

Bochner representable operators on Banach function spaces

Marian Nowak¹

Received: 19 September 2017 / Accepted: 20 March 2018 / Published online: 23 March 2018 @ The Author(s) 2018

Abstract Let $(E, \|\cdot\|_E)$ be a Banach function space, E' the Köthe dual of E and $(X, \|\cdot\|_X)$ be a Banach space. It is shown that every Bochner representable operator $T: E \to X$ maps relatively $\sigma(E, E')$ -compact sets in E onto relatively norm compact sets in X. If, in particular, the associated norm $\|\cdot\|_{E'}$ on E' is order continuous, then every Bochner representable operator $T: E \to X$ is $(\gamma_E, \|\cdot\|_X)$ -compact, where γ_E stands for the natural mixed topology on E. Applications to Bochner representable operators on Orlicz spaces are given.

Keywords Banach function spaces \cdot Orlicz spaces \cdot Mixed topologies \cdot Bochner representable operators \cdot Compact operators

Mathematics Subject Classification 47B38 · 46B40 · 46E30 · 47B05

1 Introduction and preliminaries

We assume that $(X, \|\cdot\|_X)$ is a real Banach space with the Banach dual $(X^*, \|\cdot\|_{X^*})$. Let B_X stand for the closed unit ball in X. For terminology concerning Riesz spaces and function spaces, we refer the reader to [1,2,9,10,20].

We assume that (Ω, Σ, μ) is a complete σ -finite measure space. By Σ_f we denote the δ -ring of all sets $A \in \Sigma$ with $\mu(A) < \infty$. Let L^0 denote the corresponding space of equivalence classes of all Σ -measurable real functions on Ω . Then L^0 is a

Marian Nowak
 M.Nowak@wmie.uz.zgora.pl

¹ Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Gora, Poland

super Dedekind complete Riesz space, equipped with the *F*-norm topology T_0 of convergence in measure on sets of finite measure.

Let $(E, \|\cdot\|_E)$ be a Banach function space, that is, E is an order ideal of L^0 with supp $E = \Omega$ and $\|\cdot\|_E$ is a Riesz norm. By \mathcal{T}_E we denote the topology of the norm $\|\cdot\|_E$. For r > 0, let $B_E(r) := \{u \in E : \|u\|_E \le r\}$. The Köthe dual E' of E is defined by:

$$E' := \left\{ v \in L^0 : \int_{\Omega} |u(\omega)v(\omega)| \, d\mu < \infty \text{ for all } u \in E \right\}.$$

The associated norm $\|\cdot\|_{E'}$ on E' is defined for $v \in E'$ by

$$\|v\|_{E'} := \sup\left\{ \left| \int_{\Omega} u(\omega)v(\omega) \, d\mu \right| : u \in E, \, \|u\|_E \le 1 \right\}.$$

Then supp $E' = \Omega$ (see [9, Theorem 6.1.5]). The σ -order continuous dual E_c^{\sim} of E separates the points of E and E_c^{\sim} can be identified with E' through the Riesz isomorphism $E' \ni v \mapsto F_v \in E_c^{\sim}$, where

$$F_{v}(u) = \int_{\Omega} u(\omega)v(\omega) d\mu \text{ for } u \in E$$

(see [9, Theorem 6.1.1]). The Mackey topology $\tau(E, E')$ is a locally convex-solid Hausdorff topology with the σ -Lebesgue property (see [1, Exercise 18, p. 178]). Note that $\tau(E, E') = T_E$ if and only if $\|\cdot\|_E$ is σ -order continuous.

In addition to these facts, the following assumptions will be in force without futher mention throughout this paper:

- (A) $E \subset L^1_{loc}$, i.e., $A \in \Sigma_f$ implies $u \mathbb{1}_A \in L^1$ for all $u \in E$.
- (B) *E* is perfect, i.e., E = E'' (equivalently, $\|\cdot\|_E$ satisfies both the σ -Fatou property and the σ -Levy property (see [1, Definition 3.14], [20, § 110 and Theorem 112.2]).

