial probability distribution for S, and let νo be the associated
initial probability distribution for N . Then,

πt (s) = P
(
S(t) = s

)
, s ∈ S, (2)

specifies the distribution for S at time t , and

νt (n) = P
(
N(t) = n

)
, n ∈ N , (3)

specifies the associated distribution for N at time t .
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Then, since S does not explode in finite time, π is the unique probability
distribution-valued function satisfying the following Kolmogorov forward equation
(see, for example, Chap. 2.2 of [2]). For a Markov chain associated with a biochemi-
cal reaction network, this equation is referred to as the chemical master equation,

∂πt (s)
∂t

=
∑

s̃∈S
πt (s̃)Γ (s̃, s) for all s ∈ S, t > 0, (4)

with the initial condition π0(s) = πo(s) for all s ∈ S , where Γ is the infinitesimal
generator for S given by

Γ (s̃, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk

sk
�

δk
(
�,nk

)
if s̃ = s−,k,� for some

� ∈ {
1, . . . , nk

}
, nk = ∣

∣sk
∣
∣ > 0,

and k ∈ {1, . . . ,K},
φk

(
nk + 1

)
γ k

(
�,nk + 1

)

× βk
l

(
�,nk + 1

)
δl

(
m,nl

)
if s̃ = st,k,�,l,m for some

� ∈ {
1, . . . , nk + 1

}
,

m ∈ {
1, . . . , nl

}
, nl = ∣

∣sl
∣
∣ > 0,

k, l ∈ {1, . . . ,K}, k �= l,

φk
(
nk + 1

)
γ k

(
�,nk + 1

)

× βk
0

(
�,nk + 1

)
if s̃ = s+,k,�,i for some

i ∈ {1, . . . , I },
� ∈ {

1, . . . , nk + 1
}
, and

k ∈ {1, . . . ,K},
0 for all other s̃ �= s,
−∑

u�=s Γ (s,u) if s̃ = s.

When nk = |sk| > 0, s−,k,� denotes the modification of s obtained by deleting the
entry in sk in position �. Then a transition from s̃ = s−,k,� to s corresponds to an
exogenous arrival of a type sk

� job to station k which is inserted in position �. When
nl = |sl | > 0, st,k,�,l,m denotes the modification of s obtained by deleting the entry in
sl in position m and inserting an entry of type sl

m in position � in sk (and moving the
elements of sk previously in positions �, . . . , nk up by one). Then a transition from
s̃ = st,k,�,l,m to s corresponds to a departure from position � in the queue at station k,
which is then inserted into position m in the queue at station l. The quantity s+,k,�,i

denotes the modification of s obtained by inserting a job of type i in position � in sk

(and moving the elements of sk previously in positions �, . . . , nk up by one). A transi-
tion from s̃ = s+,k,�,i to s corresponds to a departure of a job of type i from position �

in the queue at station k, where that departing job exits the network. The off-diagonal
entries in Γ correspond to the infinitesimal rates for transitions between states corre-
sponding to exogenous arrivals, transitions within the network due to departures from
one station going to another station, and departures from the network. As usual, the
row sums of Γ are zero and so one can determine the (negative) diagonal terms from
the values of the off-diagonal terms.
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Similarly, by the nonexplosion condition that we assumed on N , ν is the unique
probability distribution-valued function satisfying the Kolmogorov forward equa-
tion [2]:

∂νt (n)

∂t
=

∑

ñ∈N
νt (ñ)�(ñ,n) for all n ∈ N , t > 0, (5)

with the initial condition ν0(n) = νo(n) for all n ∈ N , where � is the infinitesimal
generator for N given by

�(ñ,n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Λk if ñ = n − ek and nk > 0,

φk
(
nk + 1

)
β̃k

l

(
nk + 1

)
if ñ = n + ek − el and nl > 0, l �= k,

φk
(
nk + 1

)
β̃k

0

(
nk + 1

)
if ñ = n + ek,

0 for all other ñ �= n,

−∑
m�=n �(n,m) if ñ = n,

(6)

where ek is the unit vector in the direction of the kth coordinate axis, and

β̃k
l

(
nk + 1

) =
nk+1∑

�=1

γ k
(
�,nk + 1

)
βk

l

(
�,nk + 1

)
, l = 0,1, . . . ,K, (7)

is the probability that, when there are nk + 1 jobs at station k, the next departure
from station k will go to station l. Here going to station 0 corresponds to exiting the
system.

