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Abstract
We explore inverses of disjointness preserving bijections in infinite dimensional
normed pre-Riesz spaces by several methods. As in the case of Banach lattices, our
aim is to show that such inverses are disjointness preserving. One method is exten-
sion of the operator to the Riesz completion, which works under suitable denseness
and continuity conditions. Another method involves a condition on principle bands.
Examples illustrate the differences to the Riesz space theory.

Keywords Disjointness preserving operator · Extension · Inverse · Pervasive ·
Pre-Riesz space · Principal band · Riesz completion

Mathematics Subject Classification 47B60 · 46B40

1 Introduction

In 1992, Y.A. Abramovich raised a question in the problem section of [6]: if X ,Y
are vector lattices and T : X → Y is a linear disjointness preserving bijection, is
T−1 : Y → X disjointness preserving as well? If X and Y are Banach lattices, the
answer is affirmative, see [5]. This initiated research to explore themost general setting
in which a similar result is true; see [2] and references therein. It is also observed there
that for a disjointness preserving bijection between arbitrary vector lattices the inverse
is not disjointness preserving, in general. In [7] it is proved that an order bounded
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disjointness preserving bijection between Archimedean vector lattices has an order
bounded disjointness preserving inverse. A result clarifying the role of the underlying
spaces is given in [5, Theorem 2.1], which reads as follows.

Theorem 1.1 Let X be a uniformly complete vector lattice, Y a normed vector lattice,
and T : X → Y an injective and disjointness preserving operator. Then for every
x1, x2 ∈ X we have that T x1 ⊥ T x2 implies x1 ⊥ x2.

In general partially ordered vector spaces there is a natural notion of disjointness,
see [9]. In [15], van Haandel develops a theory for pre-Riesz spaces, which are exactly
those partially ordered vector spaces that can be order densely embedded into vector
lattices. The smallest vector lattice in which a pre-Riesz space can be order densely
embedded is called the Riesz completion. In particular, every directed Archimedean
partially ordered vector space is a pre-Riesz space. For the theory of pre-Riesz spaces,
see also [10]. Abramovich’s question extends naturally to the pre-Riesz setting. So far,
the problem is only studied in finite dimensions. In [8], it is shown that the inverses
of disjointness preserving bijections in finite dimensional Archimedean pre-Riesz
spaces are disjointness preserving. The affirmative answer in the finite-dimensional
setting motivates to investigate the infinite-dimensional case. The present paper is
a first exploration of Abramovich’s problem for the infinite-dimensional pre-Riesz
space setting. We consider several approaches and examples. Among them, we try to
generalize Theorem 1.1 by extending disjointness preserving operators on pre-Riesz
spaces to Riesz completions.

The paper is organized as follows. In Sect. 2, we collect some basic terminology
and properties. In Sect. 3 we compare the setting of pre-Riesz spaces to the vector
lattice setting by means of two examples. In Sect. 4 we show that there may exist a
rich set of disjointness preserving operators on a pre-Riesz space by computing all
disjointness preserving bijections in a finite dimensional example with a particular
polyhedral cone. In the Sects. 5 and 6 we consider generalization of Theorem 1.1. In
Sect. 5 we consider more general range spaces, which turns out to be straightforward.
Generalizing the domain space X is a more difficult task, as is discussed in Sect. 6.
Our method is to extend disjointness preserving operators on pre-Riesz spaces to their
Riesz completions. We study several ways, each of them involving quite strong condi-
tions. Finally, in Sect. 7 we consider a pre-Riesz space generalization of Abramovich
and Kitover’s analysis of inverses of disjointness preserving operators in [1], which
involves a property called property (β).

2 Preliminaries

We collect some basic terminology; see, e.g., [3,10]. Let X be a real vector space and
let K be a cone in X , that is, K is a wedge (x, y ∈ K , λ, μ ≥ 0 imply λx + μy ∈ K )

and K ∩ (− K ) = {0}. For x, y ∈ X , a partial order in X is induced by

x ≤ y whenever y − x ∈ K .
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We call (X , K ) then a (partially) ordered vector space. We write x > 0 whenever
x ∈ K\{0}. For M ⊆ X , we denote

Mu := {x ∈ X : for all y ∈ M one has x ≥ y} and

M l := {x ∈ X : for all y ∈ M one has x ≤ y}.

The space X has the Riesz decomposition property if for every x1, x2, z ∈ K with
z ≤ x1 + x2 there exist z1, z2 ∈ K such that z = z1 + z2 with z1 ≤ x1 and z2 ≤ x2.

Definition 2.1 A partially ordered vector space X is called a pre-Riesz space if for
every x, y, z ∈ X such that {x + y, x + z}u ⊆ {y, z}u one has that x ≥ 0.

Let X be a partially ordered vector space. Recall that X is Archimedean if for every
x, y ∈ X with nx ≤ y for all n ∈ N one has x ≤ 0. The space X is called directed
if for every x, y ∈ X there exists z ∈ X such that z ≥ x and z ≥ y. Every pre-Riesz
space is directed and every Archimedean directed ordered vector space is pre-Riesz.

A linear subspace D of X is called order dense in X if for every x ∈ X we have
x = inf{y ∈ D : y ≥ x}. Let Y be a partially ordered vector space. A linear map
i : X → Y is called bipositive if for every x ∈ X one has i(x) ≥ 0 if and only if
x ≥ 0. A subspace D of X is called majorizing if for every x ∈ X there exists y ∈ D
such that x ≤ y. Clearly, every order dense subspace is majorizing. We say that a
subspace X of a vector lattice Y generates Y as a vector lattice if for every y ∈ Y
there exist a1, . . . , am, b1, . . . , bn ∈ X such that y = ∨m

i=1 ai − ∨n
j=1 b j .

Theorem 2.2 [15, Corollaries 4.9-11 and Theorems 3.5, 3.7, 4.13] Let X be a partially
ordered vector space. The following statements are equivalent.

(i) X is pre-Riesz.
(ii) There exist a vector lattice Y and a bipositive linear map i : X → Y such that

i(X) is order dense in Y .
(iii) There exist a vector lattice Y and a bipositive linear map i : X → Y such that

i(X) is order dense in Y and i(X) generates Y as a vector lattice.

A pair (Y , i) as in (ii) is called a vector lattice cover of X . A pair (Y , i) as in (iii) is
unique up to isomorphism and called the Riesz completion of X , denoted by (Xρ, i).
Note that if X is Archimedean, then the classical Dedekind completion (X δ, j) of X
is a vector lattice cover; for details see [10, Chapter 2].

Let X be a pre-Riesz space. Two elements x, y ∈ X are called disjoint, denoted by
x ⊥ y, if {x + y,− x − y}u = {x − y,− x + y}u. The disjoint complement of M ⊆ X
is defined by Md := {y ∈ X : for every x ∈ M one has x ⊥ y}.
Theorem 2.3 ([9], Proposition 2.1) Let X be a pre-Riesz space and let (Y , i) be a
vector lattice cover of X. Then for every x, y ∈ X we have x ⊥ y if and only if
i(x) ⊥ i(y).

We will need the following technical observation. If D is a majorizing subspace of
a vector lattice Y and u ∈ Y is such that u ⊥ d for every d ∈ D, then u = 0. Indeed,
there is w ∈ D such that |u| ≤ w. Hence, |u| = |u| ∧ w = 0, consequently u = 0.
We conclude the following lemma.
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Lemma 2.4 If X is a pre-Riesz space and u ∈ Xρ is such that u ⊥ x for every
x ∈ i(X), then u = 0.

Definition 2.5 Let X be a pre-Riesz space and let (Xρ, i) be the Riesz completion of
X . The space X is called fordable if for every y ∈ Xρ , y ≥ 0, there is M ⊆ X such
that {y}d = i(M)d.

Definition 2.6 A pre-Riesz space X with the Riesz completion (Xρ, i) is called per-
vasive if for every y ∈ Xρ with 0 < y there exists x ∈ X such that 0 < i(x) ≤ y.

It is known that every pervasive pre-Riesz space is fordable [10, Proposition 4.1.15],
whereas the converse is not true, in general, see [10, Example 4.1.19]. If a pre-Riesz
space X is pervasive and (Y , i) is any vector lattice cover of X , then for every y ∈ Y
with y > 0 there exists x ∈ X with 0 < i(x) ≤ y, see [10, Proposition 2.8.8].

Let X andY be pre-Riesz spaces. A linear operator T : X → Y is called disjointness
preserving if for every x, y ∈ X with x ⊥ y we have T x ⊥ T y.

A seminorm ‖·‖ on an ordered vector space X is called monotone if ‖x‖ ≤ ‖y‖
for every x, y ∈ X with 0 ≤ x ≤ y. A seminorm ‖·‖ on a Riesz spae X is a Riesz
seminorm if it is monotone and ‖|x |‖ = ‖x‖ for every x ∈ X . By a normed Riesz
spacewemean a Riesz space endowed with a Riesz norm. The cone of a normed Riesz
space is closed and therefore every normed Riesz space is Archimedean.

