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Abstract The studies of J. A. Ramı́rez, Hino–Ramı́rez, and Ariyoshi–Hino showed that an
integrated version of Varadhan’s asymptotics holds for Markovian semigroups associated
with arbitrary strong local symmetric Dirichlet forms. In this paper, we consider non-
symmetric bilinear forms that are the sum of strong local symmetric Dirichlet forms and
lower-order perturbed terms. We give sufficient conditions for the associated semigroups to
have asymptotics of the same type.
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distance
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1 Introduction

Let (E,B, μ) be a σ -finite measure space and (E 0,D) a symmetric strong local Dirichlet
form on the L2 space of (E,B, μ). Let {T 0

t }t>0 denote the semigroup associated with
(E 0,D), and set P 0

t (A, B) = ∫
A

T 0
t 1B dμ for t > 0 and A, B ∈ B with positive and finite
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measure. In [1], the following small-time asymptotic estimate for {T 0
t }t>0 was proved as a

generalization of results from previous work [8, 9, 16]:

lim
t→0

t log P 0
t (A, B) = −d(A,B)2

2
. (1.1)

Here, d(A,B) is the intrinsic distance between A and B, which can be determined from only
(E 0,D) (see [1, p. 1241] or Definition 2.6 below for details). Similar small-time asymptotics
of transition densities have been studied extensively. These are usually called Varadhan-type
estimates, in reference to [19]. In particular, that the estimate holds was proved in [15] for
a class of symmetric and uniform elliptic diffusion processes on Lipschitz manifolds. This
is one of the most general results. Asymptotics of the form Eq. 1.1 can be considered as an
integrated version of Varadhan’s asymptotics.

The purpose of this paper is to extend the formula (1.1) to a class of non-symmetric
bilinear forms. Specifically, we first assume that (E 0,D) mentioned above is expressed as

E 0(f, g) = 1

2

∫

E

(Df,Dg)H dμ, f, g ∈ D,

where D is a first-order derivation operator taking values in a separable Hilbert space H .
Our main object is to obtain small-time asymptotics for a non-symmetric form (E ,D)

given by the sum of E 0 and the lower-order term
∫
E
(b,Df )H g dμ + ∫

E
(c,Dg)H f dμ +∫

E
Vfg dμ (see Eq. 2.4). Since Varadhan’s original paper [19] treats some non-symmetric

cases, this generalization is natural. When the lower-order term is small relative to E 0,
the form (E ,D) becomes a lower-bounded bilinear form and has an associated positivity-
preserving semigroup {Tt }t>0 on L2(E,μ). For measurable sets A and B having positive
and finite μ-measure, let Pt (A,B) = ∫

A
Tt1B dμ, as before. We study the conditions on

b, c, and V that suffice for the semigroup {Tt }t>0 to have the same integrated Varadhan’s
asymptotics as {T 0

t }t>0. That is, for

lim
t→0

t log Pt (A,B) = lim
t→0

t log P 0
t (A, B) = −d(A, B)2

2
. (1.2)

This looks generically true at first glance, but if b, c, and V are unbounded, it is a very non-
trivial problem to reveal what kind of restrictions we should impose on them to guarantee
the validity of Eq. 1.2.

It is reasonable to expect that Eq. 1.2 would hold if they were sufficiently smaller than
E 0 in terms of quadratic forms. From another perspective, we can make a probabilistic
argument, exemplified in the following typical case. Let (E,H, μ) be an abstract Wiener
space, and suppose that (E 0,D) and (E ,D) are defined as

E 0(f, g) = 1

2

∫

E

(Df,Dg)H dμ,

E (f, g) = E 0(f, g) +
∫

E

(b,Df )H g dμ, f, g ∈ D := D
1,2,

where D denotes the H -derivative in the Malliavin calculus, b is an H -valued measur-
able function on E, and D

1,2 is the first-order L2-Sobolev space on E. If exp(γ |b|2H ) is
μ-integrable for some γ > 8, then by using the logarithmic Sobolev inequality, we can
prove that (E ,D) is well-defined as a lower-bounded bilinear form and that there exists a



Varadhan’s Asymptotics 259

corresponding semigroup {Tt }t>0 on L2(E,μ) (see Example 5.5). Moreover, {Tt }t>0 has a
probabilistic representation as

Ttf (x) = Ex

[

f (Xt ) exp

(

Mt − 1

2
〈M〉t

)]

,

where ({Xt }t≥0, {Px}x∈E) is the Ornstein–Uhlenbeck process associated with (E 0,D) and
{Mt }t≥0 is a martingale additive functional suitably associated with b (see, e.g., [7]). Note,
in particular, that the quadratic variation of M is given by 〈M〉t = ∫ t

0 |b(Xs)|2H ds. From
Hölder’s inequality, for measurable sets A and B with positive μ-measure,
∫

A

Tt1B dμ ≤
(∫

A

Ex [1B(Xt )] dμ

)1/p (∫

A

Ex

[

exp

(

2qMt − 1

2
〈2qM〉t

)]

dμ

)1/2q

×
(∫

A

Ex

[
exp

(
(2q2 − q)〈M〉t

)]
dμ

)1/2q

, (1.3)

where p > 1 and q is the conjugate exponent of p. The first term of the right-hand side is
P 0

t (A, B)1/p. The second term is dominated by μ(A)1/2q . The third term is estimated by
Jensen’s inequality:

∫

A

Ex

[

exp

(

(2q2 − q)

∫ t

0
|b(Xs)|2H ds

)]

dμ

≤ 1

t

∫ t

0

∫

A

Ex

[
exp

(
(2q2 − q)t |b(Xs)|2H

)]
dμ ds.

By the exponential integrability of |b|2H , the right-hand side is equal to

1

t

∫ t

0

∫

A

T 0
s

(
exp

(
(2q2−q)t |b|2H

))
dμ ds = 1

t

∫ t

0

∫

E

(T 0
s 1A) exp

(
(2q2−q)t |b|2H

)
dμ ds,

which is finite for sufficiently small positive values of t and converges to μ(A) as t → 0.
Combining these estimates and the asymptotics with respect to (E 0,D) and letting p → 1,
we obtain the upper estimate

lim
t→0

t log Pt (A,B) ≤ −d(A,B)2

2
.

This kind of probabilistic argument is applicable to more general situations, by using a
generalized Cameron–Martin–Maruyama–Girsanov formula (see, e.g., [5, 12, 17]). The
exponential integrability condition imposed above is not exactly consistent with smallness
in the sense of quadratic forms. Indeed, in the estimate of Eq. 1.3, we used the fact that
exp(γ |b|2H ) is μ-integrable for only some γ > 0. Therefore, it is reasonable to consider two
types of smallness—smallness in term of quadratic forms and in terms of some exponential
integrability—in describing the conditions sufficient for Eq. 1.2.

In this paper, we introduce conditions that take the observation above into consideration
(see conditions (B.2)A,B , (B.2′), and Proposition 2.14) and prove the upper estimate under
their assumptions (Theorem 2.10). Moreover, we prove that the lower estimate holds under
minimal assumptions on b, c, and V along with the assumption of the validity of the upper
estimate (Theorem 2.11). Combining these two results gives sufficient conditions for the
integrated Varadhan estimates. As in the previous studies [1, 9, 16], the proof is purely
analytic and only a measurable structure is imposed on the state space. In particular, we
can recapture the probabilistic argument mentioned above by an analytic one. Since the
framework is very general and the imposed conditions are mild, our theorems seem novel
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even when E is a Riemannian manifold, not to mention an infinite dimensional space. We
also remark that even for b = c, that is, even with (E ,D) as a symmetric form, our results
are new.

Because the proof is long, we briefly explain the broad ideas of the proof here. The
upper estimate (Theorem 2.10) is proved in the spirit of Davies–Gaffney’s method. In pre-
vious works [1, 9, 16], they define σ(t) = ∫

E
(eαwTt1B)2 dμ for given α > 0 and w with

|Dw|H ≤ 1 μ-a.e., and deduce the key differential inequality σ ′(t) ≤ α2σ(t). Solving this
inequality and optimizing it with respect to α and w yields the desired estimate. Under the
assumptions of our theorem, however, the lower-order terms cannot be controlled. Instead,
we define σ in the form σ(t) = ∫

E
(eαwTt1B)p(t) dμ, where p(t) = q − St with q > 2

and S > 0 being chosen suitably. Since {Tt }t>0 can be extended to a semigroup on Lp(μ)

for p near 2 in our setting, σ(t) is finite for small t . The variable exponent p(t) means that
the derivative of σ involves an extra logarithmic term, which suppresses the influence on b

and c. The price to pay for this is that the resulting differential inequality is coarser, in the
form σ ′(t) ≤ (1 + ε)α2σ(t) +Cσ(t) max{0,− log σ(t)}. Fortunately, the extra logarithmic
term has no influence on the Varadhan-type estimate. Introducing a variable exponent is a
standard technique for estimating heat kernel densities (see, e.g., [4]), but (unlike in such a
context) p(t) is taken to be a decreasing function in this study. The definition of σ shown
above is valid when μ is a finite measure; in general cases, we further need to modify the
definition of σ (see Eqs. 3.15 and 3.6) to avoid some technical obstacles. For this reason,
we need a series of quantitative estimates, which makes the proof long.

The proof of the lower estimate is based on previous studies [1, 9, 16], but the argument
is more complicated due to the perturbed terms and the fact that the semigroup {Tt }t>0
preserves positivity but is not Markovian. We will outline the proof by the following formal
argument. We see the function ut = −t log Tt1B satisfies the relation

t

(

∂tut − L 0

2
ut

)

= ut − 1

2
|Dut |2H + (extra terms involving b, c, and V ),

where L 0 is the generator of {T 0
t }t>0. (This identity corresponds to Eq. 4.2 in the actual

argument.) If we assume for argument that the left-hand side converges to 0 as t → 0 and
the last term of the right-hand side is negligible, then the limit u0 of ut (if it exists) will
satisfy |Du0|2H = 2u0. What is actually obtained is an inequality of the form |Du0|2H ≤ 2u0,
which implies |D√

2u0|H ≤ 1. Furthermore, u0 = 0 μ-a.e. on B should be satisfied. Under
these conditions, we have the formal inequality

lim
t→0

√−2t log Tt1B(x) ≤ d({x}, B)

by the definition of d, which is close to the lower-side estimate. Several difficulties, such
as that ut is not necessarily bounded, make it hard to justify this procedure directly. To
cope with problems such as the integrability (or not) of various terms and the existence
(or not) of limits, we introduce a nice truncating function φ and bump functions {χk}, and
consider φ̄tχk in place of ut , where φ̄t = t−1

∫ t

0 φ(−s log Ts1B) ds. Note that these cut-off
functions are slightly different from those in [1, 9] in order to deal with the lack of the
Markov property of {Tt }t>0. This modification results in an increasing number of terms in
the quantitative estimates as the proof progresses, which makes the proof longer and more
technical than without the modification.

This paper is organized as follows. In Section 2, we introduce a framework and state the
main theorems. Section 3 provides the proof of the upper estimate (Theorem 2.10). Section 4
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provides the proof of the lower estimate (Theorem 2.11). In the last section, we prove some
auxiliary propositions, discuss the conditions imposed on the theorems, and show some
typical examples.

2 Framework

Let (E,B, μ) be a σ -finite measure space, and H a real separable Hilbert space. The inner
product and norm of H will be denoted by (·, ·)H and | · |H , respectively. The set of all real-
valued measurable functions on E is denoted by L0(μ), where two functions are identified
if they coincide μ-a.e. For p ∈ [1, ∞], the real Lp space on (E,B, μ) is denoted by Lp(μ),
and its norm by ‖ · ‖p. The L2 space of H -valued measurable functions on (E,B, μ) is
denoted by L2(μ;H), and its norm by ‖ · ‖2.

Let D be a dense subspace of L2(μ), and D be a closed linear operator from L2(μ) to
L2(μ;H) with domain D. We assume that D has the following derivation property: For
arbitrary functions f1, f2, . . . , fm ∈ D and C1 functions F on R

m with bounded first-order
derivatives and F(0) = 0, F(f1, . . . , fm) belongs to D and

D (F(f1, . . . , fm)) =
m∑

j=1

∂F

∂xj

(f1, . . . , fm)DFj . (2.1)

Then, a bilinear form (E 0,D) on L2(μ), defined by

E 0(f, g) = 1

2

∫

E

(Df,Dg)H dμ, f, g ∈ D,

is a Dirichlet form on L2(μ). Moreover, this bilinear form has a strong local property: For
any f ∈ D and C1-functions F, G on R with bounded first-order derivatives such that the
supports of F and G are disjoint, E (F (f )−F(0),G(f )−G(0)) = 0. For other equivalent
statements, see [3, Proposition I.5.1.3], where this property is called a local property.

For l ≥ 0, we write E 0
l (f, g) for E 0(f, g) + l

∫
E

fg dμ. We also use E 0(f ) and E 0
l (f )

to denote E 0(f, f ) and E 0
l (f, f ), respectively. The space D becomes a Hilbert space with

the inner product (f, g) �→ E 0
1 (f, g). The following proposition is fundamental.

Proposition 2.1 If a function f ∈ D is constant μ-a.e. on a set A ∈ B, then Df = 0 μ-a.e.
on A.

Proof Suppose that f = α μ-a.e. on A for some constant α. Then, if α = 0, the conclusion
follows from [3, Proposition I.7.1.4]. If α 
= 0, we can take a C1 function F on R with
bounded derivative such that F(0) = F(α) = 0 and F ′(α) 
= 0. Then, since F(f ) = 0
μ-a.e. on A,

0 = D(F(f )) = F ′(f )Df = F ′(α)Df μ-a.e. on A.

This implies that Df = 0 μ-a.e. on A.

For A ∈ B, we set

DA = {f ∈ D | f = 0 μ-a.e. on E \ A},
DA,b = DA ∩ L∞(μ),

DA,b,+ = {f ∈ DA,b | f ≥ 0 μ-a.e.}.
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We follow [1] in introducing the concept of measurable nests and related function spaces.

Definition 2.2 An increasing sequence {Ek}∞k=1 in B is called a measurable nest1 if the
following conditions are satisfied.

(i) For every k ∈ N, there exists hk ∈ D such that hk ≥ 1 μ-a.e. on Ek .
(ii) The set

⋃∞
k=1 DEk

is dense in D.

Remark 2.3 We note that measurable nests exist, from [1, Lemma 3.1]. For every k ∈ N,
we have μ(Ek) < ∞ because of condition (i). By condition (ii), μ(E \ ⋃∞

k=1 Ek) = 0
follows. If {Ek}∞k=1 and {E′

k}∞k=1 are both measurable nests, then so is {Ek ∩ E′
k}∞k=1, from

[1, Lemma 3.2].

Definition 2.4 For a measurable nest {Ek}∞k=1 and p ∈ [1, ∞], we set

L
p

loc(μ, {Ek}) = {f ∈ L0(μ) | f 1Ek
∈ Lp(μ) for every k ∈ N},

Dloc({Ek}) =
{

f ∈ L0(μ)

∣
∣
∣
∣

There exist {fk}∞k=1 ⊂ D such that f =
fk μ-a.e. on Ek for each k ∈ N

}

,

Dloc,b({Ek}) = Dloc({Ek}) ∩ L∞(μ),

Dloc,b,+({Ek}) = {
f ∈ Dloc,b({Ek})

∣
∣ f ≥ 0 μ-a.e.

}
.

We remark that Lp(μ) ⊂ L
p

loc(μ, {Ek}) ⊂ L
q

loc(μ, {Ek}) for 1 ≤ q ≤ p ≤ ∞. For
f ∈ Dloc({Ek}), Df is defined as an H -valued measurable function on E by Df = Dfk on
Ek , where fk ∈ D and fk = f μ-a.e. on Ek . From Proposition 2.1, Df is well-defined up
to μ-equivalence.

Definition 2.5 For a measurable nest {Ek}∞k=1, we set

D0({Ek}) = {
f ∈ Dloc,b({Ek})

∣
∣ |Df |H ≤ 1 μ-a.e.

}
.

This definition is consistent with [1, Definition 2.6], which considers more general sit-
uations. The function space D0({Ek}) does not depend on the choice of {Ek}∞k=1, from
[1, Proposition 3.9]; we therefore denote it as D0. We now define the intrinsic distance
between two sets as follows.