4 Factorized time-dependent distributions

We now show that if the initial probability distribution for S has the factorized form

πo(s) = νo(n)

K∏

k=1

nk
∏

�=1

psk
�
, s ∈ S, (8)

where νo is a fixed (but arbitrary) initial probability distribution for N and nk = |sk|,
k = 1, . . . ,K , then the distribution of S at time t has a similar factorized form. Recall
that {pi, i = 1, . . . , I } are the fixed exogenous arrival proportions for the various
types of jobs. (Here a product over an empty index set is defined to be equal to one.)
Our factorization result is the following. A proof is given in the Appendix.

Theorem 4.1 Suppose that the continuous-time Markov chain S is initialized with
the distribution given by (8) and let {νt (n),n ∈ N , t ≥ 0} specify the distribution of
N as a function of time when its initial distribution is given by {νo(n),n ∈ N }.

Then the distribution for S at time t is given by

πt (s) = νt (n)

K∏

k=1

nk
∏

�=1

psk
�
, s ∈ S, t ≥ 0, (9)
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where nk = |sk|, k = 1, . . . ,K . In particular, this result applies if the system starts
empty. Furthermore, if N is irreducible and positive recurrent with steady-state dis-
tribution ν∗, then the steady-state distribution for S is given by (9) with ν∗ in place
of νt .

Remarks

1. The astute reader will observe that our proof of the factorized form for the time-
dependent distributions (9) readily extends to situations where for k = 1, . . . ,K ,
δk,φk, γ k,βk are allowed to depend on time and on n (rather than just on nk), and
the arrival rates λk

i ,Λ
k are also allowed to be functions of time and n, provided

that the critical proportionality relation (1) is maintained. To simplify our presen-
tation, we did not include these extensions from the outset. Also, although the
dimension reduction from S to N is still dramatic, with these more complicated
dependencies, it will generally be more difficult to compute the distributions as-
sociated with the derivative process N .

2. For the case of stationary distributions and K = 1, the above result is a special
case of Theorem 3.1 in [16] on stationary distributions for quasi-reversible queues.
However, we could not find our general network result in the literature. This is
perhaps because much of the literature on exact solutions for multiclass queueing
networks has focused on product form stationary distributions with little attention
being paid to exact simplifications for time-dependent distributions or to situations
where the single-class network is not of product form. We note however that in a
different context and for a particular model, in Exercise 7.1.10 of his book [16],
Kelly noted that a stochastic population model has a factorized time-dependent
distribution when the system starts empty.

In words, we may describe the result (9) as follows: conditioned on N(t), the
distribution of S(t) is as if, for each of the positions in each queue, the job in that
position is of type i with probability pi , independent of the types of the jobs in other
positions or queues. We now describe some consequences of this result for the queue-
length processes.

For all k = 1, . . . ,K , i = 1, . . . , I , and t ≥ 0, let

Qk
i (t) =

nk
∑

�=1

1{Sk
� =i},

the number of jobs of type i that are at station k at time t . Let Q denote the state
space for the process Q = (Qk

i (t), k = 1, . . . ,K, i = 1, . . . , I ; t ≥ 0). Because of
the general insertion and removal mechanisms we have allowed for the queues, Q will
typically not be a Markov process. However, we can still compute time-dependent (or
stationary) distributions for it, provided that the assumptions of Theorem 4.1 are sat-
isfied and such distributions are known for the process N . In the following, for a
random variable Y , E[Y ] denotes expectation (or mean) of Y , Var(Y ) denotes the
variance of Y , SCV(Y ) = Var(Y )/(E[Y ])2 denotes the squared coefficient of varia-
tion for Y , and F(Y ) = Var(Y )/E[Y ] is the Fano factor for Y .
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Corollary 4.1 Suppose that the assumptions of Theorem 4.1 hold. Then for all t ≥ 0
and q = (qk

i , k = 1, . . . ,K, i = 1, . . . , I ) ∈ Q, we have

P
(
Q(t) = q

) = P
(
N(t) = n

) K∏

k=1

(
nk!

