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Abstract The studies of J. A. Ramirez, Hino—Ramirez, and Ariyoshi—Hino showed that an
integrated version of Varadhan’s asymptotics holds for Markovian semigroups associated
with arbitrary strong local symmetric Dirichlet forms. In this paper, we consider non-
symmetric bilinear forms that are the sum of strong local symmetric Dirichlet forms and
lower-order perturbed terms. We give sufficient conditions for the associated semigroups to
have asymptotics of the same type.
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1 Introduction

Let (E, A, ) be a o-finite measure space and (& O D)a symmetric strong local Dirichlet
form on the L2 space of (E, %, ). Let {T,O}t>0 denote the semigroup associated with
(6%, D), and set PX(A, B) = [, T’ 1gdpu fort > 0and A, B € % with positive and finite
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measure. In [1], the following small-time asymptotic estimate for { T,O},>o was proved as a
generalization of results from previous work [8, 9, 16]:

_d(a, B)?

limzlog P°(A, B) =
fimlog Py (AL B) = ===

(1.1)
Here, d(A, B) is the intrinsic distance between A and B, which can be determined from only
(&9, D) (see [1, p. 1241] or Definition 2.6 below for details). Similar small-time asymptotics
of transition densities have been studied extensively. These are usually called Varadhan-type
estimates, in reference to [19]. In particular, that the estimate holds was proved in [15] for
a class of symmetric and uniform elliptic diffusion processes on Lipschitz manifolds. This
is one of the most general results. Asymptotics of the form Eq. 1.1 can be considered as an
integrated version of Varadhan’s asymptotics.

The purpose of this paper is to extend the formula (1.1) to a class of non-symmetric
bilinear forms. Specifically, we first assume that (6, D) mentioned above is expressed as

1
=1 /E (Df, Deyudu, fog €D,

where D is a first-order derivation operator taking values in a separable Hilbert space H.
Our main object is to obtain small-time asymptotics for a non-symmetric form (&, D)
given by the sum of & and the lower-order term [,.(b, Df)ugdp + [z(c, Dg)u fdu +
/, £ Vfgdu (see Eq. 2.4). Since Varadhan’s original paper [19] treats some non-symmetric
cases, this generalization is natural. When the lower-order term is small relative to & 0
the form (&, D) becomes a lower-bounded bilinear form and has an associated positivity-
preserving semigroup {7;};~0 on L?(E, w). For measurable sets A and B having positive
and finite p-measure, let P;(A, B) = f 4 Ii1p du, as before. We study the conditions on
b, ¢, and V that suffice for the semigroup {7;};~0 to have the same integrated Varadhan’s
asymptotics as {Tto},>0. That is, for

_d(a, B)?

5 (1.2)

lim ¢ log P,(A, B) = limtlog P’(A, B) =
t—0 t—0
This looks generically true at first glance, but if b, ¢, and V are unbounded, it is a very non-
trivial problem to reveal what kind of restrictions we should impose on them to guarantee
the validity of Eq. 1.2.

It is reasonable to expect that Eq. 1.2 would hold if they were sufficiently smaller than
&Y in terms of quadratic forms. From another perspective, we can make a probabilistic
argument, exemplified in the following typical case. Let (E, H, i) be an abstract Wiener
space, and suppose that (£°, D) and (&, D) are defined as

1
0 = 5 / (Df. Dg)s .
E
E(f.g) = Ef.9) + /E (b, Df)gdu, figeD:=D"2

where D denotes the H-derivative in the Malliavin calculus, b is an H-valued measur-
able function on E, and D'? is the first-order L?-Sobolev space on E. If exp(ylbl%,) is
pu-integrable for some y > 8, then by using the logarithmic Sobolev inequality, we can
prove that (&, D) is well-defined as a lower-bounded bilinear form and that there exists a
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Varadhan’s Asymptotics 259

corresponding semigroup {7;},;~0 on L2(E, p) (see Example 5.5). Moreover, {7;},~0 has a
probabilistic representation as

1
T, f(x) = Ex [f(Xz)eXP <Mz - §<M>z)] ,
where ({X;};>0, {Px}xek) is the Ornstein—Uhlenbeck process associated with (&9, D) and
{M;};>0 is a martingale additive functional suitably associated with b (see, e.g., [7]). Note,
in particular, that the quadratic variation of M is given by (M); = fot |b(X S)l%, ds. From
Holder’s inequality, for measurable sets A and B with positive p-measure,

1/p 1 1/2q
/ Tgdu < < / E, [1B<Xt>]du) < / E. [exp (2qu—(2qM>r>]du>
A A A 2
1/2q
2
x ( | Bfeww (g —q)<M>t)]du) : (1.3)

where p > 1 and ¢ is the conjugate exponent of p. The first term of the right-hand side is
PY(A, B)!/P. The second term is dominated by .(A)!/?7. The third term is estimated by

Jensen’s inequality:
t
/ E, [exp ((2q2 —9) / (X ds)} dn
A 0

< /O t fA . [exp (24> — 1 16X ) | dis s

By the exponential integrability of |b|?,, the right-hand side is equal to

1 ! 0 2 2 1 ! 0 2 2
R (exp((Zq —q)t|b|H)) ands = || e ((2q —q)t|b|H> duds,

which is finite for sufficiently small positive values of ¢ and converges to u(A) ast — 0.
Combining these estimates and the asymptotics with respect to (&°, D) and letting p — 1,
we obtain the upper estimate

d(A, B)?
TR

This kind of probabilistic argument is applicable to more general situations, by using a
generalized Cameron—Martin-Maruyama—Girsanov formula (see, e.g., [5, 12, 17]). The
exponential integrability condition imposed above is not exactly consistent with smallness
in the sense of quadratic forms. Indeed, in the estimate of Eq. 1.3, we used the fact that
exp(y |b|%_1) is p-integrable for only some y > 0. Therefore, it is reasonable to consider two
types of smallness—smallness in term of quadratic forms and in terms of some exponential
integrability—in describing the conditions sufficient for Eq. 1.2.

In this paper, we introduce conditions that take the observation above into consideration
(see conditions (B.2)4 g, (B.2), and Proposition 2.14) and prove the upper estimate under
their assumptions (Theorem 2.10). Moreover, we prove that the lower estimate holds under
minimal assumptions on b, ¢, and V along with the assumption of the validity of the upper
estimate (Theorem 2.11). Combining these two results gives sufficient conditions for the
integrated Varadhan estimates. As in the previous studies [1, 9, 16], the proof is purely
analytic and only a measurable structure is imposed on the state space. In particular, we
can recapture the probabilistic argument mentioned above by an analytic one. Since the
framework is very general and the imposed conditions are mild, our theorems seem novel

limtlog P,(A, B) < —
t—0
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even when E is a Riemannian manifold, not to mention an infinite dimensional space. We
also remark that even for b = c, that is, even with (&, D) as a symmetric form, our results
are new.

Because the proof is long, we briefly explain the broad ideas of the proof here. The
upper estimate (Theorem 2.10) is proved in the spirit of Davies—Gaffney’s method. In pre-
vious works [1, 9, 16], they define o (1) = fE (e*T;15)2 d for given @ > 0 and w with
|Dw|g < 1 u-a.e., and deduce the key differential inequality ¢’ (¢) < 20 (1). Solving this
inequality and optimizing it with respect to & and w yields the desired estimate. Under the
assumptions of our theorem, however, the lower-order terms cannot be controlled. Instead,
we define o in the form o (t) = fE(e“thlg)P(’) du, where p(t) = g — St withg > 2
and S > 0 being chosen suitably. Since {7;},~0 can be extended to a semigroup on L (i)
for p near 2 in our setting, o (¢) is finite for small 7. The variable exponent p(¢) means that
the derivative of o involves an extra logarithmic term, which suppresses the influence on b
and c. The price to pay for this is that the resulting differential inequality is coarser, in the
form o’ (¢) < (1 + &)a0 (t) + Co () max{0, — log o (¢)}. Fortunately, the extra logarithmic
term has no influence on the Varadhan-type estimate. Introducing a variable exponent is a
standard technique for estimating heat kernel densities (see, e.g., [4]), but (unlike in such a
context) p(t) is taken to be a decreasing function in this study. The definition of o shown
above is valid when p is a finite measure; in general cases, we further need to modify the
definition of o (see Eqgs. 3.15 and 3.6) to avoid some technical obstacles. For this reason,
we need a series of quantitative estimates, which makes the proof long.

The proof of the lower estimate is based on previous studies [1, 9, 16], but the argument
is more complicated due to the perturbed terms and the fact that the semigroup {7;},~0
preserves positivity but is not Markovian. We will outline the proof by the following formal
argument. We see the function u; = —t log T;1p satisfies the relation

0
1
t (8,u, — 2u,> =u; — §|Du,|%1 + (extra terms involving b, ¢, and V),

where £ is the generator of {7°};~¢. (This identity corresponds to Eq. 4.2 in the actual
argument.) If we assume for argument that the left-hand side converges to 0 as + — 0 and
the last term of the right-hand side is negligible, then the limit u¢ of u, (if it exists) will
satisfy | Dug |%1 = 2ug. What is actually obtained is an inequality of the form | Dug |%1 < 2uy,
which implies | D+/2ug|y < 1. Furthermore, o = 0 p-a.e. on B should be satisfied. Under
these conditions, we have the formal inequality

lina v —2tlog T;1p(x) < d({x}, B)
t—

by the definition of d, which is close to the lower-side estimate. Several difficulties, such
as that u; is not necessarily bounded, make it hard to justify this procedure directly. To
cope with problems such as the integrability (or not) of various terms and the existence
(or not) of limits, we introduce a nice truncating function ¢ and bump functions {xx}, and
consider ¢; xx in place of u;, where & = t’lfotqﬁ(—s log Ts1p) ds. Note that these cut-off
functions are slightly different from those in [1, 9] in order to deal with the lack of the
Markov property of {7;};~¢. This modification results in an increasing number of terms in
the quantitative estimates as the proof progresses, which makes the proof longer and more
technical than without the modification.

This paper is organized as follows. In Section 2, we introduce a framework and state the
main theorems. Section 3 provides the proof of the upper estimate (Theorem 2.10). Section 4
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provides the proof of the lower estimate (Theorem 2.11). In the last section, we prove some
auxiliary propositions, discuss the conditions imposed on the theorems, and show some
typical examples.

2 Framework

Let (E, 4, ) be a o -finite measure space, and H a real separable Hilbert space. The inner
product and norm of H will be denoted by (-, -) i and | - | g, respectively. The set of all real-
valued measurable functions on E is denoted by LO(), where two functions are identified
if they coincide p-a.e. For p € [1, oo], the real L? space on (E, 4, i) is denoted by L? (w),
and its norm by || - || ,. The L? space of H-valued measurable functions on (E, %, i) is
denoted by L2(u; H), and its norm by || - ||2.

Let D be a dense subspace of L2(w), and D be a closed linear operator from L3(p) to
L%(u; H) with domain ID. We assume that D has the following derivation property: For
arbitrary functions fi, f>,..., fn € Dand C ! functions F on R™ with bounded first-order
derivatives and F(0) =0, F(fi, ..., f) belongs to D and

2L OF
D(F(fisoos fu)) = 5—(fisooe fm) DF;. @D

j=1

Then, a bilinear form (£°, D) on L2(u), defined by
0 1
& (f.9)=5 | (Df.DYudu, f.geD,
E

is a Dirichlet form on L2 (). Moreover, this bilinear form has a strong local property: For
any f € D and C!-functions F, G on R with bounded first-order derivatives such that the
supports of F and G are disjoint, & (F(f) — F(0), G(f) — G(0)) = 0. For other equivalent
statements, see [3, Proposition 1.5.1.3], where this property is called a local property.

For [ > 0, we write cg’lo(f, g) for &O(f, g) +1 [ fgdu. We also use &O(f) and é"lo(f)
to denote &O(f, f) and é”lo( f> ), respectively. The space D becomes a Hilbert space with
the inner product (f, g) — @("10( /> &). The following proposition is fundamental.

Proposition 2.1 If a function f € D is constant u-a.e. on a set A € B, then Df = 0 p-a.e.
on A.

Proof Suppose that f = « p-a.e. on A for some constant «. Then, if @ = 0, the conclusion
follows from [3, Proposition 1.7.1.4]. If « # 0, we can take a C ! function F on R with
bounded derivative such that F(0) = F(a) = 0 and F'(a) # 0. Then, since F(f) = 0
[u-a.e.on A,

0= D(F(f)) = F'(f)Df = F'(a)Df p-ae.onA.
This implies that Df = 0 p-a.e. on A. O

For A € A, we set
Dy ={feD|f=0pu-aeonkE\A}
Dap = DaNL®(w),
Dap+ ={f€Dap | f>0p-ael
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We follow [1] in introducing the concept of measurable nests and related function spaces.