Note that from (*A*) it follows that for every $A \in \Sigma_f$, $\mathbb{1}_A \in E'$. Moreover, from (*B*) it follows that *E* is $\sigma(E, E')$ -sequentially complete (see [13, Proposition 1.2]). Note that if a subset *H* of *E* is $\sigma(E, E')$ -bounded, then $\sup_{u \in H} ||u||_E < \infty$ (see [10, Lemma 1, p. 20], [9, Theorem 6.1.6]). By $(E')_a$ we denote the ideal in E' of all elements of order continuous norms, that is,

$$(E')_a := \left\{ v \in E' : \|v_n\|_{E'} \to 0 \text{ if } |v(\omega)| \ge v_n(\omega) \downarrow 0 \ \mu - a.e. \right\}.$$

Then $\|\cdot\|_{E'}$ is order continuous if and only if $(E')_a = E'$.

Let $L^0(X)$ stand for the linear space of μ -equivalence classes of all strongly Σ measurable functions $g: \Omega \to X$. Let

$$E'(X) = \left\{ g \in L^0(X) : \|g(\cdot)\|_X \in E' \right\}.$$

Definition 1.1 A bounded linear operator $T : E \to X$ is said to be *Bochner representable*, if there exists $g \in E'(X)$ such that

$$T(u) = \int_{\Omega} u(\omega)g(\omega) d\mu$$
 for $u \in E$.

2 Bochner representable operators on Banach spaces

It is known that every Bochner representable operator $T : L^1 \to X$ (where $\mu(\Omega) < \infty$) maps relatively $\sigma(L^1, L^\infty)$ -compact sets onto relatively norm compact sets in *X* (see [5, Lemma 11, pp. 74–75]). Now we extend this result to Bochner representable operators $T : E \to X$.

Theorem 2.1 Assume that $T : E \to X$ is a Bochner representable operator. Then the following statements hold:

- (i) T is $(\tau(E, E'), \|\cdot\|_X)$ -continuous.
- (ii) *T* maps relatively $\sigma(E, E')$ -compact sets in *E* onto relatively norm compact sets in *X*.

Proof There exists $g \in E'(X)$ such that

$$T(u) = \int_{\Omega} u(\omega)g(\omega) d\mu$$
 for $u \in E$.

(i) Assume that $x^* \in X^*$. Then for $u \in E$,

$$|x^{*}(T(u))| = \left| \int_{\Omega} u(\omega) x^{*}(g(\omega)) d\mu \right|$$

$$\leq \int_{\Omega} |u(\omega)| \cdot ||x^{*}||_{X^{*}} ||g(\omega)||_{X} d\mu = ||x^{*}||_{X^{*}} F_{||g(\cdot)||_{X}}(|u|).$$

It follows that $x^* \circ T \in E_c^{\sim}$, so *T* is $(\sigma(E, E'), \sigma(X, X^*))$ -continuous (see [2, Theorem 9.26]), and hence *T* is $(\tau(E, E'), \|\cdot\|_X)$ -continuous (see [8, Theorem 8.6.1]).

(ii) Assume that *H* is a relatively $\sigma(E, E')$ -compact subset of *E*. It follows that *H* is relatively $\sigma(E, E')$ -sequentially compact (see [10, Lemma 11, p. 31]). Since *E* is $\sigma(E, E')$ -sequentially complete, in view of [13, Proposition 1.1] the set $\{u || g(\cdot) ||_X : u \in H\}$ in L^1 is uniformly integrable. Hence given $\varepsilon > 0$ there exist $\Omega_0 \in \Sigma_f$ and $\delta > 0$ such that

$$\sup_{u \in H} \int_{\Omega \smallsetminus \Omega_0} |u(\omega)| \cdot \|g(\omega)\|_X \, d\mu \le \frac{\varepsilon}{2},\tag{2.1}$$

$$\sup_{u \in H} \int_{A} |u(\omega)| \cdot \|g(\omega)\|_{X} \, d\mu \leq \frac{\varepsilon}{2}, \text{ whenever } A \in \Sigma \text{ and } \mu(A) \leq \delta. \tag{2.2}$$