For a net (xα)α∈I in an ordered vector space (X , K ) and x ∈ X we write xα ↑ x
if (xα)α is increasing and x is the supremum of {xα : α ∈ I }. Similarly, we use the
notation xα ↓ x . The net (xα)α∈I order converges, in short o-converges, to x ∈ X
(denoted by xα

o−→ x), if there is a net (yα)α∈I in X such that yα ↓ 0 and for every
α ∈ I one has ±(xα − x) ≤ yα . A linear operator T : X → Y between two ordered
vector spaces is said to be order continuous if T xα

o−→ 0 whenever xα
o−→ 0.

For u ∈ K , a sequence (xn)n in X is said to be u-relatively uniformly convergent
to x ∈ X if for every ε > 0 there exists N ∈ N such that for every n ≥ N we have
±(xn − x) ≤ εu. Then x is called the u-relatively uniform limit of (xn)n . For u ∈ K ,
the sequence (xn)n is called a u-relatively uniformly Cauchy sequence if for every
ε > 0 there exists N ∈ N such that ±(xm − xn) ≤ εu for everym, n ≥ N . An ordered
vector space X is called uniformly complete if, for every u ∈ K , every u-relatively
uniformly Cauchy sequence has a u-relatively uniform limit. Note that a uniformly
complete vector lattice is Archimedean.

An element u > 0 is called an order unit if for every x ∈ X there is λ ∈ R, λ > 0,
such that −λu ≤ x ≤ λu. If an ordered vector space has an order unit, then the space
is directed. If X is an Archimedean ordered vector space with order unit u, then

‖·‖u : X → [0,∞), x �→ ‖x‖u := inf{λ ∈ (0,∞); −λu ≤ x ≤ λu}

defines a norm on X , the so-called u-norm. In this case, the uniform completion of X
is defined to be the norm completion of X with respect to the u-norm. The space X is
uniformly complete if and only if X is norm complete with respect to the u-norm.

123



Disjointness preserving operators on normed pre-Riesz… 485

3 Examples

This section shall illustrate that the theory of disjointness preserving operators in pre-
Riesz spaces has aspects similar to the vector lattice setting, and aspects that are very
different.

Concerning disjointness preserving operators in vector lattices, Riesz homomor-
phisms are typical examples. In pre-Riesz spaces, the following similar notion is
introduced in [15].

Definition 3.1 Let X and Y be pre-Riesz spaces. An operator T : X → Y is said to
be a Riesz* homomorphism if for every x1, . . . , xn ∈ X one has T ({x1, . . . , xn}ul) ⊆
{T xn, . . . , T xn}ul.

In Riesz spaces, Riesz* homomorphisms and Riesz homomorphisms coincide; see
[10, Lemma 2.3.2]. In pre-Riesz theory, Riesz* homomorphisms play a crucial role
since they are exactly those operators that can be extended to Riesz homomorphisms
between the corresponding Riesz completions; see the next statement.

Theorem 3.2 [15, Theorem 5.6] Let X and Y be pre-Riesz spaces and (Xρ, iX ) and
(Y ρ, iY ) their Riesz completions, respectively. Let T : X → Y be a linear map. Then
the following statements are equivalent:

(i) T is a Riesz* homomorphism.
(ii) There exists a Riesz homomorphism Tρ : Xρ → Y ρ that extends T in the sense

that
Tρ ◦ iX = iY ◦ T . (1)

One expects that in pre-Riesz spaces Riesz* homomorphisms preserve disjointness.

Theorem 3.3 Let X and Y be pre-Riesz spaces and T : X → Y a Riesz* homomor-
phism. Then T is a (positive) disjointness preserving operator.

Proof If (Xρ, iX ) and (Y ρ, iY ) are theRiesz completions of X andY , respectively, then
due to Theorem 3.2 there is a Riesz homomorphism Tρ : Xρ → Y ρ that satisfies (1). In
particular, Tρ is positive and disjointness preserving. Since iX and iY are bipositive, T
is positive.Moreover, due to Theorem 2.3 one obtains that T is disjointness preserving.

��

It is a remarkable fact in the theory of vector lattices, that every order bounded and
disjointness preserving operator is regular [5]. However, this is not true for operators
on pre-Riesz spaces, in general. In [14] an example of an order bounded, nonregular
linear functional on a directed partially ordered vector space was given. We will use
this example to construct an order bounded disjointness preserving operator which is
not regular.

Example 3.4 For A ⊆ [0,∞) let χA denote the corresponding indicator function.
Define for n, k ∈ N,
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en : [0,∞) → R, t �→ χ[n−1,n)(t),

un,k : [0,∞) → R, t �→ ntχ[
0, 1n

](t) + 1
kχ

{
n+ 1

k

}(t),

and consider the subspace X := span
{
en, un,k; n, k ∈ N

}
of R

[0,∞) with pointwise
order. For every x ∈ X there exists t0 > 0 such that x is affine and, hence, differentiable
on (0, t0). Define

T : X → X , x �→
(

lim
t↓0 x

′(t)
)

e1.

For sake of completeness, we list all relevant properties of X and T , where (i), (iv)
and (v) are already dealt with in [14].

(i) X is directed. Indeed, every element in X is bounded and has bounded support.
For x, y ∈ X there is n ∈ N such that x, y ≤ n

∑n
i=1 ei , hence X is directed.

(ii) X is a pre-Riesz space. Indeed, R
[0,∞) is Archimedean, therefore its subspace

X is Archimedean as well. [15, Theorem 1.7(ii)] yields that X is a pre-Riesz space.
(iii) T is disjointness preserving. Indeed, let x (1), x (2) ∈ X with x (1) ⊥ x (2). There

is M ∈ N such that for i ∈ {1, 2}

x (i) =
M∑

n=1

α(i)
n en +

M∑

n,k=1

λ
(i)
n,kun,k,

i.e. x (1) and x (2) are affine on
[
0, 1

M

]
. Let without loss of generality x (1) = 0 on

[
0, 1

M

]
, then T x (1) = 0 and hence T x (1) ⊥ T x (2).

(iv) T is order bounded. Indeed, for v,w ∈ X with v ≤ w there are N ∈ N and
C ∈ (0,∞) such that ±v,±w ≤ C

∑N
i=1 ei .

An element x ∈ X with v ≤ x ≤ w is affine on
[
0, 1

N

]
, hence −2NCe1 ≤ T x ≤

2NCe1.
(v) T is not regular. Indeed, assume that there is a positive linear operator S : X → X

such that S ≥ T . For n, k ∈ N one has that 0 ≤ un,k ≤ e1 + 1
k en+1, hence

T (un,k) = ne1 ≤ S(un,k) ≤ S(e1) + 1
k S(en+1),

and therefore k(ne1 − S(e1)) ≤ S(en+1) for every k ∈ N. Since X is Archimedean, it
follows that ne1 − S(e1) ≤ 0. From ne1 ≤ S(e1) for every n ∈ N one obtains e1 ≤ 0,
a contradiction.

4 Disjointness preserving operators for a particular polyhedral cone

In [10, Example 4.4.18], a four-ray cone in R
3 is investigated and all disjoint elements

are calculated. We generalize this example to R
n with a (2n − 2)-ray cone. It turns

out that the dual cone has a base which is an (n − 1)-dimensional hypercube.
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Example 4.1 Let X = R
n with n ≥ 3 and let e(i) denote the standard basis vectors.

For i ∈ {1, . . . , n − 1}, define x (i) := e(i) + e(n) and y(i) := − e(i) + e(n) and let

K := pos
{
x (1), . . . , x (n−1), y(1), . . . , y(n−1)

}
.

Then K is a cone in X . We endow X with the partial order induced by K . It is clear that
K is closed, and that e(n) is an interior point of K and hence an order unit of (X , K ).
Consequently, K is generating. As K is closed and hence Archimedean, (X , K ) is a
pre-Riesz space. We will determine the disjoint elements in X . We begin by showing
that the dual cone

K ′ = { f : X → R : f is linear and f (K ) ⊆ [0,∞)}

satisfies

K ′ = pos
{
fσ : σ ∈ {− 1, 1}n−1

}
,

where

fσ (x) :=
n−1∑

j=1

σ j x j + xn, x = (x1, . . . , xn) ∈ X .

Indeed, it is clear that for every σ = (σ1, . . . , σn−1) ∈ {− 1, 1}n−1 and i ∈ {1, . . . , n−
1} we have fσ

(
x (i)

) ≥ 0 and fσ
(
y(i)

) ≥ 0, so fσ is positive. Hence

L := pos
{
fσ : σ ∈ {− 1, 1}n−1

}
⊆ K ′.