Definition 2.2 An increasing sequence {E;}52, in & is called a measurable nest! if the
following conditions are satisfied.

(i) Forevery k € N, there exists h; € D such that iy > 1 p-a.e. on Ey.
(i) The set | Jze | Dg, is dense in D.

Remark 2.3 We note that measurable nests exist, from [1, Lemma 3.1]. For every k € N,
we have u(Er) < oo because of condition (i). By condition (ii), n(E \ U,fil E) =0
follows. If {Ex}p2, and {E; )2, are both measurable nests, then so is {Ex N E;}32,, from
[1, Lemma 3.2].

Definition 2.4 For a measurable nest { Ex}2 , and p € [1, oc], we set

Ly (u AE) = (f € L°(w) | f1g, € L (w) for every k € N},

_ 0 There exist {fx};2, C D such that f =
Dioc ({Ex}) = {f €L ‘ fx n-a.e. on Ey foreach k € N ’

Dioe.s {Ex}) = Dioc({Ex}) N L> (1),
Dioe.b+({EkD) = {f € Dioc s {EKD) | £ = 0 p-ae.}.

We remark that LP(u) C L (u, {Ex}) C LI (u,{Ex}) for 1 < g < p < oo. For

loc

f € Dioc({Ex}), Df is defined as an H-valued measurable function on E by Df = Dfj on
Ei, where f; € D and fy = f p-a.e. on Ex. From Proposition 2.1, Df is well-defined up
to u-equivalence.

Definition 2.5 For a measurable nest {E;}72 |, we set

Do({Ex}) = {f € Dioc.s({Ex}) | IDflg <1 p-ae.}.

This definition is consistent with [1, Definition 2.6], which considers more general sit-
uations. The function space Do({Ex}) does not depend on the choice of {E¢}p2,, from
[1, Proposition 3.9]; we therefore denote it as 9. We now define the intrinsic distance
between two sets as follows.

Definition 2.6 (see [1, p. 1241]) For A, B € % with positive u measures, we define

d(A, B) = sup {essinff(x) — esssup f(x)} € [0, oo],

feby | x€A xeB
where the essential infimum ess inf and essential supremum ess sup are taken with respect
to u.
We introduce the concept of a distance-like function dp from the set B and quote a result

from [1]. For B € Z and N > 0, define?

Dpgny={fe€eDy| f=0onBand0 < f <N p-ae.}.

Hn 1], itis called just a nest.
2This definition is slightly different from that in [1], but the difference is unimportant in our context.
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Varadhan’s Asymptotics 263

For x,y € R, weletx vV y and x A y denote max{x, y} and min{x, y}, respectively.

Proposition 2.7 ([1, Proposition 3.11]) For each B € 2, there exists a unique [0, +00]-
valued measurable function dg on E (up to p-null sets) such that, for every N > 0, dp A N
is the maximal element of Dp y: dp AN € Dp y and f < dp A N p-a.e. for every
f € D n. Moreover, d(A, B) = essinfyca dp(x) for every A € A.

We define Ddp by Ddg = D(dp A N) on {dp < N} for N > 0 and Ddp = 0 on
{dp = oo}. This is well-defined, by Proposition 2.1.

To introduce the lower-order terms, let b and ¢ be H-valued measurable functions on E,
and let V be a real measurable function on E. From here, we always assume the following
minimal requirement.

Assumption 2.8 (A.1) There exists a measurable nest {Ex}72 | such that |b|y, |c|y €
Liy (W AEx)) and V € Ly (s, {Ex}).

(A.2) There existn € [0,1),0 > 0, ® > 0, and l > 0 such that, for every f,g €
Uliil Dg,.p,
= [0+ e.DHus + Vi dn =06 + 01113 22)
E

and

’ /E {(b, Dfyng + (¢, D)u f + Vfg) du| < wEX(H'V2E ' (23)

For f, g € U/?i] Dg, », we define

E(f.8) =6 .9+ /E {(b, Df)ug + (¢, DY f+Vfgldu. 2.4
It follows that

Ef, )+ 0113

£°<f>+/E {®.DNuf+@DPuf+ V) du+elfi3
(1=m&),
E(F. 01 < 16°(F. )l + VE{“” Df)ug+ (¢, D)u f +Vfg) du‘

< 1+ w)&(HV2E0 )2,

v

and U,fi] Dg, » is dense in D. Therefore, &'(-, -) extends continuously to a bilinear form on
D and the bilinear form D x D 5 (f, g) = &5(f, g) = &(f, &) +6 [ fgdu is acoercive
closed form on L% (). Thus, a strongly continuous semigroup {7} };>0 exists on L*(x) and
some closed operator (., Dom(.Z)) on LZ(M) associated with (&£, D) satisfies &(f, g) =
— [g(ZL f)gdu for f € Dom(Z) and g € D. In particular, 7; can be given as e9’7",(9),
where {T,(e) }i=0 is the semigroup associated with (&, D). Formally, .Z is described as

—(1/2)D*D — (b, D)y — D*(c)) = V-,

where D* denotes the adjoint operator of D. Confirming that (&, D) satisfies the condi-
tion (S) in [14, Proposition 1.2] by an argument similar to [14, Proof of Theorem 2.2] and
applying [14, Theorem 1.5], we see that {T;};~¢ is positivity preserving. That is, 7; f > 0
p-a.e. if f > 0 u-a.e. In general, {7};};~0 is not necessarily Markovian. Let f} denote the
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264 M. Hino, K. Matsuura

adjoint operator of 7; on L?(w). Then, {f}} =0 1s also a positivity-preserving semigroup and
is associated with a bilinear form (&, D) defined by

E(f.e) =& ), fgeD.

Let A denote the set of all sets A € A such that 0 < u(A) < oo. For A, B € %,
define

P;(A,B):/Ttle,u fort > 0.
A

If d(A, B) = oo, then the situation is simple, with the proof of the following proposition
given in Section 5.

Proposition 2.9 Suppose A, B € Ay satisfy d(A, B) = oo. Then, under Assumption 2.8,
P;(A, B) =0 forallt > 0. In particular, it follows that

_d(a, B)?

5 (= —00).

lim tlog P;(A, B) =
t—0

From this proposition, it is sufficient to consider the case when d(A, B) < oo. For this case,
we need some extra assumptions to begin. Let log® x denote 0 v (& log x) for x > 0.

Theorem 2.10 (Upper Estimate) Ler A, B € %y with d(A, B) < oo. Suppose Assump-
tion 2.8 and the following.

(B.1) There exists k > 0 such that

/E (b —c. D fdu| <w8D.  fe|Drs @.5)

k=1

(B.2)a,p There exist y > 0 and nonnegative numbers {A¢}¢~0 such that

limer, =0 (2.6)

e—0

and

1/2
f (b—c,Ddp)p f2du<eS(f)+re+y ( / f*log™ 2 du)
{0<dp<d(A,B)) E

foranye > Qand f € U,fozl Dg,.p with || fll2 = 1. 2.7
Then,

d(A, B)?

lim tlog P;(A, B) < —
lim ¢ log P:(4, B} < >

(2.8)

Theorem 2.11 (Lower Estimate) Let B € 9By and N > 0. Suppose Assumption 2.8 and
suppose Eq. 2.8 of Theorem 2.10 holds for any A € Py with d(A, B) < N. Then,

. d(A, B)? .
lim r log P;(A, B) > — forany A € Py withd(A, B) < N. 2.9)

t—0
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Accordingly,

_d(a, B)?

5 (2.10)

lir%t log P;(A, B) =
t—
for such A € %B,.

In particular, we have the following theorem.

Theorem 2.12 Suppose Assumption 2.8, (B.1) in Theorem 2.10, and the following.

(B.2") There exist y > 0 and nonnegative numbers {A¢}e=o such that limg_,gels = 0
and

1/2
/ Ib—clufdu <eb(f) +re +v (/ f*log* fzdu>
E E

forany e > 0and f € | g D, p with || fll2 = 1.
Then, Eq. 2.10 holds for any A, B € .

Proof Since |Ddp|lyp < 1 p-ae., (B.2") implies (B.2)4.p for all A,B € %
with d(A, B) < oo. The claim follows from Proposition 2.9, Theorem 2.10, and
Theorem 2.11. O

Remark 2.13 (i) Assumption 2.8, (B.1), and (B.2") are symmetric with respect to b and
¢, while (B.2)4_ p is not.

(ii)) The integral in Eq. 2.5 is formally rewritten as f (Db —0)/2)f 2 dp, which might
be easier to understand.

(iii) We remark that we need only Eq. 2.8, rather than (B.1) and (B.2)4 g, for Theo-
rem 2.11.

A sufficient condition for (B.2') is given as follows.

Proposition 2.14 Suppose that b and ¢ are decomposed into b = by + by and ¢ = ¢1 + ¢»
such that by, by, c1, c» are measurable and the following hold.

(i) There exist nonnegative numbers {}A\E}Do such that limg_ ¢ 85\.8 = 0and

o0
[ =il di < e84 RdfB o207 eUDps  @1)
E k=1

(i) There exists § > 0 such that exp(§|by — 02|%1) —1lelLl(w.
Then, (B.2") holds.

The proof is based on a simple application of a type of Hausdorff—Young inequality. We
provide the proof in Section 5 together with a discussion of other sufficient conditions.
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266 M. Hino, K. Matsuura

3 Proof of Theorem 2.10
3.1 L? Property of Semigroups

The following proposition is interesting in its own right, as well as being used in the proof
of Theorem 2.10. Although claims of the kind made by the proposition have been studied
in many papers (e.g., [5, 11, 18] and the references therein), we give a proof since our
conditions seem (at least partially) less restrictive than those in previous studies.

Proposition 3.1 Suppose Assumption 2.8 and the following. There exists k > 0 such that

[ =c.pputan=esin. fe e G3.1)

k=1
Then, by letting

24 k2 A —
o= HFEXVEHIAZN oy g g = 20 (3.2)
K+ q0 —1

{T; |L2(u)ﬂL!’(u)}f>0 (resp., {f} |L2(M)0L"(u)}f>0) extends to a strongly continuous semigroup
on LP(w) for all p € [2,qol (resp., p € [q(’], 2]). Moreover, the operator norm of the
semigroup on LP () att > 0 is dominated by exp {t (0 + k|1 —2/p])}.

Proof 1t suffices to consider {T;};,~0; the claim for {f}}t>o follows by considering the
adjoint semigroup of {7;};~0.

Let p > 2and M > 1. Define a C2-function A on [0, c0) so that A(0) = A’(0) = 0 and
A"(x) = p(p — D(x A M)P~2 for x > 0. Also, define the following functions on [0, co):

Ax) = /X\/A”(s)ds, Ax) = VAN ()x, and Ax) = /A (x)x — 2A(x).
0

Then, by long but straightforward calculation, we can confirm the following inequalities:

/ p A A A/ p NG
Nz 3 PG AR @, 0 M = LA,
X p(p—2)+,

Since A(0) = A(0) = A(0) = 0, this implies, in particular,
p

I WY X _pr
A(x)z4(p_1)A(X) ; OSA(X)Szm
and 0 < A(x) < Zglfi:f))[\(x). (3.4)

LetC >0andt > 0. Take f € L2(w) N LP () with f >0 pup-ae. Since T; f > 0 p-ae.
and A" is bounded, we have that A’(T} f) € L*(w), A(T; f) € L'(u) and

A,

- / ONT ) du = f (~Ce AT + e N TN LT, f) dp
tJE E

o Cr <_c / AT fydp — E(T, f, A’(Tff))>~
E
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Varadhan’s Asymptotics 267

Moreover, for v € (i Dy b ++

1
EWw, A (v)) — /E (Dv, D(A/(v)))H du + /E(b, Dv)gA (v)du

2
+fE(c, D(A/(v)))Hudqu/EVuA/(v)du
1 .o B ~
= E/E‘D(A(v))‘H+L(b+c, D(A(v)))HA(v)du
f/ (bfc, D(Z\(u))) I\(u)dwr/ VAW du
E H E

> E0(AW) —nE®(AW) = OIIAW)II; — k& (AW)).  (from (A.2) and (3.1))

By using Eqgs. 3.3, 3.4, and the derivation property (2.1) of D, we have
— C/ AW)du — Ew, A (v))
E

_Cp a0 0k £ 02
=< 4p—1) A ()15 EY(A)) + T ])é" (A())
9p2 A 2 KP(P—Z) 0,7
_ A =D+’ +kp(p =) 0 4 PI=C+bp+K(p=2} ~ >
B ip—1) T N FAIE A

Therefore, if —4(p — 1) + np® + kp(p — 2) < O—or, more specifically, if p € [2, o]
with go given by Eq. 3.2—then the right-hand side of Eq. 3.5 is non-positive by letting
C = Cp :=0p + «(p — 2). Thus, the inequality

—Cp/ Aw)dp —EwW, A'(v)) <0
E

is valid for all v € D with v > 0 p-a.e., by approximating v by elements of | ;> | Dg, p +-

In particular,

d
— | AT fdp <0,
dt Jg

which implies
/e’C”’A(Tzf)dME/A(f)du«, ‘>0,
E E

Letting M — oo, we obtain that [, e~ Crl(T, P dp < Jg [P du, from the monotone con-
vergence theorem. Thus, {7¢[,2¢,)nLr ) }e>0 €xtends to a semigroup on L (u) that satisfies
I TNl e (uy—sLr () < €C7° /P The strong continuity of the semigroup follows from the result
given in [20]. (Indeed, it is easy to see that {7}};~¢ is a weakly continuous semigroup on
L? (), which implies strong continuity.) O

Corollary 3.2 Suppose Assumption 2.8 and (B.1). Then, the operators {T;|12(,ynpr(u)}>0

and {f",ILz(M)ﬂLp(M)}t>o extend to strongly continuous semigroups on LP () for all p €
lg)> q0), where qo and q|) are as given in Eq. 3.2. Moreover, the operator norm of the
semigroups on LP (u) att > 0 are dominated by exp {t(0 + k|1 —2/p|)}.