Choose a sequence (s_n) of X-valued strongly μ -measurable step functions on Ω such that $s_n(\omega) \to g(\omega) \mu$ -a.e. and $||s_n(\omega)||_X \leq ||g(\omega)||_X \mu$ -a.e. for all $n \in \mathbb{N}$ (see

[7, Theorem 6, p. 4]). Hence $s_n \in E'(X)$ for $n \in \mathbb{N}$. By the Egorov theorem (see [7, Theorem 42, p. 18]), there exists $A_0 \in \Sigma$ with $A_0 \subset \Omega_0$, $\mu(\Omega_0 \setminus A_0) \leq \delta$ and $\sup_{\omega \in A_0} ||s_n(\omega) - g(\omega)||_X \to 0$. For every $n \in \mathbb{N}$ define an operator $T_n : E \to X$ by

$$T_n(u) := \int_{A_0} u(\omega) s_n(\omega) d\mu$$
 for $u \in E$.

Note that for every $n \in \mathbb{N}$, T_n is a bounded operator of finite dimensional range, so that T_n is a compact operator. Define an operator $T_{A_0} : E \to X$ by

$$T_{A_0}(u) := \int_{A_0} u(\omega)g(\omega) \, d\mu \quad for \ u \in E.$$

Then for $u \in B_E(1)$, we have

$$\begin{split} \left\| \int_{A_0} u(\omega)(g(\omega) - s_n(\omega)) \, d\mu \right\|_X &\leq \int_{A_0} |u(\omega)| \cdot \|g(\omega) - s_n(\omega)\|_X \, d\mu \\ &\leq \left(\int_{\Omega} |u(\omega)| \mathbb{1}_{A_0}(\omega) \, d\mu \right) \sup_{\omega \in A_0} \|g(\omega) - s_n(\omega)\|_X \\ &\leq \left\| \mathbb{1}_{A_0} \right\|_{E'} \sup_{\omega \in A_0} \|g(\omega) - s_n(\omega)\|_X. \end{split}$$

Hence $||T_{A_0} - T_n|| \le ||\mathbb{1}_{A_0}||_{E'} \sup_{\omega \in A_0} ||g(\omega) - s_n(\omega)||_X$, and hence $||T_{A_0} - T_n|| \to 0$. It follows that T_{A_0} is a compact operator. Since $\sup_{u \in H} ||u||_E < \infty$, we have that $K_{\varepsilon} := \{T(\mathbb{1}_{A_0}u) : u \in H\}$ is a relatively norm compact set in *X*.

Moreover, since $\mu(\Omega_0 \setminus A_0) \leq \delta$, for every $u \in H$, by (2.2) we get

$$\left\|T\left(\mathbb{1}_{\Omega_0 \smallsetminus A_0} u\right)\right\|_X \le \int_{\Omega \smallsetminus A_0} |u(\omega)| \cdot \|g(\omega)\|_X \, d\mu \le \frac{\varepsilon}{2}$$

i.e., $\{T(\mathbb{1}_{\Omega_0 \smallsetminus A_0} u) : u \in H\} \subset \frac{\varepsilon}{2} B_X$. For every $u \in H$, by (2.1) we have

$$\left\|T\left(\mathbb{1}_{\Omega\smallsetminus\Omega_{0}}u\right)\right\|_{X}\leq\int_{\Omega\smallsetminus\Omega_{0}}|u(\omega)|\cdot\|g(\omega)\|_{X}\,d\mu\leq\frac{\varepsilon}{2},$$

i.e., $\{T(\mathbb{1}_{\Omega \setminus \Omega_0} u) : u \in H\} \subset \frac{\varepsilon}{2} B_X$. Hence for every $u \in H$, we have

$$T(u) = T(\mathbb{1}_{\Omega \smallsetminus \Omega_0} u) + T(\mathbb{1}_{\Omega_0 \smallsetminus A_0} u) + T(\mathbb{1}_{A_0} u) \in \varepsilon B_X + K_{\varepsilon}.$$

In view of the Grothendieck's compactness criterion (see [4, Exercise 4(iii)]) T(H) is a relatively norm compact set in X, as desired.

