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Abstract In this paper we shall consider the connections between Lyapunov inte-
gral operators and Gibbs measures for models with four competing interactions and
uncountable (i.e. [0, 1]) set of spin values on a Cayley tree. We prove the existence
of fixed points of Lyapunov integral operators and give a condition of uniqueness of
a fixed point.
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1 Preliminaries

A Cayley tree ¥ = (V, L) of order k € Nis an infinite homogeneous tree, i.e., a graph
without cycles, with exactly k + 1 edges incident to each vertices. Here V is the set of
vertices and L that of edges (arcs). Two vertices x and y are called nearest neighbors
if there exists an edge /[ € L connecting them. We will use the notation [ = (x, y).
The distance d(x, y), x, y € V on the Cayley tree is defined by the formula

d(x,y) = min{d| x = x0, X1, ..., Xg—1, Xq = y € V such that the pairs

(x0, X1)5 «ees {(Xq—1, Xq) are neighboring vertices}.
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Let x" € V be a fixed and we set

W,={xeV|dx,x")=n), V,={xeV|dxx"<n),
Ly={l=(x,y)eL]|x,yeV}

The set of the direct successors of x is denoted by S(x), i.e.
Sx)={y € Wyy1ldx,y) =1}, x e W,.

We observe that for any vertex x # x9, x has k direct successors and x° has k + 1.
The vertices x and y are called second neighbor which is denoted by )x, y(, if there
exist a vertex z € V such that x, z and y, z are nearest neighbors. We will consider
only second neighbors )x, y(, for which there exist n such that x, y € W,. Three
vertices x, y and z are called a triple of neighbors and they are denoted by (x, y, z),
if (x, y), (v, z) are nearest neighbors and x, z € W,,, y € W,,_1, for some n € N.

Now we consider models with four competing interactions where the spin takes
values in the set [0, 1]. For some set A C V an arbitrary function o4 : A — [0, 1]
is called a configuration and the set of all configurations on A we denote by 24 =
[0, 1]4. Let o (-) belong to Qy = Q and & : (f,u,v) € [0, 1> = & (t,u,v) € R,
& (u,v) € [0, 1]2 — &i(u,v) € R, i € {2,3} are given bounded, measurable
functions. Then we consider the model with four competing interactions on the Cayley
tree which is defined by following Hamiltonian

Ho)=-1 Y & 0x).0().00) 1Y &0x).0@)

(x,y,2) )X, 3(

—N Yy &0, o) —a) o), (1.1)

(x,y) xeV

where the sum in the first term ranges all triples of neighbors, the second sum ranges all
second neighbors, the third sum ranges all nearest neighbors and J, Ji, J3, « € R\{0}.
Leth : (t,x) € [0,1] x V\{x?} — hiy € Rand |h; x| < C where x¥ is a root of
Cayley tree and C is a constant which does not depend on ¢. For some n € N,
0, 1 x € V, > o(x) and Z, is the corresponding partition function we consider the
probability distribution 1 on Qy, defined by

won) =2, exp | =BH©O) + Y hotox | » (12)

xeW,

z,lzf..f exp | —BH@E) + Y hacox | A @5, (1.3)

xeW,

(p)
QVH*I
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where for a set A C V we denoted

QAXQAX...XQAZQX)), )»AX)»AX...X)»AZ)»(p), n,peN,

3.2r-1 3.2p—1

Let 0,1 € Qy, , and 0,—1 V @, € Qy, is the concatenation of 0,1 and w,. For
n € N we say that the probability distributions ;") are compatible if 1™ satisfies the
following condition:

/ / w On1 v on) Cw, X hw,)don) = u" " Vonon). (14

QWn XQW”

By Kolmogorov’s extension theorem there exists a unique measure p on Qy such
that, for any n and 0, € Qy,, u ({U|Vn =0y }) = /L(”)(Un). The measure  is called
splitting Gibbs measure corresponding to Hamiltonian (1.1) and function x — hy =
{hyi}, x # x0 (see [1,2,5,7)).

Denote

K(t,u,v) = exp{J3B& (¢, u,v) + JB& (u,v) + J1B (&3 (t,u) + &3 (¢, v))
+af(u+v)}, (L.5)

and
f(t,x) =exphix —hoy), (t,u,v)€[0,17, x € V\{x}.

The following statement describes conditions on &, guaranteeing compatibility of the
corresponding distributions 1 (,).