Proof Apply Proposition 3.1 to (&, D) and (5" , D). O
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3.2 Preliminary Estimates

In this subsection, we provide several quantitative estimates used in the proof of Theorem 2.10.
We take a non-decreasing C2-function & on [0, 00) such that £(x) = (x — 1)3 v 0 for
x €[0,3/2] and £(x) = 1 for x € [2, 00). Define

C(x,y) =2x+ (' —20)E@x), x>0, y>2,

and

T(x,y) = /Xf(s, y)ds, x>0, y>2. 3.6)
0
Then,
9C(x,y) =24 (y(y — Dx¥ 72 = 2)E(x) + (yx7 7' = 2x0)&' (x) > 2.

For R > 2, we define the following functions on [0, 00) x [2, 00):

gr(x,y) = (0x{)(x AR, Y), hR(x,y)=/O gr(s, y)*ds,

Pr(x,y) = /0 hRr(s,y)ds, pR(x,y)=/0 gr(s,y)ds,
tr(x,y) = xhgr(x,y) —2¢r(x, y), YRr(x,y) = +/xhr(x,y).

Lemma 3.3 For any fixed y > 2, the following hold.
i) Forx =0,
hr(x,y) = ((x AR, y)+ ((x — R) VO)3x¢(R, y)
= L@AR Y+ ((x—R VO yy— DR
In particular, hg(x,y) = ¢(x,y) if0 <x < R.
(i) 2x < hg(x,y) <(x,y) <max{2x, yx¥~ '} forall R > 2 and x > 0.
(iii) Forx >0, hg(x, y) converges to {(x,y) as R — oo.

iv) x% < ¢r(x,y) < t(x,y) <max{x2, x*} forall R > 2 and x > 0.

V) gr(x,y) =2 forx > 0and gg(x,y) = /y — D(x A R)Y> ! forx > 2.

Proof (i) and (v): Straightforward from the definitions.
(i1): The first and last inequalities are easy to prove. Since

dxhr(x,y) = 0x{(x AR, y) < 0xL(x, ),

the second inequality also holds.
(iii):  This follows from (i).
(iv): This follows by integrating each term of the inequality in (ii).

Lemma 3.4 Forany x > 0and y > 2, the following hold.

(i) xgr(x,y)? > hg(x,y).
(i) tr(x,y)>0.
(ii)) pr(x,y) < xgr(x,y).
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Proof (i): Forx € [0, R],
xgr(x, )2 — hg(x,y) = x3:L(x, y) — ¢(x, y)
= y(y —2Dx"T'E) + () —26DE (), (B.7)
which is nonnegative since &’(x) = 0 forx < 1. For x > R,
xgr(x, )2 — hg(x,y) = x3:¢(R,y) — {S(R, y) — (x — R)3:¢(R, )}
= y(y—2R"' >0 (3.8)

(ii): This follows from identities tg (0, y) = 0, dxtr(x, y) = xgr(x, y)2 — hg(x,y), and
@).
(iii): By the Cauchy—Schwarz inequality,

X X 1/2
PR(X,Y) = /0 gR<s,y)dss<x/0 gR(s,y)zds>

= (xhg(x, )" < xgr(x,y). (from (i)
O
Lemma 3.5 For y € [2,3], «/tr(x,y) is continuously differentiable with respect to x.

Moreover, there exists some Ko > 0 independent of x and y such that

0 < deytr(x,y) < Kov/y — 2gr(x, y) (3.9)

and

0 < Vir(x,y) < Kov'y — 2pr(x, y). (3.10)

Proof Since tg(x,2) = 0, it suffices to consider the case y € (2, 3]. The continuous dif-
ferentiability of /tg(x, y) is trivial for x # 1 since (g(x,y) = 0 for x € [0, 1] and
tr(x,y) > O0forx > 1. For x € (1, R], combining Egs. 3.7 and 3.8,

y _ 2
(=2 |y 1500 + {xy + 2(’;_2")} s’m} (1 <x<R),

y(y —2)R¥! (x > R).

Oxtr(x,y) =

Thus, we can confirm that there exist K| and K, with 0 < K| < K3 such that
Ki(y —2)i(x, y) < dxtr(x,y) < Ko(y —2)i(x,y) forx € (1, R]andy € (2,3],
where 7 is defined as
10, y) = (0 — D2 113/21(x0) + 132,21 (x) + 272 gy (x).
For x € (1, 3/2], we have
Kix =D’y =2/3 < r(x,y) < K2(x = D’ (v = 2)/3.
Thus, lim, 1 v/tg(x, y)/(x — 1) = 0. That is, /tg (x, y) is continuously differentiable with

respect to x at 1. Furthermore,

Oxtr(x,y) -1,2
0< 222222 < Ko /3/KivVx — 1y —2 < KK Vy —28r(x,y)
Vir(x,y) :

from Lemma 3.3(v).
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For x € (3/2, 2], we have tg(x,y) > (gr(3/2,y) > K;(y —2)/24 and

Oxtr(x,y)
SR < Ko24/K1y — 2 < Ko/ 12/K1yy — 28R (x, ¥).
Vir(x,y) = 2\/ / l\/y = 2\/ / 1\/)’ gr(x,y)

For x € (2, R],

0<

Xy —2y

R
K
(R(x.Y) > (r(2, y)+/ dytr(s, y)ds > —2; -2 +Ki(y—2)
2

A%

K o(1e®
24
for K3 = K1/192, and

Oxtr(x,y) —172 2-1 ~1,2
< = < KoKy Ny — 20T < KoKy = 2gR(x, ).
VER(x,Y) . :

For x > R, we have (g(x,y) > tg(R, y) > K3(y —2)R” and

Oxtr(x,y) _ -
0< % < K; 2y 2R < 27Ksy — 28R (3, ).

From these estimates, Eq. 3.9 holds by setting

Ko =27 " max{K»\/12/K1, K2K; %, \/2/K;3).

Integrating each term of Eq. 3.9 gives Eq. 3.10. O

_
) > K3(y — 2)x”

Lemma 3.6 Forx > 0andy € [2, 3],
max{0, x” log™ x — 2log2)x?} < dy7(x, y) < x” log" x. (3.11)

Proof We have

83,T(x,y):/ 8y§(s,y)ds:/ (sy‘*‘ +ys>‘*‘1ogs)s(s)ds.
0 0

From &(x) = 0 for x € [0, 1], it follows that 9,7 (x, y) vanishes for x € [0, 1] and is
non-decreasing in x. For x € [0, 2] and y € [2, 3],

x¥log™ x — 2log2)x? < x*(27 2 log2 — 2log2) < 0 < dyt(x, y).
Moreover, for x > 2 and y € [2, 3],
X
yT(x,y) > / (s”’l + ys¥! logs) ds
2

s¥logs|i=5

= x”logx — 27 log?2
xlogt x — 2log2)x?.

v

Therefore, the first inequality of Eq. 3.11 holds. For x > 1, we have
X
dy7(x,y) < / (sy’l + ys? 7! logs) ds = s” logs|;Z] = x” logx.
1
Thus, the second inequality of Eq. 3.11 holds. (]

Lemma 3.7 For each ¢ > 0, there exists some yy = yo(e) > 2 such that gg(x, y)x ¢ is
non-increasing in x for any y € [2, yo] and R > 2.
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&

Proof Since gr(x,y) = gr(R,y) for x > R, the term gg(x, y)x~° is always non-
increasing for x > R. It therefore suffices to consider only x in [0, R]. We may additionally
assume that ¢ € (0, 1/2). Define

v(x, y) = (gr(e, WX 6) . (x,y) € [0, R] x [2, 00).

It suffices to prove that there exists some yp(¢) > 2 such that, for (x,y) € [0, R] x

[2, yo(&)],
av(x,y) <0. (3.12)

By definition, for (x, y) € [0, R] x [2, 00),

&

v(x,y) = B (x, )
— ZX—ZS + (y(y _ l)xy—2—2£ _ 2x—28) E(-x) + <yxy—1—2£ _ 2x1—28> -’;‘J(X)
and

Av(x, y) = —dex 1724 (y(y— D(y—2—2e)x? 7372 4 4£x_1_2€) £(x)

+ (250 = 1= 2 a1 —e)x )8 0+ (v T2 2017 ) (),

Suppose 0 < x < 1. Since £(x) = &§'(x) = &"(x) =0,

O v(x,y) = —4ex—172¢,

thus, Eq. 3.12 holds for this case.
Suppose 2 < x < R. Since £(x) = 1 and &'(x) = £"(x) =0,

dev(x,y) = y(y — D(y — 2 — 2e)x¥37%,

Therefore, Eq. 3.12 holds for y € [2,2 + 2¢].
Since &, £, and £” are all bounded, 8,v(x, y) converges to —4ex ™!
x € [1,2] as y — 2. Thus, there exists some yg(¢) € (2, 2 + 2¢] such that

—2¢ yniformly in

Av(x, y) +4ex 172 <4e . 271726 (x,y) €[1,2] x [2, yo(&)]. (3.13)
Equation 3.13 implies Eq. 3.12 for (x, y) € [1, 2] x [2, yo(¢)]. O

Lemma 3.8 The following inequalities hold for § € (0,1/2), R > 2, x > 0, and y €
(2, yo(®)]:

(1) xgr(x,y) < (1 +8)pr(x,y),
(i) xgr(x, y)? < (14 28)hr(x,y),
(iii) xhg(x,y) < (1+ a)sz(xé ¥)2, 5
(iv) xgr(x,y)? —hg(x,y) < T;)m(x, Ygr(x, y),
V) pr(x, ¥)? <2(1 +28)¢r(x,y) < 2(1 +28)(x, y),

Vi) @ ¥r(x, y)* < (1+28)gr(x, )2

Proof In the following, we omit y from the notation.
From Lemma 3.7, gg(s)s ™% > gr(x)x~% > 0if 0 < s < x. Then, we have
xgR(x)

X X
— ds > -3 (Sd —
PR(X) /OgR(S) s > gr(x)x j(;s s T3
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and
x X 2
hr(x) :/0 gR(s)2 ds > gR(x)2x728/0 s2¥ds = xlgj—(;; .
Thus, (i) and (ii) hold. Combining (i) and Lemma 3.4(i) gives (iii). From (i) and (ii),
1 25(1 4+ 96)
2 2
—h <({1—-— < —" ,
XgR(x) R(x) < ( 1+25>X¢‘,’R(JC) ST PR(X)GR(X)

which proves (iv). Next, we prove (v). From (ii) and Lemma 3.4(iii), we have
0 (pr(6)?) = 28R () PR() = 2xgR (0 < 2(1 +20)hR (1),
Then,
pr(X)? <2(1+ 25)/0th@)€“ =2(1 +28)pr(x).