qk
1 ! . . . qk

I !
I∏

i=1

p
qk
i

i

)

, (10)

where nk = ∑I
i=1 qk

i , k = 1, . . . ,K . In particular, for all t ≥ 0, k = 1, . . . ,K , and
i, j ∈ {1, . . . , I },

E
[
Qk

i (t)
] = piE

[
Nk(t)

]
, (11)

SCV
(
Qk

i (t)
) = SCV

(
Nk(t)

) − 1

E[Nk(t)] + 1

E[Qk
i (t)]

, (12)

and the correlation between Qk
i (t) and Qk

j (t) for j �= i is given by

rk
ij (t) = E[Qk

i (t)Q
k
j (t)] − E[Qk

i (t)]E[Qk
j (t)]

√
Var(Qk

i (t))Var(Qk
j (t))

= F(Nk(t)) − 1

(F (Nk(t)) − 1 + 1
pi

)1/2(F (Nk(t)) − 1 + 1
pj

)1/2
, (13)

where F(Nk(t)) is the Fano factor for Nk(t).

Proof The expression for the distribution of Q(t) follows directly from that for S(t)

by aggregation. The formulas for the moments and correlations associated with Qk

follow from simple computations using the multinomial distribution. We leave the
details to the reader. �

In [17], we considered a stochastic model of coupled enzymatic processing and
connected it to a single-station multiclass queue that is homogeneous of Kelly type.
For this queue, there are L ≥ 1 copies of an enzymatic processor that each work at
an exponential rate of μ; jobs of type i arrive according to a Poisson process of rate
λi for i = 1, . . . , I ; upon arrival, jobs either enter processing immediately if there
is a free processor or they are inserted randomly into the queue of jobs awaiting
processing; and jobs leave the system either by completion of enzymatic processing
or by reneging (which occurs at a fixed constant exponential rate for each job in the
system). The fact that the total number of jobs in this system is a one-dimensional
birth–death process enabled us to obtain explicit formulae for the associated steady-
state moments and correlations for the numbers of each type in terms of confluent and
generalized hypergeometric functions. For sample parameters, we explored these for-
mulas numerically and observed for small reneging rate that the correlations peaked
near the balance point where the total rate of influx of new jobs into the system is
equal to the maximum processing capacity of the enzymatic processors. This is con-
sistent with the following formula that we obtained for the steady-state correlation in
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the limit when the reneging rate tends to zero:

rij =
(

1 + 1

pi

(
1

ρ
− 1

))−1/2(

1 + 1

pj

(
1

ρ
− 1

))−1/2

, i �= j ∈ {1, . . . , I }, (14)

for ρ = Λ/(Lμ) < 1 and Λ = ∑I
i=1 λi . In this limit, the correlation tends to a peak

of one as the traffic intensity parameter ρ approaches the (heavy traffic) balance point
ρ = 1. This formula and our numerical observations concerning correlations devel-
oped in [17] seem to be new. In the next section, we give an example from sys-
tems/synthetic biology to illustrate the use of Corollary 4.1 in a network context, and
we explore correlation properties there.

5 Example: enzymatic processing network

We consider a system containing two nearly identical but distinguishable protein
types that are acted upon by common enzymes (for background, see [1, 13, 14]).
Proteins of each type are created in an unphosphorylated state, labeled A and B for
the different types. These proteins can be converted by an enzyme E1 into their phos-
phorylated states, labeled A∗ and B∗, respectively. Additionally, A∗ and B∗ can be
converted back into A and B , respectively, by an enzyme E2. Proteins of either type,
in either state, can be removed from the system by degradation. The system is gov-
erned by the following set of biochemical reactions:

∅
αA−→ A, (15)

∅
αB−→ B, (16)

A + E1
μ1−→ A∗ + E1, (17)

B + E1
μ1−→ B∗ + E1, (18)

A∗ + E2
μ2−→ A + E2, (19)

B∗ + E2
μ2−→ B + E2, (20)

A,B,A∗,B∗ κ−→ ∅. (21)