By $\gamma[\mathcal{T}_E, \mathcal{T}_0]$ (in brief, γ_E) we denote the *natural mixed topology* on E in the sense of Wiweger (see [3,11,12,19], for more details). Then $\mathcal{T}_0|_E \subset \gamma_E \subset \mathcal{T}_E$ and γ_E is the finest linear topology on E that agrees with \mathcal{T}_0 on every ball $B_E(r)$, r > 0 (see [19, 2.2.2]). \mathcal{T}_E and γ_E have the same bounded sets in E, and for a sequence (u_n) in E, $u_n \to 0$ in γ_E if and only if $u_n \to 0$ in \mathcal{T}_0 and $\sup_n ||u_n||_E < \infty$ (see [19, Corollary, p. 56 and Theorem 2.6.1]). If, in particular, $\sup_{E} (E')_a = \Omega$, then γ_E is a locally convex-solid Hausdorff topology and γ_E coincides with the mixed topology $\gamma[\mathcal{T}_E, |\sigma|(E, (E')_a)]$ (see [11, Theorem 3.3]). Note that, then (E, γ_E) is a generalized DF-space (see [15] for more details). In view of [11, Theorem 3.1], we have:

$$(E, \gamma_E)^* = \{F_v : v \in (E')_a\}.$$
(2.3)

Theorem 2.2 Assume that $(E, \|\cdot\|_E)$ is a Banach function space with the order continuous accociated norm $\|\cdot\|_{E'}$ on E'. Let $T : E \to X$ be a Bochner representable operator. Then the following statements hold:

- (i) T is $(\gamma_E, \|\cdot\|_X)$ -continuous and norm-compact operator.
- (ii) *T* is $(\gamma_E, \|\cdot\|_X)$ -compact, that is, there exists a γ_E -neighborhood *V* of 0 in *E* such that T(V) is a relatively norm compact set in *X*.

Proof (i) There exists $g \in (E')_a(X)$ such that

$$T(u) = \int_{\Omega} u(\omega)g(\omega) d\mu$$
 for $u \in E$.

For $u \in E$, we have

$$||T(u)||_X \le \int_{\Omega} |u(\omega)| ||g(\omega)||_X d\mu = F_{||g(\cdot)||_X}(|u|),$$

where $||g(\cdot)||_X \in (E')_a$. Using (2.3) we obtain that T is $(\gamma_E, ||\cdot||_X)$ -continuous. Choose a sequence (s_n) of X-valued strongly μ -measurable step-functions on Ω such that $||s_n(\omega) - g(\omega)||_X \to 0$ μ -a.e. and $||s_n(\omega)||_X \leq ||g(\omega)||_X \mu$ -a.e. and all $n \in \mathbb{N}$ (see [7, Theorem 6, p. 4]). Hence $s_n \in (E')_a(X)$ and $||s_n(\omega) - g(\omega)||_X \leq 2||g(\omega)||_X \mu$ -a.e. for all $n \in \mathbb{N}$. Let $v_n(\omega) = \sup_{k \geq n} ||s_n(\omega) - g(\omega)||_X$ for $\omega \in \Omega$. Then $2||g(\omega)||_X \geq v_n(\omega) \downarrow 0 \mu$ -a.e., so $|||s_n(\cdot) - g(\cdot)||_X ||_{E'} \leq ||v_n||_{E'} \to 0$.

For each $n \in \mathbb{N}$, let $T_n : E \to X$ be a linear operator defined by

$$T_n(u) := \int_{\Omega} u(\omega) s_n(\omega) d\mu$$
 for $u \in E$.