Definition 2.6 (see [1, p. 1241]) For A, B ∈ B with positive μ measures, we define

d(A,B) = sup
f ∈D0

{

ess inf
x∈A

f (x) − ess sup
x∈B

f (x)

}

∈ [0, ∞],

where the essential infimum ess inf and essential supremum ess sup are taken with respect
to μ.

We introduce the concept of a distance-like function dB from the set B and quote a result
from [1]. For B ∈ B and N ≥ 0, define2

DB,N = {f ∈ D0 | f = 0 on B and 0 ≤ f ≤ N μ-a.e.}.

1In [1], it is called just a nest.
2This definition is slightly different from that in [1], but the difference is unimportant in our context.
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For x, y ∈ R, we let x ∨ y and x ∧ y denote max{x, y} and min{x, y}, respectively.

Proposition 2.7 ([1, Proposition 3.11]) For each B ∈ B, there exists a unique [0, +∞]-
valued measurable function dB on E (up to μ-null sets) such that, for every N > 0, dB ∧N

is the maximal element of DB,N : dB ∧ N ∈ DB,N and f ≤ dB ∧ N μ-a.e. for every
f ∈ DB,N . Moreover, d(A,B) = ess infx∈A dB(x) for every A ∈ B.

We define DdB by DdB = D(dB ∧ N) on {dB ≤ N} for N > 0 and DdB = 0 on
{dB = ∞}. This is well-defined, by Proposition 2.1.

To introduce the lower-order terms, let b and c be H -valued measurable functions on E,
and let V be a real measurable function on E. From here, we always assume the following
minimal requirement.

Assumption 2.8 (A.1) There exists a measurable nest {Ek}∞k=1 such that |b|H , |c|H ∈
L2

loc(μ, {Ek}) and V ∈ L1
loc(μ, {Ek}).

(A.2) There exist η ∈ [0, 1), θ ≥ 0, ω ≥ 0, and l ≥ 0 such that, for every f, g ∈⋃∞
k=1 DEk,b,

−
∫

E

{(b + c,Df )H f + Vf 2} dμ ≤ ηE 0(f ) + θ‖f ‖2
2 (2.2)

and
∣
∣
∣
∣

∫

E

{(b,Df )H g + (c,Dg)H f + Vfg} dμ

∣
∣
∣
∣ ≤ ωE 0

l (f )1/2E 0
l (g)1/2. (2.3)

For f, g ∈ ⋃∞
k=1 DEk,b, we define

E (f, g) = E 0(f, g) +
∫

E

{(b,Df )H g + (c,Dg)H f + Vfg} dμ. (2.4)

It follows that

E (f, f ) + θ‖f ‖2
2 = E 0(f ) +

∫

E

{
(b,Df )H f + (c,Df )H f + Vf 2

}
dμ + θ‖f ‖2

2

≥ (1 − η)E 0(f ),

|E (f, g)| ≤ |E 0(f, g)| +
∣
∣
∣
∣

∫

E

{(b,Df )H g + (c,Dg)H f + Vfg} dμ

∣
∣
∣
∣

≤ (1 + ω)E 0
l (f )1/2E 0

l (g)1/2,

and
⋃∞

k=1 DEk,b is dense in D. Therefore, E (·, ·) extends continuously to a bilinear form on
D and the bilinear form D×D � (f, g) �→ Eθ (f, g) := E (f, g) + θ

∫
E

fg dμ is a coercive
closed form on L2(μ). Thus, a strongly continuous semigroup {Tt }t>0 exists on L2(μ) and
some closed operator (L , Dom(L )) on L2(μ) associated with (E ,D) satisfies E (f, g) =
− ∫

E
(L f )g dμ for f ∈ Dom(L ) and g ∈ D. In particular, Tt can be given as eθtT

(θ)
t ,

where {T (θ)
t }t>0 is the semigroup associated with (Eθ ,D). Formally, L is described as

−(1/2)D∗D − (b,D·)H − D∗(c·) − V ·,
where D∗ denotes the adjoint operator of D. Confirming that (Eθ ,D) satisfies the condi-
tion (S) in [14, Proposition 1.2] by an argument similar to [14, Proof of Theorem 2.2] and
applying [14, Theorem 1.5], we see that {Tt }t>0 is positivity preserving. That is, Ttf ≥ 0
μ-a.e. if f ≥ 0 μ-a.e. In general, {Tt }t>0 is not necessarily Markovian. Let T̂t denote the
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adjoint operator of Tt on L2(μ). Then, {T̂t }t>0 is also a positivity-preserving semigroup and
is associated with a bilinear form (Ê ,D) defined by

Ê (f, g) = E (g, f ), f, g ∈ D.

Let B0 denote the set of all sets A ∈ B such that 0 < μ(A) < ∞. For A,B ∈ B0,
define

Pt (A,B) =
∫

A

Tt1B dμ for t > 0.

If d(A, B) = ∞, then the situation is simple, with the proof of the following proposition
given in Section 5.

Proposition 2.9 Suppose A,B ∈ B0 satisfy d(A, B) = ∞. Then, under Assumption 2.8,
Pt (A,B) = 0 for all t > 0. In particular, it follows that

lim
t→0

t log Pt (A,B) = −d(A, B)2

2
(= −∞).

From this proposition, it is sufficient to consider the case when d(A,B) < ∞. For this case,
we need some extra assumptions to begin. Let log± x denote 0 ∨ (± log x) for x ≥ 0.

Theorem 2.10 (Upper Estimate) Let A,B ∈ B0 with d(A, B) < ∞. Suppose Assump-
tion 2.8 and the following.

(B.1) There exists κ > 0 such that

∣
∣
∣
∣

∫

E

(b − c,Df )H f dμ

∣
∣
∣
∣ ≤ κE 0

1 (f ), f ∈
∞⋃

k=1

DEk,b. (2.5)

(B.2)A,B There exist γ ≥ 0 and nonnegative numbers {λε}ε>0 such that

lim
ε→0

ελε = 0 (2.6)

and

∫

{0<dB<d(A,B)}
(b−c,DdB)H f 2 dμ≤εE 0(f )+λε+γ

(∫

E

f 2 log+ f 2 dμ

)1/2

for any ε > 0 and f ∈ ⋃∞
k=1 DEk,b with ‖f ‖2 = 1. (2.7)

Then,

lim
t→0

t log Pt (A,B) ≤ −d(A,B)2

2
. (2.8)

Theorem 2.11 (Lower Estimate) Let B ∈ B0 and N > 0. Suppose Assumption 2.8 and
suppose Eq. 2.8 of Theorem 2.10 holds for any A ∈ B0 with d(A,B) < N . Then,

lim
t→0

t log Pt (A, B) ≥ −d(A, B)2

2
for any A ∈ B0 with d(A,B) < N . (2.9)
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Accordingly,

lim
t→0

t log Pt (A,B) = −d(A,B)2

2
(2.10)

for such A ∈ B0.

In particular, we have the following theorem.

Theorem 2.12 Suppose Assumption 2.8, (B.1) in Theorem 2.10, and the following.

(B.2′) There exist γ ≥ 0 and nonnegative numbers {λε}ε>0 such that limε→0 ελε = 0
and

∫

E

|b − c|H f 2 dμ ≤ εE 0(f ) + λε + γ

(∫

E

f 2 log+ f 2 dμ

)1/2

for any ε > 0 and f ∈ ⋃∞
k=1 DEk,b with ‖f ‖2 = 1.

Then, Eq. 2.10 holds for any A,B ∈ B0.

Proof Since |DdB |H ≤ 1 μ-a.e., (B.2′) implies (B.2)A,B for all A, B ∈ B0
with d(A,B) < ∞. The claim follows from Proposition 2.9, Theorem 2.10, and
Theorem 2.11.

Remark 2.13 (i) Assumption 2.8, (B.1), and (B.2′) are symmetric with respect to b and
c, while (B.2)A,B is not.

(ii) The integral in Eq. 2.5 is formally rewritten as
∫
E
(D∗(b − c)/2)f 2 dμ, which might

be easier to understand.
(iii) We remark that we need only Eq. 2.8, rather than (B.1) and (B.2)A,B , for Theo-

rem 2.11.

A sufficient condition for (B.2′) is given as follows.

Proposition 2.14 Suppose that b and c are decomposed into b = b1 + b2 and c = c1 + c2
such that b1, b2, c1, c2 are measurable and the following hold.

(i) There exist nonnegative numbers {λ̂ε}ε>0 such that limε→0 ελ̂ε = 0 and

∫

E

|b1 − c1|H f 2 dμ ≤ εE 0(f ) + λ̂ε‖f ‖2
2, ε > 0, f ∈

∞⋃

k=1

DEk,b. (2.11)

(ii) There exists δ > 0 such that exp(δ|b2 − c2|2H ) − 1 ∈ L1(μ).

Then, (B.2′) holds.

The proof is based on a simple application of a type of Hausdorff–Young inequality. We
provide the proof in Section 5 together with a discussion of other sufficient conditions.



266 M. Hino, K. Matsuura

3 Proof of Theorem 2.10

3.1 Lp Property of Semigroups

The following proposition is interesting in its own right, as well as being used in the proof
of Theorem 2.10. Although claims of the kind made by the proposition have been studied
in many papers (e.g., [5, 11, 18] and the references therein), we give a proof since our
conditions seem (at least partially) less restrictive than those in previous studies.

Proposition 3.1 Suppose Assumption 2.8 and the following. There exists κ > 0 such that
∫

E

(b − c,Df )H f dμ ≤ κE 0
1 (f ), f ∈

∞⋃

k=1

DEk,b. (3.1)

Then, by letting

q0 = κ + 2 +√
κ2 + 4(1 − η)

κ + η
(> 2) and q ′

0 = q0

q0 − 1
, (3.2)

{Tt |L2(μ)∩Lp(μ)}t>0 (resp., {T̂t |L2(μ)∩Lp(μ)}t>0) extends to a strongly continuous semigroup
on Lp(μ) for all p ∈ [2, q0] (resp., p ∈ [q ′

0, 2]). Moreover, the operator norm of the
semigroup on Lp(μ) at t > 0 is dominated by exp {t (θ + κ|1 − 2/p|)}.

Proof It suffices to consider {Tt }t>0; the claim for {T̂t }t>0 follows by considering the
adjoint semigroup of {Tt }t>0.

Let p ≥ 2 and M ≥ 1. Define a C2-function � on [0, ∞) so that �(0) = �′(0) = 0 and
�′′(x) = p(p − 1)(x ∧ M)p−2 for x ≥ 0. Also, define the following functions on [0, ∞):

�̂(x) =
∫ x

0

√
�′′(s) ds, �̃(x) = √

�′(x)x, and �̌(x) = √
�′(x)x − 2�(x).

Then, by long but straightforward calculation, we can confirm the following inequalities:

�′(x) ≥ p

2(p − 1)
�̂(x)�̂′(x), 0 ≤ �̃′(x) ≤ p

2
√

p − 1
�̂′(x),

and 0 ≤ �̌′(x) ≤
√

p(p − 2)

4(p − 1)
�̂′(x). (3.3)

Since �̂(0) = �̃(0) = �̌(0) = 0, this implies, in particular,

�(x) ≥ p

4(p − 1)
�̂(x)2, 0 ≤ �̃(x) ≤ p

2
√

p − 1
�̂(x),

and 0 ≤ �̌(x) ≤
√

p(p − 2)

4(p − 1)
�̂(x). (3.4)

Let C ≥ 0 and t > 0. Take f ∈ L2(μ) ∩ Lp(μ) with f ≥ 0 μ-a.e. Since Ttf ≥ 0 μ-a.e.
and �′′ is bounded, we have that �′(Ttf ) ∈ L2(μ), �(Ttf ) ∈ L1(μ) and

d

dt

∫

E

e−Ct�(Ttf ) dμ =
∫

E

(
−Ce−Ct�(Ttf ) + e−Ct�′(Ttf )L Ttf

)
dμ

= e−Ct

(

−C

∫

E

�(Ttf ) dμ − E (Ttf,�′(Ttf ))

)

.
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Moreover, for v ∈ ⋃∞
k=1 DEk,b,+,

E (v,�′(v)) = 1

2

∫

E

(
Dv,D(�′(v))

)
H

dμ +
∫

E

(b,Dv)H �′(v) dμ

+
∫

E

(
c, D(�′(v))

)
H

v dμ +
∫

E

V v�′(v) dμ

= 1

2

∫

E

∣
∣
∣D(�̂(v))

∣
∣
∣
2

H
+
∫

E

(
b + c,D(�̃(v))

)

H
�̃(v) dμ

−
∫

E

(
b − c, D(�̌(v))

)

H
�̌(v) dμ +

∫

E

V �̃(v)2 dμ

≥ E 0(�̂(v)) − ηE 0(�̃(v)) − θ‖�̃(v)‖2
2 − κE 0

1 (�̌(v)). (from (A.2) and (3.1))

By using Eqs. 3.3, 3.4, and the derivation property (2.1) of D, we have

− C

∫

E

�(v) dμ − E (v,�′(v))

≤ − Cp

4(p − 1)
‖�̂(v)‖2

2 − E 0(�̂(v)) + ηp2

4(p − 1)
E 0(�̂(v))

+ θp2

4(p − 1)
‖�̂(v)‖2

2 + κp(p − 2)

4(p − 1)
E 0

1 (�̂(v))

= −4(p − 1) + ηp2 + κp(p − 2)

4(p − 1)
E 0(�̂(v)) + p{−C + θp + κ(p − 2)}

4(p − 1)
‖�̂(v)‖2

2. (3.5)

Therefore, if −4(p − 1) + ηp2 + κp(p − 2) ≤ 0—or, more specifically, if p ∈ [2, q0]
with q0 given by Eq. 3.2—then the right-hand side of Eq. 3.5 is non-positive by letting
C = Cp := θp + κ(p − 2). Thus, the inequality

−Cp

∫

E

�(v) dμ − E (v,�′(v)) ≤ 0

is valid for all v ∈ D with v ≥ 0 μ-a.e., by approximating v by elements of
⋃∞

k=1 DEk,b,+.
In particular,

d

dt

∫

E

e−Cpt�(Ttf ) dμ ≤ 0,

which implies ∫

E

e−Cpt�(Ttf ) dμ ≤
∫

E

�(f ) dμ, t > 0.

Letting M → ∞, we obtain that
∫
E

e−Cpt (Ttf )p dμ ≤ ∫
E

f p dμ, from the monotone con-
vergence theorem. Thus, {Tt |L2(μ)∩Lp(μ)}t>0 extends to a semigroup on Lp(μ) that satisfies
‖Tt‖Lp(μ)→Lp(μ) ≤ eCpt/p . The strong continuity of the semigroup follows from the result
given in [20]. (Indeed, it is easy to see that {Tt }t>0 is a weakly continuous semigroup on
Lp(μ), which implies strong continuity.)

Corollary 3.2 Suppose Assumption 2.8 and (B.1). Then, the operators {Tt |L2(μ)∩Lp(μ)}t>0

and {T̂t |L2(μ)∩Lp(μ)}t>0 extend to strongly continuous semigroups on Lp(μ) for all p ∈
[q ′

0, q0], where q0 and q ′
0 are as given in Eq. 3.2. Moreover, the operator norm of the

semigroups on Lp(μ) at t > 0 are dominated by exp {t (θ + κ|1 − 2/p|)}.

Proof Apply Proposition 3.1 to (E ,D) and (Ê ,D).
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3.2 Preliminary Estimates

In this subsection, we provide several quantitative estimates used in the proof of Theorem 2.10.
We take a non-decreasing C2-function ξ on [0, ∞) such that ξ(x) = (x − 1)3 ∨ 0 for

x ∈ [0, 3/2] and ξ(x) = 1 for x ∈ [2, ∞). Define

ζ(x, y) = 2x + (yxy−1 − 2x)ξ(x), x ≥ 0, y ≥ 2,

and

τ(x, y) =
∫ x

0
ζ(s, y) ds, x ≥ 0, y ≥ 2. (3.6)

Then,

∂xζ(x, y) = 2 + (y(y − 1)xy−2 − 2)ξ(x) + (yxy−1 − 2x)ξ ′(x) ≥ 2.

For R > 2, we define the following functions on [0, ∞) × [2, ∞):

gR(x, y) = √
(∂xζ )(x ∧ R, y), hR(x, y) =

∫ x

0
gR(s, y)2 ds,

φR(x, y) =
∫ x

0
hR(s, y) ds, ρR(x, y) =

∫ x

0
gR(s, y) ds,

ιR(x, y) = xhR(x, y) − 2φR(x, y), ψR(x, y) = √
xhR(x, y).

