

CORRECTION

Correction to: Measures under the flat norm as ordered normed vector space

Piotr Gwiazda $^1\,\cdot\,$ Anna Marciniak-Czochra $^2\,\cdot\,$ Horst R. Thieme 3

Published online: 19 October 2017 © Springer International Publishing AG 2017

Correction to: Positivity DOI 10.1007/s11117-017-0503-z

Corollary 4.16 needs to be restated as

Corollary 4.16 $\mathcal{M}^{s}_{+}(S)$ is a cone of $\mathcal{M}(S)$.

 $\mathcal{M}_{+}^{t}(S)$ is a cone of $\mathcal{M}(S)$ if S is complete, because then $\mathcal{M}_{+}^{t}(S) = \mathcal{M}_{+}^{s}(S)$. In general, $\mathcal{M}_{+}^{t}(S)$ is not a cone of $\mathcal{M}(S)$ because it is not closed.

It follows from Remark 4.20 that $\mathcal{M}_{+}^{t}(S)$ is dense in $\mathcal{M}_{+}^{s}(S)$. Assume that $\mathcal{M}_{+}^{t}(S)$ is closed and *S* is separable. Then, $\mathcal{M}_{+}^{t}(S) = \mathcal{M}_{+}(S)$. This implies that *S* is universally measurable; however, not all separable metric spaces are universally measurable ([1, Sect. 11.5]).

Horst R. Thieme hthieme@asu.edu

Piotr Gwiazda pgwiazda@mimuw.edu.pl

Anna Marciniak-Czochra anna.marciniak@iwr.uni-heidelberg.de

- ¹ Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- ² Institute of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany
- ³ School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

The online version of the original article can be found under https://doi.org/10.1007/s11117-017-0503-z.

Reference

1. Dudley, R.M.: Real Analysis and Probability, 2nd edn. Cambridge University Press, Cambridge (2002)