Note that the range of each T_n is contained in the span of the finite set of values of s_n . Therefore T_n is compact for each $n \in \mathbb{N}$, and for each $u \in E$,

$$\|(T_n - T)(u)\|_X = \left\| \int_{\Omega} u(\omega)(s_n(\omega) - g(\omega)) \, d\mu \right\|_X$$

$$\leq \int_{\Omega} |u(\omega)| \cdot \|s_n(\omega) - g(\omega)\|_X d\mu$$

$$\leq \|u\|_E \cdot \left\| \|s_n(\cdot) - g(\cdot)\|_X \right\|_{E'}.$$

It follows that $||T - T_n|| \rightarrow 0$, so T is a compact operator.

(ii) Since (E, γ_E) is a generalized DF-space, it is quasinormable (see [15, p. 422]). Hence in view of (i) by the Grothendieck's classical results (see [15, p. 429]), we obtain that *T* is $(\gamma_E, \|\cdot\|)$ -compact.

Remark 2.1 A related result to Theorem 2.2 can be found in [17, Corollary 4.8].

An important class of Banach function spaces are Orlicz spaces (see [10,16] for more details). By a Young function we mean here s convex continuous mapping $\Phi : [0, \infty) \rightarrow [0, \infty)$ that vanishes only at 0 and $\Phi(t)/t \rightarrow 0$ as $t \rightarrow 0$ and $\Phi(t)/t \rightarrow \infty$ as $t \rightarrow \infty$. By Φ^* we denote the Young function complementary to Φ in the sense of Young.

The Orlicz space

$$L^{\Phi} := \left\{ u \in L^{0} : \int_{\Omega} \Phi(\lambda | u(\omega) |) \, d\mu < \infty \text{ for some } \lambda > 0 \right\},$$

equipped with the topology \mathcal{T}_{Φ} of the norm:

$$||u||_{\Phi} := \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi(|u(\omega)|/\lambda) \, d\mu \le 1 \right\}$$

is a perfect Banach function space (see [10, 16]). Then $(L^{\Phi})' = L^{\Phi^*}$ and $(L^{\Phi^*})_a = E^{\Phi^*} = \{v \in L^{\Phi^*} : \int_{\Omega} \Phi(\lambda | v(\omega) |) d\mu < \infty \text{ for all } \lambda > 0\}$. In particular, $E^{\Phi^*} = L^{\Phi^*}$ if Φ^* satisfies the Δ_2 -condition, i.e., $\Phi^*(2t) \le d\Phi^*(t)$ for some d > 1 and all $t \ge 0$.

We say that a Young function Ψ increases more rapidly than Φ (in symbols, $\Phi \prec \Psi$) if for an arbitrary c > 0 there exists d > 0 such that $c\Phi(t) \le \frac{1}{d}\Psi(dt)$ for all $t \ge 0$.

If $\Phi \prec \Psi$, then $L^{\Psi} \subset L^{\Phi}$ and by $i_{\Psi} : L^{\Psi} \to L^{\Phi}$ we denote the inclusion map.

Proposition 2.3 Let $T : L^{\Phi} \to X$ be a Bochner representable operator. Then for every Young function Ψ with $\Phi \prec \Psi$ the operator $T \circ i_{\Psi} : L^{\Psi} \to X$ is compact.

Proof Assume that Ψ is a Young function with $\Phi \prec \Psi$. Then by [16, Theorem 5.3.3, p. 171] the closed unit ball $B_{\Psi}(1)$ in L^{Ψ} is relatively $\sigma(L^{\Phi}, L^{\Phi^*})$ -compact in L^{Φ} . Hence according to Theorem 2.1 $T(B_{\Psi}(1))$ is relatively norm compact, and this means that $T \circ i_{\Psi} : L^{\Psi} \to X$ is compact.

We say that a Young function Φ increases essentially more rapidly than another Ψ (in symbols, $\Psi \ll \Phi$) if for an arbitrary c > 0, $\Psi(ct)/\Phi(t) \to 0$ as $t \to 0$ and $t \to \infty$.