Next, let x ∈ X be such that fσ (x) ≥ 0 for every σ ∈ {− 1, 1}n−1. We show that
x ∈ K . For every σ ∈ {− 1, 1}n−1, from

0 ≤ fσ (x) =
n−1∑

i=1

σi xi + xn

it follows that

xn ≥
n−1∑

i=1

− σi xi

and hence

xn ≥
n−1∑

i=1

|xi |.
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As 2e(i) = x (i) − y(i) and 2e(n) = x (i) + y(i) for every i ∈ {1, . . . , n − 1}, it follows
that

2x = 2
n∑

i=1

xi e
(i) =

n−1∑

i=1

xi
(
x (i) − y(i)

)
+ 2xne

(n)

=
n−1∑

i=1

(
(xi + |xi |) x (i) + (|xi | − xi ) y

(i)
)

−
n−1∑

i=1

|xi |
(
x (i) + y(i)

)
+ 2xne

(n)

=
n−1∑

i=1

(xi + |xi |) x (i) +
n−1∑

i=1

(|xi | − xi ) y
(i) + 2

(

xn −
n−1∑

i=1

|xi |
)

e(n) ∈ K .

Hence x ∈ K .
Now suppose that there exists f ∈ K ′\L . Then, according to the Hahn-Banach

separation theorem, there exist x ∈ X and c ∈ R such that g(x) ≥ c for every g ∈ L
and f (x) < c. Then c ≤ 0. For g ∈ L and n ∈ N we have ng ∈ L , so ng(x) ≥ c, so
g(x) ≥ c

n , hence g(x) ≥ 0. In particular, fσ (x) ≥ 0 for every σ ∈ {− 1, 1}n−1, so, by
the previous step, we have x ∈ K . This contradicts f (x) < c ≤ 0 and f ∈ K ′. Thus,
K ′ = L . Consequently, K has the representation

K =
{
x ∈ R

n : fσ (x) ≥ 0, σ ∈ {− 1, 1}n−1
}

.

Next we determine the Riesz completion by means of the functional representation
discussed in [10, Section 2.5]. Let


 :=
{
f ∈ K ′ : f

(
e(n)

)
= 1

}
,

and denote the set of all extreme points of 
 by

� := ext (
) .

We establish that � = {
fσ : σ ∈ {− 1, 1}n−1}. It is clear that for every σ ∈

{− 1, 1}n−1 we have fσ
(
e(n)

) = 1, i.e. fσ ∈ 
. As K ′ = L , we obtain � ⊆
{
fσ : σ ∈ {− 1, 1}n−1}. It remains to show that for every σ ∈ {− 1, 1}n−1 we have
fσ ∈ �. Indeed, let g, h ∈ 
 be such that fσ = λg + (1 − λ)h for some λ ∈ (0, 1).
Then g

(
e(n)

) = h
(
e(n)

) = 1. For every i ∈ {1, . . . , n − 1}, on one hand we have

fσ
(
x (i)

)
= λg

(
e(i) + e(n)

)
+ (1 − λ)h

(
e(i) + e(n)

)

= λg
(
e(i)

)
+ (1 − λ)h

(
e(i)

)
+ 1.

On the other hand,

fσ
(
x (i)

)
= σi + 1.
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We obtain

σi = λg
(
e(i)

)
+ (1 − λ)h

(
e(i)

)
.

It follows from fσ
(
e(i)

) = σi that

fσ
(
e(i)

)
= λg

(
e(i)

)
+ (1 − λ)h

(
e(i)

)
.

Since − e(n) ≤ e(i) ≤ e(n) (with respect to the order induced by the cone K ) and
g, h ∈ K ′, we get g

(− e(n)
) ≤ g

(
e(i)

) ≤ g
(
e(n)

)
and h

(− e(n)
) ≤ h

(
e(i)

) ≤
h

(
e(n)

)
. As g

(
e(n)

) = 1 and h
(
e(n)

) = 1, we have − 1 ≤ g
(
e(i)

) ≤ 1 and − 1 ≤
h

(
e(i)

) ≤ 1. Hence, if σi = − 1, then g
(
e(i)

) = h
(
e(i)

) = − 1, and if σi = 1, then
g

(
e(i)

) = h
(
e(i)

) = 1. We conclude fσ = g = h. Geometrically, we obtain 
 as an
(n − 1)-dimensional hypercube.

It is clear that � = �. Due to the functional representation given in [10, Theo-
rem 2.6.2], the Riesz completion Xρ of (X , K ) is given by C(�). Since � contains
2n−1 elements, the space Xρ is

(
2n−1

)
-dimensional. We will identify Xρ with R

2n−1
,

endowedwith the standard cone. The corresponding bipositive linearmapI : X → Xρ

is given by

I : x �→
2n−1
∑

j=1

fγ ( j)(x)e
( j),

where γ : {
1, . . . , 2n−1

} → {
σ : σ ∈ {− 1, 1}n−1

}
is a bijection.

Next, we compute all directed and nondirected bands in the space of the previous
example.

Example 4.2 We consider the pre-Riesz space (X , K ) as in Example 4.1 and proceed
by determining all nontrivial disjoint elements. Denote for i, j ∈ {1, . . . , n} with
i < j ,

x (i j) := e(i) + e( j), y(i j) := e(i) − e( j),

X (i j) := span
{
x (i j)

}
, Y (i j) := span

{
y(i j)

}
.

With the notation as in Example 4.1, observe that x (in) = x (i) and y(in) = −y(i) for
i ∈ {1, . . . , n − 1}.

We will show that the nontrivial bands in (X , K ) are exactly the subspaces X (i j)

and Y (i j) with i, j ∈ {1, . . . , n}, i < j , where
(
X (i j)

)d = Y (i j). The proof consists of
the following steps (a)–(g). To simplify the proof, we use that for x ∈ X we have

(∀ f ∈ � : f (x) = 0) ⇐⇒ (∀g ∈ (� ∪ −�) : g(x) = 0).
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In view of this, we define for  ∈ {− 1, 1}n the functional

g : X → R, x �→
n∑

i=1

i xi .

By Theorem 2.3, for x, y ∈ X we have

x ⊥ y ⇐⇒ I(x) ⊥ I(y),

hence

x ⊥ y ⇐⇒ ∀ ∈ {− 1, 1}n : (g(x) = 0 or g(y) = 0) .

For  ∈ {− 1, 1}n and I ⊆ {1, . . . , n} define I ∈ {− 1, 1}n by

I
i := −i for i ∈ I , and I

i := i otherwise.

(a) For i, j ∈ {1, . . . , n} with i < j we have x (i j) ⊥ y(i j). Indeed, for every  ∈
{− 1, 1}n we get g

(
x (i j)

) = i +  j and g

(
y(i j)

) = i −  j . We have
i + j �= 0 if and only ifi − j = 0. Hence g

(
x (i j)

) = 0 or g

(
y(i j)

) = 0,
so that x (i j) ⊥ y(i j).

(b) The following technical observation will be needed several times later on. Let
x ∈ X and  ∈ {− 1, 1}n be such that g(x) = 0. If i ∈ {1, . . . , n} is such that
g{i}(x) = 0, then xi = 0. Indeed,

|2xi | = |2i xi | =
∣
∣
∣
(
i − 

{i}
i

)
xi

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

n∑

j=1

(
 j − 

{i}
j

)
x j

∣
∣
∣
∣
∣
∣

= ∣
∣g(x) − g{i}(x)

∣
∣ = 0.

(c) For every i, j ∈ {1, . . . , n} with i < j we have
{
x (i j)

}d ⊆ Y (i j). For a proof, let

y ∈ {
x (i j)

}d
. For every  ∈ {− 1, 1}n with i =  j = 1 we have g

(
x (i j)

) =
2, so g(y) = 0. We fix  := (1, . . . , 1) to be the constant 1 vector. Then
g(y) = 0.Moreover, for every k ∈ {1, . . . , n}\{i, j}we have

{k}
i = 

{k}
j = 1,

so g{k}(y) = 0. By (b), yk = 0. Then g(y) = 0 yields that yi + y j = 0, so
that y ∈ Y (i j).

(d) Similar to (c), for every i, j ∈ {1, . . . , n} with i < j we have
{
y(i j)

}d ⊆ X (i j).

Hence
{
x (i j)

}d ⊆ Y (i j) ⊆ (
X (i j)

)d ⊆ {
x (i j)

}d
. We conclude that X (i j) and Y (i j)

are bands and that
(
X (i j)

)d = Y (i j). In the following three steps we show that
these are the only nontrivial bands in (X , K ).

(e) Let x ∈ X be such that there are i, j ∈ {1, . . . , n}with i < j and xi �= 0, x j �= 0
and xk = 0 for every k ∈ {1, . . . , n}\{i, j} and such that {x}d is nontrivial. Then
x ∈ X (i j) or x ∈ Y (i j). Indeed, as {x}d is nontrivial, there is  ∈ {− 1, 1}n such

123



Disjointness preserving operators on normed pre-Riesz… 491

that g(x) = 0. Hence i xi +  j x j = 0, which yields that xi − x j = 0 or
xi + x j = 0, so that x ∈ X (i j) or x ∈ Y (i j).

(f) Let x ∈ X be such that there is i ∈ {1, . . . , n} with xi �= 0 and xk = 0 for every
k ∈ {1, . . . , n}\{i}. Then {x}d = {0}. Indeed, for every  ∈ {− 1, 1}n we have
g(x) = i xi �= 0. Hence, if y ∈ {x}d, then g(y) = 0. So, y = 0.

