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Abstract In this paper we shall consider the connections between Lyapunov inte-
gral operators and Gibbs measures for models with four competing interactions and
uncountable (i.e. [0, 1]) set of spin values on a Cayley tree. We prove the existence
of fixed points of Lyapunov integral operators and give a condition of uniqueness of
a fixed point.
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1 Preliminaries

ACayley tree�k = (V, L) of order k ∈ N is an infinite homogeneous tree, i.e., a graph
without cycles, with exactly k + 1 edges incident to each vertices. Here V is the set of
vertices and L that of edges (arcs). Two vertices x and y are called nearest neighbors
if there exists an edge l ∈ L connecting them. We will use the notation l = 〈x, y〉.
The distance d(x, y), x, y ∈ V on the Cayley tree is defined by the formula

d(x, y) = min{d| x = x0, x1, ..., xd−1, xd = y ∈ V such that the pairs

〈x0, x1〉, ..., 〈xd−1, xd〉 are neighboring vertices}.
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Let x0 ∈ V be a fixed and we set

Wn = {x ∈ V | d(x, x0) = n}, Vn = {x ∈ V | d(x, x0) ≤ n},
Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn},

The set of the direct successors of x is denoted by S(x), i.e.

S(x) = {y ∈ Wn+1| d(x, y) = 1}, x ∈ Wn .

We observe that for any vertex x �= x0, x has k direct successors and x0 has k + 1.
The vertices x and y are called second neighbor which is denoted by 〉x, y〈, if there
exist a vertex z ∈ V such that x , z and y, z are nearest neighbors. We will consider
only second neighbors 〉x, y〈, for which there exist n such that x, y ∈ Wn . Three
vertices x, y and z are called a triple of neighbors and they are denoted by 〈x, y, z〉,
if 〈x, y〉, 〈y, z〉 are nearest neighbors and x, z ∈ Wn, y ∈ Wn−1, for some n ∈ N.

Now we consider models with four competing interactions where the spin takes
values in the set [0, 1]. For some set A ⊂ V an arbitrary function σA : A → [0, 1]
is called a configuration and the set of all configurations on A we denote by �A =
[0, 1]A. Let σ(·) belong to �V = � and ξ1 : (t, u, v) ∈ [0, 1]3 → ξ1(t, u, v) ∈ R,
ξi : (u, v) ∈ [0, 1]2 → ξi (u, v) ∈ R, i ∈ {2, 3} are given bounded, measurable
functions. Then we consider the model with four competing interactions on the Cayley
tree which is defined by following Hamiltonian

H(σ ) = − J3
∑

〈x,y,z〉
ξ1 (σ (x), σ (y), σ (z)) − J

∑

〉x,y〈
ξ2 (σ (x), σ (z))

− J1
∑

〈x,y〉
ξ3 (σ (x), σ (y)) − α

∑

x∈V
σ(x), (1.1)

where the sum in the first term ranges all triples of neighbors, the second sum ranges all
second neighbors, the third sum ranges all nearest neighbors and J, J1, J3, α ∈ R\{0}.
Let h : (t, x) ∈ [0, 1] × V \{x0} → ht,x ∈ R and |ht,x | < C where x0 is a root of
Cayley tree and C is a constant which does not depend on t . For some n ∈ N,

σn : x ∈ Vn 	→ σ(x) and Zn is the corresponding partition function we consider the
probability distribution μ(n) on �Vn defined by

μ(n)(σn) = Z−1
n exp

⎛

⎝−βH(σn) +
∑

x∈Wn

hσ(x),x

⎞

⎠ , (1.2)

Zn =
∫
...