Lemma 3.3 For any fixed y ≥ 2, the following hold.

(i) For x ≥ 0,

hR(x, y) = ζ(x ∧ R, y) + ((x − R) ∨ 0) ∂xζ(R, y)

= ζ(x ∧ R, y) + ((x − R) ∨ 0) y(y − 1)Ry−2.

In particular, hR(x, y) = ζ(x, y) if 0 ≤ x ≤ R.
(ii) 2x ≤ hR(x, y) ≤ ζ(x, y) ≤ max{2x, yxy−1} for all R > 2 and x ≥ 0.

(iii) For x ≥ 0, hR(x, y) converges to ζ(x, y) as R → ∞.
(iv) x2 ≤ φR(x, y) ≤ τ(x, y) ≤ max{x2, xy} for all R > 2 and x ≥ 0.
(v) gR(x, y) ≥ √

2 for x ≥ 0 and gR(x, y) ≥ √
y(y − 1)(x ∧ R)y/2−1 for x ≥ 2.

Proof (i) and (v): Straightforward from the definitions.
(ii): The first and last inequalities are easy to prove. Since

∂xhR(x, y) = ∂xζ(x ∧ R, y) ≤ ∂xζ(x, y),

the second inequality also holds.
(iii): This follows from (i).
(iv): This follows by integrating each term of the inequality in (ii).

Lemma 3.4 For any x ≥ 0 and y ≥ 2, the following hold.

(i) xgR(x, y)2 ≥ hR(x, y).
(ii) ιR(x, y) ≥ 0.

(iii) ρR(x, y) ≤ xgR(x, y).
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Proof (i): For x ∈ [0, R],
xgR(x, y)2 − hR(x, y) = x∂xζ(x, y) − ζ(x, y)

= y(y − 2)xy−1ξ(x) + (yxy − 2x2)ξ ′(x), (3.7)

which is nonnegative since ξ ′(x) = 0 for x ≤ 1. For x > R,

xgR(x, y)2 − hR(x, y) = x∂xζ(R, y) − {ζ(R, y) − (x − R)∂xζ(R, y)}
= y(y − 2)Ry−1 ≥ 0. (3.8)

(ii): This follows from identities ιR(0, y) = 0, ∂xιR(x, y) = xgR(x, y)2 − hR(x, y), and
(i).

(iii): By the Cauchy–Schwarz inequality,

ρR(x, y) =
∫ x

0
gR(s, y) ds ≤

(

x

∫ x

0
gR(s, y)2 ds

)1/2

= (xhR(x, y))1/2 ≤ xgR(x, y). (from (i))

Lemma 3.5 For y ∈ [2, 3], √
ιR(x, y) is continuously differentiable with respect to x.

Moreover, there exists some K0 > 0 independent of x and y such that

0 ≤ ∂x

√
ιR(x, y) ≤ K0

√
y − 2gR(x, y) (3.9)

and

0 ≤ √
ιR(x, y) ≤ K0

√
y − 2ρR(x, y). (3.10)

Proof Since ιR(x, 2) ≡ 0, it suffices to consider the case y ∈ (2, 3]. The continuous dif-
ferentiability of

√
ιR(x, y) is trivial for x 
= 1 since ιR(x, y) = 0 for x ∈ [0, 1] and

ιR(x, y) > 0 for x > 1. For x ∈ (1, R], combining Eqs. 3.7 and 3.8,

∂xιR(x, y) =

⎧
⎪⎨

⎪⎩

(y − 2)

[

yxy−1ξ(x) +
{

xy + 2(xy − x2)

y − 2

}

ξ ′(x)

]

(1 < x ≤ R),

y(y − 2)Ry−1 (x > R).

Thus, we can confirm that there exist K1 and K2 with 0 < K1 < K2 such that

K1(y − 2)ι̂(x, y) ≤ ∂xιR(x, y) ≤ K2(y − 2)ι̂(x, y) for x ∈ (1, R] and y ∈ (2, 3],
where ι̂ is defined as

ι̂(x, y) = (x − 1)21(1,3/2](x) + 1(3/2,2](x) + xy−11(2,R](x).

For x ∈ (1, 3/2], we have

K1(x − 1)3(y − 2)/3 ≤ ιR(x, y) ≤ K2(x − 1)3(y − 2)/3.

Thus, limx↓1
√

ιR(x, y)/(x − 1) = 0. That is,
√

ιR(x, y) is continuously differentiable with
respect to x at 1. Furthermore,

0 <
∂xιR(x, y)√

ιR(x, y)
≤ K2

√
3/K1

√
x − 1

√
y − 2 ≤ K2K

−1/2
1

√
y − 2gR(x, y)

from Lemma 3.3(v).



270 M. Hino, K. Matsuura

For x ∈ (3/2, 2], we have ιR(x, y) ≥ ιR(3/2, y) ≥ K1(y − 2)/24 and

0 <
∂xιR(x, y)√

ιR(x, y)
≤ K2

√
24/K1

√
y − 2 ≤ K2

√
12/K1

√
y − 2gR(x, y).

For x ∈ (2, R],

ιR(x, y) ≥ ιR(2, y) +
∫ R

2
∂xιR(s, y) ds ≥ K1

24
(y − 2) + K1(y − 2)

xy − 2y

y

≥ K1

24
(y − 2)

(

1 + xy − 2y

8

)

≥ K3(y − 2)xy

for K3 = K1/192, and

0 <
∂xιR(x, y)√

ιR(x, y)
≤ K2K

−1/2
3

√
y − 2xy/2−1 ≤ K2K

−1/2
3

√
y − 2gR(x, y).

For x > R, we have ιR(x, y) ≥ ιR(R, y) ≥ K3(y − 2)Ry and

0 <
∂xιR(x, y)√

ιR(x, y)
≤ K

−1/2
3

√
y − 2Ry/2−1 ≤ √

2/K3
√

y − 2gR(x, y).

From these estimates, Eq. 3.9 holds by setting

K0 = 2−1 max{K2
√

12/K1,K2K
−1/2
3 ,

√
2/K3}.

Integrating each term of Eq. 3.9 gives Eq. 3.10.

Lemma 3.6 For x ≥ 0 and y ∈ [2, 3],
max{0, xy log+ x − (2 log 2)x2} ≤ ∂yτ (x, y) ≤ xy log+ x. (3.11)

Proof We have

∂yτ(x, y) =
∫ x

0
∂yζ (s, y) ds =

∫ x

0

(
sy−1 + ysy−1 log s

)
ξ(s) ds.

From ξ(x) = 0 for x ∈ [0, 1], it follows that ∂yτ (x, y) vanishes for x ∈ [0, 1] and is
non-decreasing in x. For x ∈ [0, 2] and y ∈ [2, 3],

xy log+ x − (2 log 2)x2 ≤ x2(2y−2 log 2 − 2 log 2) ≤ 0 ≤ ∂yτ (x, y).

Moreover, for x ≥ 2 and y ∈ [2, 3],
∂yτ (x, y) ≥

∫ x

2

(
sy−1 + ysy−1 log s

)
ds

= sy log s|s=x
s=2

= xy log x − 2y log 2

≥ xy log+ x − (2 log 2)x2.

Therefore, the first inequality of Eq. 3.11 holds. For x > 1, we have

∂yτ (x, y) ≤
∫ x

1

(
sy−1 + ysy−1 log s

)
ds = sy log s|s=x

s=1 = xy log x.

Thus, the second inequality of Eq. 3.11 holds.

Lemma 3.7 For each ε > 0, there exists some y0 = y0(ε) > 2 such that gR(x, y)x−ε is
non-increasing in x for any y ∈ [2, y0] and R > 2.
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Proof Since gR(x, y) = gR(R, y) for x ≥ R, the term gR(x, y)x−ε is always non-
increasing for x ≥ R. It therefore suffices to consider only x in [0, R]. We may additionally
assume that ε ∈ (0, 1/2). Define

ν(x, y) := (
gR(x, y)x−ε

)2
, (x, y) ∈ [0, R] × [2, ∞).

It suffices to prove that there exists some y0(ε) > 2 such that, for (x, y) ∈ [0, R] ×
[2, y0(ε)],

∂xν(x, y) ≤ 0. (3.12)

By definition, for (x, y) ∈ [0, R] × [2, ∞),

ν(x, y) = ∂xζ (x, y)x−2ε

= 2x−2ε +
(
y(y − 1)xy−2−2ε − 2x−2ε

)
ξ(x) +

(
yxy−1−2ε − 2x1−2ε

)
ξ ′(x)

and

∂xν(x, y) = −4εx−1−2ε+
(
y(y−1)(y−2 − 2ε)xy−3−2ε + 4εx−1−2ε

)
ξ(x)

+
(

2y(y−1−ε)xy−2−2ε−4(1−ε)x−2ε
)
ξ ′(x)+

(
yxy−1−2ε−2x1−2ε

)
ξ ′′(x).

Suppose 0 ≤ x ≤ 1. Since ξ(x) = ξ ′(x) = ξ ′′(x) = 0,

∂xν(x, y) = −4εx−1−2ε;
thus, Eq. 3.12 holds for this case.

Suppose 2 ≤ x ≤ R. Since ξ(x) = 1 and ξ ′(x) = ξ ′′(x) = 0,

∂xν(x, y) = y(y − 1)(y − 2 − 2ε)xy−3−2ε.

Therefore, Eq. 3.12 holds for y ∈ [2, 2 + 2ε].
Since ξ , ξ ′, and ξ ′′ are all bounded, ∂xν(x, y) converges to −4εx−1−2ε uniformly in

x ∈ [1, 2] as y → 2. Thus, there exists some y0(ε) ∈ (2, 2 + 2ε] such that

∣
∣
∣∂xν(x, y) + 4εx−1−2ε

∣
∣
∣ ≤ 4ε · 2−1−2ε, (x, y) ∈ [1, 2] × [2, y0(ε)]. (3.13)

Equation 3.13 implies Eq. 3.12 for (x, y) ∈ [1, 2] × [2, y0(ε)].

Lemma 3.8 The following inequalities hold for δ ∈ (0, 1/2), R > 2, x ≥ 0, and y ∈
[2, y0(δ)]:

(i) xgR(x, y) ≤ (1 + δ)ρR(x, y),
(ii) xgR(x, y)2 ≤ (1 + 2δ)hR(x, y),

(iii) xhR(x, y) ≤ (1 + δ)2ρR(x, y)2,

(iv) xgR(x, y)2 − hR(x, y) ≤ 2δ(1 + δ)

1 + 2δ
ρR(x, y)gR(x, y),

(v) ρR(x, y)2 ≤ 2(1 + 2δ)φR(x, y) ≤ 2(1 + 2δ)τ (x, y),
(vi) (∂xψR(x, y))2 ≤ (1 + 2δ)gR(x, y)2.

Proof In the following, we omit y from the notation.
From Lemma 3.7, gR(s)s−δ ≥ gR(x)x−δ ≥ 0 if 0 < s ≤ x. Then, we have

ρR(x) =
∫ x

0
gR(s) ds ≥ gR(x)x−δ

∫ x

0
sδ ds = xgR(x)

1 + δ
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and

hR(x) =
∫ x

0
gR(s)2 ds ≥ gR(x)2x−2δ

∫ x

0
s2δ ds = xgR(x)2

1 + 2δ
.

Thus, (i) and (ii) hold. Combining (i) and Lemma 3.4(i) gives (iii). From (i) and (ii),

xgR(x)2 − hR(x) ≤
(

1 − 1

1 + 2δ

)

xgR(x)2 ≤ 2δ(1 + δ)

1 + 2δ
ρR(x)gR(x),

which proves (iv). Next, we prove (v). From (ii) and Lemma 3.4(iii), we have

∂x

(
ρR(x)2

)
= 2gR(x)ρR(x) ≤ 2xgR(x)2 ≤ 2(1 + 2δ)hR(x).

Then,

ρR(x)2 ≤ 2(1 + 2δ)

∫ x

0
hR(s) ds = 2(1 + 2δ)φR(x).

The second inequality of (v) follows from Lemma 3.3(iv).
Last, we prove (vi). The inequality holds for x = 0 by direct computation. Let x > 0.

By using (ii) and Lemma 3.4(i), we have

(∂xψR(x))2 =
(
xgR(x)2 + hR(x)

)2

4xhR(x)
≤

(
2xgR(x)2

)2

4(1 + 2δ)−1x2gR(x)2
= (1 + 2δ)gR(x)2.

3.3 Derivation of a Differential Inequality

In this and further subsections, we prove Theorem 2.10. The following inequality is often
used throughout this paper without specific mention:

|xy| ≤ 1

α
x2 + α

4
y2 for α > 0 and x, y ∈ R.

Let ε ∈ (0, (1 − η)/6]. Take δ > 0 such that

(1 + δ)2 ≤ 1 + ε. (3.14)

In particular, we use 2δ ≤ ε ≤ 1/6. Let

q = min

{

3, 1 + q0

2
, y(δ), 2 + ε

κK2
0

}

∈ (2, 3] and S = 3γ 2

ε
.

Here, q0, y(·), and K0 are as provided in Eq. 3.2, Lemma 3.7, and Lemma 3.5, respectively.
We set

t0 = min{1, (q − 2)/S} and p(t) = q − St, t ∈ [0, t0].
Note that p(t) ∈ [2, q] for t ∈ [0, t0].

Let A,B ∈ B0 with d(A, B) < ∞ and set w = dB ∧ d(A,B) ∈ D0. Let α ∈ R \ {0}
and define

ut = Tt1B, F (t) = eαwut , and σ(t) =
∫

E

τ(F (t), p(t)) dμ for t ∈ [0, t0]. (3.15)
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Lemma 3.9 The function σ is continuously differentiable on (0, t0] and
σ ′(t) =

∫

E

{
∂xτ (F (t), p(t))F ′(t) + ∂yτ (F (t), p(t))p′(t)

}
dμ

=
∫

E

ζ(F (t), p(t))eαwL ut dμ − S

∫

E

∂yτ(F (t), p(t)) dμ. (3.16)

Proof We justify the formal calculation. First, let us recall the following fact (see, e.g.,
[2, Theorems 21.4 and 21.8]): Suppose r ∈ [1, ∞) and that χ ∈ L1(μ) satisfies 0 < χ ≤ 1
μ-a.e. Then, for functions {fn}∞n=1 in Lr(μ) and f ∈ L0(μ), the sequence fn converges to
f in Lr(μ) if and only if fn converges to f in measure with respect to χ · μ and

lim
K→∞ sup

n

∫

E

{(|fn|r − Kχ) ∨ 0} dμ = 0.

For t ∈ (0, t0] and {tn}∞n=1 ⊂ (0, t0] \ {t} converging to t ,

(τ (F (tn), p(tn)) − τ(F (t), p(t))) /(tn − t)

= τ (F (t) + s(F (tn) − F(t)), p(t) + s(p(tn) − p(t)))

∣
∣
∣s=1
s=0

/
(tn − t)

= (tn − t)−1
∫ 1

0

{
(F (tn) − F(t))∂xτ (gs,n, hs,n) + (p(tn) − p(t))∂yτ (gs,n, hs,n)

}
ds

= F(tn) − F(t)

tn − t

∫ 1

0
ζ(gs,n, hs,n) ds − S

∫ 1

0
∂yτ (gs,n, hs,n) ds, (3.17)

where gs,n = F(t) + s(F (tn) − F(t)) (≥ 0) and hs,n = p(t) + s(p(tn) − p(t)). For each
s ∈ [0, 1], gs,n converges to F(t) in Lr as n → ∞ for every r ∈ [2, q0], and hs,n converges
to p(t) as n → ∞. In particular, for every s ∈ [0, 1] and r ∈ [2, q0], gs,n converges to F(t)

in measure with respect to χ · μ and

lim
K→∞ sup

n

∫

E

{((gs,n)
r − Kχ) ∨ 0} dμ = 0.

From the continuity of ζ , ζ(gs,n, hs,n) converges to ζ(F (t), p(t)) in measure with respect
to χ · μ as n → ∞. Lemma 3.3(ii) and the inequality 2 < 2(q − 1) < q0 together imply
ζ(x, y)2 ≤ 4x2 + q2

0xq0 for x ≥ 0 and y ∈ [2, q0]. Thus,

sup
n

∫

E

{(ζ(gs,n, hs,n)
2 − Kχ) ∨ 0} dμ

≤ sup
n

∫

E

{(4(gs,n)
2 − Kχ/2) ∨ 0} dμ + sup

n

∫

E

{(q2
0 (gs,n)

q0 − Kχ/2) ∨ 0} dμ

→ 0 as K → ∞.