(g) Let x ∈ X be such that at least three coordinates of x are nonzero. Then {x}d =
{0}. Indeed, let I := {i ∈ {1, . . . , n} : xi �= 0}. Then I has at least three elements.
Let y ∈ {x}d and suppose that y �= 0. Then there is  ∈ {− 1, 1}n such that
g(y) �= 0, so g(x) = 0. For every i ∈ I we have g{i}(x) �= 0 as xi �= 0, so
g{i}(y) = 0. We need an intermediate claim.

(∗) If i, j ∈ I with i �= j are such that sign(i xi ) = sign( j x j ), then yi = y j = 0.

For a proof of (∗), note that sign(i xi ) = sign( j x j ) yields g{i, j}(x) �= g(x) = 0,
so g{i, j}(y) = 0. By (b), we obtain yi = y j = 0.

Now we use (∗) to prove that y = 0, which is a contradiction. Let i ∈ I . We show
yi = 0. If i ∈ I is such that there exists j ∈ I\{i}with sign(i xi ) = sign( j x j ), then
(∗) gives yi = 0. Otherwise, for every j ∈ I\{i} we have sign(i xi ) �= sign( j x j )
and then sign( j x j ) = sign(k xk) for every j, k ∈ I\{i}. As I\{i} contains at least
two elements, (∗) yields that y j = 0 for every j ∈ I\{i}. Then g{i}(y) = gI (y), so
gI (y) = 0. Also, for j ∈ I\{i} we have g{ j}(y) = gI\{i}(y), as yk = 0 for every
k ∈ I\{i}. Hence, gI (y) = 0 and gI\{i}(y) = 0, so by (b) we obtain yi = 0.

Now let i ∈ {1, . . . , n}\I . Fix j ∈ I .We have xi = 0, so g{i, j}(x) = g{ j}(x) �= 0,
hence g{i, j}(y) = 0. As also g{ j}(y) = 0, (b) yields that yi = 0. Thus, we arrive at
y = 0, a contradiction.

From the statements in (e), (f) and (g) we conclude that only for elements of the
bands X (i j) and Y (i j) there exist nontrivial disjoint elements. Thus, in (X , K ) there are
only one-dimensional nontrivial bands. By construction, we have n(n − 1) nontrivial
bands in (X , K ). Note that X (i j) and Y (i j) are directed, respectively, if and only
if j = n. Hence there are 2(n − 1) directed nontrivial bands and (n − 1)(n − 2)
nondirected nontrivial bands in (X , K ).

We determine all disjointness preserving bijective operators in (X , K ).

Example 4.3 For the pre-Riesz space (X , K ) in Example 4.1, we show that a linear
bijection T : X → X is disjointness preserving if and only if there is a permutation
P : {1, . . . , n} → {1, . . . , n},  ∈ {− 1, 1}n and α ∈ R\{0} such that for every
j ∈ {1, . . . , n} the j-th column of T equals α j e(P( j)). First we show that every
operator T of this type is disjointness preserving, where we use the notation and
results of Example 4.2. Indeed, for every i, j ∈ {1, . . . , n} with i < j we have

T
(
x (i j)

)
= T

(
e(i) + e( j)

)
= α

(
i e

(P(i)) +  j e
(P( j))

)
,

T
(
y(i j)

)
= T

(
e(i) − e( j)

)
= α

(
i e

(P(i)) −  j e
(P( j))

)
,

hence T
(
x (i j)

) ⊥ T
(
y(i j)

)
. Thus, T is disjointness preserving.

Conversely, let T : X → X be a disjointness preserving bijection. For j ∈
{1, . . . , n} let T ( j) denote the j-th column of T . Let k, l ∈ {1, . . . , n} with k < l.
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Since x (kl) and y(kl) are disjoint and nonzero, we have that T
(
x (kl)

)
and T

(
y(kl)

)

are disjoint and nonzero. Hence, there are i, j ∈ {1, . . . , n} with i < j , θ ∈ {− 1, 1}
and λ,μ ∈ R such that T

(
x (kl)

) = λ
(
e(i) + θe( j)

)
and T

(
y(kl)

) = μ
(
e(i) − θe( j)

)
.

Therefore

2T (k) = T (k) + T (l) + T (k) − T (l) = (λ + μ)e(i) + θ(λ − μ)e( j), and

2T (l) = T (k) + T (l) −
(
T (k) − T (l)

)
= (λ − μ)e(i) + θ(λ + μ)e( j).

If possible, choose m ∈ {1, . . . , n} with k < m and m �= l. Then x (km) and y(km) are
disjoint and nonzero. (If such an m does not exist, we choose m < k and consider
x (mk) and y(mk) instead.) As before, there are p, q ∈ {1, . . . , n} with p < q and
{p, q} �= {i, j}, δ ∈ {− 1, 1}, and α, β ∈ R such that T

(
x (km)

) = α
(
e(p) + δe(q)

)

and T
(
y(km)

) = β
(
e(p) − δe(q)

)
. Consequently,

2T (k) = T (k) + T (m) + T (k) − T (m) = (α + β)e(p) + δ(α − β)e(q), and

2T (m) = T (k) + T (m) −
(
T (k) − T (m)

)
= (α − β)e(p) + δ(α + β)e(q).

Without loss of generality, we assume q /∈ {i, j}. Then T (k) = αe(p). We distinguish
three cases.

(i) If p /∈ {i, j}, then T (k) = 0, which is not possible since T is a bijection.
(ii) If p = i , then λ = μ, so T (k) = λe(i), hence λ = α. Then T (l) = θλe( j) =

θαe( j).
(iii) If p = j , then μ = −λ, so T (k) = θλe( j), hence θλ = α. Then T (l) = λe(i) =

θαe(i).

Thus every two distinct columns of T are different unit vectors multiplied by plus
or minus the same scalar.

Next we determine the positive disjointness preserving bijections in (X , K ). Let T
be a disjointness preserving bijection in (X , K ), i.e. for every j ∈ {1, . . . , n} the j-th
column of T equals α j e(P( j)), as above. We claim that T is positive if and only if
α > 0 and the n-th column of T equals αe(n). Indeed, assume that T is positive. Since
x (1) and y(1) are positive disjoint elements, there exists i ∈ {1, . . . , n − 1} such that
T

[{
x (1), y(1)

}] = {
αx (i), αy(i)

}
. Then

2T
(
e(n)

)
= T

(
x (1) + y(1)

)
= αx (i) + αy(i) = 2αe(n).

Since e(n) is positive, it follows that α > 0 and that the n-th column of T equals αe(n).
Conversely, assume that α > 0 and that the n-th column of T equals αe(n). Let

i ∈ {1, . . . , n − 1}. As T (
e(n)

) = αe(n), we obtain

T
(
x (i)

) = αθi e(P(i)) + αe(n),

T
(
y(i)

) = −αθi e(P(i)) + αe(n).
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Hence, T
(
x (i)

)
and T

(
y(i)

)
are positive. Thus T maps each extreme ray of K into K .

Therefore, T is positive.
Up to positive scalar multiples, there are 2n(n!) disjointness preserving bijections

in (X , K ). Among them, there are 2n−1((n − 1)!) positive ones.

5 Pervasive pre-Riesz spaces as ranges

Our aim in this section is to replace the range space Y in Theorem 1.1 by a pre-
Riesz space. The idea is to consider the Riesz completion (Y ρ, i) of Y and apply
Theorem 1.1 to i ◦ T . For that purpose we need a Riesz norm on Y ρ . The next lemma
presents conditions on Y that provide such a norm.

Lemma 5.1 Let Y be a pervasive pre-Riesz space, let (Z , i) be a vector lattice cover
of Y , and let ‖·‖Y be a monotone norm on Y . Define for z ∈ Z

‖z‖Z = inf
{‖y‖Y : y ∈ Y , i(y) ≥ |z|} . (2)

Then ‖·‖Z is a Riesz norm on Z.Moreover, for every y ∈ Y we have ‖i(y)‖Z ≥ 1
2 ‖y‖Y

and for every y ∈ Y with y ≥ 0 we have ‖i(y)‖Z = ‖y‖Y .
Proof By [13, Propositions 5.1 and 6.2], ‖·‖Z is a Riesz seminorm on Z and both
stated relations with ‖·‖Y hold. It remains to show that ‖·‖Z is a norm.

First observe that for v ∈ Y , v ≥ 0, we have for every y ∈ Y with i(y) ≥ |i(v)|
that y ≥ v ≥ 0, hence ‖y‖Y ≥ ‖v‖Y , so that ‖i(v)‖Z ≥ ‖v‖Y .

Let z ∈ Z be such that z �= 0. Since Y is pervasive, there exists y ∈ Y with
0 < i(y) ≤ |z|. Then ‖z‖Z = ‖|z|‖Z ≥ ‖i(y)‖Z ≥ ‖y‖Y > 0. Hence ‖·‖Z is a Riesz
norm. ��

As a Riesz space with a Riesz norm is Archimedean, Lemma 5.1 yields that every
pervasive pre-Riesz space with a monotone norm is Archimedean.