∫

�
(p)
Vn−1

exp

⎛

⎝−βH (̃σn) +
∑

x∈Wn

hσ̃ (x),x

⎞

⎠ λ
(p)
Vn−1

(dσ̃n), (1.3)
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where for a set A ⊂ V we denoted

�A × �A × ... × �A︸ ︷︷ ︸
3·2p−1

= �
(p)
A , λA × λA × ... × λA︸ ︷︷ ︸

3·2p−1

= λ
(p)
A , n, p ∈ N,

Let σn−1 ∈ �Vn−1 and σn−1 ∨ ωn ∈ �Vn is the concatenation of σn−1 and ωn . For
n ∈ Nwe say that the probability distributions μ(n) are compatible if μ(n) satisfies the
following condition:

∫ ∫

�Wn×�Wn

μ(n)(σn−1 ∨ ωn)(λWn × λWn )(dωn) = μ(n−1)(σn−1). (1.4)

By Kolmogorov’s extension theorem there exists a unique measure μ on �V such
that, for any n and σn ∈ �Vn , μ

({
σ |Vn = σn

}) = μ(n)(σn). The measure μ is called
splitting Gibbs measure corresponding to Hamiltonian (1.1) and function x 	→ hx =
{hx,t }, x �= x0 (see [1,2,5,7]).

Denote

K (t, u, v) = exp {J3βξ1 (t, u, v) + Jβξ2 (u, v) + J1β (ξ3 (t, u) + ξ3 (t, v))

+αβ(u + v)} , (1.5)

and

f (t, x) = exp(ht,x − h0,x ), (t, u, v) ∈ [0, 1]3, x ∈ V \{x0}.

The following statement describes conditions on hx guaranteeing compatibility of the
corresponding distributions μ(n)(σn).

Proposition 1.1 [6] Let k = 2. The measure μ(n)(σn), n = 1, 2, . . . satisfies the
consistency condition (1.4) iff for any x ∈ V \{x0} the following equation holds:

f (t, x) =
∫ 1
0

∫ 1
0 K (t, u, v) f (u, y) f (v, z)dudv

∫ 1
0

∫ 1
0 K (0, u, v) f (u, y) f (v, z)dudv

, (1.6)

where S(x) = {y, z}.

2 Existence of a fixed point of the operator L
Now we prove that there exist at least one fixed point of Lyapunov integral equation,
namely there is a splitting Gibbs measure corresponding to Hamiltonian (1.1).

Proposition 2.1 Let k = 2, J3 = J = α = 0 and J1 �= 0. Then (1.6) is equivalent to

f (t, x) =
∏

y∈S(x)

∫ 1
0 exp {J1βξ3(t, u)} f (u, y)du

∫ 1
0 exp {J1βξ3(0, u)} f (u, y)du

, (2.1)
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where f (t, x) = exp(ht,x − h0,x ), t ∈ [0, 1], x ∈ V .

Proof For J3 = J = α = 0 and J1 �= 0 one gets K (t, u, v) = exp {J1β (ξ3 (u, t)
+ ξ3 (v, t))} . Then (1.6) can be written as

f (t, x) =
∫ 1
0

∫ 1
0 exp {J1β (ξ3 (t, u) + ξ3 (t, v))} f (u, y) f (v, z)dudv

∫ 1
0

∫ 1
0 exp {J1β (ξ3 (0, u) + ξ3 (0, v))} f (u, y) f (v, z)dudv

=
∫ 1
0 exp {J1βξ3(t, u)} f (u, y)du · ∫ 1

0 exp {J1βξ3(t, v)} f (v, z)dv
∫ 1
0 exp {J1βξ3(0, u)} f (u, y)du · ∫ 1

0 exp {J1βξ3(0, v)} f (v, z)dv
. (2.2)

Since 〉y, z〈= S(x) Eq. (2.2) is equivalent to (2.1). ��
Now we consider the model (1.1) in the class of translational-invariant functions

f (t, x) i.e f (t, x) = f (t), for any x ∈ V . For such functions Eq. (1.1) can be written
as

f (t) =
∫ 1
0

∫ 1
0 K (t, u, v) f (u) f (v)dudv

∫ 1
0

∫ 1
0 K (0, u, v) f (u) f (v)dudv

, (2.3)

where K (t, u, v) = exp {J3βξ1 (t, u, v) + Jβξ2 (u, v) + J1β (ξ3 (t, u) + ξ3 (t, v))

+αβ(u + v)} , f (t) > 0, t, u ∈ [0, 1].
We shall find positive continuous solutions to (2.3) i.e. such that f ∈ C+[0, 1] =

{ f ∈ C[0, 1] : f (x) > 0}.
Define a nonlinear operator H on the cone of positive continuous functions on

[0, 1] :

(H f )(t) =
∫ 1
0

∫ 1
0 K (t, s, u) f (s) f (u)dsdu

∫ 1
0

∫ 1
0 K (0, s, u) f (s) f (u)dsdu

.