Assuming that all reaction times are exponentially distributed, the behavior of this
stochastic system may be described in more detail as follows. New molecules of pro-
tein in the unphosphorylated state A, respectively B , are produced at the jump times
of a Poisson process with rate αA, respectively αB . Assuming that there are L1 > 0
copies of the enzyme E1, when one of the copies becomes free, it selects a protein
molecule at random from the available pool of unphosphorylated protein molecules
and begins to process the molecule into its phosphorylated state. The time to com-
plete the phosphorylation is exponentially distributed with mean 1/μ1 where μ1 > 0.
Similarly, assuming that there are L2 > 0 copies of the enzyme E2, when one of
the copies becomes free, it selects a protein molecule at random from the available
pool of phosphorylated protein molecules and begins to process the molecule into its
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Fig. 1 Multiclass queueing
network corresponding to the
enzymatic processing network
described by the system of
biochemical reactions in
(15)–(21)

unphosphorylated state. The time to complete this processing is exponentially distrib-
uted with mean 1/μ2 where μ2 > 0. Each of the protein molecules will eventually
be removed from the system by degradation where the degradation rate is κ > 0, i.e.,
independent of all other considerations, each protein molecule remains in the system
for an exponentially distributed amount of time with mean 1/κ .

Reaction systems similar to those in (15)–(21) have been explored in the context
of ultrasensitivity of signal propagation in cellular networks [4, 11, 13, 20]. Though
such networks are typically explored in the case of a single protein type, natural
biological pathways frequently involve diverging pathways with multiple proteins
targeted by a common enzyme, for example, as is the case with the common action
of the protein kinase Ste11 on the mating and high osmolarity signaling pathways in
yeast [19]. The assumption of type-blindness concerning activity of the enzymes pro-
vides a useful baseline for how correlations may arise when enzymes treat multiple
target proteins identically, as compared to preferentially. Alternatively, type-blindness
may arise when nearly identical homologues of a target protein exist in a network,
for example, after a gene duplication event [15].

For the above stochastic model, the process that tracks the number of molecules
of each type in each state has the same distribution as the queue-length process Q

for a multiclass queueing network of the kind described in Sect. 2. A depiction of
the multiclass network is given in Fig. 1. For this network, following an observation
of Kelly [16] (see Exercise 3.1.3), we use random insertion of arriving jobs into a
queue of jobs awaiting enzymatic processing in place of the random selection of jobs
for processing in the above stochastic model. (This replacement does not affect the
distribution of the queue-length processes since random insertion of new jobs into
the queue of jobs awaiting processing ensures that the waiting jobs are in random
order, and so choosing the next job for processing from the head of this line yields
a distributionally equivalent queue-length process to that obtained by selecting a job
at random from the set of waiting jobs.) More specifically, the multiclass queueing
model is described as follows. It has two types of jobs corresponding to the two
types of proteins. Jobs of the two types arrive at station 1 from outside the system
at rates λ1

1 = αA and λ1
2 = αB , respectively. When a job arrives at station 1 (from

inside or outside the system) and there are n1 jobs there already, the job is inserted
into position � in the queue with probability δ1(�, n1 + 1) = 1/(n1 + 1 − L1) for
� ∈ {L1 + 1, . . . , n1 + 1} if n1 ≥ L1, or in position n1 + 1 with probability δ1(n1 +
1, n1 + 1) = 1 if n1 < L1. (This captures the random insertion in the queue of jobs
awaiting enzymatic processing—if there is a free enzymatic processor when the job
arrives, the job immediately enters processing and joins the end of the “queue.”)
When there are n1 jobs at station 1, total service effort there (from processing and
reneging) is given by φ1(n1) = min(n1,L1)μ1 + n1κ . The proportion of this effort
that is directed to the job in position � in the queue at station 1 is given by γ 1(�, n1) =
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Fig. 2 (a) Time-dependent behavior of correlations for the network in Fig. 1 with sample parameters
αA = αB = 50, μ1 = 100, μ2 = 100, L1 = L2 = 10, and κ = 1. Plotted are C(A,B) (the correlation be-
tween A and B at station 1) and C(A∗,B∗) (the correlation between A∗ and B∗ at station 2) as functions
of time starting from an empty system. (b) Approximate steady-state results for the parameters in (a) but
with varying μ1. Plotted are the correlations evaluated at t = 20. In both (a) and (b), correlations were
computed using (13) where the Fano factors for N1(t),N2(t) were approximated using Monte Carlo sim-
ulation involving 32 000 realizations of the pair of processes (N1,N2)