We can now extend Theorem 1.1 to a setting with the range space being a pre-Riesz
space.

Theorem 5.2 Let X be a uniformly complete vector lattice, Y a pervasive pre-Riesz
space with a monotone norm, and T : X → Y an injective and disjointness preserving
operator. Then for every x1, x2 ∈ X we have that T x1 ⊥ T x2 implies x1 ⊥ x2.

Proof Let (Y ρ, i) be the Riesz completion of Y . Since T : X → Y is injective, we
have that i ◦ T : X → Y ρ is injective as well. As T is disjointness preserving, by
means of Theorem 2.3 we have that i ◦ T is disjointness preserving. With the aid of
Lemma 5.1, the monotone norm of Y yields a Riesz norm on Y ρ .

Let x1, x2 ∈ X be such that T x1 ⊥ T x2. Then (i ◦ T )x1 ⊥ (i ◦ T )x2. We apply
Theorem 1.1 and obtain that x1 ⊥ x2. ��
Corollary 5.3 Let X be a uniformly complete vector lattice, Y a pervasive pre-Riesz
space with a monotone norm, and T : X → Y a bijective and disjointness preserving
operator. Then T−1 : Y → X is disjointness preserving as well.
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Proof Let y1, y2 ∈ Y be such that y1 ⊥ y2. Take x1, x2 ∈ X with T x1 = y1 and
T x2 = y2. We have T x1 ⊥ T x2, hence according to Theorem 5.2 we obtain x1 ⊥ x2.
Therefore, T−1 is disjointness preserving. ��

A key role in the proof of Theorem 1.1 is played by the next result due to de Pagter,
see [4, Theorem 8].

Theorem 5.4 Let X be a uniformly complete Archimedean Riesz space and let Y be
an Archimedean Riesz space such that for every disjoint sequence (wn)n in Y with
wn > 0 (n ∈ N) there exist positive real numbers λn (n ∈ N) such that the set
{λnwn : n ∈ N} is not order bounded in Y . Then for every disjointness preserving
operator T : X → Y , there exists an order dense ideal in X on which T is order
bounded.

One could try to generalize the range space in Theorem 5.4 to a more general pre-
Riesz space Y and thus try to generalize Theorem 1.1. It turns out that the conditions
on Y needed for this approach are not more general than those of the approach above.
Nevertheless, our extension of Theorem 5.4 might be of independent interest.

We need the following simple observation, which follows from the fact that i(Y )

is majorizing in its Riesz completion Y ρ .

Lemma 5.5 Let Y be a pre-Riesz space and let (Y ρ, i) be its Riesz completion. For
every subset A ⊆ Y , one has that A is order bounded in Y if and only if i(A) is order
bounded in Y ρ .

We arrive at the following extension of Theorem 5.4.

Theorem 5.6 Let X be a uniformly complete Archimedean Riesz space and let Y be a
pervasive Archimedean pre-Riesz space such that for every disjoint sequence (wn)n
in Y with wn > 0 (n ∈ N) there exist positive real numbers λn (n ∈ N) such that the
set {λnwn : n ∈ N} is not order bounded in Y . Then for every disjointness preserving
operator T : X → Y , there exists an order dense ideal in X on which T is order
bounded.

Proof Let T : X → Y be a disjointness preserving operator. Let (Y ρ, i) denote the
Riesz completion of Y . By Theorem 2.3, we have for every x1, x2 ∈ X that i(T x1) ⊥
i(T x2) in Y ρ if and only if T x1 ⊥ T x2 in Y , so i ◦ T : X → Y ρ is disjointness
preserving as well.

Let (wn)n be a disjoint sequence in Y ρ with wn > 0 (n ∈ N). Since Y is pervasive,
for every n ∈ N there exists yn ∈ Y with 0 < i(yn) ≤ wn . Then (yn)n is a disjoint
sequence inY , so there exist positive real numbersλn (n ∈ N) such that {λn yn : n ∈ N}
is not order bounded in Y .With the aid of Lemma 5.5, it follows that {λni(yn) : n ∈ N}
is not order bounded and hence {λnwn : n ∈ N} is not order bounded.

Theorem 5.4 now yields that there exists an order dense ideal D in X on which
i ◦ T is order bounded. Then it follows from Lemma 5.5 that T is order bounded on
D. ��

The condition in Theorems 5.4 and 5.6 involving the disjoint sequence (wn)n is
satisfied if the space Y can be equipped with a monotone norm. The next lemma
provides the details of the simple verification of this fact.
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Lemma 5.7 If Y is a pre-Riesz space with a monotone norm ‖·‖Y , then for every
sequence (wn)n in Y with wn > 0 (n ∈ N), there exist positive real numbers λn
(n ∈ N) such that the set {λnwn : n ∈ N} is not order bounded in Y .

Proof For the disjoint sequence (wn)n in Y , let λn := n
‖wn‖Y . Then ‖λnwn‖Y =

n
‖wn‖Y ‖wn‖Y = n, so {λnwn : n ∈ N} is not norm bounded. Since the norm of Y is
monotone, every order bounded set in Y is norm bounded. Hence {λnwn : n ∈ N} is
not order bounded in Y . ��

Observe that if X is a Banach lattice then X is a uniformly complete Archimedean
Riesz space [11, Proposition 1.1.8(iv)]. By combining Theorem 5.6 with Lemma 5.7,
we immediately obtain the following coro.

Corollary 5.8 If X is a Banach lattice and Y a pervasive pre-Riesz space with a mono-
tone norm, then for every disjointness preserving operator T : X → Y there exists an
order dense ideal in X on which T is order bounded.

6 Extension of disjointness preserving operators on pre-Riesz spaces

In this section, we investigate whether in Theorem 1.1 the uniformly complete vector
lattice X can be replaced by amore general pre-Riesz space.We try to accomplish such
a generalization by extending the operator. Given a disjointness preserving operator
on a pre-Riesz space, we wish to extend it to a disjointness preserving operator on
its Riesz completion. This turns out to be a difficult task and our attempts only suc-
ceed under quite strong additional conditions. We start by identifying some denseness
properties yielding that an operator that extends a disjointness preserving operator is
itself disjointness preserving.

Theorem 6.1 Let (X , K ) be a pre-Riesz space with Riesz completion (Xρ, i). Let Y
be a vector lattice. Assume that for every x ∈ Xρ with x ≥ 0, there exists a sequence
(xn)n in K such that i(xn) ↑ x. If T : Xρ → Y is an order continuous operator such
that (T ◦ i) : X → Y is a positive disjointness preserving operator, then T is also
disjointness preserving.

Proof Let x, y ∈ (Xρ)+ such that x ⊥ y. It suffices to show that T x ⊥ T y. By
assumption, there exist sequences (xn)n and (yn)n in K such that i(xn) ↑ x and
i(yn) ↑ y. Then clearly i(xn) ⊥ i(yn), so xn ⊥ yn in X for every n. Since T is order
continuous and the lattice operations are order continuous [10, Proposition 1.1.34],
we obtain that T i(xn) ∧ T i(yn) converges to T x ∧ T y. Since

T i(xn) ∧ T i(yn) = (T ◦ i)xn ∧ (T ◦ i)yn = 0,

it follows that T x ⊥ T y. ��
Theorem 6.2 Let X be a pre-Riesz space with Riesz completion (Xρ, i) and let
(Y , ‖·‖Y ) be a normed vector lattice. Assume that there is a norm ‖·‖Xρ on Xρ

such that for every x ∈ Xρ with x > 0, there exists a sequence (xn)n in X with
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0 ≤ i(xn) ≤ x for every n and ‖i(xn) − x‖Xρ → 0. If T : Xρ → Y is norm contin-
uous and (T ◦ i) : X → Y is a positive linear disjointness preserving operator, then
T is also disjointness preserving.

Proof Let x, y in (Xρ)+ with x ⊥ y. If x = 0 or y = 0, then it is clear that T x ⊥ T y.
Assume that x > 0 and y > 0. By assumption, there exist sequences (xn)n and
(yn)n in X with 0 ≤ i(xn) ≤ x and 0 ≤ i(yn) ≤ y for every n, and ‖i(xn) −
x‖Xρ → 0, ‖i(yn) − y‖Xρ → 0. Then xn ⊥ yn for all n ∈ N, so that (T ◦ i) (xn) ⊥
(T ◦ i) (yn). Since T is norm continuous, it follows that ‖(T ◦ i) (xn) − T (x)‖Y → 0
and ‖(T ◦ i) (yn) − T (y)‖Y → 0. As the lattice operations are norm continuous in
the normed vector lattice Y [10, Proposition 3.6.19], we have

‖|(T ◦ i) (xn)| ∧ |(T ◦ i) (yn)| − |T (x)| ∧ |T (y)|‖Y → 0.

Therefore, |T (x)| ∧ |T (y)| = 0, and hence T is disjointness preserving. ��
Remark 6.3 In the Theorems 6.1 and 6.2, one can replace the Riesz completion Xρ

by an arbitrary vector lattice cover. Since the Riesz completion is the smallest vector
lattice cover, the condition on X will be stronger for other vector lattice covers.