Proposition 1.1 [6] Let k = 2. The measure 1" (o,), n = 1,2, ... satisfies the
consistency condition (1.4) iff for any x € V\{x°} the following equation holds:

I Jo Kt u,v) f s p) f (v, 2)dudv

ft,x) = ’
fol fol K, u,v)fu,y)fw,z)dudv

(1.6)
where S(x) = {y, z}.

2 Existence of a fixed point of the operator £

Now we prove that there exist at least one fixed point of Lyapunov integral equation,
namely there is a splitting Gibbs measure corresponding to Hamiltonian (1.1).

Proposition 2.1 Letk =2, 3 =J = o =0and J; # 0. Then (1.6) is equivalent to

fe.o=T] Jo exp {N1BE (1, ) £ (w, y)du
’ yeS(x) 01 exp {J1BE3(0, w)} f(u, y)du

2.1)
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where f(t,x) =exp(h;x —hox), t €[0,1], x € V.

Proof For J3 = J = o = 0and J; # 0 one gets K (t,u,v) = exp{J18 (& (u, )
+ &3 (v, t))}. Then (1.6) can be written as

Jo o exp (1B (& (1, u) + & (1, )} £ (u, ¥) f (v, D)dudv
Jo o exp {1 (& (0, u) + & (0, )} fu, ¥) f (v, 2)dudv
g exp{1BE (W) fu, du - [ exp{1BE3(1, v)} f (v, 2)dv

o expl1BE 0. W) £, )du - [y expJ1BE 0. )} f (v, )dv

ft,x)=

Since )y, z(= S(x) Eq. (2.2) is equivalent to (2.1). O

Now we consider the model (1.1) in the class of translational-invariant functions
f(t,x)ie f(t,x) = f(t), forany x € V. For such functions Eq. (1.1) can be written
as

_ Jofo K(t.u,v) f ) f)dudv

Jolo KO, u,v) f @) f(v)dudv’
where K (t,u,v) = exp{J3B& (t,u,v) + JB&E (u,v) + J1B (& (t,u) + & (1, v))
+af +v)}, f(t) >0, r,u €[0,1].

We shall find positive continuous solutions to (2.3) i.e. such that f € C*[0, 1] =
{(f €Cl0,11: f(x) > O}.

Define a nonlinear operator H on the cone of positive continuous functions on
[0,1]:

f@

(2.3)

J3 Jo Kt s, u) £ (s) f w)dsdu
J3 Jo KO, s, u) f(s) fu)dsdu

(Hf) (1) =

We’ll study the existence of positive fixed points for the nonlinear operator H (i.e.,
solutions of the Eq. (2.3)).
We define the Lyapunov integral operator £ on C[0, 1] by the equality (see [3])

1
L) = / K(t,s,u)f(s)f(u)dsdu.
0
Put
Mo ={feCt[0,1]: f(0)=1}.

Lemma 2.2 The equation Hf = f has a nontrivial positive solution iff the Lyapunov
equation Lg = g has a nontrivial positive solution.

Proof At first we shall prove that the equation

Hf = f. feCflo,1] 2.4)
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has a positive solution iff the Lyapunov equation
Lg =g, g€ CT[0,1] (2.5)

has a positive solution in M for some A > 0.

Let 1o be a positive eigenvalue of the Lyapunov operator £. Then there exists
fo € CS'[O, 1] such that £ fo = Ag fo- Take A € (0, 400), A # Ag. Define the function
ho(t) € CF 10, 1] by ho(t) = Q—O fo(®), t €[0,1]. Then Lhg = Ahy, i.e., the number
A is an eigenvalue of Lyapunov operator £ corresponding the eigenfunction A (7).
It’s easy to check that if the number A9 > O is an eigenvalue of the operator £, then
an arbitrary positive number is eigenvalue of the operator £. Now we shall prove the
lemma. Let Eq. (2.4) holds then the function % g(t) be a fixed point of the operator L.
Analogously, since H is non-linear operator we can correspond to the fixed point if
there exist any eigenvector. O

Proposition 2.3 The equation
Lf=Arf, x>0 (2.6)

has at least one solution in CO+[0, 1].