We’ll study the existence of positive fixed points for the nonlinear operator H (i.e.,
solutions of the Eq. (2.3)).

We define the Lyapunov integral operator L on C[0, 1] by the equality (see [3])

L f (t) =
∫ 1

0
K (t, s, u) f (s) f (u)dsdu.

Put

M0 = {
f ∈ C+[0, 1] : f (0) = 1

}
.

Lemma 2.2 The equation H f = f has a nontrivial positive solution iff the Lyapunov
equation Lg = g has a nontrivial positive solution.

Proof At first we shall prove that the equation

H f = f, f ∈ C+
0 [0, 1] (2.4)
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has a positive solution iff the Lyapunov equation

Lg = λg, g ∈ C+[0, 1] (2.5)

has a positive solution in M0 for some λ > 0.
Let λ0 be a positive eigenvalue of the Lyapunov operator L. Then there exists

f0 ∈ C+
0 [0, 1] such thatL f0 = λ0 f0. Take λ ∈ (0,+∞), λ �= λ0. Define the function

h0(t) ∈ C+
0 [0, 1] by h0(t) = λ

λ0
f0(t), t ∈ [0, 1]. Then Lh0 = λh0, i.e., the number

λ is an eigenvalue of Lyapunov operator L corresponding the eigenfunction h0(t).
It’s easy to check that if the number λ0 > 0 is an eigenvalue of the operator L, then
an arbitrary positive number is eigenvalue of the operator L. Now we shall prove the
lemma. Let Eq. (2.4) holds then the function 1

λ
g(t) be a fixed point of the operator L.

Analogously, since H is non-linear operator we can correspond to the fixed point if
there exist any eigenvector. ��
Proposition 2.3 The equation

L f = λ f, λ > 0 (2.6)

has at least one solution in C+
0 [0, 1].

Proof Clearly, that the Lyapunov operator L is a compact on the cone C+[0, 1]. By
the other hand we have

L f (t) ≥ m

(∫ 1

0
f (s)ds

)2

,

for all f ∈ C+[0, 1], where m = min K (t, s, u) > 0.
Put � = { f : ‖ f ‖ = r, f ∈ C[0, 1]}. We define the set �+ by

�+ = � ∩ C+[0, 1].
Then we obtain

inf
f ∈�+

‖L f ‖ > 0.

Then by Schauder’s theorem (see [4], p.20) there exists a numberλ0 > 0 and a function
f0 ∈ �+ such that, L f0 = λ0 f0. ��
Denote by N f ix .p(H) and N f ix .p(L) the set of positive numbers of nontrivial posi-

tive fixed points of the operators H and L , respectively. By Lemma 2.2 and Proposition
2.3 we can conclude that:

Proposition 2.4 (a) The Eq. (2.4) has at least one solution in C+
0 [0, 1].

(b) The equality N f i x .p(H) = N f ix .p(L) is hold.

From Propositions 1.1 and 2.4 we get the following theorem.

Theorem 2.5 The set of splitting Gibbs measures corresponding to Hamiltonian (1.1)
is non-empty.
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3 The uniqueness of fixed point of the operator L
In this section we shall give a condition of the uniqueness of fixed point of the operator
L.
Theorem 3.1 Let the kernel K (t, u, v) satisfies the condition

max
(t,u,v)∈[0,1]3

K (t, u, v) < c min
(t,u,v)∈[0,1]3

K (t, u, v), c ∈
(
1,

1

2

√√
17 + 1

)
. (3.1)

Then the operator L has the unique fixed point in C+
0 [0, 1].