The next theorem presents a situation in which the existence of a norm in Xρ and
continuity of T as needed in Theorem 6.2 are satisfied.

Theorem 6.4 Let X be a pervasive pre-Riesz space with Riesz completion (Xρ, iX ),
let ‖·‖X be a monotone norm on X, and let ‖·‖Xρ be defined as in (2). Let Y be a
partially ordered vector space with a monotone norm ‖·‖Y , and let T : X → Y be
a positive and continuous linear map. Then every positive linear map T̂ : Xρ → Y
that extends T in the sense that T̂ ◦ iX = T is continuous with respect to ‖·‖Xρ and∥
∥T̂

∥
∥ ≤ ‖T ‖.

Proof As ‖·‖X is monotone, it follows from Lemma 5.1 that ‖·‖Xρ is a Riesz norm.
Let u ∈ Xρ with u ≥ 0. For x ∈ X with u ≤ i(x) we have 0 ≤ T̂ u ≤ T x , as T and T̂
are positive. So

∥
∥T̂ u

∥
∥
Y ≤ ‖T x‖Y ≤ ‖T ‖‖x‖X , hence

∥
∥T̂ u

∥
∥
Y ≤ ‖T ‖‖u‖Xρ . Thus,

T̂ is continuous and ‖T̂ ‖ ≤ ‖T ‖. ��
Toextend apositive linear operator fromapre-Riesz space into aDedekind complete

vector lattice, we need the following extension theorem due to Kantorovich.

Theorem 6.5 (Kantorovich [11], Corollary 1.5.9) Let X be an Archimedean Riesz
space, Y a Dedekind complete Riesz space. Every positive linear operator T : D → Y
defined on a majorizing subspace D of X extends to all of X as a positive linear
operator.

Since a pre-Riesz space is a majorizing subspace of the Riesz completion, we could
use Kantorovich’s theorem to extend a positive operator from an Archimedean pre-
Riesz space X to a positive operator on the Riesz completion of X , provided the range
space is Dedekind complete.
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Theorem 6.6 Let X be a pervasive pre-Riesz space with Riesz completion (Xρ, iX ),
let ‖·‖X be a monotone norm on X, and let ‖·‖Xρ be the norm on Xρ defined as in
(2). Assume that for every x ∈ Xρ with x > 0 there exists a sequence (xn)n in X with
0 ≤ i(xn) ≤ x for every n and ‖i(xn) − x‖Xρ → 0. Let Y be a pervasive pre-Riesz
space with Dedekind completion (Y δ, iY ), let ‖·‖Y be a monotone norm on Y , and let
‖·‖Y δ be the norm on Y δ defined as in (2). If T : X → Y is a positive linear map that
is continuous, disjointness preserving and injective, then there exists a positive linear
extension T̂ : Xρ → Y δ of iY ◦ T ◦ i−1

X : iX (X) → Y δ that is continuous, disjointness
preserving and injective as well. Moreover, if X has an order unit and Xρu denotes the
uniform completion of Xρ , then there exists a positive linear extension Tu : Xρu → Y δ

of iY ◦ T ◦ i−1
X : iX (X) → Y δ that is disjointness preserving and injective.

Proof Due to Theorem 6.5, there exists a positive operator T̂ : Xρ → Y δ extending
iY ◦T ◦ i−1

X : iX (X) → Y δ . By Theorem 6.4, T̂ is continuous with respect to the Riesz
norm ‖·‖Xρ on Xρ and ‖·‖Y δ on Y δ . By Theorem 6.2, T̂ is disjointness preserving.

Next we show that T̂ is injective. Let v ∈ Xρ with T̂ v = 0; then T̂ v+ − T̂ v− = 0.
As T̂ is disjointness preserving, we have T̂ v+ = 0 and T̂ v− = 0. Suppose that v �= 0;
then either v+ �= 0 or v− �= 0. Assume without loss of generality that v+ �= 0. As
X is pervasive, there is an element x ∈ X\{0} with 0 ≤ iX (x) ≤ v+. So we have
0 ≤ iX (T x) = T̂ iX (x) ≤ T̂ v+ = 0 and hence T x = 0. This contradicts that T is
injective. Therefore v = 0 and hence T̂ is injective. So T̂ : Xρ → Y δ is a positive
disjointness preserving injective operator.

As Xρ is a majorizing subspace of Xρu , by Theorem 6.5, T̂ can be extended to a
positive operator Tu : Xρu → Y δ .

We show as an intermediate step that every positive element in Xρu can be approx-
imated from below in the relative uniform topology by a sequence from i(X). Let u be
an order unit in X . Then i(u) is an order unit in Xρ . For z ∈ (Xρu)+, z �= 0, there exist a
sequence (zn)n ∈ (Xρ)+ and a sequence (λn)n inRwith λn ↓ 0 and |zn − z| ≤ λni(u)

for every n ∈ N. Then zn −λni(u) ≤ z for every n. Take wn = (zn −λni(u))+ in Xρ .
We have wn ∈ Xρ , 0 ≤ wn ≤ z, and

|wn − z| = |(zn − λi(u))+ − z+| ≤ |zn − λni(u) − z| ≤ 2λni(u),

so wn → z i(u)-relatively uniformly.
Next we show that Tu is disjointness preserving. Let v,w ∈ Xρu with |v| ⊥ |w|.

By the previous discussion, there exist sequences (vn)n and (wn)n in Xρ such that
0 ≤ vn ≤ |x |, 0 ≤ wn ≤ |y| and vn → |v| and wn → |w| i(u)-relatively uniformly.
Then 0 ≤ vn ∧ wn ≤ |v| ∧ |w| = 0, so vn ⊥ wn and therefore T̂ vn ⊥ T̂wn . Also,
it follows that there exist sequences (αn) and (βn) in R with αn ↓ 0 and βn ↓ 0
such that |vn − |v|| ≤ αni(u) and |wn − |w|| ≤ βni(u) for every n. We obtain that
|v| ≤ ||v| − vn| + |vn| ≤ αni(u)u + vn and |w| ≤ ||w| − wn| + |wn| ≤ βni(u) + wn .
It follows that

Tu(|v|) ∧ Tu(|w|) ≤ Tu(αni(u) + vn) ∧ Tu(βni(u) + wn)

≤ (αnTu(i(u)) + Tu(vn)) ∧ (βnTu(i(u)) + Tu(wn))

≤ ((αn ∨ βn)Tu(i(u)) + Tu(vn)) ∧ ((αn ∨ βn)Tu(i(u)) + Tu(wn))
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= (αn ∨ βn)Tu(i(u)) + (Tu(vn) ∧ Tu(wn))

= (αn ∨ βn)T̂ (i(u)) + (T̂ (vn) ∧ T̂ (wn))

= (αn ∨ βn)T̂ (i(u)).

Since Y δ is Archimedean and αn ∨βn ↓ 0, we infer that Tu(|v|)∧Tu(|w|) = 0. Hence
Tu : Xρu → Y δ is disjointness preserving. ��
Proposition 6.7 In the setting of Theorem 6.6, Tu : Xρu → Tu(Xρu) has a disjointness
preserving inverse T−1

u : Tu(Xρu) → Xρu.

Proof Note that Tu is a positive disjointness preserving operator, hence a Riesz
homomorphism. Therefore, Tu(Xρu) is a Riesz subspace of Y δ . The norm of Y
yields a Riesz norm on Y δ by (2). Since Tu is injective, Corollary 5.3 yields that
T−1
u : Tu (Xρu) → Xρu is disjointness preserving. ��
If we combine Theorem 1.1 and Theorem 6.6, we obtain the following.

Theorem 6.8 In the setting of Theorem 6.6, if T : X → Y is bijective, then T−1 is
disjointness preserving.

In the following example, we will give an application of Theorem 6.6.

Example 6.9 Let m ∈ N and let Cm[0, 1] be the subspace of C[0, 1] consisting of all
m times continuously differentiable functions on [0, 1]. For every f ∈ C[0, 1]+ there
exists a sequence ( fn)n in Cm[0, 1]+ with 0 ≤ fn ≤ f and ‖ fn − f ‖∞ → 0 and
also fn ↑ f . We will give a proof of this statement in six steps below. The main idea
is to approximate f for a given ε > 0 up to 6ε from below by a g ∈ Cm[0, 1]+, by
choosing g to be 0 where f ≤ 4ε, choosing g between f − 4ε and f − 3ε where
f > 6ε and glue these pieces of g smoothly together. Some technical precautions are
needed to make sure that our construction involves only finitely many subintervals
and that the smooth connecting parts of g are between 0 and f .

(a) Firstly, note that for every f ∈ C[0, 1] and every ε > 0 there exists g ∈ Cm[0, 1]
such that ‖ f − g‖∞ < 4ε and g ≤ f − 3ε. Indeed, according to Weierstrass’s
approximation theorem, there exists g ∈ Cm[0, 1] such that ‖( f − (7/2)ε) − g‖∞ <

ε/2 and then g < ( f − (7/2)ε) + ε/2 = f − 3ε and ‖ f − g‖∞ < 4ε.
(b) Secondly, observe the following elementary gluing result. If ε > 0 and

p, q, r , s ∈ [0, 1] are such that p < q < r < s and g : [p, q] ∪ [r , s] → R is a
Cm function, then there exists h ∈ Cm[p, s] such that h = g on [p, q] ∪ [r , s] and
min{g(q), g(r)} − ε ≤ h(t) ≤ max{g(q), g(r)} + ε for every t ∈ (q, r).