From the above, ζ(gs,n, hs,n) converges to ζ(F (t), p(t)) in L2(μ). Moreover, since it is
easy to see that {ζ(gs,n, hs,n)}s∈[0,1], n∈N is bounded in L2(μ), we obtain
∥
∥
∥
∥
∥

∫ 1

0
ζ(gs,n, hs,n) ds − ζ(F (t), p(t))

∥
∥
∥
∥
∥

2

≤
∫ 1

0
‖ζ(gs,n, hs,n) − ζ(F (t), p(t))‖2 ds → 0

as n → ∞, by the dominated convergence theorem. Thus, the first term of Eq. 3.17 con-
verges to F ′(t)ζ(F (t), p(t)) in L1(μ) as n → ∞ because (F (tn)−F(t))/(tn−t) converges
to F ′(t) in L2(μ).
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In the same manner, we can prove that
∫ 1

0 ∂yτ(gs,n, hs,n) ds converges to ∂yτ(F (t), p(t))

in L1(μ) as n → ∞, by using Lemma 3.6. Thus, Eq. 3.16 is proved. The proof of the
continuity of σ ′(t) proceeds analogously.

We fix t ∈ (0, t0] and estimate the first term of Eq. 3.16. Recall the measurable nest
{Ek}∞k=1 in Assumption 2.8. Take a sequence of functions {wk}∞k=1 such that for every k ∈ N,
wk ∈ DEk,b, wk = w μ-a.e. on Ek and 0 ≤ wk ≤ N μ-a.e. There also exist functions
{u(k)}∞k=1 such that u(k) ∈ DEk,b for each k and the sequence u(k) converges to ut in D as
k → ∞. By considering 0∨(u(k) ∧ut ) (and the Cesàro means if necessary) we may assume
that 0 ≤ u(k) ≤ ut μ-a.e. for every k and limk→∞ u(k) = ut μ-a.e. Let F (k) = eαwku(k) ∈
DEk,b for each k. Then,

0 ≤ F (k) = eαwu(k) ≤ F(t) μ-a.e.

and

∫

E

ζ(F (t), p(t))eαwL ut dμ =
∫

E

lim
R→∞ hR(F (t), p(t))eαwL ut dμ (from Lemma 3.3)

= lim
R→∞

∫

E

lim
k→∞ hR(F (k), p(t))eαwkL ut dμ

= lim
R→∞ lim

k→∞ −E
(
ut , hR(F (k), p(t))eαwk

)
. (3.18)

Lemma 3.10 For any R > 2,

lim
k→∞ E

(
ut , hR(F (k), p(t))eαwk

)
= lim

k→∞ E
(
u(k), hR(F (k), p(t))eαwk

)
.

Proof Since u(k) converges to ut in D as k → ∞, proving that the sequence
{hR(F (k), p(t))eαwk }∞k=1 is bounded in D suffices. Boundedness in L2(μ) is straightfor-
ward. For each k,

E 0
(
hR(F (k), p(t))eαwk

)1/2

≤ E 0
(
hR(F (k), p(t))(eαwk − 1)

)1/2 + E 0
(
hR(F (k), p(t))

)1/2

≤
∥
∥
∥gR(F (k), p(t))2(eαwk − 1)|DF(k)|H

∥
∥
∥

2
+
∥
∥
∥hR(F (k), p(t))αeαwk |Dwk|H

∥
∥
∥

2

+
∥
∥
∥gR(F (k), p(t))2|DF(k)|H

∥
∥
∥

2
. (3.19)

We note that gR is a bounded function, that |eαwk − 1| ≤ e|α|N , that hR(F (k), p(t)) = 0 on
E \ Ek , that |Dwk|H ≤ 1 on Ek and that

∥
∥
∥|DF(k)|H

∥
∥
∥

2
≤
∥
∥
∥αeαwku(k)|Dwk|H

∥
∥
∥

2
+
∥
∥
∥eαwk |Du(k)|H

∥
∥
∥

2

≤ |α|e|α|N‖u(k)‖2 + e|α|N (
2E 0(u(k))

)1/2
,
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which is bounded in k. From these estimates, the first and third terms of Eq. 3.19 are
bounded in k. Moreover, Lemma 3.3(ii) and the inequality 2 < 2(q − 1) < q0 together
imply that {hR(F (k), p(t))}∞k=1 is bounded in L2(μ). Thus, the second term of Eq. 3.19 is
also bounded in k, which completes the proof.

From this lemma and Eq. 3.18,

∫

E

ζ(F (t), p(t))eαwL ut dμ = lim
R→∞ lim

k→∞ −E (u(k), hR(F (k), p(t))eαwk ). (3.20)

We provide an upper estimate of the right-hand side. Let G
(k)
R = ρR(F (k), p(t)) for k ∈ N.

For the moment, we omit p(t) from the notation and write, for example, hR(F (k)) instead
of hR(F (k), p(t)). We have

−E
(
u(k), hR(F (k))eαwk

)

= −E
(
e−αwkF (k), eαwkhR(F (k))

)

= −E 0
(
e−αwkF (k), eαwkhR(F (k))

)
−
∫

E

(
b,D

(
e−αwkF (k)

))

H
eαwkhR(F (k)) dμ

−
∫

E

(
c,D

(
eαwkhR(F (k))

))

H
e−αwkF (k) dμ −

∫

E

V F (k)hR(F (k)) dμ

= −1

2

∫

E

(
−αe−αwkF (k)Dwk + e−awkDF (k),

αeαwkhR(F (k))Dwk + eαwkgR(F (k))2DF(k)
)

H
dμ

−
∫

E

(
b, −αe−αwkF (k)Dwk + e−αwkDF (k)

)

H
eαwkhR(F (k)) dμ

−
∫

E

(
c, αeαwkhR(F (k))Dwk + eαwkgR(F (k))2DF(k)

)

H
e−αwkF (k) dμ

−
∫

E

V F (k)hR(F (k)) dμ

= −1

2

∫

E

{
gR(F (k))2|DF(k)|2H − α2F (k)hR(F (k))|Dwk|2H
+α

(
hR(F (k)) − F (k)gR(F (k))2

) (
DF(k),Dwk

)

H

}
dμ

+ α

∫

E

(b − c,Dwk)H F (k)hR(F (k)) dμ

+ 1

2

∫

E

(
b − c,DF (k)

)

H

(
F (k)gR(F (k))2 − hR(F (k))

)
dμ

− 1

2

∫

E

(
b + c,DF (k)

)

H

(
F (k)gR(F (k))2 + hR(F (k))

)
dμ

−
∫

E

V F (k)hR(F (k)) dμ

=: I1 + I2 + I3 + I4 + I5.
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Using Eq. 3.14, we have

I1 ≤ −1

2

∫

E

gR(F (k))2|DF(k)|2H dμ

+ α2(1 + ε)

2

∫

E

ρR(F (k))2|Dwk |2H dμ (from Lemma 3.8(iii))

+ |α|ε
2

∫

E

ρR(F (k))gR(F (k))

∣
∣
∣
(
DF(k),Dwk

)

H

∣
∣
∣ dμ

(from Lemma 3.4(i) and Lemma 3.8(iv))

≤ −1

2

∫

E

∣
∣
∣DG

(k)
R

∣
∣
∣
2

H
dμ+ α2(1 + ε)

2

∫

E

(
G

(k)
R

)2
dμ+ |α|ε

2

∫

E

G
(k)
R

∣
∣
∣DG

(k)
R

∣
∣
∣
H

dμ

≤ −E 0
(
G

(k)
R

)
+ α2(1 + ε)

2

∥
∥
∥G(k)

R

∥
∥
∥

2

2
+ ε

∥
∥
∥DG

(k)
R

∥
∥
∥

2

2
+ εα2

16

∥
∥
∥G(k)

R

∥
∥
∥

2

2
,

I3 =
∫

E

(
b − c,D

√
ιR(F (k))

)

H

√
ιR(F (k)) dμ

≤ κE 0
1

(√
ιR(F (k))

)
(from (B.1))

≤ κK2
0 (p(t)−2)

(
1

2

∫

E

|DF(k)|2H gR(F (k))2 dμ+
∥
∥
∥G(k)

R

∥
∥
∥

2

2

)

(from Lemma 3.5)

≤ εE 0
1

(
G

(k)
R

)
,

I4 + I5 = −
∫

E

(
b + c,D(ψR(F (k)))

)

H
ψR(F (k)) dμ −

∫

E

V ψR(F (k))2 dμ

≤ ηE 0
(
ψR(F (k))

)
+ θ

∥
∥
∥ψR(F (k))

∥
∥
∥

2

2
(from (A.2))

≤ η(1 + 2δ)

2

∫

E

∣
∣
∣DF(k)

∣
∣
∣
2

H
gR(F (k))2 dμ + θ(1 + δ)2

∥
∥
∥G(k)

R

∥
∥
∥

2

2

(from Lemma 3.8(vi) and (iii))

≤ (1 + ε)ηE 0(G
(k)
R ) + (1 + ε)θ

∥
∥
∥G(k)

R

∥
∥
∥

2

2
.

Moreover, when α > 0,

I2 = α

∫

E

(b − c,Dw)H ψR(F (k))2 dμ

= α

∫

{0<dB<d(A,B)}
(b − c,DdB)H ψR(F (k))2 dμ (from Proposition 2.1)

≤ α

⎧
⎨

⎩
ε

α
E 0

(
ψR(F (k))

)
+ λε/α

∥
∥
∥ψR(F (k))

∥
∥
∥

2

2

+ γ

∥
∥
∥ψR(F (k))

∥
∥
∥

2

(∫

E

ψR(F (k))2 log+ ψR(F (k))2

∥
∥ψR(F (k))

∥
∥2

2

dμ

)1/2
⎫
⎬

⎭

(from (B.2)A,B with f = ψR(F (k))/‖ψR(F (k))‖2)

≤ ε(1 + ε)E 0
(
G

(k)
R

)
+ αλε/α(1 + ε)

∥
∥
∥G(k)

R

∥
∥
∥

2

2

+ εα2(1 + ε)

∥
∥
∥G(k)

R

∥
∥
∥

2

2
+ γ 2

4ε

∫

E

ψR(F (k))2 log+ ψR(F (k))2

∥
∥ψR(F (k))

∥
∥2

2

dμ.

(from Lemma 3.8(vi) and (iii)) (3.21)



Varadhan’s Asymptotics 277

Assume α > 0 in what follows. Combining Eqs. 3.16, 3.20, and the estimates from I1 to I5
above, we have

σ ′(t) = lim
R→∞ lim

k→∞

(

−E
(
u(k), hR(F (k), p(t))eαwk

)
− S

∫

E

∂yτ(F (t), p(t)) dμ

)

≤ lim
R→∞

lim
k→∞

[

C0E
0
(
G

(k)
R

)
+ C1

∥
∥
∥G(k)

R

∥
∥
∥

2

2
+ γ 2

4ε

∫

E

ψR(F (k))2 log+ ψR(F (k))2

∥
∥ψR(F (k))

∥
∥2

2

dμ

−S

∫

E

{
F(t)p(t) log+F(t)−2(log 2)F (t)2

}
dμ

]

, (from Lemma 3.6)

where

C0 = −1 + 3ε + (1 + ε)η + ε(1 + ε) ≤ 0 (by the choice of ε)

and

C1 = (1 + ε)α2

2
+ εα2

16
+ ε + (1 + ε)θ + (1 + ε)αλε/α + ε(1 + ε)α2. (3.22)

Let G(t) = √
τ(F (t), p(t)). Note that ‖G(t)‖2

2 = σ(t). From Lemmas 3.8(iii)(v) and
3.3(ii),

0 ≤ ψR(F (k)) ≤ √
1 + εG

(k)
R ≤ √

2(1 + ε)G(t) ≤ 2G(t) μ-a.e.

for all k ∈ N and R > 2 (3.23)

and

F(t) ≤ G(t) ≤ F(t) ∨ F(t)p(t)/2. (3.24)

Since log+(x/y) ≤ log+ x + log− y for x, y > 0 and the maps [0, ∞) � a �→ a log+ a ∈
[0, ∞) and [0, ∞) � a �→ a + a log− a ∈ [0, ∞) are both non-decreasing, we obtain, for
every k ∈ N and R > 2, that

∫

E

ψR(F (k))2 log+ ψR(F (k))2

∥
∥ψR(F (k))

∥
∥2

2

dμ

≤
∫

E

ψR(F (k))2 log+ ψR(F (k))2

4
dμ +

∥
∥
∥ψR(F (k))

∥
∥
∥

2

2
log−

∥
∥ψR(F (k))

∥
∥2

2

4

≤ 4
∫

E

G(t)2 log+ G(t)2 dμ + 4
(
‖G(t)‖2

2 + ‖G(t)‖2
2 log− ‖G(t)‖2

2

)
(from Eq. 3.23)

and
∫

E

G(t)2 log+G(t)2 dμ ≤
∫

E

(
F(t)2∨F(t)p(t)

)
log+(F(t)2∨F(t)p(t)

)
dμ (from Eq. 3.24)

= p(t)

∫

E

F(t)p(t) log+ F(t) dμ.

Here, in the last equality, we used the identity

(a2 ∨ ap(t)) log+(a2 ∨ ap(t)) = p(t)ap(t) log+ a for a ≥ 0.
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Because we set S = 3γ 2/ε,

σ ′(t) ≤ (2 + 2ε)C1‖G(t)‖2
2 + p(t)S

3

∫

E

F(t)p(t) log+ F(t) dμ

+ S

3

(
‖G(t)‖2

2 + ‖G(t)‖2
2 log− ‖G(t)‖2

2

)

− S

∫

E

F(t)p(t) log+ F(t) dμ + 2S(log 2)‖F(t)‖2
2

≤ Uσ(t) + Wσ(t) log− σ(t), (3.25)

where

U = (2 + 2ε)C1 +
(

1

3
+ 2 log 2

)

S and W = S

3
. (3.26)

3.4 Solving the Differential Inequality

We give an explicit upper bound of σ(t). Since ‖u0‖2 > 0, there exists some t1 ∈ (0, t0]
such that ‖ut‖2 > 0 for t ∈ [0, t1]. For this step, we consider only t ∈ [0, t1]. Keeping in
mind that

(log σ)′(t) = σ ′(t)/σ (t) ≤ U + W log− σ(t)

from Eq. 3.25, we define

χ(x) =
∫ x

0

1

U + W max{−s, 0} ds =

⎧
⎪⎨

⎪⎩

− 1

W
log

(

1 − W

U
x

)

(x ≤ 0),

x

U
(x > 0).

(3.27)

Then,

(χ(log σ))′ (t) = χ ′(log σ(t)) (log σ)′ (t) ≤ 1,

which implies

χ(log σ(t)) ≤ χ(log σ(0)) + t, t ≥ 0.

This inequality implies

log σ(t) ≤
{

U

W

[
1 − exp (−W {χ(log σ(0)) + t})] if σ(t) ≤ 1,

U{χ(log σ(0)) + t} if σ(t) > 1.
(3.28)

We can confirm that
U

W

[
1 − exp(−Wz)

] ≤ Uz, z ∈ R,

so that Eq. 3.28 implies

σ(t) ≤ exp (U{χ(log σ(0)) + t}) . (3.29)

For the proof of Theorem 2.10, we assume that d(A,B) > 0 because otherwise the
assertion is trivial. Define

σ1(t, α) =
∫

E

τ(eαwTt1B, p(t)) dμ and σ2(t, α) =
∫

E

τ(e−αwT̂t1A, p(t)) dμ (3.30)

for t > 0 and α > 0. Both σ1(t, α) and σ2(t, α) have the same kind of estimates as Eq. 3.29.
Indeed, for the estimate of σ2, the discussion in the previous subsection is applied with b,
c, and α replaced by c, b, and −α, respectively. The only term that requires care is I2, but
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the estimate (3.21) is unchanged by this replacement. From the Cauchy–Schwarz inequality
and Lemma 3.3(ii),

Pt (A,B) ≤
{∫

E

(eαwTt/21B)2 dμ

}1/2 {∫

E

(e−αwT̂t/21A)2 dμ

}1/2

≤ σ1(t/2, α)1/2σ2(t/2, α)1/2. (3.31)

Letting N = d(A,B) and α = N/t , we have

lim
t→0

t log Pt (A,B) ≤ lim
t→0

t

2
log σ1(t/2, N/t) + lim

t→0

t

2
log σ2(t/2, N/t). (3.32)

We also have

σ1(0, N/t) =
∫

E

τ(1B, q) dμ = μ(B),

σ2(0, N/t) =
∫

E

τ(e−N2/t1A, q) dμ = μ(A)e−2N2/t ,

t

2
log σj

(
t

2
,
N

t

)

= Ut

2
χ

(

log σj

(

0,
N

t

))

+ Ut2

4
, j = 1, 2.