The second inequality of (v) follows from Lemma 3.3(iv).
Last, we prove (vi). The inequality holds for x = 0 by direct computation. Let x > 0.
By using (ii) and Lemma 3.4(i), we have

(xgr(x)? + hg(x)) 3 (2xgr(1)?)’
4xhg(x) T 41 +28)"1x2gRr(x)?

(O Yr(x))? = = (1 +28)gr(x)*.

3.3 Derivation of a Differential Inequality

In this and further subsections, we prove Theorem 2.10. The following inequality is often
used throughout this paper without specific mention:

1

|3€y|§fx2—i-%y2 fora > 0andx,y € R.
o

Lete € (0, (1 — n)/6]. Take § > 0 such that

(1+8)*<1+e. (3.14)

In particular, we use 26 < ¢ < 1/6. Let

3 2
q:min{3,1+%,y(8),2+82 €3] and §=22.
2 kK, &

0

Here, go, y(-), and K are as provided in Eq. 3.2, Lemma 3.7, and Lemma 3.5, respectively.
We set

to = min{l, (g —2)/S} and p(t) =q — St, t € [0, fo].

Note that p(t) € [2, g] fort € [0, tp].
Let A, B € %y with d(A, B) < oo and set w = dg A d(A, B) € Dy. Leta € R\ {0}
and define

u; = Tlpg, F(t) = ¢*uy, and o (1) = / T(F(), p(t))du fort €[0,1]. (3.15)
E
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Lemma 3.9 The function o is continuously differentiable on (0, ty] and

o'(1) = /E [T (F(0), p@)F' (1) + 3yt (F (1), p(0)p' (1)} dpe

= /EZ(F(t),P(I))eawiﬂusz—Sfanf(F(t),P(t))dw (3.16)

Proof We justify the formal calculation. First, let us recall the following fact (see, e.g.,
[2, Theorems 21.4 and 21.8]): Suppose r € [1, c0) and that x € L'(w) satisfies 0 < x < 1
p-a.e. Then, for functions {f,};°, in L (u) and f € L%(u), the sequence f,, converges to

fin L™ (w) if and only if f;, converges to f in measure with respect to x - u and

lim Sup/ {(ful" = Kx) v O0}dun =0.
K—oo y JE
Fort € (0, to] and {#,},2 | C (0, o] \ {t} converging to ¢,

(T(F(tn), p(tn)) — T(F(1), p(1))) /(tn — 1)
T (F@) +5(F(tp) — F(1)), p(1) + s(p(ta) — p(1)))

= / (tn — 1)

1
(th — t)_]/(; {(F(tn) - F(t))axf(gs,n, hs,n) + (p(tn) — p(t))ayf(gs,na hs,n)} ds

F(t,) — F(t) (! !
= M/‘ g‘(gx,n» hx,n)ds - S/ ayf(gx,ns hs,n)ds» (317)
n — 0 0

where g5, = F(t) + s(F(tn) — F(1)) (= 0) and hyp, = p(t) + s(p(tn) — p(2)). For each
s € [0, 1], gs,n converges to F(¢) in L™ asn — oo for every r € [2, go], and h; , converges
to p(t) asn — oo. In particular, for every s € [0, 1] and r € [2, gol, gs,» converges to F(t)
in measure with respect to x - © and

timsup [ (@) = K0V 0)dju =0
K—oo p E

From the continuity of ¢, £(gs,n, hs,n) converges to ¢ (F(t), p(t)) in measure with respect
to x - u asn — oo. Lemma 3.3(ii) and the inequality 2 < 2(¢ — 1) < go together imply
£(x,y)? < 4x? + g3x? forx > 0and y € [2, go]. Thus,

SUP/E{(Z(&-J[’ hx,n)2 - K)() Vv 0} d/,L
< sup /E{(‘“gs,n)z — Kx/2) v 0}dp + sup /E {(@3(gs.)® — K x/2) v 0} du

— 0 as K — oo.

From the above, {(gs.», hs,n) converges to {(F(¢), p(?)) in Lz(u). Moreover, since it is
easy to see that {£(gs.n, fs,n)}se[0,1], neN 18 bounded in L?(w), we obtain

1
/0 §(&s.ns hsn) ds — E(F (1), p(1))

1
- /0 1¢(8s.ms ) — CCF (), p()]2ds — 0
2

as n — 0o, by the dominated convergence theorem. Thus, the first term of Eq. 3.17 con-
verges to F/ ()¢ (F (1), p(t)) in L'(u) asn — oo because (F(f,) — F(t))/(t, —t) converges
to F/(¢) in L2(w).
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In the same manner, we can prove that fol 0yT(gs,n, hs,n) ds converges to 9, T (F (1), p(t))
in L'(u) as n — oo, by using Lemma 3.6. Thus, Eq. 3.16 is proved. The proof of the
continuity of o’ (¢) proceeds analogously. O

We fix t € (0, 9] and estimate the first term of Eq. 3.16. Recall the measurable nest
{Ei}72, in Assumption 2.8. Take a sequence of functions {wy};2, such that forevery k € N,
wi € Dg, p, wp = w p-ae. on Ep and 0 < wy < N p-ae. There also exist functions
{u(k)},‘zoz1 such that u® e Dg, » for each k and the sequence u® converges to u; in D as
k — o0. By considering 0 v @™® Au;) (and the Cesaro means if necessary) we may assume
that 0 < u® < u, p-ae. for every k and limg_, u® =y, p-ae. Let F® = 2wy ®) ¢
Dg, » for each k. Then,

0<F® =y ® < Ft) p-ae.

and

/{(F(t),p(t))e"‘w.jfu,du:/ Rlim hr(F (@), p())e*™” Lu,dp  (from Lemma 3.3)
E E R—o0

= lim / lim hr(F®©, p(1))e*™ Lu, dp
E k—o0

R—o00

= lim lim —& (u,,hR(F<’<>,p(t))eWk). (3.18)

R—00 k—00

Lemma 3.10 Forany R > 2,

lim & (e R (F®, payye™ ) = lim & (u®, n(F®, paye).

Proof Since u® converges to u; in D as k — oo, proving that the sequence
{hr(F®, p(t))e*? 122 | is bounded in D suffices. Boundedness in L%(u) is straightfor-
ward. For each k,

& (hr(F®, p(r))e“wk)l/2
= & (he(F®, p)e™ ~ 1))1/2 + & (hr(F®©, p(t)))”2
= |erF®, pe)2e = DIDFO1u |+ [hr(F®, peae™ | Duglu |

+ |er(E®, pa)IDFO (3.19)

.
We note that g is a bounded function, that |¢®¥* — 1| < eIV that hr(F®, p()) =0on
E\ E, that |Dwg|g < 1 on Ej} and that

oFtn], = JeeuOiounl, +

e | Du®
2

1/2
< Jarle!™ [u® |, 4 eIV (zgo(u“‘))) ,
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which is bounded in k. From these estimates, the first and third terms of Eq. 3.19 are
bounded in k. Moreover, Lemma 3.3(ii) and the inequality 2 < 2(¢ — 1) < qo together
imply that {hg (F®, p(1))}?2, is bounded in L?(i). Thus, the second term of Eq. 3.19 is
also bounded in k, which completes the proof. O

From this lemma and Eq. 3.18,

f C(F@), p)e*™ Lu, dp = Jim lim —Eu® hg(F®, p@t))e®™).  (3.20)
E — o0 k—00

We provide an upper estimate of the right-hand side. Let G%() = pr(F®, p@)) fork € N.
For the moment, we omit p(¢) from the notation and write, for example, & g (F ®)) instead
of hr(F® | p(r)). We have

_& (u(/o’ hR(F(/o)eawk)

==& (e F®, g (FO))

— _g0 (efawk F(k), eawth(F(k))) _ / (b, D (efotwk F(k)))H eﬂtwth(F(k)) du
E

_/ (C, D (eOtUthR(F(k))>)He*O[U)kF(k) d/’L _/ VF(k)hR(F(k))d,LL
E E

- _% / (—oe™ ™ F® Duy 4 e~ DFO,
E

ae® h g (FOYDwy + e““”‘gR(F(k))ZDF(k))H du
— | (b —ae™ FO Dy + e DF®) e ng(FP) dpa

VE®Opp(F®ydu

¢, ae™ hg(F©) Dwy + e gr(FO)?DFD) e p® dy

{er(FORIDFOR — a2F O (F©) D,

I
!
NS
S

to (hR(F(k)) - F(k)gR(F(k))z) (DF(]‘), Dwk)H] du

+a / (b —c, Dw)y FOhr(F®)dp
E

1
+§f <b—c,DF(k)) (F(k)gR(F(k))z—hR(F(k))) du
E H
1
_ L (k) (3] (k)y2 (k)
3 [ (b e DF), (FOeRED +hpr®)) a

_/ VF(k)hR(F(k))d/L
E

= h+hLh+L+14+1Is.

@ Springer



276 M. Hino, K. Matsuura

Using Eq. 3.14, we have
1
h< =5 [ eeFOPIDFY R au
E

211
+ w / pr(F®)2Duy |2, dp (from Lemma 3.8(iii))
E

lxle
+5- / pr(FO)gr(F) |(DF®, Duy) |dp
E H

(from Lemma 3.4(i) and Lemma 3.8(iv))
1 ® |2 a?(1+¢) % e ) *)
= _Z/E‘DGR ‘H dut 2 /,;(GR) dut 2 /EGR ‘DGR ‘Hdﬂ
2 2
e+ 0 o o 4 [
5 (61) + o Ll P e Pl R
I = / (b= c. DViR(F®))  Vir(F®)dp
E H
< k&0 (\/LR(F(k))> (from (B.1))
1 2
SKKg(p(t)—2)<§[Ii|DF<k>|§,gR(F<k>)2du+HG;“Hz) (from Lemma 3.5)
< 8(?10 (G%{)) ,

Iyt ls =~ fE (b+c. DUR(FDY) yr(F®)du— fE ViR(F®) dp

IA

2
s
2

A

16 () +0 [yr®)|. drom (a2)

(1+4206) 2 2
we= / [DFO[ er(FO)2du+00+8? |6 |
E
(from Lemma 3.8(vi) and (iii))

< (1+oms” G+ (1 +e) HG%C) Hz "

Moreover, when o > 0,

L = a/ (b—c, Dw)y Yyr(F™)2du
E

=« / (b—c,Ddp)y Yvr(F®)2dy  (from Proposition 2.1)
{0<dp<d(A,B)}

V()|

<a [Z£° (VR(FD)) + /e

. WR(F(k))z ., )1/2
lvr(F®)];
(from (B.2)a p with f = yr(F®)/llyr(F®)]2)
< e+ 06 (GF) + anesal +0) |G Hj

+7 | vRF®)| ( [ rr 10

+ Yr(FW)?

“.
[
(from Lemma 3.8(vi) and (iii)) (3.21)

2 2
+ea(1+e) |G| +V—/ Yr(F®) log
2 de E
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Assume o > 0 in what follows. Combining Eqs. 3.16, 3.20, and the estimates from /; to /s
above, we have

o) = Jim lim (—5 (u(k), hr(F®, p(t))e“wk) - S/E 3y T(F (1), p(t))du)

—00 k—00
F(k) 2
+ Vr( ) d

2 2
< gt @) ciof [ fLonrorint (B

R—00 k—00

_s / [F(t)P“) 10g+F(z)—2(log2)F(t)2]d,u:|, (from Lemma 3.6)
E

where
Co=—-1+3c+{+e)n+e(1+¢) <0 (by the choice of ¢)
and
Cr = % - % e+ 1480+ (1+e)area +e(l +e)a’. (3.22)

Let G(t) = /T(F(t), p(t)). Note that ||G(t)||% = o (t). From Lemmas 3.8(iii)(v) and
3.33ii),

0<yr(F®) < VT+eG¥ <V2(1+6)Gt) <2G(1) p-ae.
forallk e Nand R > 2 (3.23)

and
F(1) < G(t) < F(t) v F(t)PV/2, (3.24)

Since logt (x/y) < log™ x +1log™ y for x, y > 0 and the maps [0, 00) 3 a +— alogta €
[0, 00) and [0, 00) 2 a +— a + alog™ a € [0, co) are both non-decreasing, we obtain, for
every k € Nand R > 2, that

L YR(FW)? J

Vr(F©)?log
J [r(FO;

_wR(F®)|3

(F0? 2
< [ wer® 1ot VRO dyk [ 1oy
E

<4 /E G(1)log" G(t)*dp + 4 (||G(z)||% +IG ()13 log™ ||G<r>||%) (from Eq. 3.23)
and
/E Gt log"G(1)2 d < /E (F(t)va(t)p(’))log+ (F(t)z\/F(t)”(t))dpL (from Eq. 3.24)
= p() /E F)PD logt F(t)dp.
Here, in the last equality, we used the identity

(@* v aPDylog*t(@* v a??) = p(t)a’Plogta fora = 0.
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Because we set S = 3y2/e,

o'(t) < 2+20)C1IGOIE+ 2 (;)S F@)P" log* F(t)dp
E
S
+2 (I6013+ 160 B 10g 1GOI3)
— S/ F()PDlog™ F(r)dp +2S(og 2) | F(1)3
E
< Uo(t)+ Wo(t)log” o(z), (3.25)
where

U:(2+28)C1+<%+210g2>S and W:g. (3.26)

3.4 Solving the Differential Inequality

We give an explicit upper bound of o (¢). Since |ug|l2 > 0, there exists some #; € (0, #g]
such that |ju,||» > 0 for ¢ € [0, t{]. For this step, we consider only ¢ € [0, #;]. Keeping in
mind that

(logo) (1) =0'(t)/o(t) < U + Wlog™ o (1)
from Eq. 3.25, we define

x 1 —ilog (1— E)C) (x SO),
L) :/ ds=1 W U (3.27)
o U+ W max{-s, 0} = (x > 0).