(c) Thirdly, observe that the following variations on (b) are also true. If ε > 0 and
p, q, r , s ∈ [0, 1] are such that p < q < r < s and g : [p, q] ∪ [r , s] → R is Cm ,
g(q) > ε, and g = 0 on [r , s], then there exists h ∈ Cm[p, s] such that h = g on
[p, q] ∪ [r , s] and 0 ≤ h(t) < g(q) + ε for every t ∈ (q, r).

If ε > 0 and p, q, r , s ∈ [0, 1] are such that p < q < r < s and g : [p, q]∪[r , s] →
R is Cm , g(r) > ε, and g = 0 on [p, q] then there exists h ∈ Cm[p, s] such that
h = g on [p, q] ∪ [r , s] and 0 ≤ h(t) < g(r) + ε for every t ∈ (q, r).

(d) Next, let f ∈ C[0, 1]+ be such that f (0) > 0 and f (1) > 0 and let ε > 0. We
will construct a g ∈ Cm[0, 1] such that 0 ≤ g ≤ f and ‖g− f ‖∞ ≤ 6ε. Without loss
of generality we may assume that ε is so small that f (0) > 6ε and f (1) > 6ε.
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Define τ0 = 0 and for k ∈ N define, inductively,

σk := inf{t ∈ [τk−1, 1] : f (t) < 5ε or t = 1}, and

τk := inf{t ∈ [σk, 1] : f (t) > 6ε}.

We have σ1 > 0 and for k ∈ N with σk < 1 we have σk < τk , since f (0), f (1) > 6ε
and f is continuous. If σk = 1, then τk = 1. Similarly, for every k ∈ N we have
τk < σk+1 or τk = σk+1 = 1. For k ∈ N with σk < 1 we have f (σk) = 5ε and if
τk < 1 then f (τk) = 6ε. There exists N ∈ N such that σk = τk = 1 for every k ≥ N ,
since otherwise there would be a convergent subsequence (σk j ) j with σk j < 1 and
hence f (σk j ) = 5ε for every j , and then (τk j ) j would converge to the same limit
while f (τk j ) = 6ε, which contradicts the continuity of f .

Now we are ready to construct the desired function g. Let k ∈ N be such that
τk−1 < 1. On [τk−1, σk], we the aid of (a), we take g to be Cm and such that

g ≤ f − 3ε on [τk−1, σk]

and supt∈[τk−1,σk ] | f (t) − g(t)| < 4ε. Since f ≥ 5ε on [τk−1, σk], we have

g > ε on [τk−1, σk].

If σ1 = 1, then we have thus defined g on all of [0, 1]. Otherwise, let k ∈ N be such
that σk < 1. We will define g on (σk, τk). Recall that τk < 1, so that g has already
been defined on [τk−1, σk] ∪ [τk, σk+1]. Observe that f ≤ 6ε on [σk, τk].

If f ≥ 4ε on [σk, τk], then with the aid of step (b), we take g on (σk, τk) such that
g is Cm on [τk−1, σk+1] and min{g(σk), g(τk)} − ε ≤ g(t) ≤ max{g(σk), g(τk)} + ε

for every t ∈ (σk, τk). As g(σk), g(τk) > ε, it follows that g > 0 on (σk, τk). Since
g ≤ f − 3ε ≤ 3ε at σk and at τk , we also have that g(t) < 4ε ≤ f for every
t ∈ (σk, τk).

If we do not have that f ≥ 4ε on [σk, τk], then we define

πk := inf{t ∈ [σk, τk] : f (t) < 4ε} and
ρk := sup{t ∈ [πk, τk] : f (t) < 4ε}.

Note that πk < ρk and f ≥ 4ε on [σk, πk] ∪ [ρk, τk]. On [πk, ρk] we take g = 0.
Recall that g(σk) > ε. With the aid of step (c), we take g on (σk, πk) such that g is a
Cm function on [τk−1, ρk] and 0 ≤ g(t) < g(σk) + ε for every t ∈ (σk, πk). Then for
every t ∈ (σk, πk) we have g(t) < f (σk) − 3ε + ε = 3ε < f (t).

Similarly, on (ρk, τk) we take g such that g is Cm on [πk, σk+1] and 0 ≤ g(t) <

g(τk) + ε for every t ∈ (ρk, τk). Then for every t ∈ (ρk, τk) we have g(t) < f (τk) −
3ε+ε = 4ε ≤ f (t). Thus, we have constructed g on (σk, τk) such that g isCm , g ≥ 0
and g ≤ f on [σk, τk]. Since f ≤ 6ε on [σk .τk], it follows that supt∈[σk ,τk ] | f (t) −
g(t)| ≤ 6ε.

In conclusion, g ∈ Cm[0, 1], 0 ≤ g ≤ f , and ‖ f − g‖∞ ≤ 6ε.
(e) We show that for every f ∈ C[0, 1]+ and ε > 0 there exists a g ∈ Cm[0, 1]

such that 0 ≤ g ≤ f and ‖g − f ‖∞ ≤ 3ε. Due to (d), it only remains to deal with the
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case where f (0) = 0 or f (1) = 0. If f ≤ 3ε on [0, 1], then we can take g = 0, so
we may assume that there exists t ∈ [0, 1] with f (t) > 3ε. We first consider the case
where f (0) = 0 and f (1) > 0. Without loss of generality we assume that f (1) > 2ε.
Define

τ := inf{t ∈ [0, 1] : f (t) > 3ε} and
σ := sup{t ∈ [0, τ ] : f (t) < 2ε}.

Observe that 0 < σ < τ , f ≥ 2ε on [σ, τ ], and f (τ ) = 3ε. Then, according
to (d), there exists a Cm function g on [τ, 1] such that 0 ≤ g ≤ ( f − 2ε)+ and
‖( f − 2ε)+ − g‖∞ < ε. We take g = 0 on [0, σ ] and with the aid of (c) we choose g
on (σ, τ ) such that g is a Cm function on [0, 1] and such that for every t ∈ (σ, τ ) we
have 0 ≤ g(t) ≤ g(τ ) + ε. Then, for every t ∈ (σ, τ ) we have

g(t) ≤ g(τ ) + ε ≤ ( f (τ ) − 2ε)+ + ε ≤ 2ε ≤ f (t).

Thuswe have constructed a g ∈ Cm[0, 1] such that 0 ≤ g ≤ f with ‖ f −g‖∞ <≤ 3ε.
The cases where f (0) = 0 and f (1) = 0, or f (0) > 0 and f (1) = 0 can be dealt

with in a similar fashion.
(f) Let f ∈ C[0, 1]+. We construct a sequence ( fn)n as announced above. By

means of (e), we choose g1 ∈ Cm[0, 1] with 0 ≤ g1 ≤ f and ‖ f − g1‖∞ < 2−1.
Inductively, for n ∈ N we choose gn+1 ∈ Cm[0, 1] with 0 ≤ gn+1 ≤ f − ∑n

j=1 g j

and ‖( f − ∑n
j=1 g j ) − gn+1‖∞ < 2−(n+1). Let

fn :=
n∑

j=1

g j , n ∈ N.

Then, as every g j is positive, ( fn)n is an increasing sequence in Cm[0, 1]+. Further,
since gn+1 ≤ f − fn , we have fn ≤ f − gn+1 ≤ f . Moreover, ‖ f − fn+1‖∞ <

2−(n+1) → 0 as n → ∞. Finally, since fn ↑ and ‖ f − fn‖∞ → 0, it follows that
f = supn fn in C[0, 1].
Let us now consider extension of disjointness preserving operators on Cm[0, 1]. If

T : Cm[0, 1] → Cm[0, 1] is an injective positive and disjointness preserving operator
which is continuous with respect to the norm ‖·‖∞, then there exists T̂ : C[0, 1] →
C[0, 1] which is injective, positive, disjointness preserving, and such that T̂ |Cm [0,1] =
T . Indeed, C[0, 1] is the uniform completion of the Riesz completion of Cm[0, 1],
see [10, Corollary 2.5.10]. Thus, we can apply Theorem 6.6 and obtain the desired
extension T̂ .

In the spirit of Theorem 6.1 and Remark 6.3, we have the following consequence
of Example 6.9. If T : C[0, 1] → C[0, 1] is an order continuous operator and its
restriction to Cm[0, 1] is disjointness preserving, then T is disjointness preserving.

In Theorem 6.2, it is required that for every x ∈ (Xρ)+, there exists a sequence
(xn)n in X which converges to x from below, i.e. 0 ≤ i(xn) ≤ x for every n and
‖i(xn) − x‖Xρ → 0. In general, however, this condition is not always satisfied. For
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example, let X = Pol[0, 1], then Xρ is the subspace ofC[0, 1] consisting of piecewise
polynomial functions. It is easy to find a positive x ∈ Xρ\{0} which vanishes on a
subinterval of [0, 1] and then there is no sequence in X+ that converges to x from
below.