We remark that U and χ depend on α (see Eqs. 3.26 and 3.22). When α = N/t ,

lim
t→0

Ut2 = (2 + 2ε)

(
1 + ε

2
+ ε

16
+ ε

)

N2 (from Eq. 2.6)

=: β(ε)N2

and
lim
t→0

Uχ(x) = x for x ∈ R,

in view of Eq. 3.27. In particular, U = O(t−2) as t → 0. We also remark that
limε→0 β(ε) = 1. Then, we obtain

Ut

2
χ

(

log σ1

(

0,
N

t

))

+ Ut2

4
= t

2
Uχ(log μ(B)) + Ut2

4
→ β(ε)N2

4
as t → 0.

Therefore,

lim
t→0

t

2
log σ1(t/2, N/t) ≤ β(ε)N2

4
. (3.33)

Also, for t small enough that σ2(0, N/t) < 1,

Ut

2
χ

(

log σ2

(

0,
N

t

))

+ U2t

4
= t

2

(

− U

W
log

(

1 − W

U

(

log μ(A) − 2N2

t

))

+ Ut

2

)

= Ut

2W

(

−2WN2

Ut
+ O(t2)

)

+ Ut2

4

→ −N2 + β(ε)

4
N2 as t → 0.

Therefore,

lim
t→0

t

2
log σ2(t/2, N/t) ≤

(

−1 + β(ε)

4

)

N2. (3.34)

By combining Eqs. 3.32, 3.33, and 3.34,

lim
t→0

t log Pt (A,B) ≤
(

−1 + β(ε)

2

)

N2.
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Letting ε → 0, we obtain Eq. 2.8, which finishes the proof of Theorem 2.10.

Remark 3.11 (i) As seen from the proof, when we can let γ = 0 in (B.2)A,B , the Lp-
analysis is not necessary and the proof becomes much simpler.

(ii) If (E,B, μ) is a finite measure space, then we can define σ , σ1, and σ2 as

σ(t) =
∫

E

F(t)p(t) dμ,

σ1(t, α) =
∫

E

(eαwTt1B)p(t) dμ,

σ2(t, α) =
∫

E

(e−αwT̂t1A)p(t) dμ

and use the inequality

Pt (A,B) ≤ μ(E)
1− 2

p(t/2) σ1(t/2, α)
1

p(t/2) σ2(t/2, α)
1

p(t/2)

in place of Eqs. 3.15, 3.30, and 3.31. This change makes the proof of Theorem 2.10
shorter and simpler since the fine estimates in Section 3.2 are not necessary.

4 Proof of Theorem 2.11

4.1 Cutoff Functions and Their Properties

We turn to the lower-side estimate and prove Theorem 2.11. In Section 2.1 of [9], some nice
concave functions are introduced as cutoff functions. Because our semigroup {Tt }t>0 does
not have the Markov property in general, we need to modify these functions to be suitable.
First, we take a real-valued function g on R satisfying the following properties:

– g is an odd and bounded C3-function;
– g(x) = x for x ∈ [−1, 1] and 0 < g′(x) ≤ 1 on R; and
– there is a positive constant C such that 0 ≤ −g′′(x) ≤ Cg′(x) for x ∈ [−1, ∞).

These conditions imply that limx→∞ g(x) = L, limx→−∞ g(x) = −L for some L > 1 and
that the convergence is monotone. Note that g is concave on [−1, ∞).

Define our main cutoff functions at level K > 0 by

φK(x) = Kg(x/K), �K(x) =
∫ x

0
(φK)′(s)2 ds, and �K(x) = x(φK)′(x)2.

From the conditions on g, we have the following properties:

(C.1) 0 < (φK)′(x) ≤ 1,
(C.2) 0 ≤ |(φK)′′(x)| ≤ CK−1(φK)′(x),
(C.3) 0 ≤ �K(x) ≤ �K(x) ≤ φK(x) ≤ LK for x ≥ 0, and |�K(x)|, |�K(x)|,

|φK(x)| ≤ LK on R,
(C.4) φK(x) = �K(x) = �K(x) = x on [−K, K],
(C.5) limx→∞ �K(x) = 0,
(C.6) �K(x/β) ≥ �K(x)/β for all β > 1 and x ≥ 0.
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To simplify the notation, we omit explicit indication of the dependency on K for most of
this section. For example, we write φ instead of φK whenever the value of K is clear from
the context. The monotonicities of φ, �, (C.3), and (C.5) guarantee that φ, �, and � can be
extended to continuous functions on [−∞,∞], and these extensions use the same symbols.
The following estimates result:

(C.7) �K(x) − �K(�M(x)) ≤ �K(∞) − �K(M) for all K,M > 0 and x ∈ R.

Indeed, this inequality is trivial when x ≤ M , and when x > M it is deduced from �K(x) ≤
�K(∞) and �K

(
�M(x)

) ≥ �K(M).

We also introduce a function �̂K on R, defining it as

�̂K(x) =
{

�K(x) (x ≥ −K),

x (x < −K).
(4.1)

This function is concave and 1-Lipschitz on R.
For functions uδ

t on E with parameters t and δ, we write φδ
t for φ(uδ

t ), �δ
t for �(uδ

t ), φ̄δ
t

for t−1
∫ t

0 φδ
s ds, and so on. We denote

∫
E

fg dμ by (f, g)μ for functions f and g on E.
For δ ∈ (0, 1] and f ∈ L2(μ) with f ≥ 0 μ-a.e. and t > 0, we define

uδ
t (x) = −t log (Ttf (x) + δ) , eδ

t = −t log δ.

We need the following lemmas, introduced in [9].

Lemma 4.1 The function F(x) = �(−t log x) is convex for x ∈ [0, ∞] if 0 < t ≤
K/(2C).

Proof The proof here follows the proof of Lemma 2.1 in [9]. Compute

F ′(x) = − t

x
�′(−t log x),

F ′′(x) = t

x2
�′(−t log x) + t2

x2
�′′(−t log x) = t

x2

(
(φ′)2 + 2tφ′φ′′)

∣
∣
∣−t log x

.

From this and (C.2), F has a nonnegative second derivative.

Lemma 4.2 ([9, Lemma 2.2]) Suppose that F is a concave continuous function defined on
R. If fn → f weakly in L2(μ), F(fn) ∈ L2(μ) for each n, and F(fn) has a subsequence
that converges to some function F̂ weakly in L2(μ), then F̂ ≤ F(f ).

Lemma 4.3 ([9, Lemma 2.4]) Let {fn} be a sequence of D that converges weakly to some
f in D. Then,

lim
n→∞

∫

E

|Dfn|2H h dμ ≤
∫

E

|Df |2H h dμ

for h ∈ D with 0 ≤ h ≤ M μ-a.e. for some M ≥ 0.

Lemma 4.4 (cf. [9, Lemma 2.5]) Let T > 0 and suppose that f (t, x) = ft (x) is a bounded
jointly measurable function for (t, x) ∈ (0, T ] × E. Also suppose that ft ∈ D for each
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t ∈ (0, T ] and that
∫ T

0 E 0(ft ) dt < ∞. Writing f̄T = 1
T

∫ T

0 ft dt , we have f̄T ∈ D, and the
following is true for any nonnegative h ∈ Db:

∫

E

|Df̄T |2H h dμ ≤ 1

T

∫ T

0

∫

E

|Dft |2H h dμ dt.

4.2 Rough Estimates

In the following, �(f, g) and �(f ) denote (Df,Dg)H and (Df,Df )H , respectively.

Lemma 4.5 uδ
t − eδ

t ∈ D and

(ρ, ∂t�
δ
t )μ = 1

t
(ρ,�δ

t )μ − E 0
(
((φ′)δt )2ρ, uδ

t − eδ
t

)
− 1

2t

∫

E

�(uδ
t − eδ

t )((φ
′)δt )2ρ dμ

−
∫

E

(
b,D(uδ

t − eδ
t )
)
H

((φ′)δt )2ρ dμ + t

∫

E

(c,Dρ)H
((φ′)δt )2Ttf

Ttf + δ
dμ

+
∫

E

(
c,D

(
uδ

t − eδ
t

))
H

{
2t (φ′)δt (φ′′)δt + ((φ′)δt )2

} ρTtf

Ttf + δ
dμ

+ t

∫

E

V
((φ′)δt )2ρTtf

Ttf + δ
dμ (4.2)

for ρ ∈ ⋃∞
k=1 DEk,b.

Proof Let �(s) = log(s + δ) − log δ for s ∈ [0, ∞). From �(0) = 0, the boundedness of
the derivative of � on [0, ∞), and uδ

t − eδ
t = −t�(Ttf ), we conclude that uδ

t − eδ
t ∈ D.

We prove the identity (4.2). First,

(ρ, ∂tu
δ
t )μ = 1

t
(ρ, uδ

t )μ −
(

ρ,
tL Ttf

Ttf + δ

)

μ

= 1

t
(ρ, uδ

t )μ + tE

(

Ttf,
ρ

Ttf + δ

)

(4.3)

and

E (ρ,�(Ttf )) = 1

2

∫

E

� (ρ, �(Ttf )) dμ +
∫

E

(b,Dρ)H �(Ttf ) dμ

+
∫

E

(c,D(�(Ttf )))H ρ dμ +
∫

E

Vρ�(Ttf ) dμ. (4.4)

The first term on the right-hand side is computed as

1

2

∫

E

�(ρ, �(Ttf )) dμ = 1

2

∫

E

�(ρ, Ttf )
1

Ttf + δ
dμ

= 1

2

∫

E

{

�

(
ρ

Ttf + δ
, Ttf

)

+ �(Ttf )
ρ

(Ttf + δ)2

}

dμ

= E

(

Ttf,
ρ

Ttf + δ

)

−
∫

E

(b,DTtf )H
ρ

Ttf + δ
dμ

−
∫

E

(

c,D

(
ρ

Ttf + δ

))

H

Ttf dμ −
∫

E

V
ρTtf

Ttf + δ
dμ + 1

2

∫

E

�(�(Ttf ))ρ dμ.

(4.5)
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Combining the identities Eqs. 4.3, 4.4, and 4.5, it holds that

(ρ, ∂tu
δ
t )μ = 1

t
(ρ, uδ

t )μ + tE (ρ,�(Ttf )) + t

∫

E

(b,DTtf )H
ρ

Ttf + δ
dμ

+ t

∫

E

(

c,D

(
ρ

Ttf + δ

))

H

Ttf dμ + t

∫

E

V
ρTtf

Ttf + δ
dμ

− t

2

∫

E

� (�(Ttf )) ρ dμ − t

∫

E

(b,Dρ)H �(Ttf ) dμ

− t

∫

E

(c,D(�(Ttf )))H ρ dμ − t

∫

E

Vρ�(Ttf ) dμ

= 1

t
(ρ, uδ

t )μ − E 0(ρ, uδ
t − eδ

t ) − 1

2t

∫

E

�(uδ
t − eδ

t )ρ dμ

+ t

∫

E

(b,DTtf )H
ρ

Ttf + δ
dμ

+ t

∫

E

(

c,D

(
ρ

Ttf + δ

))

H

Ttf dμ + t

∫

E

V
ρTtf

Ttf + δ
dμ.

By using the identity (ρ, ∂t�
δ
t )μ = (

((φ′)δt )2ρ, ∂tu
δ
t

)
μ

and replacing ρ with ((φ′)δt )2ρ in
the relation above, we obtain

∂t (ρ, �δ
t )μ = 1

t

(
((φ′)δt )2ρ, uδ

t

)

μ
− E 0

(
((φ′)δt )2ρ, uδ

t − eδ
t

)

− 1

2t

∫

E

�(uδ
t − eδ

t )((φ
′)δt )2ρ dμ + t

∫

E

(b,DTtf )H
((φ′)δt )2ρ

Ttf + δ
dμ

+ t

∫

E

(

c,D

(
((φ′)δt )2ρ

Ttf + δ

))

H

Ttf dμ + t

∫

E

V
((φ′)δt )2ρTtf

Ttf + δ
dμ.

(4.6)

Here, we have

t

∫

E

(b,DTtf )H
((φ′)δt )2ρ

Ttf + δ
dμ = −

∫

E

(
b, D(uδ

t − eδ
t )
)
H

((φ′)δt )2ρ dμ (4.7)

and

t

∫

E

(

c,D

(
((φ′)δt )2ρ

Ttf + δ

))

H

Ttf dμ

= t

∫

E

(
c,D(((φ′)δt )2ρ)

)

H

Ttf

Ttf + δ
dμ +

∫

E

(
c,D(uδ

t − eδ
t )
)
H

((φ′)δt )2ρTtf

Ttf + δ
dμ

= t

∫

E

(c,Dρ)H
((φ′)δt )2Ttf

Ttf + δ
dμ

+
∫

E

(
c,D

(
uδ

t − eδ
t

))
H

{
2t (φ′)δt (φ′′)δt + ((φ′)δt )2

} ρTtf

Ttf + δ
dμ. (4.8)

Substituting Eqs. 4.7 and 4.8 for Eq. 4.6, we obtain Eq. 4.2.
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Lemma 4.6 For k ∈ N and ρ ∈ DEk,b with 0 ≤ ρ ≤ 1 μ-a.e.,
∣
∣
∣
∣(ρ, ∂t�

δ
t )μ − 1

t
(ρ,�δ

t )μ + E 0
(
((φ′)δt )2ρ, uδ

t − eδ
t

)
+ 1

2t

∫

E

�(uδ
t − eδ

t )((φ
′)δt )2ρ dμ

∣
∣
∣
∣

≤
(

Ct

K
+ 1

)∫

E

�(uδ
t − eδ

t )((φ
′)δt )2ρ dμ + tE 0(ρ) + R(t, k),

where we define

R(t, k) := 1

2

∫

Ek

|b|2H dμ +
{(

C

K
+ 1

2

)

t + 1

2

}∫

Ek

|c|2H dμ + t

∫

Ek

|V | dμ.

Proof Using Proposition 2.1, (C.1), and (C.2), we have
∣
∣
∣
∣

∫

E

(
b,D(uδ

t − eδ
t )
)
H

(
(φ′)δt

)2
ρ dμ

∣
∣
∣
∣ ≤ 1

2

∫

Ek

|b|2H dμ + 1

2

∫

E

�(uδ
t − eδ

t )((φ
′)δt )2ρ dμ,

∣
∣
∣
∣
∣

∫

E

(c,Dρ)H
((φ′)δt )2Ttf

Ttf + δ
dμ

∣
∣
∣
∣
∣
≤ 1

2

∫

Ek

|c|2H dμ + E 0(ρ),

∣
∣
∣
∣

∫

E

(
c,D

(
uδ

t − eδ
t

))
H

{
2t (φ′)δt (φ′′)δt + ((φ′)δt )2

} ρTtf

Ttf + δ
dμ

∣
∣
∣
∣

≤
(

Ct

K
+ 1

2

)∫

Ek

|c|2H dμ +
(

Ct

K
+ 1

2

)∫

E

�(uδ
t − eδ

t )((φ
′)δt )2ρ dμ,

∣
∣
∣
∣
∣

∫

E

((φ′)δt )2ρ Ttf

Ttf + δ
V dμ

∣
∣
∣
∣
∣
≤
∫

Ek

|V | dμ.

These estimates and Lemma 4.5 together imply the claim.

Proposition 4.7 There exists a measurable nest {Êk}∞k=1 and functions {χk}∞k=1 in D such

that, for every k, Êk ⊂ Ek , 0 ≤ χk ≤ 1 on E, χk = 1 on Êk , and χk = 0 on E \ Ek .