The following characterization of the mixed topology $\gamma_{\Phi} (= \gamma[\mathcal{T}_{\Phi}, \mathcal{T}_0])$ on L^{Φ} will be useful (see [14, Theorem 2.1]).

Theorem 2.4 Let Φ be a Young function. Then the mixed topology γ_{Φ} on L^{Φ} is generated by the family of norms $\{\|\cdot\|_{\Psi}|_{L^{\Phi}} : \Psi \ll \Phi\}$.

As a consequence of Theorems 2.2 and 2.4 we have:

Corollary 2.5 Assume that a Young function Φ^* satisfies the Δ_2 -condition. Let $T : L^{\Phi} \to X$ be a Bochner representable operator. Then there exists a Young function Ψ with $\Psi \ll \Phi$ such that $T(B_{\Psi}(1) \cap L^{\Phi})$ is a relatively norm compact set in X.

Remark (i) The result of Corollary 2.5 was established in a different way in [14, Theorem 2.3].

(ii) For a bounded linear operator $T : L^{\Phi} \to X$, following [6] one can define its functional norm |||T||| by $|||T||| = \sup \Sigma ||\alpha_i T(\mathbb{1}_{A_i})||_X$, where the supremum is taken over all finite Σ -partition (A_i) of Ω and all $\alpha_i \in \mathbb{R}$ such that $||\Sigma \alpha_i \mathbb{1}_{A_i}||_{\Phi} \le 1$.

Uhl [18, Theorem 1] showed that if X either is reflexive or is a separable dual Banach space and Φ obeys the Δ_2 -condition, then every bounded linear operator $T: L^{\Phi} \to X$ with $|||T||| < \infty$ is Bochner representable. If, in addition, Φ^* also obeys the Δ_2 -condition, then every bounded operator $T: L^{\Phi} \to X$ with $|||T||| < \infty$ is compact (see [18, Corollary 2]).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, 2nd edn. American Mathematical Society, Providence (2003)
- 2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, New York (1985)
- 3. Cooper, J.B.: The strict topology and spaces with mixed topologies. Proc. Am. Math. Soc. **30**(3), 583–592 (1971)
- 4. Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics. Springer, Berlin (1984)
- Diestel, J., Uhl, J.J.: Vector Measures (Mathematical Surveys, 15). American Mathematical Society, Providence (1977)
- 6. Dinculeanu, N.: Vector Measures. Pergamon Press, Oxford (1967)
- Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Spaces. A Wiley-Interscience Publication, New York (2000)
- 8. Edwards, R.E.: Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York (1965)
- 9. Kantorovitch, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)
- 10. Luxemburg, W.: Banach Functions Spaces. Thesis, Delft (1955)
- Nowak, M.: Mixed topology on normed function spaces, I. Bull. Pol. Acad. Sci. Math. 36(5–6), 251– 262 (1988)
- Nowak, M.: Mixed topology on normed function spaces, II. Bull. Pol. Acad. Sci. Math. 36(5–6), 263–267 (1988)
- Nowak, M.: Conditional and relative weak compactness in vector-valued function spaces. J. Convex Anal. 12(2), 447–463 (2005)
- 14. Nowak, M.: Compactness of Bochner representable operators. Positivity 13, 193–199 (2009)
- 15. Ruess, W.: [Weakly] compact operators and DF-spaces. Pacific J. Math. 98, 419–441 (1982)
- 16. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)
- 17. Uhl, J.J.: Vector integral operators. Indag. Math. 32, 463-478 (1970)
- 18. Uhl, J.J.: On a class of operators on Orlicz spaces. Studia Math. 40, 17-22 (1971)
- 19. Wiweger, A.: Linear spaces with mixed topology. Studia Math. 20, 47–68 (1961)
- 20. Zaanen, A.C.: Riesz Spaces II. North-Holland Publishing Company, Amsterdam (1983)