U

Then,
(x(loga))' (1) = x'(logo (1) (loga)' (1) < 1,
which implies
x(ogo(n) < x(loga(0)) +¢, 1 =0.

This inequality implies

o [1 = exp (- Willogo @) + )] ito () < 1.

logo(r) < (3.28)
U{x(logo(0)) + 1} ifo(t) > 1.
We can confirm that
U
W [l —exp(~W2)] < Uz, zE€R,
so that Eq. 3.28 implies
o(t) <exp(U{x(logo(0)) +1}). (3.29)

For the proof of Theorem 2.10, we assume that d(A, B) > 0 because otherwise the
assertion is trivial. Define

al(t,a)zf (" Ti1p, p(t))dp  and 02(t,a)=/ T(e ™ T 1a, p(t)) dp (3.30)
E E

fort > 0and o > 0. Both 01 (¢, @) and 0> (¢, ) have the same kind of estimates as Eq. 3.29.
Indeed, for the estimate of o7, the discussion in the previous subsection is applied with b,
¢, and « replaced by c, b, and —«, respectively. The only term that requires care is I, but
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the estimate (3.21) is unchanged by this replacement. From the Cauchy—Schwarz inequality

and Lemma 3.3(ii),
1/2 R 172
{/(eath/le)ZdM} {/(e_“wﬂ/zlA)2dM}
E E

o1(t/2, ) ?or(t)2, a)!/?. (3.31)
Letting N = d(A, B) and « = N/t, we have

P (A, B)

IA

IA

_ —t — 1
lir%t log (A, B) < liII(l) 5 logo(t/2, N/t) + liné 3 logoy(t/2, N/t). (3.32)
t— t— t—

We also have

010, N/t) = /Er(lg,q)du=u(3),

020, N/1) = / e Ny, q)dp = u(A)e N1
E

L (1t N\ Ut | ~0N JrUt2 1o
2 8%\ ) T A\ Y 4 T

We remark that U and x depend on « (see Egs. 3.26 and 3.22). When o = N /¢,

1
imU2 = 2426 (8 + £ 4+ e)N2  (from Eq. 2.6)
t—0 2 16
=: B(e)N?
and
limUyx((x)=x forx eR,
t—0
in view of Eq. 3.27. In particular, U = O(t™%) as t — 0. We also remark that

limg_,¢ B(e) = 1. Then, we obtain

Ut N Ur t Ur? N?
7)( (logm (0, 7>>+T:§UX(IOgM(B))+T—) ﬂ(ei ast — 0.

Therefore,

— 1 ﬂ(S)Nz
lim — 1 t/2,N/t) < .
tgr(l)zogm(/ /1) < 1

Also, for ¢ small enough that 02 (0, N/t) < 1,

Ut | 0 N +U2t t U1 . w log 4(A) 2N? +Ut
— 0go , — — = -|-=lo ——lo - — -
p X182\ 4 2\ w8 U\ %8H : 2

Ut { 2WN? 5 Ut
= — |- o(t —
2w ( Ut +0( )) + 4
— —N2—{—@N2 ast — 0.
Therefore,
o t ﬁ(&‘) 2
lim —logon(t/2, N/t) < | -1+ —— | N-. (3.34)
t—02 4

By combining Eqgs. 3.32, 3.33, and 3.34,

limtlog P;(A, B) < (—1 + @> N2.
t—0 2
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Letting ¢ — 0, we obtain Eq. 2.8, which finishes the proof of Theorem 2.10.

Remark 3.11 (i) As seen from the proof, when we can let y = 0 in (B.2)4 p, the L?-
analysis is not necessary and the proof becomes much simpler.
(i) If (E, &, w) is a finite measure space, then we can define o, o1, and o, as

o(t) = f F()P" dy,
E
o1t @) = / (" T15)"V dp,
E
o2ty @) = / (e F10)7 du
E
and use the inequality

2 1 1
P/(A. B) < w(E) "0 01(1/2, &) P 05(t/2, o) PO

in place of Eqs. 3.15, 3.30, and 3.31. This change makes the proof of Theorem 2.10
shorter and simpler since the fine estimates in Section 3.2 are not necessary.

4 Proof of Theorem 2.11
4.1 Cutoff Functions and Their Properties

We turn to the lower-side estimate and prove Theorem 2.11. In Section 2.1 of [9], some nice
concave functions are introduced as cutoff functions. Because our semigroup {7;};-~¢ does
not have the Markov property in general, we need to modify these functions to be suitable.
First, we take a real-valued function g on R satisfying the following properties:

— gisanodd and bounded C 3_function;
- gx)=xforx e[—1,1]and 0 < g’(x) < 1 on R, and
— there is a positive constant C such that 0 < —g”(x) < Cg'(x) forx € [—1, 00).

These conditions imply that limy_, o, g(x) = L, lim,— _oc g(x) = —L for some L > 1 and
that the convergence is monotone. Note that g is concave on [—1, 00).
Define our main cutoff functions at level K > 0 by

X (x) = Kg(x/K), ¥ (x) = / x<¢’<>’<s)2 ds, and WX (x) = x (%) (x)%.
0

From the conditions on g, we have the following properties:

(C1) 0< @) <1,

(C2) 0<[@%)" ()] <CK XY (x),

(C3) 0 < K1) < oK) < ¢X(x) < LK for x > 0, and |[WX (x)|, |®K(x)],
lpX (x)] < LK on R,

(C4) ¢¥x)=dK(x)=vX ) =xon[-K, K],

(C.5) limy_ oo ¥X(x) =0,

(C.6) ®X(x/B) = K (x)/Bforall > 1andx > 0.
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To simplify the notation, we omit explicit indication of the dependency on K for most of
this section. For example, we write ¢ instead of ¢X whenever the value of K is clear from
the context. The monotonicities of ¢, ®, (C.3), and (C.5) guarantee that ¢, ®, and ¥ can be
extended to continuous functions on [—00, oo], and these extensions use the same symbols.
The following estimates result:

(C.7) ®Xx) — oK (@M (x)) < ®K(00) — X (M) forall K, M > 0and x € R.
Indeed, this inequality is trivial when x < M, and when x > M itis deduced from oK (x) <
X (00) and X (dM(x)) = X (M).
We also introduce a function ®X on R, defining it as
T x (x < —K). ’

This function is concave and 1-Lipschitz on R.
For functions u® on E with parameters ¢ and 8, we write ¢° for ¢ (u?), ®? for ®(u?), ¢?
for t’lfot¢>;3 ds, and so on. We denote [, fgdu by (f, g), for functions f and g on E.
Foré € (0,1]and f € Lz(u) with f > 0 p-a.e. and t > 0, we define

ub(x) = —tlog (T, f(x) +8), e = —tlogs.

We need the following lemmas, introduced in [9].

Lemma 4.1 The function F(x) = ®(—tlogx) is convex for x € [0,00] if 0 < t <
K/(Q2C).

Proof The proof here follows the proof of Lemma 2.1 in [9]. Compute

/ _ r
F'(x) = —7<I> (—tlogx),

F'(x) = —cb( rlogx>+ d>”< tlogx) = ((¢) +209/¢")

—tlogx ’

From this and (C.2), F has a nonnegative second derivative. O

Lemma 4.2 ([9, Lemma 2.2]) Suppose that F is a concave continuous function defined on
R.If f, — f weakly in L*(w), F(f,,) € L%(w) for each n, and F(f,) has a subsequence
that converges to some function F weakly in L2(w), then ja < F(f).

Lemma 4.3 ([9, Lemma 2.4]) Let {f,,} be a sequence of D that converges weakly to some
f inD. Then,

tim [ 1A yhdi < [ 1DfFyhdn
E

n—o0JE

forh e DwithO < h < M p-a.e. for some M > 0.

Lemma 4.4 (cf. [9, Lemma 2.5]) Let T > 0 and suppose that f (t, x) = f;(x) is a bounded
Jjointly measurable function for (t,x) € (0,T] x E. Also suppose that f; € D for each
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t € (0, T] and that fOTéOO(f,) dt < co. Writing fr = %fOT fi dt, we have fr € D, and the
following is true for any nonnegative h € Dy

_ 1 rT
/IDfTI%,hdus—[ /|th|§,hdudr.
E TJ Je
4.2 Rough Estimates

In the following, I'(f, g) and I'(f) denote (Df, Dg)g and (Df, Df)u, respectively.

Lemma 4.5 uf — ef e D and

1 1
(0 @D = —(p W) = E° ((@I)p.uf =) = 5 fE L} = e (@)D p dp

2t
(DT, f
Tf+38

’ " ’ pTi f
+ [ (oD} =€) 2@t + )2} i dn

((¢/)§)2P7tf
—_— 4.
+ t/ Vv tf 5 d/L ( 2)

- /E (b, D@’ — &), (D)) pdu +1 fE (c. D) du

for p € Up2 DEg b

Proof Let E(s) = log(s 4+ 8) — logé for s € [0, c0). From E(0) = 0, the boundedness of
the derivative of E on [0, 00), and uf - ef = —t&(T; f), we conclude that uf — ef e D.
We prove the identity (4.2). First,

1 LT,
(p, dud), = (. ul), — (p ! ’f)

_ L p
T7+s), " (o )+ 16 <T,f, T,f+5> 4.3)

and
1
& (p, (T f)) = 5/ I (p, E(T: /) du-l-f(b, Dp)g E(T: f)du
E E
+/(c, D(E(th)))deM+/ VPE(T f)du.  (44)
E E
The first term on the right-hand side is computed as

1 1
Ef [, BT, f)) dp = —/ (o, T f) du
E E

1
2 T, f+§
1 P P
E/E{r(nf+a’T’f>”(T’f)(TfH)Z} an
C§)<th T,f—|—8) /(b Dth)Hth+8dM

0 pTi f 1
_ — — I'& .
L(c,D(th_HS))HT,fdu /va+5du+2/E ET f)pdp

4.5)
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Combining the identities Eqgs. 4.3, 4.4, and 4.5, it holds that

1 - P
. = o, +18 (o, C‘A(th))‘f‘f/E(b’Dth)Hmdﬂ

P T f
+t/E(C’D(Tzf+6>)HT’fd“+t/EVT,f+ad“

—%/ F(E(Tzf))pdu—t/(b, Do) RET; f)dp
E E

—th(c,D(E(Tzf)))deu—t/EVpE(Tzf)du
1 1
= S~ .l — ) - —thrwf —Mpdp

+t/(b DT, fyn—L— au

Tzf+5

o oT: f
el (o (arss), s | vag o

By using the identity (p, 3;®%), = (((¢)?)?p, a,uf)u and replacing p with ((¢")?)?p in
the relation above, we obtain

0.0 = 7 (@070 — 6 (@07p.ud — )

AYAY
_?/ F(uf—ef)((qs/);s)zpdu_l_t/(b’ o1, oy @0
t JE -

T,f+6
() *p / (PN *pT, f
—I—Z/E(C,D<th+6>>HthdpL+t EV7th+5 du.