Proof For k ∈ N, there exists an hk ∈ D such that hk ≥ 1 on Ek . Take a function gk from⋃∞
n=1 DEn such that E 0

1 (hk − gk) ≤ 1/k, and set Yk = {x ∈ Ek | gk(x) ≥ 1/2}. Let ρk

denote 0 ∨ (2(hk − gk) ∧ 1). Then, E 0
1 (ρk) ≤ 4/k and ρk = 1 on Ek \ Yk . We prove that⋃∞

k=1 DYk
is dense in D. Take f ∈ DEn,b for some n ∈ N. For k ≥ n, let fk = f − fρk .

Then, fk = 0 μ-a.e. on (E \ En) ∪ (Ek \ Yk) ⊃ E \ Yk . It follows that fk ∈ DYk
. Moreover,

since

E 0(f −fk)
1/2 =E 0(fρk)

1/2 ≤‖f ‖∞E 0(ρk)
1/2+E 0(f )1/2 ≤‖f ‖∞(4/k)1/2 + E 0(f )1/2,

which is bounded in k, and

‖f − fk‖2 ≤ ‖f ‖∞‖ρk‖2 ≤ ‖f ‖∞(4/k)1/2 → 0 (k → ∞),

the Cesàro means of a certain subsequence of {fk}∞k=n belonging to
⋃∞

k=n DYk
converge to

f in D. Thus
⋃∞

k=1 DYk
is dense in D because

⋃∞
n=1 DEn,b is dense in D.

Let Zn = ⋃n
k=1 Yk and define ηn = 0 ∨ (2(g1 ∨ · · · ∨ gn) ∧ 1). Then, Zn ⊂ En and⋃∞

n=1 DZn is dense in D. Moreover, 0 ≤ ηn ≤ 1 on E, ηn = 1 on Zn and ηn ∈ ⋃∞
k=1 DEk

.



Varadhan’s Asymptotics 285

Take a strictly increasing sequence {m(n)}∞n=1 such that ηn ∈ DEm(n)
for every n ∈ N and

define

Êk = ∅, χk = 0 for 1 ≤ k < m(1),

Êk = Zn, χk = ηn for m(n) ≤ k < m(n + 1), n = 1, 2, . . . .

Then, {Êk}∞k=1 and {χk}∞k=1 satisfy the required conditions.

Define uδ
t = −t log (Tt1B + δ) for B ∈ B0.

Lemma 4.8 There exists a positive constant T0, depending only on C and K , such that both{
E 0(φ̄δ

t χk)
}

0<t≤T0, 0<δ≤1 and
{
E 0(�̄δ

t χk)
}

0<t≤T0, 0<δ≤1 are bounded for each k.

Proof Let Uδ
t = 2E 0(φδ

t χk), Wδ
t = ∫

E
�(uδ

t − eδ
t )((φ

′)δt )2χ2
k dμ, and ak = 2E 0(χk).

Applying the chain rule (2.1),

Uδ
t =

∫

E

�(φδ
t χk, φ

δ
t χk) dμ

=
∫

E

{
�(uδ

t − eδ
t )((φ

′)δt )2χ2
k + 2�(uδ

t − eδ
t , χk)φ

δ
t (φ

′)δt χk + �(χk)(φ
δ
t )

2
}

dμ

≤ 2Wδ
t + 2K2L2ak (from (C.3)). (4.9)

Letting ρ = χ2
k in Lemma 4.6,

Wδ
t ≤ −2t (χ2

k , ∂t�
δ
t )μ + 2(χ2

k , �δ
t )μ − 2tE 0(((φ′)δt )2χ2

k , uδ
t − eδ

t )

+ 2t

(
Ct

K
+ 1

)

Wδ
t + t2ak + 2tR(t, k).

From (C.3), (χ2
k , �δ

t )μ ≤ KL. Moreover,

−2tE 0(((φ′)δt )2χ2
k , uδ

t − eδ
t )

= −2t

∫

E

(φ′)δt �(χk, χkφ
δ
t ) dμ + 2t

∫

E

(φ′)δt φδ
t �(χk) dμ

− 2t

∫

E

(φ′′)δt (φ′)δt χ2
k �(uδ

t − eδ
t ) dμ

≤
∫

E

(

8t2�(χk) + 1

8
�(χkφ

δ
t )

)

dμ + 2KLt

∫

E

�(χk) dμ

+ 2Ct

K

∫

E

((φ′)δt )2χ2
k �(uδ

t − eδ
t ) dμ (from (C.1), (C.2), and (C.3))

= 8t2ak + 1

8
Uδ

t + 2KLtak + 2Ct

K
Wδ

t .

Thus, we have

Wδ
t ≤ −2t (χ2

k , ∂t�
δ
t )μ + (9t2 + 2KLt)ak + Uδ

t /8

+ (2Ct/K + 2Ct2/K + 2t)Wδ
t + 2KL + 2tR(t, k).

Choose T0 > 0 such that 2CT0/K + 2CT 2
0 /K + 2T0 ≤ 1/2. Then, for t ∈ (0, T0],

Wδ
t ≤ −4t (χ2

k , ∂t�
δ
t )μ + Uδ

t /4 + 2C2, (4.10)
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where C2 := (9T 2
0 + 2KLT0)ak + 2KL + 2T0R(T0, k). By putting this inequality into

Eq. 4.9,
Uδ

t ≤ −8t (χ2
k , ∂t�

δ
t )μ + Uδ

t /2 + 4C2 + 2K2L2ak,

so that
Uδ

t ≤ −16t∂t (χ
2
k ,�δ

t )μ + 2C3, (4.11)

where C3 = 4C2 + 2K2L2ak . Therefore,
∫ t

ε

E 0(φδ
s χk) ds = 1

2

∫ t

ε

Uδ
s ds

≤ −8
∫ t

ε

s∂s(χ
2
k ,�δ

s )μ ds + C3(t − ε)

= −8s
(
χ2

k ,�δ
s

)

μ

∣
∣
∣
∣

s=t

s=ε

+ 8
∫ t

ε

(χ2
k ,�δ

s )μ ds + C3(t − ε).

Letting ε → 0 and dividing by t , Lemma 4.4 gives that

E 0(φ̄δ
t χk) ≤ 1

t

∫ t

0
E 0(φδ

s χk) ds ≤ 16KL + C3.

Therefore,
{
E 0(φ̄δ

t χk)
}

0<t≤T0, 0<δ≤1 is bounded. Moreover, since

2E 0(�δ
t χk)

=
∫

E

�(�δ
t χk,�

δ
t χk) dμ

=
∫

E

{
�(uδ

t − eδ
t )((φ

′)δt )4χ2
k + 2�(uδ

t − eδ
t , χk)�

δ
t ((φ

′)δt )2χk + �(χk)(�
δ
t )

2
}

dμ

≤ 2
∫

E

�(uδ
t − eδ

t )((φ
′)δt )4χ2

k dμ + 2
∫

E

�(χk)(�
δ
t )

2 dμ

≤ 2Wδ
t + 2K2L2ak (from (C.3))

≤ −16t∂t (χ
2
k ,�δ

t )μ + C3 + 4C2 + 2K2L2ak, (from Eq. 4.10 and 4.11)

we can prove the boundedness of
{
E 0(�̄δ

t χk)
}

0<t≤T0, 0<δ≤1 in the same way.

4.3 Sharper Estimates

We write ut = −t log Tt1B , φt = φ(ut ), �t = �(ut ), and �t = �(ut ) for t > 0. Since
φ̄δ

t χk converges to φ̄tχk μ-a.e. as δ → 0 and {φ̄δ
t χk}0≤t≤T0, 0<δ≤1 is bounded in D, we con-

clude that φ̄tχk ∈ D and
{
φ̄tχk

}
0<t≤T0

is bounded in D for each k by [13, Lemma 2.12].
Using the diagonal argument, for any decreasing sequence {tn} ↓ 0, we can find a subse-
quence {tn′ } such that, for every k, φ̄tn′ χk converges weakly to some ψk in D. Since χk = 1

on Êl when k ≥ l, it follows that ψk = ψl μ-a.e. on Êl for k ≥ l. Therefore, there exists
φ̄0 ∈ Dloc,b({Êk}) such that ψk = φ̄0 μ-a.e. on Êk for every k.

We may also assume, by taking a further subsequence if necessary, that there exist
�0, �̄0, and �̄0 in L∞(μ) such that �tn′ → �0, �̄tn′ → �̄0, �̄tn′ → �̄0 both in the weak-
L2(μ̃) sense and in the weak∗-L∞(μ) sense. Here, μ̃ is an arbitrary fixed finite measure on
E such that μ̃ and μ are mutually absolutely continuous, and L∞(μ) is regarded as the dual
space of L1(μ). We remark that these functions depend on K . Because of this, it is more
precise to write φK

t and �̄K
0 instead of φt and �̄0.
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Define
Zt = {x ∈ E | Tt1B(x) − 1B(x) > 1}

for t > 0. From the Chebyshev inequality, μ(Zt ) ≤ ‖Tt1B − 1B‖2
2 → 0 as t → 0; thus

1

t

∫ t

0
1Zs ds → 0 in L1(μ) as t → 0. (4.12)

For x ∈ Zt ,
φt (x) = φ(−t log Tt1B(x)) < φ(−t log 1) = 0.

Since Tt1B(x) ≤ 2 for x ∈ E \ Zt and φ(y) ≥ y for y ≤ K , it holds that

φt (x) = φ (−t log Tt1B(x)) ≥ φ(−t log 2) ≥ −t log 2 on E \ Zt . (4.13)

Similar inequalities hold for �t and �t .

Lemma 4.9 φ̄0 ≥ �̄0 ≥ �̄0 ≥ 0 μ-a.e. and �0 ≥ 0 μ-a.e.

Proof By using (C.3) and the inequality (4.13) with φt replaced by �t , for Y ∈ B0,

∫

Y

�̄t dμ = 1

t

∫ t

0

(∫

Y∩Zs

�s dμ +
∫

Y\Zs

�s dμ

)

ds

≥ −LK

t

∫ t

0
μ(Zs) ds − μ(Y ) log 2

2
t

for every t > 0. Then, by letting t → 0 along the sequence {tn′ } in the above inequality, we
obtain

∫
Y

�̄0 dμ ≥ 0 by applying Eq. 4.12. Therefore, �̄0 ≥ 0 μ-a.e. Next, for Y ∈ B0,

∫

Y

(φ̄t − �̄t ) dμ = 1

t

∫ t

0

∫

Y∩Zs

(φs − �s) dμ ds + 1

t

∫ t

0

∫

Y\Zs

(φs − �s) dμ ds

≥ −2LK

t

∫ t

0
μ(Zs) ds + 0 (from (C.3))

for t > 0 small enough. By the same argument, we obtain φ̄0 ≥ �̄0, and the other
inequalities are proved in the same way.

Lemma 4.10 φ̄0 = 0 μ-a.e. on B.

Proof For an arbitrary sequence {sn} ↓ 0, Tsn1B converges to 1B in L2(μ) as n → ∞. Take
an arbitrary subsequence {sn′ } from {sn}. From this, we can find a subsequence {sn′′ } from
{sn′ } such that Tsn′′ 1B → 1B μ-a.e. as n′′ → ∞. Using the dominated convergence theorem,
limn′′→∞

∫
B

φsn′′ dμ = 0. This means limt→0
∫
B

φt dμ = 0. Then, by letting t → 0 along
the sequence {tn′ } in the identity

∫

B

φ̄t dμ = 1

t

∫ t

0

∫

B

φs dμ ds,

we obtain
∫
B

φ̄0 dμ = 0. The claim follows directly.

Lemma 4.11
√

φ̄0 ∈ D0.
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Proof Fix h ∈ D
Êk,b,+ arbitrarily. Since φδ

t χk − (φδ
t − φ(eδ

t )) is constant on Êk ,
Proposition 2.1 implies that

∫

E

�(φδ
t χk)h dμ =

∫

E

�(φδ
t − φ(eδ

t ))h dμ =
∫

E

�(uδ
t − eδ

t )((φ
′)δt )2h dμ.

By using Lemma 4.6 with ρ = h,
∫

E

�(uδ
t − eδ

t )((φ
′)δt )2h dμ

≤ −2t (h, ∂t�
δ
t )μ + 2(h,�δ

t )μ − 2tE 0(((φ′)δt )2h, uδ
t − eδ

t )

+ 2t

(
Ct

K
+ 1

)∫

E

�(uδ
t − eδ

t )((φ
′)δt )2h dμ + 2t2E 0(h) + 2tR(t, k).

Since

−2tE 0(((φ′)δt )2h, uδ
t − eδ

t )

= −t

∫

E

�(h, uδ
t − eδ

t )((φ
′)δt )2 dμ − 2t

∫

E

�(uδ
t − eδ

t )(φ
′)δt (φ′′)δt h dμ

≤ −2tE 0(h,�δ
t χk) + 2Ct

K

∫

E

�(φδ
t χk)h dμ (from (C.2)),

we have
(

1 − 2Ct

K
− 2Ct2

K
− 2t

)∫

E

�(φδ
t χk)h dμ

≤ −2t (h, ∂t�
δ
t )μ + 2(h,�δ

t )μ − 2tE 0(h,�δ
t χk) + 2t2E 0(h) + 2tR(t, k).

Then, for T ∈ (0, T0],
1

2T

∫ T

0

(

1 − 2CT

K
− 2CT 2

K
− 2T

)∫

E

�(φδ
t χk)h dμ dt

≤ − 1

T

∫ T

0
t (h, ∂t�

δ
t )μ dt + (h, �̄δ

T )μ − 1

T

∫ T

0
tE 0(h,�δ

t χk) dt + C4T , (4.14)

where C4 = T0E 0(h)/3 + R(T0, k)/2. Integration by parts gives

1

T

∫ T

0
t (h, ∂t�

δ
t )μ dt = 1

T

(

T (h,�δ
T )μ −

∫ T

0
(h,�δ

t )μ dt

)

= (h,�δ
T )μ − (h, �̄δ

T )μ

and

1

T

∫ T

0
tE 0(h,�δ

t χk) dt = t

T

∫ t

0
E 0(h,�δ

sχk) ds

∣
∣
∣
∣

t=T

t=0
− 1

T

∫ T

0

∫ t

0
E 0(h,�δ

sχk) ds dt

= T E 0(h, �̄δ
T χk) − 1

T

∫ T

0
tE 0(h, �̄δ

t χk) dt

→ 0 as δ → 0 and T → 0
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because E 0(�̄δ
t χk) is bounded in δ and t by Lemma 4.8. Letting δ → 0 and T → 0 along

the sequence {tn′ } in Eq. 4.14, we obtain from Lemmas 4.3 and 4.4 that

1

2

∫

E

�(φ̄0)h dμ ≤ −(h, �0)μ + (h, �̄0)μ + (h, �̄0)μ ≤ (2φ̄0, h)μ. (4.15)

The second inequality follows from Lemma 4.9. Then, for each ε > 0,
∫

E

�

(√
φ̄0 + ε − √

ε

)

h dμ = 1

4

∫

E

�(φ̄0)
h

φ̄0 + ε
dμ ≤ 1

2

(

2φ̄0,
h

φ̄0 + ε

)

≤ ‖h‖1.

This inequality holds for all h ∈ ⋃∞
k=1 DÊk,b,+. Hence,

∣
∣
∣D

(√
φ̄0 + ε − √

ε
)∣
∣
∣
H

≤ 1 μ-

a.e. Next, fix k ∈ N and let fε denote (
√

φ̄0 + ε − √
ε)χk for ε > 0. Then, from the

argument above, |Dfε|H ≤ 1 μ-a.e. on Êk and {fε}ε>0 is bounded in D. Any weak limit in
D of a subsequence should be

√
φ̄0χk , and so |D(

√
φ̄0χk)|H ≤ 1 μ-a.e. on Êk . Therefore,√

φ̄0 ∈ D0.

From Lemma 4.10, Lemma 4.11, and Proposition 2.7, we conclude φ̄0 ≤ d2
B μ-a.e. The

multiplicative constant can be further improved since this inequality is not sharp.

Lemma 4.12 Given K > 0, we can choose M > 0 such that

�K(φM
t 1E\Zt ) ≥ �K

t , t ∈ (0,K/ log 2]. (4.16)

Proof Since �K is non-decreasing, �K ≤ �K on [−K, ∞) and (C.5), we can find M > 0
such that �K(M) ≥ sups∈R �K(s). From Eq. 4.13, φM

t ≥ −t log 2 ≥ −K on E \Zt . Then,
on E \ Zt ,

�K(φM
t 1E\Zt ) = �K(φM

t ) ≥ �K(M ∧ ut ) = �K(M) ∧ �K(ut ) ≥ �K(ut ).