Proof Let max(t,u,v)∈[0,1]3 K (t, u, v) = K and min(t,u,v)∈[0,1]3 K (t, u, v) = k. At
first we shall prove that if g ∈ C+

0 [0, 1] is a solution of the equation L f = f then
g ∈ G where

G =
{
f ∈ C[0, 1] : k

K2 ≤ f (t) ≤ K
k2

}
.

Let s ∈ L(C+[0, 1])be an arbitrary function.Then there exists a functionh ∈ C+[0, 1]
such that s = Lh. Since s is continuous on [0, 1], there exists t1, t2 ∈ [0, 1] such that

smin = min
t∈[0,1] s(t) = s(t1) = (Lh)(t1), smax = max

t∈[0,1] s(t) = s(t2) = (Lh)(t2).

Consequently we get

smin ≥ k
∫ 1

0

∫ 1

0
h(u)h(v)dudv ≥ k

∫ 1

0

∫ 1

0

K (t2, u, v)

K h(u)h(v)dudv = k

K smax .

(3.2)
Since g is a fixed point of the operator L we have ‖g‖ ≤ K‖g‖2 ⇒ ‖g‖ ≥ 1

K .
From (3.2)

g(t) ≥ gmin = min
t∈[0,1] g(t) ≥ k

K‖g‖ ⇒ g(t) ≥ k

K2 .

Similarly,

g(t) = (Lg)(t) ≥ k
∫ 1

0

∫ 1

0
g(u)g(v)dudv ≥ kg2min ⇒ gmin ≤ 1

k
.

Hence

g(t) ≤ gmax ≤ K
k
gmin ≤ K

k2
.

Thus we have g ∈ G.
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Now we show that L has the unique fixed point. By Proposition 2.4, Lg = g
has at least one solution. Assume that there are two solutions g1 ∈ C+

0 [0, 1] and
g2 ∈ C+

0 [0, 1], i.e Lgi = gi , i = 1, 2.
Let a function f ∈ C[0, 1] changes its sign on [0, 1]. Then it is easy to check that

for every a ∈ R the following inequality holds: ‖ f (t) − a‖ ≥ 1
2‖ f ‖.

Put ξ(t) = g1(t) − g2(t). Since ξ(t) changes its sign on [0, 1], we get

max
t∈[0,1]

∣∣∣∣ξ(t) −
(
k2

K2 + K2

k2

) ∫ 1

0
ξ(s)ds

∣∣∣∣ ≥ 1

2
‖ξ‖,

ξ(t) = 2
∫ 1

0

∫ 1

0
K (t, u, v) (g1(u)g1(v) − g2(u)g2(v)) dudv.

The last equation can be written as

ξ(t) =
∫ 1

0

∫ 1

0
K (t, u, v)η(u, v) (|ξ(u) − ξ(v)| + ξ(u) + ξ(v)) dudv,

where

min{g1(t), g2(t)} ≤ η(u, v) ≤ max{g1(t), g2(t)}, t ∈ [0, 1].

Since gi (t) ∈ G, i = 1, 2 we get k
K2 ≤ η(u, v) ≤ K

k2
, (u, v) ∈ [0, 1]2. Hence

∣∣∣∣2 · K (t, u, v)η(u, v) −
(K2

k2
+ k2

K2

)∣∣∣∣ ≤ K2

k2
− k2

K2 .

Then

∣∣∣∣ξ(t) −
(K2

k2
+ k2

K2

) ∫ 1

0

∫ 1

0
(|ξ(u) − ξ(v)| + ξ(u) + ξ(v)) dudv

∣∣∣∣

≤
(K2

k2
− k2

K2

)
‖ξ‖. (3.3)

Assume the kernel K (t, u, v) satisfies the condition (3.1). Then K4 − k4 < (Kk)2 ⇒
K < ck but it’s contradict to the following: if ξ ∈ C[0, 1] changes its sign on [0, 1]
then for every a ∈ R the following inequality holds ‖ξ − a‖ ≥ 1

2‖ξ‖. This completes
the proof. ��
Theorem 3.2 Let k ≥ 2. If the function K (t, u, v) which defined in (1.5) satisfies
the condition (3.1), then the model (1.1) has the unique-translational invariant Gibbs
measure.
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