We note that not every disjointness preserving operator on a pre-Riesz space can
be extended to its Riesz completion without some strong conditions and keep the
property of being disjointness preserving. For example, if X = Pol[0, 1] the operator
T defined by (T x)(t) = ∫ t

0 x(s)ds,t ∈ [0, 1], is not disjointness preserving on Xρ but
it is disjointness preserving on X , since two elements x, y ∈ X are disjoint in X only
if x = 0 or y = 0.

Next we present a way of extending a disjointness preserving operator on a pre-
Riesz space to the Riesz completion using the Riesz decomposition property. The
range space Y is required to be a Dedekind complete vector lattice.

Theorem 6.10 Let X be a pervasive Archimedean pre-Riesz space with the Riesz
decomposition property, let (Xρ, i) be its Riesz completion, and let Y be a Dedekind
complete vector lattice. If T : X → Y is order bounded and disjointness preserving,
then there exists an order bounded and disjointness preserving operator S : Xρ → Y
extending T in the sense that S ◦ i = T .

Proof For a fixed 0 < y ∈ Xρ , since X is pervasive there exists some x ∈ X with
0 < i(x) ≤ y. As X is Archimedean, it follows from [10, Lemma 2.8.4] that y =
sup{i(x) ∈ i(X) : 0 < i(x) ≤ y}. Because X is majorizing in Xρ , there exists z ∈ X
such that y ≤ i(z). So i(x) ≤ y ≤ i(z) and x ≤ z. The order boundedness of T implies
that {T x : x ∈ X , 0 < i(x) ≤ y} is bounded. Thus sup{T x : x ∈ X , 0 < i(x) ≤ y}
exists in Y . So one can define a map T̂ : Xρ → Y via the formula

T̂ y = sup{T x : x ∈ X , 0 ≤ i(x) ≤ |y|}, y ∈ Xρ. (3)

Obviously, this map T̂ is order bounded in the sense that it maps order bounded sets
to order bounded sets. Moreover, T̂ is positively homogeneous. For y1, y2 ∈ Xρ

and x ∈ X with 0 ≤ i(x) ≤ |y1 + y2| ≤ |y1| + |y2|, because X has the Riesz
decomposition property, there exist x1, x2 ∈ X with x1 + x2 = x , 0 ≤ i(x1) ≤ |y1|
and 0 ≤ i(x2) ≤ |y2|. Thus, T̂ (y1 + y2) = sup{T x : x ∈ X , 0 ≤ i(x) ≤ |y1 + y2|} ≤
sup{T (x1 + x2) : x1, x2 ∈ X , 0 ≤ i(x1) ≤ |y1|, 0 ≤ i(x2) ≤ |y2|} ≤ T̂ y1 + T̂ y2. So
T̂ is sublinear. It is clear that T (x) ≤ T̂ (x) holds for all x ∈ X . Since Y is Dedekind
complete, by the Hahn-Banach extension theorem, the operator T ◦ i−1 : i(X) → Y
has a linear extension S : Xρ → Y satisfying S(u) ≤ T̂ (u) for all u ∈ Xρ .

An easy argument shows that S is also order bounded. It only remains to prove
that S is disjointness preserving. Let y1, y2 ∈ Xρ with y1 ⊥ y2. So |y1| ⊥ |y2|.
By the above discussion, there exists 0 ≤ x j ∈ X such that 0 ≤ i(x j ) ≤ |y j |,
j = 1, 2. Hence, i(x1) ⊥ i(x2) and x1 ⊥ x2. As T is disjointness preserving, we
obtain T x1 ⊥ T x2 and therefore T̂ y1 ⊥ T̂ y2. Since S(y1) ≤ T̂ (y1) and −S(y1) =
S(− y1) ≤ T̂ (− y1) = T̂ (y1), we have |S(y1)| ≤ T̂ (y1). Similarly, |S(y2)| ≤ T̂ (y2).
Hence, |S(y1)| ∧ |S(y2)| ≤ T̂ (y1) ∧ T̂ (y2) = 0. Thus S(y1) ⊥ S(y2). ��
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7 Condition (ˇ) and disjointness preserving inverses

In this section we study a technique of Abramovich and Kitover used in [1] concern-
ing disjointness preserving inverses. They introduce a condition (β), which can be
formulated in pre-Riesz spaces as follows.

Definition 7.1 Let X andY be pre-Riesz spaces and let T : X → Y be a linear operator.
T is said to satisfy condition (β) if for every x, y ∈ X with {x}dd ⊆ {y}dd it follows
that {T x}dd ⊆ {T y}dd.

The idea of condition (β) traces back to [12]. In function spaces, (β) means the
following: if the support of a function is contained in the support of another function,
then the same is true for the supports of their images. In the setting of vector lattices, it is
shown in [1] that (β) implies that T−1 is disjointness preserving.Wewill establish that
(β) for T implies T−1 being disjointness preserving, provided X and Y are pre-Riesz
spaces and X is, in addition, fordable. We begin with a lemma that relates disjointness
and principal bands.

Lemma 7.2 Let X be a pre-Riesz space and let x, y ∈ X. Then the following statements
hold.

(i) If x ⊥ y then {x}dd ∩ {y}dd = {0}.
(ii) If X is, in addition, fordable, then from {x}dd ∩{y}dd = {0} it follows that x ⊥ y.

Proof (i) Assume that x ⊥ y, i.e. y ∈ {x}d. Hence, {y}dd ⊆ {x}ddd = {x}d, which
implies

{x}dd ∩ {y}dd ⊆ {x}dd ∩ {x}d = {0}.

(ii) Assume that {x}dd ∩ {y}dd = {0}. Let (Xρ, i) be the Riesz completion of X and
define u := |i(x)|∧|i(y)|. Since X is fordable, there is S ⊆ X such that {u}d = i(S)d

in Xρ . From Theorem 2.3 it follows that

i−1
(
{u}d

)
= i−1

(
i(S)d

)
= Sd. (4)

We show that Sdd ⊆ {x}dd. Indeed, let z ∈ {x}d, then i(z) ⊥ i(x), hence i(z) ⊥ u.
Due to (4), z ∈ i−1

({u}d) = Sd. It follows that {x}d ⊆ Sd, and therefore Sdd ⊆
{x}dd.

Analogously, one obtains Sdd ⊆ {y}dd. The assumption yields S ⊆ Sdd ⊆ {0}.
Now (4) implies that i(X) ⊆ {u}d, hence from Lemma 2.4 it follows that u = 0.
Consequently, i(x) ⊥ i(y), which implies x ⊥ y. ��

If X is not fordable, then Lemma 7.2 (ii) is not true, in general. Indeed, consider
in Example 4.1 the case n = 3 and the elements x := x (1) and y := x (2). Then
{x}dd ∩ {y}dd = {0}, but x �⊥ y.
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Theorem 7.3 Let X and Y be pre-Riesz spaces and let T : X → Y be a linear injective
operator.

(i) If X is, in addition, fordable and T satisfies condition (β), then T−1 : T (X) → X
is disjointness preserving.

(ii) Let T be surjective and disjointness preserving. If T−1 is disjointness preserving
then T satisfies (β).

Proof (i) Let y1, y2 ∈ T (X) be such that y1 ⊥ y2 in Y and let x1, x2 ∈ X be such that
T x1 = y1 and T x2 = y2. Due to Lemma 7.2 (i) one obtains

{y1}dd ∩ {y2}dd = {0}.

Let u ∈ {x1}dd∩{x2}dd. From u ∈ {x1}dd it follows that {u}dd ⊆ {x1}dd, hence property
(β) yields that {Tu}dd ⊆ {T x1}dd. Analogously, {Tu}dd ⊆ {T x2}dd, therefore

{Tu}dd ⊆ {T x1}dd ∩ {T x2}dd = {y1}dd ∩ {y2}dd = {0},

which yields Tu = 0. As T is injective it follows that u = 0. Thus we obtain that
{x1}dd ∩ {x2}dd = {0}. Since X is fordable, Lemma 7.2 (ii) yields that x1 ⊥ x2.
Consequently, T−1 is disjointness preserving.

(ii) The line of reasoning here is similar to the proof of [1, Proposition 3.3]. Let
x1, x2 ∈ X be such that {x1}dd ⊆ {x2}dd, and assume that {T x1}dd � {T x2}dd. This
means T x1 /∈ {T x2}dd, i.e. there is a y ∈ {T x2}d, y �= 0, such that T x1 �⊥ y. In
particular, one has y ⊥ T x2. Since T is bijective, there is an x ∈ X , x �= 0, such that
T x = y. Since T−1 is disjointness preserving, one obtains x ⊥ x2. On the other hand,
since T is disjointness preserving, one gets x �⊥ x1. This contradicts the assumption,
since x ∈ {x2}d ⊆ {x1}d. ��
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