On Zt , Eq. 4.16 is trivial since the left-hand side is zero and the right-hand side is
nonpositive.

Lemma 4.13 If the inequality

φ̄K
0 ≤ β

d2
B

2
μ-a.e. on {dB < N} (4.17)

is true for some β > 1 for every K > 0 and every limit φ̄K
0 , then

φ̄K
0 ≤ (2 − β−1)

d2
B

2
μ-a.e. on {dB < N}.

Proof Given K > 0, we take M as in Lemma 4.12. Let Y ∈ B0 with Y ⊂ {dB < N}.
Using the convexity of �K(−t log(·)) for small t , from Lemma 4.1, we have

(�K
t , 1Y )μ =

∫

Y

�K(−t log Tt1B) dμ ≥ μ(Y )�K

(

−t log

(
1

μ(Y )
(Tt1B, 1Y )μ

))

.

By the upper estimate (2.8),

lim
t→0

−t log(Tt1B, 1Y )μ = lim
t→0

−t log Pt (Y, B) ≥ d(Y, B)2

2
.
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Therefore, in the limit,

(�K
0 , 1Y )μ ≥ μ(Y )�K

(
d(Y, B)2

2

)

= μ(Y ) ess inf
x∈Y

�K

(
dB(x)2

2

)

≥ μ(Y )

β
ess inf

x∈Y
�K(φ̄M

0 (x)) (4.18)

from the assumption of Eq. 4.17 and (C.6). Recall now the function �̂K that was defined in
Eq. 4.1. Since �̂K is 1-Lipschitz and concave on R, for t ∈ (0,K/ log 2] we have

�̂K(φ̄M
t ) = �̂K

(
1

t

∫ t

0
φM(us)1E\Zs ds + 1

t

∫ t

0
φM(us)1Zs ds

)

≥ �̂K

(
1

t

∫ t

0
φM(us)1E\Zs ds

)

− 1

t

∣
∣
∣
∣

∫ t

0
φM(us)1Zs ds

∣
∣
∣
∣

≥ 1

t

∫ t

0
�̂K(φM(us)1E\Zs ) ds − LM

t

∫ t

0
1Zs ds

≥ �̄K
t − LM

t

∫ t

0
1Zs ds. (from Eq. 4.13 and Lemma 4.12)

Take {tn} ↓ 0 such that φ̄M
tn

converges to φ̄M
0 weakly in L2(μ̃). From Lemma 4.9,

Lemma 4.2, and Eq. 4.12, we obtain that �K(φ̄M
0 ) = �̂K(φ̄M

0 ) ≥ �̄K
0 μ-a.e. Combining

this inequality and Eq. 4.18, we get

(�K
0 , 1Y )μ ≥ μ(Y )

β
ess inf

x∈Y
�̄K

0 (x). (4.19)

We will prove

�K
0 ≥ β−1�̄K

0 μ-a.e. on {dB < N}. (4.20)

Assume for contradiction that there exists some Y ′ ∈ B0 and ε > 0 such that Y ′ ⊂ {dB <

N} and �K
0 < β−1�̄K

0 − ε on Y ′. Let

Y =
{

x ∈ Y ′
∣
∣
∣
∣ �̄K

0 (x) ≤ ess inf
y∈Y ′ �̄K

0 (y) + βε

2

}

.

Then, μ(Y ) > 0 and �K
0 ≤ β−1 ess infy∈Y �̄K

0 (y) − ε/2 on Y . This contradicts Eq. 4.19.
Combining Eq. 4.20 with 4.15 and using Lemma 4.9, we obtain

1

2

∫

E

�(φ̄K
0 )h dμ ≤ −β−1(h, �̄K

0 )μ + (h, �̄K
0 )μ + (h, �̄K

0 )μ ≤ (2 − β−1)(φ̄K
0 , h)μ

for every h expressed by h = h1h2, where h1 ∈ ⋃∞
k=1 DÊk,b,+ and h2 = (0∨k(N−dB))∧1

for some k ∈ N. The claim follows by the same argument after Eq. 4.15.

By repeated application of Lemma 4.13, φ̄0 ≤ d2
B/2 μ-a.e. on {dB < N}, and so �̄0 ≤

d2
B/2 μ-a.e. on {dB < N} from Lemma 4.9. To obtain the equality, we modify Lemmas 2.9,

2.13, and 2.14 of [9] as follows.
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Lemma 4.14 For any limit �0 (that is a weak-L2(μ̃) and weak∗-L∞(μ)-limit of a
subsequence of {�t }t>0),

�(d2
B/2) ≤ �0 μ-a.e. on {dB < N}.

Proof Let Y ∈ B0 such that Y ⊂ {dB < N}. From the upper estimate (2.8) and Lemma 4.1,

�

(
d(Y, B)2

2

)

≤ �

(

lim
t→0

−t log Pt (Y, B)

)

= �

(

lim
t→0

−t log

(
1

μ(Y )
(Tt1B, 1Y )μ

))

= lim
t→0

�

(

−t log

(
1

μ(Y )
(Tt1B, 1Y )μ

))

≤ lim
t→0

1

μ(Y )

∫

Y

�(−t log Tt1B) dμ

= lim
t→0

1

μ(Y )

∫

Y

�t dμ

≤ 1

μ(Y )

∫

Y

�0 dμ.

Let Yε = {�0 ≤ �(d2
B/2) − ε} ∩ {dB < N} for ε > 0 and suppose, for the sake of contra-

diction, that μ(Yε) > 0. Then, Y ′
ε := {x ∈ Yε ∩Ek | �(d2

B(x)/2) ≤ �(d(Yε, B)2/2)+ε/2}
also has μ-positive measure for sufficiently large k. But

1

μ(Y ′
ε)

∫

Y ′
ε

�

(
d2
B

2

)

dμ ≤ �

(
d(Y ′

ε, B)2

2

)

+ ε

2

≤ 1

μ(Y ′
ε)

∫

Y ′
ε

�0 dμ + ε

2

≤ 1

μ(Y ′
ε)

∫

Y ′
ε

�

(
d2
B

2

)

dμ − ε

2
,

which is a contradiction. Therefore, μ(Yε) = 0. Since ε > 0 is arbitrary, we obtain the
desired assertion.

Lemma 4.15 For any limit �̄0 (that is, in particular, a weak-L2(μ̃) limit of a subsequence
of {�̄t }t>0), �(d2

B/2) ≤ �̄0 μ-a.e. on {dB < N}.

Proof For any ρ ∈ L2(μ̃) with ρ ≥ 0 μ-a.e. and ρ = 0 μ-a.e. on {dB < N}, Lemma 4.14
implies

(�(d2
B/2), ρ)μ̃ ≤ lim

t→0
(�t , ρ)μ̃.

Therefore,

(�(d2
B/2), ρ)μ̃ ≤ lim

t→0

1

t

∫ t

0
(�s, ρ)μ̃ ds = lim

t→0
(�̄t , ρ)μ̃ ≤ (�̄0, ρ)μ̃.

This implies the desired claim.
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From Lemma 4.14 and (C.4), we have �̄0 = d2
B/2 on {d2

B/2 ≤ K} ∩ {dB < N} =:
YK,N , independently of the choice of subsequence. In particular, �̄t1YK,N

converges to
(d2

B/2)1YK,N
weakly in L2(μ̃) as t → 0. Furthermore, we have the following

Lemma 4.16 �̄0 = �(d2
B/2) on {dB < N}.

Proof We specify the dependency on K and write �K
t instead of �t . From what we have

proven, �̄M
t 1YM,N

converges to (d2
B/2)1YM,N

weakly in L2(μ̃) and �̄M
0 = d2

B/2 on YM,N

for all M > 0. From (C.7) and the 1-Lipschitz continuity of �K ,

�̄K
T = 1

T

∫ T

0
�K(ut ) dt

≤ 1

T

∫ T

0
�K(�M(ut )) dt + (�K(∞) − �K(M))

≤ 1

T

∫ T

0
�K(�M(ut )1E\Zt ) dt + 1

T

∫ T

0
|�M(ut )1Zt | dt + (�K(∞) − �K(M))

≤ 1

T

∫ T

0
�K(�M(ut )1E\Zt ) dt + LM

T

∫ T

0
1Zt dt + (�K(∞) − �K(M)). (4.21)

Since �̂K is concave and 1-Lipschitz, the first term is estimated as follows:

1

T

∫ T

0
�K(�M(ut )1E\Zt ) dt = 1

T

∫ T

0
�̂K(�M(ut )1E\Zt ) dt

≤ �̂K

(
1

T

∫ T

0
�M(ut )1E\Zt dt

)

≤ �̂K

(
1

T

∫ T

0
�M(ut ) dt

)

+
∣
∣
∣
∣

1

T

∫ T

0
�M(ut )1Zt dt

∣
∣
∣
∣

≤ �̂K(�̄M
T ) + LM

T

∫ T

0
1Zt dt. (4.22)

Combining Eqs. 4.21 and 4.22 and letting T → 0 along a suitable subsequence, we have

�̄K
0 ≤ �̂K(d2

B/2) + (�K(∞) − �K(M)) on YM,N .

Here, we also used Lemma 4.2 and Eq. 4.12 for the right-hand side. Letting M → ∞,
we obtain �̄K

0 ≤ �K(d2
B/2) on {dB < N}. The inequality in the other direction has been

proven already.

Therefore, �̄t1{dB<N} converges both in the weak-L2(μ̃) sense and in the weak∗-L∞(μ)

sense as t → 0, and the limit �̄01{dB<N} is equal to �(d2
B/2)1{dB<N}.

4.4 Application of the Tauberian Theorem

In the following, {T 0
t }t>0 denotes the Markovian semigroup corresponding to the strong

local Dirichlet form (E 0,D), and L 0 denotes the generator of {T 0
t }t>0 on L2(μ). Note
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that E 0(T 0
t f ) ≤ (2et)−1‖f ‖2

2 holds for all f ∈ L2(μ) and t > 0, from the spectral
decomposition theorem. For k ∈ N, we define

χ̂k = χk · ((0 ∨ k(N − dB)) ∧ 1) ∈ DEk∩{dB<N},b.
We use (·, ·)χ̂2

k ·μ to denote the L2-inner product with respect to the measure χ̂2
k · μ on E.

Lemma 4.17 For τ ∈ (0, 1) and Y ∈ B0,

lim
t→0

(T 0
τ−t1Y , �t )χ̂2

k ·μ = (T 0
τ 1Y , �̄0)χ̂2

k ·μ.

Proof Let f (t) = (
T 0

τ−t1Y ,�t − �(∞)
)
χ̂2

k ·μ for t ∈ (0, τ ). We will confirm the following

two conditions:

(i) T −1
∫ T

0 f (s) ds converges to
(
T 0

τ 1Y , �̄0 − �(∞)
)
χ̂2

k ·μ as T → 0,

(ii) there exist M > 0 and t0 ∈ (0, τ ) such that f (t) − f (s) ≤ M(t − s)/s for any
0 < s < t ≤ t0.

Under these conditions, we can apply Wiener’s Tauberian theorem (see, e.g., [16, Lemma
3.11]) to obtain limt→0 f (t) = (T 0

τ 1Y , �̄0 − �(∞))χ̂2
k ·μ. Combining this equality and the

identity

lim
t→0

(T 0
τ−t1Y , �(∞))χ̂2

k ·μ = (T 0
τ 1Y ,�(∞))χ̂2

k ·μ,

we obtain the desired claim.
Condition (i) is proved as follows:

∣
∣
∣
∣

1

T

∫ T

0
f (t) dt −

(
T 0

τ 1Y , �̄0 − �(∞)
)

χ̂2
k ·μ

∣
∣
∣
∣

≤ 1

T

∫ T

0

∣
∣
∣
∣

(
T 0

τ−t1Y − T 0
τ 1Y ,�t − �(∞)

)

χ̂2
k ·μ

∣
∣
∣
∣ dt +

∣
∣
∣
∣

(
T 0

τ 1Y , �̄T − �̄0

)

χ̂2
k ·μ

∣
∣
∣
∣

≤ 2KL

T

∫ T

0
‖1Y − T 0

t 1Y ‖1 dt +
∣
∣
∣
∣

(
T 0

τ 1Y , �̄T − �̄0

)

χ̂2
k ·μ

∣
∣
∣
∣

→ 0 as T → 0.

Here, we used the fact that {T 0
t }t>0 extends to a strongly continuous semigroup on L1(μ).

For condition (ii), we fix δ ∈ (0, 1). The function f δ(r) := (
T 0

τ−r1Y ,�δ
r − �(eδ

r )
)
χ̂2

k ·μ is

continuously differentiable on (0, τ ) and

d

dr
f δ(r) = (T 0

τ−r1Y , ∂r�
δ
r − ∂r�(eδ

r ))χ̂2
k ·μ +

(
∂rT

0
τ−r1Y , �δ

r − �(eδ
r )
)

χ̂2
k ·μ

= (T 0
τ−r1Y , ∂r�

δ
r )χ̂2

k ·μ− 1

r
(T 0

τ−r1Y ,�(eδ
r ))χ̂2

k ·μ−(L 0T 0
τ−r1Y ,�δ

r −�(eδ
r ))χ̂2

k ·μ
≤ (T 0

τ−r1Y , ∂r�
δ
r )χ̂2

k ·μ + E 0(T 0
τ−r1Y , χ̂2

k (�δ
r − �(eδ

r ))) =: J1 + J2.
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Let r ∈ (0, τ/2] and Qr = ∫
E

�(uδ
r − eδ

r )((φ
′)δr )2χ̂2

k T 0
τ−r1Y dμ. By using Lemma 4.6 with

f = 1B and ρ = χ̂2
k T 0

τ−r1Y ,

J1 ≤ 1

r
(χ̂2

k T 0
τ−r1Y ,�δ

r )μ − E 0
(
((φ′)δr )2χ̂2

k T 0
τ−r1Y , uδ

r − eδ
r

)

− 1

2r

∫

E

�(uδ
r − eδ

r )((φ
′)δr )2χ̂2

k T 0
τ−r1Y dμ

+
(

Cr

K
+ 1

)∫

E

�(uδ
r − eδ

r )((φ
′)δr )2χ̂2

k T 0
τ−r1Y dμ + rE 0(χ̂2

k T 0
τ−r1Y ) + R(r, k)

≤ C5

r
− E 0

(
((φ′)δr )2χ̂2

k T 0
τ−r1Y , uδ

r − eδ
r

)
+
(

Cr

K
+ 1 − 1

2r

)

Qr + C6,

where C5 = KLμ(Y ) and C6 = (τ/2) sups∈[τ/2,τ ) E 0(χ̂2
k T 0

s 1Y )+R(τ/2, k). We also have

E 0
(
((φ′)δr )2χ̂2

k T 0
τ−r1Y , uδ

r − eδ
r

)
= 1

2

∫

E

((φ′)δr )2χ̂2
k �

(
T 0

τ−r1Y , uδ
r − eδ

r

)
dμ

+
∫

E

χ̂k((φ
′)δr )2T 0

τ−r1Y �
(
χ̂k, u

δ
r − eδ

r

)
dμ

+
∫

E

χ̂2
k (φ′)δr (φ′′)δrT 0

τ−r1Y �(uδ
r − eδ

r ) dμ

=: J3 + J4 + J5.

Accordingly,

d

dr
f δ(r) ≤ J2 − J3 − J4 − J5 + C5

r
+
(

Cr
K

+ 1 − 1
2r

)
Qr + C6.

Then,

J2 − J3 = 1

2

∫

E

�(T 0
τ−r1Y , χ̂2

k )
(
�δ

r − �(eδ
r )
)
dμ

≤ 2KLE 0(T 0
τ−r1Y )1/2E 0(χ̂2

k )1/2

≤ 4KL(eτ)−1/2μ(Y )1/2E 0(χ̂k)
1/2 =: C7,

|J4| ≤ 1

2

∫

E

{
�(χ̂k) + χ̂2

k ((φ′)δr )2�(uδ
r − eδ

r )
}

T 0
τ−r1Y dμ ≤ E 0(χ̂k) + Qr

2
,

and

|J5| ≤ C

K
Qr.