(μ1 + κ)/φ(n1) for � = 1, . . . ,min(n1,L1) and γ 1(�, n1) = κ/φ(n1) for � = L1 +
1, . . . , n1 and n1 > L1. Jobs at station 1 that complete enzymatic processing there are
routed next to station two, whereas jobs that leave the station due to reneging exit the
system. Thus, β1

2 (�, n1) = μ1/(μ1 + κ) for � = 1, . . . ,min(n1,L1), β1
2 (�, n1) = 0

for � = L1 + 1, . . . , n1 and n1 > L1, and β1
0 (�, n1) = 1 −β1

2 (�, n1) for � = 1, . . . , n1.
Similarly, at station two, the insertion probabilities, service effort, effort proportions,
and routing parameters are given by the same expressions as for station 1, but with
the indices 1 and 2 interchanged.

Assuming that the system is initialized in the empty state, the hypotheses of The-
orem 4.1 are satisfied and Corollary 4.1 applies. This implies that, at any given time,
conditioned on the total number of molecules at each station, the distribution of types
at each station has a binomial distribution. This reduces the problem of computing the
time-dependent distributions for the numbers of molecules of each type in each state
to the corresponding problem for a single-class network with just one type of pro-
tein (e.g., containing A and A∗ only, with production rate α = αA + αB ). Due to the
state-dependent service rate associated with the degradation/reneging, such a single-
class network is not of product form, and an analytic expression for either stationary
or time-dependent distributions is not known. However, one can use Monte Carlo
simulation to approximate these distributions. Thus, by using the factorization result
to reduce to the single-class situation, the computational overhead is considerably
reduced from what it would be for a simulation of the original multiclass network.

We illustrate the use of this semi-analytic/semi-computational approach for our ex-
ample with sample parameters in Fig. 2. We obtained approximate values of the Fano
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factors for N1(t) and N2(t) by using Monte Carlo approximations based on discrete-
event simulations of a single-class network, implemented with a GPU-accelerated
variant of the Gillespie algorithm [10, 12] using the pseudorandom number generator
“ran2” in [18]. We then applied (13) to extract approximate values of time-dependent
correlations between the numbers of each type at each station. In Fig. 2, for conve-
nience of interpretation, we use C(A,B) to denote the correlation between numbers
of molecules of A and B , and C(A∗,B∗) for the correlation between numbers of
molecules of A∗ and B∗. (These quantities are denoted by rk

12, k = 1,2, in (13).)
We now make several observations about the results displayed in Fig. 2. For the

time-dependent behavior depicted in Fig. 2(a), the correlation between types at each
station rapidly increases from zero to an apparent steady-state value. Initially, there
are few jobs in the system, and the stations tend to operate like infinite server queues
with little correlation between the numbers of each type. However, as time goes for-
ward, the numbers in the system approach a steady-state, each of the stations becomes
more heavily loaded, and jobs of different types awaiting service become substan-
tially correlated in their queue-lengths. In Fig. 2(b), we plot the correlations at time
t = 20 as functions of μ1. Based on the time-dependent behavior in Fig. 2(a), it is rea-
sonable to hypothesize that distributions at t = 20 are close to steady-state. We note
that the correlation coefficients have nonmonotonic behavior as the rate μ1 is varied.
Specifically, we observe a peak in the correlation near the point where μ1 = μ2, i.e.,
where both “stations” would be bottlenecks in the closed network obtained by elimi-
nating production and degradation [8, 9]. This indicates an ability to tune correlations
of the two types of protein by adjusting the internal enzymatic processing rate μ1.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

Proof of Theorem 4.1 Suppose that πt (s) is given by (9) for all s ∈ S and t ≥ 0.
To verify the first claim of the theorem, it suffices [2] to verify that this expression
satisfies the forward Kolmogorov equation (4). For notational brevity, we let

ψ(s) =
K∏

k=1

nk
∏

�=1

psk
�
, s ∈ S. (22)

Fix s ∈ S and t > 0. On substituting the expression from (9) into the right-hand
member of (4), we obtain