Proof Clearly, that the Lyapunov operator £ is a compact on the cone C*[0, 1]. By
the other hand we have

1 2
LEM) = m ( / f(s)ds) ,
0

for all f € C*[0, 1], where m = min K (¢, s, u) > 0.
Putl'={f: | fll=r f €CI0,1]}. We define the set I' by

r,=rncto,1.
Then we obtain

inf ||£ 0.
Jnf LS >

Then by Schauder’s theorem (see [4], p.20) there exists anumber Ao > 0 and a function
fo € T4 such that, L fo = Ao fo. O

Denote by Ny ,(H) and N ;. (L) the set of positive numbers of nontrivial posi-
tive fixed points of the operators H and L, respectively. By Lemma 2.2 and Proposition
2.3 we can conclude that:

Proposition 2.4 (a) The Eq. (2.4) has at least one solution in Cg' [0, 1].
(b) The equality N¢ix p(H) = Nyix.p(L) is hold.

From Propositions 1.1 and 2.4 we get the following theorem.

Theorem 2.5 The set of splitting Gibbs measures corresponding to Hamiltonian (1.1)
is non-empty.
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3 The uniqueness of fixed point of the operator £

In this section we shall give a condition of the uniqueness of fixed point of the operator

L.

Theorem 3.1 Let the kernel K (t, u, v) satisfies the condition

1
max K(t,u,v) <c¢ min K(t,u,v), ce (1,— V17+1). (3.1
(t,u,v)€l0,113 (t,u,v)€l0,113 2

Then the operator L has the unique fixed point in C(')" [0, 1].

Proof Let max, , ,)e0.1? K (¢, u,v) = K and ming, , ,ycr0.1p3 K(t,u,v) = k. At
first we shall prove that if g € CJ [0, 1] is a solution of the equation L f = f then
g € G where

k K
{feC[o : 5 f(t)_kz}

Lets € £L(C™[0, 1]) be an arbitrary function. Then there exists a functions € C*[0, 1]
such that s = Lh. Since s is continuous on [0, 1], there exists ¢, , € [0, 1] such that

Smin = min s(t) = s(t1) = (Lh)(11), Smax = max s(t) = s(t2) = (Lh)(12).
1€[0,1] 1€[0,1]
Consequently we get

1 1 1 1
Smin > k/ / h)h)dudy > k/ f K. u.v) oo nwydudy = £
o Jo o Jo K

Since g is a fixed point of the operator £ we have ||g|| < Kllgll*> = llgll = %
From (3.2)

Smax -

(3.2)

e

k
g(t) = gmin = mm g(t) > —IIgII =g) = ok
Similarly,
1 1 ) 1
gt) = (L)) = k/O /0 gw)g(w)dudv > kgpin = gmin < 0

Hence

K K
g(t) S &max S ;gmin S k_2

Thus we have g € G.
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Now we show that £ has the unique fixed point. By Proposition 2.4, Lg = g
has at least one solution. Assume that there are two solutions g; € Cg' [0, 1] and
g €Cyl0,1],ie Lg = gi,i=1,2.

Let a function f € C[0, 1] changes its sign on [0, 1]. Then it is easy to check that
for every a € R the following inequality holds: || f(¢) — a|| > %H fll.

Put £(1) = g1(¢) — g2(¢). Since &(¢) changes its sign on [0, 1], we get

2 K2 1
E@) — (E + k_2> /(; £(s)ds

1 pl
£(r) = 2/0 [0 K(t,u,v) (g1(u)g1(v) — g2(u)g2(v)) dudv.

max

1
> _
max, > zlléll,

The last equation can be written as

1 1
sm:/o /O K1, 1, v)n(, v) (£) — E@)] + £@) + Ew)) dudov,
where

min{g (1), g2(t)} < n(u, v) < max{gi(t), g2()}, t € [0, 1].

Since g;(t) € G, i =1,2we get % <nu,v) < k%, (u,v) € [0, 1]2. Hence
K2k K2k
)2K(tvusv)n(uvv)_<k_2+ﬁ> Sk_z_ﬁ

Then
’CZ k2 1 1
‘sm _ (;Tz + E)/o /0 (E0) — E@)] + E@W) + £(v) dudv

|
< (k—2 - ﬁ> &1l (3.3)

Assume the kernel K (¢, u, v) satisfies the condition (3.1). Then K* — k* < (Kk)? =
IC < ck but it’s contradict to the following: if & € C[0, 1] changes its sign on [0, 1]
then for every a € R the following inequality holds ||§ — a|| > %HE I. This completes
the proof. O

Theorem 3.2 Let k > 2. If the function K(t,u, v) which defined in (1.5) satisfies
the condition (3.1), then the model (1.1) has the unique-translational invariant Gibbs
measure.

Acknowledgements Author thanks the referee for careful reading of the manuscript; in particular, for a
number of comments which have improved the paper.
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