Therefore, we have

d

dr
f δ(r) ≤

(
C + Cr

K
+ 3

2
− 1

2r

)

Qr + C5

r
+ C6 + C7 + E 0(χ̂k).

Let C8 denote C6 + C7 + E 0(χ̂k). If r ≤ t0 := min{(2(Cτ + C)/K + 3)−1, τ/2}, then we
have d

dr
f δ(r) ≤ C5/r + C8. From this,

f δ(t) − f δ(s) ≤
∫ t

s

(
C5

r
+ C8

)

dr ≤ C5 + C8t0

s
(t − s), 0 < s < t ≤ t0.

By letting δ → 0, we obtain the desired assertion.

Let τ > 0, k ∈ N, and Y ∈ B0. It holds that
∫

Y

χ̂2
k �t dμ = (�t , T

0
τ−t1Y )χ̂2

k ·μ + (χ̂2
k �t , 1Y − T 0

τ−t1Y )μ (4.23)
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for every t ∈ (0, τ ]. From Lemma 4.17,

lim
τ→0

lim
t→0

(�t , T
0
τ−t1Y )χ̂2

k ·μ = (�̄0, 1Y )χ̂2
k ·μ.

For the second term of Eq. 4.23, we have

lim
τ→0

lim
t→0

(χ̂2
k �t , 1Y − T 0

τ−t1Y )μ = 0

by the boundedness of �t and the strong continuity of {T 0
t }. Therefore,

lim
t→0

∫

Y

χ̂2
k �t dμ =

∫

Y

χ̂2
k �̄0 dμ =

∫

Y

χ̂2
k �(d2

B/2) dμ. (4.24)

Using this equality, we finish the proof of Theorem 2.11. For ε ∈ (0, (N − d(A,B))/2),
define Aε = {x ∈ A | dB(x) ≤ d(A,B) + ε}. Then, for sufficiently large k, χ̂k = χk = 1
μ-a.e. on Aε ∩ Êk . Using the convexity of �K(−t log(·)) for small t (Lemma 4.1), we have

lim
t→0

�(−t log Pt (A,B)) ≤ lim
t→0

�(−t log Pt (Aε, B))

≤ lim
t→0

1

μ(Aε)

∫

Aε

�(−t log Tt1B) dμ

= lim
t→0

1

μ(Aε)

(∫

Aε∩Êk

χ̂2
k �t dμ +

∫

Aε\Êk

�t dμ

)

≤ lim
t→0

1

μ(Aε)

∫

Aε

χ̂2
k �t dμ + KL

μ(Aε)
μ(Aε \ Êk)

= 1

μ(Aε)

∫

Aε

χ̂2
k �

(
d2
B

2

)

dμ+ KL

μ(Aε)
μ(Aε\Êk) (from Eq. 4.24)

≤ (d(A,B) + ε)2

2
+ KL

μ(Aε)
μ(Aε \Êk).

Letting k → ∞, we have

lim
t→0

�(−t log Pt (A,B)) ≤ (d(A,B) + ε)2

2
.

Since ε is arbitrary and limK→∞ �K(x) = x for each x ∈ R, Eq. 2.9 holds. This completes
the proof of Theorem 2.11.

5 Proof of Auxiliary Propositions and Examples

We prove Propositions 2.9 and 2.14.

Proof (of Proposition 2.9) Let Y = {dB = ∞}. From [1, Proposition 5.1], Y coincides
with {T 0

t 1B = 0} up to μ-null sets for all t > 0. Then, for t > 0 and f ∈ L2(μ) with f ≥ 0
μ-a.e.,

(T 0
t (1Y f ), T 0

1 1B)μ = (1Y f, T 0
t+11B)μ = 0.



296 M. Hino, K. Matsuura

This implies that

T 0
t (1Y f ) = 0 μ-a.e. on E \ Y (5.1)

because T 0
1 1B > 0 μ-a.e. on E \ Y . Equation 5.1 now holds for all f ∈ L2(μ); thus, Y is

an invariant set with respect to (E 0,D), from [6, Lemma 1.6.1]. From [6, Theorem 1.6.1],
1Y f ∈ D for every f ∈ D and

E 0(f, g) = E 0(1Y f, 1Y g) + E 0(1E\Y f, 1E\Y g), f, g ∈ D.

Moreover, D(1Y f ) = 1Y Df by Proposition 2.1. By using these properties, we can confirm
that E (1E\Y f, 1Y g) = 0 for f, g ∈ D. From [10, Lemma 3.1], E \ Y is weakly invariant
with respect to (E ,D). That is, Tt (1E\Y f ) = 0 μ-a.e. on Y for all t > 0 and f ∈ L2(μ).
Letting f = 1B , we obtain Tt1B = 0 μ-a.e. on Y since B ⊂ E \ Y . Thus, for A ∈ B0
satisfying d(A, B) = ∞, we have μ(A \ Y ) = 0 and so Pt (A,B) = 0 holds.

Proof (of Proposition 2.14) Let f ∈ ⋃∞
k=1 DEk,b with ‖f ‖2 = 1. For x ≥ 0 and y ≥ 0,

xy ≤
∫ x

0
log+ s ds +

∫ y

0
et dt ≤

∫ x

0
log+ x ds + ey − 1 = x log+ x + ey − 1.

Applying this inequality to x = f 2 and y = δ|b2 − c2|2H and integrating it provides

δ

∫

E

|b2 − c2|2H f 2 dμ ≤
∫

E

f 2 log+ f 2 dμ +
∫

E

(
eδ|b2−c2|2H − 1

)
dμ.

Then,

∫

E

|b2 − c2|H f 2 dμ ≤
(∫

E

|b2 − c2|2H f 2 dμ

)1/2

≤ δ−1/2
(∫

E

f 2 log+ f 2 dμ

)1/2

+δ−1/2
{∫

E

(
eδ|b2−c2|2H −1

)
dμ

}1/2

.

Thus, (B.2′) holds with γ = δ−1/2 and

λε = λ̂ε + δ−1/2
{∫

E

(
eδ|b2−c2|2H − 1

)
dμ

}1/2

for ε > 0.

We discuss other sufficient conditions of Assumption 2.8, (B.1), (B.2)A,B , and (B.2′).
For α > 0, let Tα denote the set of all real measurable functions ψ on E satisfying

the following requirement: there exists a measurable nest {Ek}∞k=1 and λ̃α ≥ 0 such that
ψ ∈ L1

loc(μ, {Ek}) and

∫

E

|ψ |f 2 dμ ≤ αE 0(f ) + λ̃α‖f ‖2
2, f ∈

∞⋃

k=1

DEk,b. (5.2)

Also, let T0+ = ⋂
α>0 Tα and T∞ = ⋃

α>0 Tα . Clearly, L∞(μ) ⊂ T0+.
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Lemma 5.1 Let a be an H -valued measurable function on E, and α > 0. If |a|2H ∈ Tα

with a measurable nest {Ek}∞k=1 and λ̃α ≥ 0, then the following inequalities hold for f, g ∈⋃∞
k=1 DEk,b and ε > 0:

∣
∣
∣
∣

∫

E

(a,Df )H g dμ

∣
∣
∣
∣ ≤

(
2E 0(f )

)1/2 (
αE 0(g) + λ̃α‖g‖2

2

)1/2
, (5.3)

∣
∣
∣
∣

∫

E

(a, Df )H f dμ

∣
∣
∣
∣ ≤ √

2αE 0(f ) + λ̃α√
2α

‖f ‖2
2, (5.4)

∫

E

|a|H f 2 dμ ≤ εE 0(f ) +
(

ελ̃α

α
+ α

4ε

)

‖f ‖2
2. (5.5)

Proof Equation 5.3 holds by combining the inequality
∣
∣
∣
∣

∫

E

(a, Df )H g dμ

∣
∣
∣
∣ ≤

(∫

E

|Df |2H dμ

)1/2 (∫

E

|a|2H g2 dμ

)1/2

with Eq. 5.2. By letting g = f ,
∣
∣
∣
∣

∫

E

(a, Df )H f dμ

∣
∣
∣
∣ ≤

(
2E 0(f )

)1/2 (
αE 0(f ) + λ̃α‖f ‖2

2

)1/2

≤
√

2α

4
· 2E 0(f ) + 1√

2α

(
αE 0(f ) + λ̃α‖f ‖2

2

)
,

which proves Eq. 5.4. Equation 5.5 follows from the following calculation:
∫

E

|a|H f 2 dμ ≤ ε

α

∫

E

|a|2H f 2 dμ + α

4ε

∫

E

f 2 dμ

≤ ε

α

(
αE 0(f ) + λ̃α‖f ‖2

2

)
+ α

4ε
‖f ‖2

2.

We can give sufficient conditions for Assumption 2.8, (B.1), and (B.2′) in terms of Tα .

Proposition 5.2 Suppose |b|H , |c|H ∈ L2
loc(μ, {Ek}) and V ∈ L1

loc(μ, {Ek}) for some
measurable nest {Ek}∞k=1. Let V+ denote V ∨ 0 and V− denote (−V ) ∨ 0.

(i) If |b + c|2H ∈ Tα1 , |b − c|2H ∈ Tα2 , V+ ∈ Tα3 , V− ∈ Tα4 with αi > 0 (i = 1, 2, 3, 4)

and
√

2α1 + α4 < 1, then (A.2) holds.
(ii) If |b − c|2H ∈ T∞, then (B.1) holds.

(iii) If b and c are decomposed into b = b1 + b2 and c = c1 + c2, respectively, such that
|b1 − c1|2H ∈ T0+ and exp(δ|b2 − c2|2H ) − 1 ∈ L1(μ) for some δ > 0, then (B.2′)
holds.

Proof (i): Equation 2.2 follows from Eq. 5.4. Since

|b|2H + |c|2H = (|b + c|2H + |b − c|2H )/2,

we see that |b|2H , |c|2H ∈ T(α1+α2)/2. Moreover, |V | ∈ Tα3+α4 . Combining these and
Eq. 5.3, we obtain Eq. 2.3.

(ii): This follows from Eq. 5.4.
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(iii): From Eq. 5.5, Eq. 2.11 holds with λ̂ε = infα>0

(
ελ̃α

α
+ α

4ε

)
for ε > 0. Moreover, for

any α > 0,

lim
ε→0

ελ̂ε ≤ lim
ε→0

ε

(
ελ̃α

α
+ α

4ε

)

= α

4
,

which implies that limε→0 ελ̂ε = 0. Therefore, (B.2′) holds, from Proposition 2.14.

The following are alternative descriptions of (B.2)A,B and (B.2′).

Proposition 5.3 (B.2)A,B is equivalent to the following condition:

(B̃.2)A,B There exist γ ≥ 0 and a nonnegative and non-decreasing function � on [0, ∞)

such that limx→∞ �(x)/x = 0 and
∫

{0<dB<d(A,B)}
(b−c,DdB)H f 2dμ≤�

(
E 0(f )1/2

)
+γ

(∫

E

f 2log+f 2 dμ

)1/2

for any N > 0 and f ∈ ⋃∞
k=1 DEk,b with ‖f ‖2 = 1. (5.6)

Moreover, (B.2′) is equivalent to the following condition:

(B̃.2′) There exist γ ≥ 0 and a nonnegative and non-decreasing function � on [0, ∞)

such that limx→∞ �(x)/x = 0 and
∫

E

|b − c|H f 2 dμ ≤ �
(
E 0(f )1/2

)
+ γ

(∫

E

f 2 log+ f 2 dμ

)1/2

for any f ∈ ⋃∞
k=1 DEk,b with ‖f ‖2 = 1.

Proof Suppose (B.2)A,B holds. For t ≥ 0, we define �(t) = infε>0(εt
2 + λε). (B.2)A,B

implies Eq. 5.6. Moreover, � is non-decreasing by definition. For any α > 0, we have

�(t)

t
= inf

ε>0

(

εt + λε

t

)

≤ α + λα/t

t

t→∞−−−→ α.

Since α > 0 is arbitrary, we conclude that �(t)/t converges to 0 as t → ∞. Thus, (B̃.2)A,B

holds.
Conversely, assume (B̃.2)A,B . Define λε = supt>0(�(t1/2) − εt) for each ε > 0.

Then, Eq. 2.7 holds. Furthermore, for any α > 0, there exists some T > 0 such that
�(t1/2)/t1/2 ≤ α for all t ≥ T . Then,

ελε ≤ sup
t∈[0,T )

(ε�(t1/2) − ε2t) ∨ sup
t∈[T ,∞)

(ε�(t1/2) − ε2t)

≤ ε�(T 1/2) ∨ sup
t∈[T ,∞)

(εαt1/2 − ε2t)

≤ ε�(T 1/2) ∨ (α2/4).

Letting ε → 0 and α → 0, we have limε→0 ελε = 0. Therefore, (B.2)A,B holds.
The equivalence of (B.2′) and (B̃.2′) is proved in the same way.

We discuss some typical examples of non-symmetric forms that satisfy Assumption 2.8,
(B.1), and (B.2′).
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Example 5.4 We assume the Sobolev inequality: for some d > 2 and S ≥ 0,

‖f ‖2
2d/(d−2) ≤ S E 0

1 (f ), f ∈ D. (5.7)

A typical example is the following: E = R
d ; μ = dx (Lebesgue measure); D = H 1(Rd)

(the first-order L2-Sobolev space); and D = A(x)∇, where A(·) is an R
d×d -valued mea-

surable function on E such that there exist C > 0 satisfying C−1I ≤ tA(x)A(x) ≤ CI for
μ-a.e. x in the quadratic form sense.

Let ψ ∈ Ld/2(μ) + L∞(μ). That is, let ψ = ψ̂ + ψ̌ for some ψ̂ ∈ Ld/2(μ) and
ψ̌ ∈ L∞(μ). Take any ε > 0. By using Eq. 5.7, for any f ∈ D,

∫

E

|ψ̂ |f 2 dμ ≤ ‖1{|ψ̂ |>N}ψ̂‖d/2‖f ‖2
2d/(d−2) + N

∫

{|ψ̂ |≤N}
f 2 dμ

≤ S‖1{|ψ̂ |>N}ψ̂‖d/2E
0

1 (f ) + N‖f ‖2
2

for any N > 0. Take N large enough that S‖1{|ψ̂ |>N}ψ̂‖d/2 ≤ ε. Then,
∫

E

|ψ |f 2 dμ ≤ εE 0(f ) + (ε + N + ‖ψ̌‖∞)‖f ‖2
2.

Therefore, Ld/2(μ)+L∞(μ) ⊂ T0+. In particular, due to Proposition 5.2, each of Assump-
tion 2.8, (B.1), and (B.2′) with γ = 0 is satisfied if |b|H , |c|H ∈ Ld(μ) + L∞(μ) and
V ∈ Ld/2(μ) + L∞(μ). In this case, the logarithmic term in (B.2′) is not useful.

Example 5.5 Assume that μ(E) < ∞ and that (E 0,D) satisfies the defective logarithmic
Sobolev inequality:

∫

E

f 2 log(f 2/‖f ‖2
2) dμ ≤ αE 0(f ) + β‖f ‖2

2, f ∈ D. (5.8)

A typical example is the following: (E,H,μ) is an abstract Wiener space, D is the H -
derivative in the sense of the Malliavin calculus, and D is the first-order L2 Sobolev space.
In this case, we can take α = 4 and β = 0.

Let ψ ∈ L0(μ). By the Hausdorff–Young inequality st ≤ s log s − s + et for s ≥ 0 and
t ∈ R,

δ|ψ |g2 ≤ g2 log g2 − g2 + eδ|ψ | for δ > 0 and g ∈ L2(μ).

Taking g = f/‖f ‖2 for f ∈ D and using Eq. 5.8, we have
∫

E

|ψ |f 2 dμ ≤ α

δ
E 0(f ) + β − 1 + ‖eδ|ψ |‖1

δ
‖f ‖2

2.

Therefore, |ψ | ∈ Tα/δ if eδ|ψ | ∈ L1(μ). Assumption 2.8, (B.1), and (B.2′) hold if

eδ1|b+c|2H , eδ2|b−c|2H , eδ3V+ , eδ4V− ∈ L1(μ)

with δi > 0 (i = 1, 2, 3, 4) and
√

2α/δ1 + α/δ4 < 1, by applying Proposition 5.2 with
b1 = 0, b2 = b, c1 = 0, and c2 = c. We cannot expect that (B.2′) will hold with γ = 0 in
general; thus, the introduction of the logarithmic term in (B.2′) is effective in this case.
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