∑

s̃∈S
πt (s̃)Γ (s̃, s)

=
K∑

k=1

nk
∑

�=1

πt

(
s−,k,�

)
λk

sk
�

δk
(
�,nk

)
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+
K∑

k=1

∑

l �=k

nk+1∑

�=1

nl
∑

m=1

πt

(
st,k,�,l,m

)
φk

(
nk + 1

)
γ k

(
�,nk + 1

)
βk

l

(
�,nk + 1

)

× δl
(
m,nl

)

+
K∑

k=1

nk+1∑

�=1

I∑

i=1

πt

(
s+,k,�,i

)
φk

(
nk + 1

)
γ k

(
�,nk + 1

)
βk

0

(
�,nk + 1

)

− πt (s)
K∑

k=1

nk+1∑

�=1

I∑

i=1

λk
i δ

k
(
�,nk + 1

)

− πt (s)
K∑

k=1

∑

l �=k

nk
∑

�=1

nl+1∑

m=1

φk
(
nk

)
γ k

(
�,nk

)
βk

l

(
�,nk

)
δl

(
m,nl + 1

)

− πt (s)
K∑

k=1

nk
∑

�=1

φk
(
nk

)
γ k

(
�,nk

)
βk

0

(
�,nk

)

=
K∑

k=1

nk
∑

�=1

νt

(
n − ek

)ψ(s)
psk

�

λk

sk
�

δk
(
�,nk

)

+
K∑

k=1

∑

l �=k

nk+1∑

�=1

nl
∑

m=1

νt

(
n + ek − el

)
ψ(s)φk

(
nk + 1

)
γ k

(
�,nk + 1

)
βk

l

(
�,nk + 1

)

× δl
(
m,nl

)

+
K∑

k=1

nk+1∑

�=1

I∑

i=1

νt

(
n + ek

)
ψ(s)piφ

k
(
nk + 1

)
γ k

(
�,nk + 1

)
βk

0

(
�,nk + 1

)

− νt (n)ψ(s)
K∑

k=1

nk+1∑

�=1

I∑

i=1

λk
i δ

k
(
�,nk + 1

)

− νt (n)ψ(s)
K∑

k=1

∑

l �=k

nk
∑

�=1

nl+1∑

m=1

φk
(
nk

)
γ k

(
�,nk

)
βk

l

(
�,nk

)
δl

(
m,nl + 1

)

− νt (n)ψ(s)
K∑

k=1

nk
∑

�=1

φk
(
nk

)
γ k

(
�,nk

)
βk

0

(
�,nk

)

=
K∑

k=1

1{nk>0}νt

(
n − ek

)
ψ(s)Λk
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+
K∑

k=1

∑

l �=k

νt

(
n + ek − el

)
ψ(s)φk

(
nk + 1

)
β̃k

l

(
nk + 1

)
1{nl>0}

+
K∑

k=1

νt

(
n + ek

)
ψ(s)φk

(
nk + 1

)
β̃k

0

(
nk + 1

)

− νt (n)ψ(s)
K∑

k=1

Λk − νt (n)ψ(s)
K∑

k=1

1{nk>0}φk
(
nk

)

=
∑

ñ∈N
νt (ñ)�(ñ,n)ψ(s)

= ∂νt (n)

∂t
ψ(s)

= ∂πt (s)
∂t

,

and so the expression in (9) satisfies (4). Here we used (1), the facts that
∑nk

�=1 δk(�, nk) = 1{nk>0},
∑nk

�=1 γ k(�,nk) = 1{nk>0},
∑I

i=1 pi = 1, and Λk =
∑I

i=1 λk
i , the definition of β̃k

l from (7), and the fact that
∑K

l=0 β̃k
l = 1. Here we

use the conventions that a product over an empty set has the value one and a sum
over an empty set has the value zero.

The second claim of the theorem follows immediately since the distribution con-
centrated on the empty state has the form of (8). Finally, if ν∗ is a stationary distri-
bution for N , then the expression in (9) with ν∗ in place of νt will be a stationary
distribution for S. If furthermore N is irreducible and positive recurrent, one can ver-
ify that the same will be true for S, and then the stationary distribution will be the
steady-state distribution. �
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