(4.6)

Here, we have

(@"e , _ 1812
f/E(b, DT f)u Tf 15 du = /E(b D@} —e))), (@)pdn  (47)

and

(CAL
Lo (s52) v

T AYAYA T
t / (c,D<(<¢’>?>2p)) St /E (c. D(uf_ef))HM dp

HTi f+6 T, f+6
- ((9"); )2Trf
B /@l)) T,f +36
" f
+LﬂaD( —&))y PK¢L@),+«¢))} f+ad” (4.8)
Substituting Eqs. 4.7 and 4.8 for Eq. 4.6, we obtain Eq. 4.2. O
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Lemma 4.6 Fork € Nand p € Dg, , with0 < p <1 p-a.e,
1 1
‘(p, 00D, = (o W+ 6 (@)D 0.0} — ) + - /E ! = e (@) du’

- (% + 1) /E Fd — &) (@) p dpn + 16%(p) + R(t, k),

where we define

1 C 1 1
R(r,k):sz bl du+{( =+ )t+= f |c|";,du+rf |Vidpu.
2 JE, K 2 2) JE, Ex

Proof Using Proposition 2.1, (C.1), and (C.2), we have

/(b D@ — &), (@) pdu

(@))*T, f 1
/(CD) Tf1s M =3

1 1
< —/ Iblfqdu+*f LG — () pdu,
2 JE, 2 JE

f lelgr du+ &%(p),
Ex

/ " / pr
/E (D ) =)y {20060 + @0} 755

cro1 cro1 /
(% +3) [ e+ (F+3) [ red —ebariroan
(@) P T f - / Vidu
< [ widn.

e Tif+é
These estimates and Lemma 4.5 together imply the claim. O

du‘

Vdu

Proposition 4.7 There exists a measurable nest {Ek}]fil and functions {xx}72 | in D such
that, for every k, Ek CELO<yxx <1lonkE, yp =1o0n Ek, and xx = 0on E \ Eg.

Proof For k € N, there exists an i; € D such that iy > 1 on Ej. Take a function g from
s D, such that & (hx — gx) < 1/k, and set Y = {x € Ex | gi(x) > 1/2}. Let px
denote O Vv (2(hy — gr) A 1). Then, é‘}o(pk) < 4/k and pr = 1 on Ej \ Yi. We prove that
U,fil Dy, is dense in . Take f € Dg, 5 for some n € N. For k > n, let fy = f — fox.
Then, fy =0 pu-a.e.on (E\ E;) U(Er\ Yi) D E\ Yi. It follows that f; € Dy,. Moreover,
since

EVNF = P =EFp)"? < flloeE (o) 2+ EC (V2 <N flloo @/ B2 + EO( )2,
which is bounded in k, and
If = fellz < I fllscliorllz < 1 flloe@/ B =0 (k — o0),

the Cesaro means of a certain subsequence of { f¢}72 belonging to | J;=, Dy, converge to
f in D. Thus [ J{2 Dy, is dense in D because |2, ]D)Em is dense in D.

Let Z, = Uk:l Yy and define ,, = 0V 2(g1 vV---Vv gy) Al). Then, Z, C E, and
U2 Dz, is dense in D. Moreover, 0 < 1, < lon E, n, = 1 on Z, and n, € {2 Dg,.
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Take a strictly increasing sequence {m(n)}- | such that n, € Dg,,, for every n € N and
define

Ex=0, xx =0 forl <k <m(l),

Ex =727y, xe=n, formn)<k<mm+1),n=12....
Then, {Ek},fil and {xx};2, satisfy the required conditions. O

Define u} = —tlog (T, 15 + 6) for B € .

Lemma 4.8 There exists a positive constant Ty, depending only on C and K, such that both
0 (40 0(Hd
{£%(e Xk)}0<tho,0<5§1 and {£°(P? Xk)}0<15T0,0<551 are bounded for each k.

Proof Let U} = 26%¢i ), WP = [ Tl — e)(@)2)?xEdu. and a = 2E°(xx).
Applying the chain rule (2.1),

Ul = / T (@0 xk. ¢ xi) di
E

— [ [P = @ + 20l - e 08} @+ T @) du
< 2W} +2K?L%*a;  (from (C.3)). 4.9)
Letting p = sz in Lemma 4.6,
WP < =20 (x, 8,90 + 20x2, W) — 20802} ud — )

Ct
+ 2t <? + 1) WP 4 2ay + 20R(t, k).

From (C.3), (x7, ¥9),, < K L. Moreover,
=2 E (W)t ul — )

- fE @ T e 1) dpa + 21 /E @ HT () die

_ /E @ ETE — ) dp

1
+ % (@D — e dn (from (C.1), (€2),and (C3)

= 8¢%a +1U5+2KLta +@W‘S
= k 8 t k K te

Thus, we have
WP < —2t(x?, 8 D%), + (92 + 2K Lt)ay + U /8
+ Q2Ct/K +2Ct? /K +20)W) + 2K L 4 2R (1, k).
Choose Ty > 0 such that 2CTy/K + 2CT02/K + 2Ty < 1/2. Then, for t € (0, To],
WP < —4r(x2, 8,9%), + Ul /4 + 20, (4.10)
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where Cp = (9T02 + 2K LTy)ar + 2K L + 2TyR(To, k). By putting this inequality into
Eq. 4.9,
) 2 ) M) 272
U < =8t(xj, 0: P} + U /2 4+4Cr 4+ 2K Lay,
so that
US < —16t3,(x?, @°),, + 2C3, (4.11)
where C3 = 4C5 + 2K?%L2qa;. Therefore,

t 1 t
/ EV@ xr) ds = f/ Ue ds
& ' 2 € '

IA

t
—8/ 535 (2. @), ds + C3(t — €)
£

s=t t
_8s <X,€2,<I>f)“ +8/ (x2. %), ds + C3(t — e).
s=¢& &

Letting ¢ — 0 and dividing by 7, Lemma 4.4 gives that
@) < ;fotff%;?xw ds < 16KL + Cs.
Therefore, {é‘) O(Q_&f Xk)}0< 1<Ty, 0<5<1 is bounded. Moreover, since
2697 xx)

= / T(D2 xx, @ xp) de
E

= /E [P —eh @) +2rad = el x0 @2 (@)D 1 + T (@)? ] du

IA

2 fE P — (@) xZ d+ 2 /E [ () (08) du

WP +2K*L%ax  (from (C.3))
—1619; (x7, ®°), + C3 +4Cy +2K*L2a;,  (from Eq. 4.10 and 4.11)

IA

A

we can prove the boundedness of {&%(® xx)} in the same way. O

0<1<Tp, 0<8<1
4.3 Sharper Estimates

We write u, = —tlog Tp, ¢y = ¢ (uy), ®;, = ®(uy), and ¥, = ¥(u,) for t > 0. Since
¢, Xk converges to & xx p-a.e. as § — 0 and {q_S, Xk}o<t<Tp, 0<s<1 is bounded in D, we con-
clude that ¢, xx € D and {qﬁt Xk}0<z<T is bounded in D for each k by [13, Lemma 2.12].
Using the diagonal argument, for any decreasmg sequence {f,} | 0, we can find a subse-

quence {tu'} such that, for every k, ¢, xx converges weakly to some ¥ in D. Since y; = 1

on E; when k > [, it follows that Y% = ¥y p-a. .e. on El for k > [. Therefore, there exists
¢ € Dioc, b({Ek}) such that ¥, = ¢g p-a.e. on Ey. for every k.

We may also assume, by taking a further subsequence if necessary, that there exist
®g, ®o, and Wy in L (1) such that @, , — o, CI>t .= D, \IJ, , — Wy both in the weak-
Lz(pc) sense and in the weak*-L° (i) sense. Here, & is an arbitrary fixed finite measure on
E such that & and u are mutually absolutely continuous, and L°°(u) is regarded as the dual
space of L'(u). We remark that these functions depend on K. Because of this, it is more
precise to write qbtK and CiD(If instead of ¢, and ®.
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Define
={x e E|T1p(kx) —1p(x) > 1}
for t > 0. From the Chebyshev inequality, u(Z;) < ||T;1p — 13||% — 0ast — 0; thus

1 13
;/ 17,ds — 0 inL'(u)ast — 0. (4.12)
0

For x € Z;,
¢1(x) = p(—tlog Ti1p(x)) < p(—tlogl) =0.
Since T;1p(x) <2forx € E\ Z; and ¢(y) > y for y < K, it holds that

¢ (x) = ¢ (—tlog T;1p(x)) > ¢p(—tlog2) > —tlog2 on E\ Z;. 4.13)
Similar inequalities hold for ®; and ;.

Lemma 4.9 ¢y > &y > Uy > 0 p-a.e. and &g > 0 p-a.e.

Proof By using (C.3) and the inequality (4.13) with ¢, replaced by W,, for Y € A,

_ 1 !
/\Iltdu:f/ (f \Ilsdu—f—/ ‘-IQdu)ds
Y tJo YNZs Y\Z;

LK [' Y)log2
—— | w(z)ds — M t

0 2
for every ¢ > 0. Then, by letting # — 0 along the sequence {#,/} in the above inequality, we
obtain fY W du > 0 by applying Eq. 4.12. Therefore, Wy > 0 u-a.e. Next, for Y € %,

_ _ 1 t 1 t
/(«pz—cb,)du:—f/ (¢s—d>s>duds+—/f (¢ — ®,)duds
% sz\ tJo Jy\z,

> ZI;K w(Zs)ds +0 (from (C.3))

v

for + > 0 small enough. By the same argument, we obtain ¢0 > CBO, and the other
inequalities are proved in the same way. O

Lemma 4.10 ¢y = 0 p-a.e. on B.

Proof For an arbitrary sequence {s,} | 0, Ty, 15 converges to 1p in L2(,u) asn — 00. Take
an arbitrary subsequence {s,} from {s,}. From this, we can find a subsequence {s,~} from
{sn/} suchthat 7y ,15 — 1p p-a.e.as n” — o00. Using the dominated convergence theorem,
lim,» o0 [ s, dpr = 0. This means lim; ¢ [ ¢; dpu = 0. Then, by letting 1 — 0 along
the sequence {t,/} in the identity

_ 1 t
/qbtd/i:*/ /%duds,
B tJo JB

we obtain f B ¢o dp = 0. The claim follows directly. (I

Lemma 4.11 /¢ € Dy.
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Proof Fix h € ID)E bt arbitrarily. Since </>ka - (q&;s — ¢(ef)) is constant on Ek,

Proposition 2.1 1mphes that
/E () x)h dp = /E T(¢) — p(el)hdp = /E T —e) (@) hdpu.
By using Lemma 4.6 with p = h,
/Er(u, — (@) hdp
< —2t(h, 8®%), +2(h, ¥P), — 2tE°(((¢))%)*h, ul — &%)
+ 2t <% + 1) / LW — ) ())*hdu + 262E°(h) + 2t R(1, k).
E

Since
=28 h, u) — €))
- —r/Erm,u, — (@ dp 2r/ Fu? — )@@ hdp
< <26, 0} + - [ T@lxondi drom (€2,

we have

2Ct  2Ct?
(1 e 2z> / F @ xohdp

< —2t(h, 3 ®%), +2(h, WD), — 2tE0(h, D2 xp) + 2626 () + 2R (2, k).
Then, for T € (0, Ty],

1 T( 2CT  2CT?

— L or 5
= (1-Z-= ) / [ xoh dp dt

1
< ——f t(h, 3,®%), dt + (h, ¥), — ?/ 1E%h, ® xp) di + C4T,  (4.14)
0

where Cy = To&%(h)/3 + R(To, k) /2. Integration by parts gives

T
f/ t(h, 3 ®%), dt = <T(h %), — / (h,CDf),Ldt> (h, @), — (h, D3,

and

t=T 1 T pt
- f/ / EOh, @ xp) ds dt
=0 T 0 0

1 t (!
f/ tE%h, @ i) dt = f/ EOh, @ x1) ds
T 0 T 0 t

_ 1 rT _
- T(S’O(h,qw}x,()—?/ tE%(h, ® yi) dr
0

— 0 asd—>0and T — O
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because &°(d? x;) is bounded in § and ¢ by Lemma 4.8. Letting § — 0 and T — 0 along
the sequence {#,/} in Eq. 4.14, we obtain from Lemmas 4.3 and 4.4 that

1 . , - .
5 /E C(go)hdp < —(h, ®o)y + (h, Do)y + (h, Wo)u < 2o, h) .. (4.15)

The second inequality follows from Lemma 4.9. Then, for each ¢ > 0,

— 1 _ h 1 - h
r — hdu = — r — d — | 2¢9, = < ||A]l;.
fE <\/¢0+8 JE) " 4/5 o) 5" du < (¢0 ¢O+€)<n 1

This inequality holds for all & € Jp2, Dg, bt D (w/fl_ﬁo +e&— JE) ‘H <1 pu-
a.e. Next, fix k € N and let f; denoteA (Voo +¢ — &) xk for ¢ > 0. Then, from the
argument above, |Df:|g < 1 n-a.e. on Ey and { f¢}¢0 is bounded in D. Any weak limit in
D of a subsequence should be doxk, and so |D(Vox) g < 1 pu-a.e. on Ek. Therefore,

Vo € Do. O

From Lemma 4.10, Lemma 4.11, and Proposition 2.7, we conclude d;o < d% u-a.e. The
multiplicative constant can be further improved since this inequality is not sharp.

Hence,

Lemma 4.12 Given K > 0, we can choose M > 0 such that

K@M\ z) > WK, 1€, K/log2]. (4.16)

Proof Since oK is non-decreasing, WK < @K on [—K, 00) and (C.5), we can find M > 0
such that ®X (M) > sup, g WX (s). From Eq. 4.13, M > —tlog2 > —K on E \ Z,. Then,
on E\ Z;,

XM 1p\z) = X @) = X (M Aup) = K (M) A K (uy) > VK (uy).

On Z;, Eq. 4.16 is trivial since the left-hand side is zero and the right-hand side is
nonpositive. O

Lemma 4.13 [f the inequality
o2
K B
¢y = ,37 n-a.e. on {dp < N} 4.17)
is true for some B > 1 for every K > 0 and every limit ¢_>§, then

- d2
& <2- ,3_1)73 w-a.e. on {dg < N}.

Proof Given K > 0, we take M as in Lemma 4.12. Let Y € %y with Y C {dg < N}.
Using the convexity of K (—¢ log(-)) for small ¢, from Lemma 4.1, we have

1
@K 1y), = / oK (—tlog Ti1p) dp > p(¥) @K <—rlog (—(7}13, 1y)ﬂ)> :
Y u(¥)
By the upper estimate (2.8),

lim — log(T; 15, 1y),, = lim —t log P, (Y, B) >

t—0 t—0

d(y, B)?
—
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Therefore, in the limit,

(@K, 1y),

v

d(Y, B)?
w(Y)eX ((2)>

2
= u) essinf X <dB(x))
xeY 2
o k@

ess iynf oK (@) (x)) (4.18)
X€E

from the assumption of Eq. 4.17 and (C.6). Recall now the function &K that was defined in
Eq. 4.1. Since K is 1-Lipschitz and concave on R, for ¢ € (0, K/log 2] we have

t t
KGN = K G /0 M (us) gz, ds + ; /0 oM )1z, ds)

“ 11! 1
> ¢k (f / oM (us)1p\ 7, ds) - -
tJo t

1 (. LM [!
> 1 / K@M )1z ds — = / 12, ds
0 0

t
/ oM (us)1z, ds
0

t
- LM [!
> lIJtK - 1z ds. (from Eq. 4.13 and Lemma 4.12)
0
Take {t,} | O such that J){L” converges to qf)é” weakly in L2(j1). From Lemma 4.9,

Lemma 4.2, and Eq. 4.12, we obtain that ®X (¢1) = ®X (¢}) > UK p-a.e. Combining
this inequality and Eq. 4.18, we get

@K 1y, = *

essinf ¥ (x). (4.19)
xeY

We will prove
of > p71UF  pae on{dp < N}. (4.20)
Assume for contradiction that there exists some Y’ € % and ¢ > 0 such that Y’ C {dp <

N} and CD(I]( < ,3_]@({( —conY . Let

Y:{xEY/

_ - &
\If(g{(x) < essinflllé((y) + /37} .
yeY’ 2
Then, 1(Y) > 0 and @ < p~'essinfyey ¥ (y) — /2 on Y. This contradicts Eq. 4.19.
Combining Eq. 4.20 with 4.15 and using Lemma 4.9, we obtain

1 _ _ _ _ _
E/Er(cpéf)hdu < BV 4+ (1, )+ 1,V < 2= BTHGE ),

for every h expressed by h = h1hy, where h| € U,fil Dék bt and by = (OVK(N —dp)) Al

for some k € N. The claim follows by the same argument after Eq. 4.15. O

By repeated application of Lemma 4.13, ¢y < d%/Z u-a.e.on {dg < N}, and so &g <
d%/2 u-a.e.on {dp < N} from Lemma 4.9. To obtain the equality, we modify Lemmas 2.9,
2.13, and 2.14 of [9] as follows.
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Lemma 4.14 For any limit ®¢ (that is a weak-L*>(l) and weak*-L™®(w)-limit of a
subsequence of {®;}:~0),

®(d3/2) < Dy p-a.e. on{dp < N).

Proof LetY € %PBysuchthatY C {dp < N}. From the upper estimate (2.8) and Lemma 4.1,

2
o (d(YB)) < @ (1im —r1og P(7. ) )

2 t—0

. 1

1
= lim® (| —¢1 —(T:13,1
pm (“’g(um(”’ ”“))

v,
lim —— | ®&(—tlogT;1p)dp
o k() Jy !

1
lim—/Qdu
o) Jy

1
< —— [ dpdp.
/L(Y)/y

LetY, = {®g < @(d%/Z) —e}N{dp < N} for e > 0 and suppose, for the sake of contra-
diction, that (Y;) > 0. Then, Y] := {x € Y. NEy | <I>(d123(x)/2) < ®(d(Y,, B)2/2) +¢/2}
also has p-positive measure for sufficiently large k. But

1 d2 d(Y/, B)? P
; o B dp < @ u 4=
w(¥p) Jy; 2 2 2

1 / €
< Podp+ =
w¥)) Jy; 2

1 d2
s [ o(E)du-2,
wyd Jy o\ 2 2

which is a contradiction. Therefore, u(Y,) = 0. Since ¢ > 0 is arbitrary, we obtain the
desired assertion. O

IA

Lemma 4.15 For any limit ®q (that is, in particular, a weak-L*(f) limit of a subsequence
of {®s}i=0), P(d}/2) < g p-ae. on {dp < N).

Proof For any p € L?(j1) with p > 0 p-a.e. and p = 0 u-a.e. on {dg < N}, Lemma 4.14
implies
(®(d3/2), P < Lim(®y, p)j.

t—0
Therefore,
1! .= =
(®(d3/2). p)j < lim = | (@, p)jids = im(P;, p)jz < (Po. p)j-
t—01Jo t—0
This implies the desired claim. O
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From Lemma 4.14 and (C.4), we have & = d%/Z on {dzB/Z S_K} N{dg < N} =:
Yk, n, independently of the choice of subsequence. In particular, ®,1y, , converges to
(d%/z)le,N weakly in L2(f1) as t — 0. Furthermore, we have the following

Lemma 4.16 &) = ®(d%/2) on {dg < N}.

Proof We specify the dependency on K and write @K instead of ®,. From what we have
proven, QDfWIYM.N converges to (d%/Z)lyM,N weakly in L2(f1) and dDS/’ = d%/2 on Yy N
for all M > 0. From (C.7) and the 1-Lipschitz continuity of ®X,

_ 1 T
oK = ?fo &K (u;) dr

IA

T
%f ®F (@M () dr + (@ (00) — @ (M)
0
1 T K M 1 T " B .
LT ok M LM (T P B
} ?f v (ut)lE\Z’)dHT/ 17, di + (@X (c0) — @K (M) (4.21)
0 0

Since ®X is concave and 1-Lipschitz, the first term is estimated as follows:

1 (7 1 (7.
- /0 oK @M w)tp g dr = /0 SK (DM (1)1 z,) dt

ryays
oK <?/ q>M(u,)1E\Z,dt)
0
NTays 1T
< oK <?/ CIDM(u,)dt) + ‘Tf &M (u)1z, dt
0 0

U LM [T
5¢K(¢¥)+Tf0 1z, dt. (4.22)

IA

Combining Egs. 4.21 and 4.22 and letting T — 0 along a suitable subsequence, we have
oK < oK (d3/2) + (@K (c0) — @K (M)) on Yy y.

Here, we also used Lemma 4.2 and Eq. 4.12 for the right-hand side. Letting M — oo,
we obtain GD(I)( < oK (d23/2) on {dp < N}. The inequality in the other direction has been
proven already. O

Therefore, CTD,l{d <N} converges both in the weak-L2(f1) sense and in the weak*-L® ()
sense as ¢ — 0, and the limit ®¢1q, <y} is equal to <I>(d%/2)1{dB<N}.

4.4 Application of the Tauberian Theorem

In the following, {Tto},>0 denotes the Markovian semigroup corresponding to the strong
local Dirichlet form (£°, D), and .Z° denotes the generator of {T,O},>0 on Lz(,u). Note
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that 50(T,0f) < (Zet)’lllfllg holds for all f € L?(uw) and ¢+ > 0, from the spectral
decomposition theorem. For k € N, we define

Xk =xk - (OVEN —dp)) A1) € DEnfdp<ny.b-

We use (-, -) 2w to denote the L2-inner product with respect to the measure )2,? -puonkE.

Lemma 4.17 Fort € (0, 1) and Y € A,

0 _ om0y &
}gI(l)(TT_tly, Pz, = Ty, @o)za

Proof Let f(t) = (Tro_tly, o, — @(oo))izﬂ fort € (0, t). We will confirm the following
k
two conditions:
(i) T_lfOTf(s) ds converges to (T.[Oly, oy — d>(oo))f(kz_ﬂ
(i) there exist M > 0 and 79 € (0, 7) such that f(z) — f(s) < M(t — s)/s for any
O<s<t<un.

asT — 0,

Under these conditions, we can apply V\_’iener’s Tauberian theorem (see, e.g., [16, Lemma
3.11]) to obtain lim,_,q f(t) = (Tlply, oy — (D(oo))if-u' Combining this equality and the
identity
. 0 0
lim (7 1y, ®(00) 32, = (T71y, D(00)) 2.,
we obtain the desired claim.
Condition (i) is proved as follows:

17 .
‘?fo f(t)dr—(Tfly,%—@(oo)) ‘

REn
1 T
o
=7/

2KL (T
< —1 |
T Jo

—- 0 asT — 0.

(10 1y = Ty, & — ®(o0) | ‘ dr + ‘(Tf’ly, br - &)
Xi K Xi "M

1y — Ttoly||1 dt + ‘(Ttoly, o7 — &)0)

XEu

Here, we used the fact that {T,O}t>0 extends to a strongly continuous semigroup on L'(w).
For condition (ii), we fix § € (0, 1). The function f°(r) := (Tro_rly, @f - @(ef))
continuously differentiable on (0, ) and

ipn '
d § 0 § ) 0 § 5

) = (T 1y 8,00 = 90Dz, + (T 1y @) - @)
r k X

1
= (T 1y, @) g2, =~ (T Ay, W) s, — (LT 1y, @)= @) 52,

< (T 1y, 3B 2, + EOT Ay, £7(@) — @(e)) = /i + .
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Letr € (0,7/2]and Q, = [ T’ — ) ($)2)? 22T, 1y dpu. By using Lemma 4.6 with
f=1gandp = )QkZT,O_,ly,

1 .
R e VR T PR ((CAR i e VTR
1 N
- o [T = D@ R 1y du
r JE
Cr A N
+ (? + 1) / P — e (@) RLTY Ay dp + rECGRETY Ay) + R(r, k)
E

K
where Cs = K Lu(Y) and Cs = (1/2) SUpc(r/2.0) EX(XZ T 1y) + R(/2, k). We also have

Cs 0 8\2 520 8 8 1
= 7 - éo (((d)/)r) Xk Tf—r1Y7 ur - er) + =+ - 5 Qr + C67

. 1 .
£ (@RI Ayl — ) = 5 /E (@7 (T2 1y — eb) du
+ / (@D T AT (G, ul = €)) du
E

+ / RE@NNPT Ay T () — ) du
E
=: 3+ Jy+ Js.
Accordingly,

d
0 512—13—14—15+%+(%+1—2—1,)Qr+Cs.

Then,
J—J3 = %fEF(TT‘lrly,f(k)(qﬁ —®(ed))du
< 2KLENTY_ 1) 28032
< AKL(er) ' Pu)'2E% ) =: ¢,
FARS %fE {r(m + X (@D Tl — eé)} T dydu < ) + %,
and

C
sl < 5 Qr-

Therefore, we have

d c+cr 3 1 Cs 005
= < (= 42— = 4 Co+ Cr 4+ EG).
drf(r)_< ¥ 13 2r>Qr+r+ 6+ C7+ &7 (X)
Let Cg denote Cs 4+ C7 4+ E0(xx). If r < to := min{(2(Ct + C)/K +3)~1, 7/2}, then we
have < f3(r) < Cs/r + Cs. From this,

t/c Cs + Ct
f‘s(r)—f‘s(s)sf (75+Cs>dr§¥(z—s), 0<s<t<t.

N

By letting § — 0, we obtain the desired assertion. O

Lett >0,k € N,and Y € %,. It holds that

/ RE®rdp = (@ T 1) 2, + Ri®r 1y = TP 1)y (4.23)
Y
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for every t € (0, t]. From Lemma 4.17,

lim im(®;, T_ 1y) g, = (Do, 1r) 2.,

T—>0r—0

For the second term of Eq. 4.23, we have

lim llm(xk o, 1y — TO,IIY)H =0

—=>01t—0

by the boundedness of ®, and the strong continuity of {7,°}. Therefore,

lim )2,§¢,dM:/)z,§&>0dM:/ 2O (d%/2) dp. (4.24)
t— Y Y

Using this equality, we finish the proof of Theorem 2.11. For ¢ € (0, (N — d(A B))/2),
define A, = {x € A | dg(x) < d(A, B) + &}. Then, for sufficiently large k, xx = xx = 1
u-a.e.on Ag N Ek Using the convexity of K (—¢ log(-)) for small # (Lemma 4.1), we have

lim ®(—tlog P,(A, B)) < lim ®(—tlog P;(As, B))
t—0 t—0

< lim

im
0 ju(Ag)

— 1
= lim / AP du+/ @ du>
1—0 ((Ag) ( ANEy K A\Ey t

fim KL (Ae \ Ep)
20 1(Ay) (Ag) e N T

®(~tlog T11p) du
Ae

IA

)2]3¢z du +
Ag

: 220 i du+ KL (A \Er) (from Eq. 4.24)
= — rom .G
w(An) S, T\ 2 )T @y e d

(d(A, B) + ¢)? KL .
A \Ep).
< 5 +M(AE)M( \Ey)

Letting k — oo, we have

(d(A, B) + ¢)?

lim ®(—zlog P;(A, B)) <
t—0 2

Since ¢ is arbitrary and limg _, oo ®X (x) = x for each x € R, Eq. 2.9 holds. This completes
the proof of Theorem 2.11.

5 Proof of Auxiliary Propositions and Examples

We prove Propositions 2.9 and 2.14.

Proof (of Proposition 2.9) Let Y = {dp = oo}. From [1, Proposition 5.1], Y coincides

with {TtOIB = 0} up to u-null sets for all # > 0. Then, for¢# > Oand f € L?(uw) with f=0
u-a.e.,

T2y ), T1p)y = (Ay . T 1), = 0.
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This implies that

T°(1yf) =0 p-ae.onE\Y (5.1)

because TIOIB > 0 p-a.e. on E \ Y. Equation 5.1 now holds for all f € L?(uw); thus, Y is
an invariant set with respect to (&9, D), from [6, Lemma 1.6.1]. From [6, Theorem 1.6.1],
1y f € D forevery f € D and

E%Nf ) =8y filyg) + E0p\y filp\ve), f.geD.

Moreover, D(1y f) = 1y Df by Proposition 2.1. By using these properties, we can confirm
that &(1g\y f, 1yg) = 0 for f, g € D. From [10, Lemma 3.1], E \ ¥ is weakly invariant
with respect to (&', D). That is, T;(1g\y f) = O u-a.e.on Y forallr > Oand f € L2(w).
Letting f = 1p, we obtain T;13 = 0 u-a.e. on Y since B C E \ Y. Thus, for A € %y
satisfying d(A, B) = oo, we have (A \ Y) = 0 and so P;(A, B) = 0 holds. O

Proof (of Proposition 2.14) Let f € Ure; Dg,.p» with || f|l2 = 1. Forx > 0 and y > 0,

X y X
xy < / 10g+sds+/ e dt < / logtxds +e¢’ —1=xlogmx +¢’ — 1.
0 0 0
Applying this inequality to x = f 2 and y =68|by — C2|%—1 and integrating it provides

3/ by — e frdu 5/ logt f2du +/ (eé‘bz—czliz _ 1) du.
E E E
Then,

12
/|b2—C2|Hf2dM§ (/ |bz—c2|%,f2du>
E E

172 172
<512 (f f2log* f2 du) +8—1/2{f (ea|b2—cz\%,_1) du} i
E E

Thus, (B.2') holds with y = §~!/2 and

R , 12
he = e + 8712 {/ (e‘slbrcz‘H - l) du}
E

fore > 0. O

We discuss other sufficient conditions of Assumption 2.8, (B.1), (B.2)4_ 5, and (B.2').
For o > 0, let .7, denote the set of all real measurable functions ¥ on E satisfying
the following requirement: there exists a measurable nest {E£x}2, and A, > 0 such that

V¥ € Lige (1. {Ex}) and

[ i dn < a8 + 3l 1B, f € JDes 5:2)

k=1

Also, let Zo+ =) Ty and Too = Jyo0 Ja- Clearly, L (n) C o+

>0
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Lemma 5.1 Let a be an H-valued measurable function on E, and o > 0. If IaI%J € Ty

with a measurable nest {E¢}2° | and A, > 0, then the following inequalities hold for f, g €
Ui Dg,.p and & > 0:

1/2 - 12
‘ / @ DNugdn| = (26°N) " (at@) +allgl) (5:3)
E

A
| /E (a,Df)Hfdu’ < V2aE0(f) + mllfllﬁ, (5.4)
e
/ lalg f2dp < e&0(f) + (8 + “) I£113. (5.5)
E o 4¢

Proof Equation 5.3 holds by combining the inequality

12 12
< (/ |Df|%,du) (f |a|%,g2du>
E E

(26%)" (s + Zal 113) "

«/ﬁ 0 0 Y 2
< 5260 + = (a8 + Tl 1B)

which proves Eq. 5.4. Equation 5.5 follows from the following calculation:

/|G|Hf2dﬂ f/ |a|%,f2du+1/ £2du

E aJg 4e Jg

£ 0 > 2 o 2
= (02D +Ralf13) + o 113

/(a,Df)Hgdu
E

with Eq. 5.2. By letting g = f,

’/(a,Df)HfdM‘
E

IA

1

IA

IA

O
We can give sufficient conditions for Assumption 2.8, (B.1), and (B.2’) in terms of .7,.

Proposition 5.2 Suppose |b|y, |c|ly € L? (u, {Ex}) and V € Ll (u, {Ex}) for some

loc loc
measurable nest {Er}72 |. Let V. denote V v 0 and V_ denote (=V) Vv 0.

(i) Iflb+cl3y € Ta Ib—cl3y € Ty, Vi € Ty, Vo € Ty witha; >0 (i =1,2,3,4)
and /201 + a4 < 1, then (A.2) holds.
(i) If1b —cl3 € Tao, then (B.1) holds.
(i) If b and c are decomposed into b = by + by and ¢ = c¢| + ¢, respectively, such that
b1 — c113, € Joy and exp(8|by — c2|3;) — 1 € LY(1) for some § > 0, then (B.2')
holds.

Proof (i): Equation 2.2 follows from Eq. 5.4. Since
113 + el = (b + el + b — clip)/2,

we see that |b|%, |C|%_I € Jay+ay)/2- Moreover, |V| € Ty, 4q,. Combining these and
Eq. 5.3, we obtain Eq. 2.3.
(ii): This follows from Eq. 5.4.
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(iii): From Eq. 5.5, Eq. 2.11 holds with ):8 = infy-g (m + f—g) for £ > 0. Moreover, for

o
any a > 0,

. — 5)10, o o
limer, <limeg| —+ — | = —,
£—0 e—>0 o 4e 4

which implies that lim, 0 35\8 = 0. Therefore, (B.2) holds, from Proposition 2.14.
O

The following are alternative descriptions of (B.2)4 g and (B.2').

Proposition 5.3 (B.2)4 p is equivalent to the following condition:

(B.2) A, There exist y > 0 and a nonnegative and non-decreasing function Q on [0, 00)
such that limy_, o, Q(x)/x = 0 and

172
/ (b—c,DdB>Hf2du59(£°<.f)1/2)+y< / [Hlog* f? du)
{0<dp<d(4,B)} E
forany N > 0and f € | Jp2 DE,p with || fll2 = 1. (5.6)

Moreover, (B.2) is equivalent to the following condition:

(B.2) There exist y > 0 and a nonnegative and non-decreasing function  on [0, 00)
such that lim,_, o Q(x)/x = 0 and

1/2
f b= cluf?du = 2 (E°N') +y (f f*log* fzdu)
E E

forany f € \Up2 Dg,p with || fll2 = 1.

Proof Suppose (B.2)4 g holds. For ¢ > 0, we define Q(¢) = infooo(et? + Ag). B2)a,B
implies Eq. 5.6. Moreover, €2 is non-decreasing by definition. For any o > 0, we have

Q(t A A N

7() = inf(st—l—Te) §a+—o;/t i o

t >0

Since o > 0 is arbitrary, we conclude that Q2 (7)/t converges to 0 as t — oo. Thus, (B.2) A.B
holds.

Conversely, assume (]~3.2)A,B. Define A, = supt>0(Q(t1/2) — ¢t) for each ¢ > 0.
Then, Eq. 2.7 holds. Furthermore, for any « > 0, there exists some 7T > 0 such that
Q(t'/?)/t'/? < o forallt > T. Then,

EAg sup (89(11/2) — szt) VvV sup (89(11/2) — azt)
t€[0,T) t€[T,00)

eQ(Tl/Z) VvV sup (satl/2 - 82t)
1€[T,00)

QT2 v (a?/4).

IA

IA

IA

Letting ¢ — 0 and o« — 0, we have lim,_,9 eA, = 0. Therefore, (B.2)4 p holds.
The equivalence of (B.2") and (B.2') is proved in the same way. O

We discuss some typical examples of non-symmetric forms that satisfy Assumption 2.8,
(B.1), and (B.2)).
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Example 5.4 We assume the Sobolev inequality: for some d > 2 and § > 0,
1f134)—2) < SELS).  f eD. (5.7

A typical example is the following: E = RY; i = dx (Lebesgue measure); D = H'(R?)
(the first-order L2-Sobolev space); and D = A(x)V, where A(-) is an R*4_yalued mea-
surable function on E such that there exist C > 0 satisfying C -l <t"A(x)A(x) < CI for
pn-a.e. x in the quadratic form sense.

Let v € L%2(u) + L°(w). That is, let ¥ = 1& + 1} for some 1@ e LY%(u) and
1/V/ € L*°(u). Take any ¢ > 0. By using Eq. 5.7, for any f € D,

T £2 7 2 2
/ |1//|f dﬂ/ = ||1{|1/}‘>N}w||d/2||f||2d/(d_2) +N/A f d,LL
E {lv|=N}

A

IA

SIyg 1oy ¥ a2 &0 CF) + NILFI3

for any N > 0. Take N large enough that Slll{‘¢|>N}1/Af||d/2 < ¢&. Then,

fE [l frdp < eE0(f) + (e + N+ ¥ ll) I F113.

Therefore, L4/? (1) +L>® () C o+ In particular, due to Proposition 5.2, each of Assump-
tion 2.8, (B.1), and (B.2') with y = 0 is satisfied if |b|g, |c|g € L4 () + L°®(u) and
Ve Ld/z(,u) + L*(w). In this case, the logarithmic term in (B.2') is not useful.

Example 5.5 Assume that (E) < oo and that (& 0. D) satisfies the defective logarithmic
Sobolev inequality:

/E Flog(f/If 12 dp < al®(f) + I fI3.  f €D. (5.8)

A typical example is the following: (E, H, n) is an abstract Wiener space, D is the H-
derivative in the sense of the Malliavin calculus, and I is the first-order L2 Sobolev space.
In this case, we can take « = 4 and 8 = 0.
Let ¢ € LO(u). By the Hausdorff-Young inequality sz < slogs — s + ¢’ for s > 0 and
t € R,
8|1/f|g2 < g2 logg2 - g2 + Y for§ > 0 and g€ Lz(u).
Taking g = f/|| f|l2 for f € D and using Eq. 5.8, we have

R
[ an < S0+ F I

Therefore, || € Jus if €’1V! € L (11). Assumption 2.8, (B.1), and (B.2') hold if
681\b+c|%{’ eaz|b—c|§,, BV V= e L)

withé; > 0 (@ = 1,2,3,4) and \/20/81 + /64 < 1, by applying Proposition 5.2 with
by =0,by = b, c; =0, and ¢c; = c¢. We cannot expect that (B.2’) will hold with y = 0 in
general; thus, the introduction of the logarithmic term in (B.2') is effective in this case.
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