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Abstract In the theory of operators on a Riesz space (vector lattice), an important
result states that the Riesz homomorphisms (lattice homomorphisms) on C(X) are
exactly the weighted composition operators. We extend this result to Riesz* homo-
morphisms on order dense subspaces of C(X). On those subspace we consider and
compare various classes of operators that extend the notion of a Riesz homomorphism.
Furthermore, using the weighted composition structure of Riesz* homomorphisms we
obtain several results concerning bijective Riesz* homomorphisms. In particular, we
characterize the automorphism group for order dense subspaces of C(X). Lastly, we
develop a similar theory for Riesz* homomorphisms on subspace of C0(X), for a
locally compact Hausdorff space X , and apply it to smooth manifolds and Sobolev
spaces.

Keywords Partially ordered vector space · Order dense subspace · Pre-Riesz space ·
Riesz* homomorphism · Weighted composition operator · Automorphism group ·
Smooth manifold · Sobolev space
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1 Introduction

In the theory of Riesz spaces (vector lattices) different classes of operators and their
properties have been studied extensively. In particular, Riesz homomorphisms (lattice
homomorphisms) are a main focus in this study. We cite an important characterization
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theorem of Riesz homomorphisms between C(X)-spaces, namely Theorem 4.25 in
[1] adapted to notation and terminology that will be used in this article.

Theorem 1.1 Let X and Y be compact Hausdorff spaces. A positive operator T :
C(X) → C(Y ) is a Riesz homomorphism if and only if there exist a map π : Y → X
and a weight function η ∈ C(Y )+ such that we have

(T f )(y) = η(y) f (π(y)), f ∈ C(X), y ∈ Y. (1)

Moreover, in this case,η = T�X and themapπ is uniquely determined and continuous
on the set {η > 0}.
Here an operator T : C(X) → C(Y ) satisfying Eq. (1) is called a weighted compo-
sition operator. Our aim is to extend the above theorem to partially ordered vector
subspaces of C(X). Our approach is to investigate operators defined on a subspace of
C(X) that extend to Riesz homomorphisms on C(X). We use a theory developed by
Van Haandel [11] on extension results in Riesz space theory. He introduced the notion
of pre-Riesz spaces that turn out to be exactly the partially ordered vector space that
can be embedded as an order dense subspace of a Riesz space called the Riesz com-
pletion. He characterizes the class of operators between pre-Riesz spaces that extend
to Riesz homomorphisms between the corresponding Riesz completions. Precise def-
initions and relevant results are discussed in Sect. 2. Phrased in those words, our main
goal is to determine a suitable class of pre-Riesz subspaces of C(X) on which any
Riesz* homomorphism is a weighted composition operator. Our main result entails
that Riesz* homomorphisms defined on a subspace E of C(X) that is order dense and
separates the points of X are weighted composition operators. This result allows us
to further investigate Riesz* homomorphisms on subspaces E of C(X). In particular,
we exhibit conditions, imposed on η and π , under which an operator of the form (1)
is a complete Riesz homomomorphism. Moreover, the weighted composition struc-
ture of Riesz* homomorphisms allows us to prove various results on bijective Riesz*
homomorphism. One of which allows us to extend order isomorphisms on E to C(X)

yielding tools to characterize the automorphism group of E .
Lastly, we generalize our results to Riesz* homomorphisms on C0(X) where X need
only be locally compact and apply the theory to spaces of differentiable functions upto
arbitrary order on a locally compact smooth manifold and Sobolev spaces on domains
in R

d satisfying some regularity conditions.

2 Preliminaries

Let (E,≤) be a partially ordered vector space. Often we will only write E for the
pair (E,≤). The space E is called Archimedean if for every f, g ∈ E with n f ≤ g
for all n ∈ N one has f ≤ 0. A set G ⊆ E is called directed if for every f, g ∈ G
there is an element e ∈ G such that e ≥ f and e ≥ g. Suppose E is a subspace of
a Riesz space F , then E is said to be order dense in F if for every f ∈ F one has
f = inf{g ∈ E : g ≥ f }. Partially ordered vector spaces that can be embedded
as an order dense subspace in a Riesz space are characterized by Van Haandel in
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[11] as follows. E is called a pre-Riesz space if for every f, g, h ∈ E such that
{ f + g, f + h}u ⊆ {g, h}u one has f ≥ 0. E is a pre-Riesz space if and only if
there exists a Riesz space F and a bipositive linear map i : E → F such that i(E) is
order dense in F and generates F as a Riesz space. Moreover, in this case all spaces
F satisfying this property are isomorphic as Riesz spaces. We adopt the terminology
to call the Riesz space F the Riesz completion of E and denote it by Eρ . Van Haandel
proceeds by showing also that every pre-Riesz space is directed and every directed
Archimedean partially ordered vector space is a pre-Riesz space. A summary of Van
Haandel’s results can also be found in [10].
A natural class of operators to study between pre-Riesz spaces are the operators that
extend to a Riesz homomorphism between the Riesz completions. A linear operator
T : E → F between pre-Riesz space is called a Riesz* homomorphism if for every
f, g ∈ E one has T ({ f, g}ul) ⊆ {T f, Tg}ul in F .

Theorem 2.1 (Van Haandel, p. 26 in [11]) A linear operator T : E → F between
pre-Riesz spaces is a Riesz* homomorphism if and only if it extends to a Riesz homo-
morphism T ρ : Eρ → Fρ .

Let X be a compact Hausdorff space and C(X) the space of all real-valued continuous
functions on X . Endowed with the partial order defined by f ≥ g if and only if
f (x) ≥ g(x) holds for all x ∈ X , C(X) is an Archimedean Riesz space. In this
article we are interested in characterizing the above defined Riesz* homomorphisms
on a suitable class of subspaces in C(X). Our strategy is to extend such a Riesz*
homomorphism on a pre-Riesz subspace of C(X) to a Riesz homomorphism on the
Riesz completion, then use results in operator theory of Riesz spaces to extend this
Riesz homomorphism to C(X) and apply Theorem1.1. Therefore, we are interested
in subspaces E of C(X) that are pre-Riesz spaces and, moreover, that their Riesz
completion Eρ is a subspace of C(X). We argue that E being order dense in C(X)

is sufficient to satisfy these two properties. Suppose E ⊆ C(X) is an order dense
subspace. In particular, E is then a majorizing subspace of the Archimedean space
C(X) and hence a pre-Riesz space.Moreover, theRiesz subspaceG ofC(X) generated
by E is an order dense Riesz subspace of C(X). Due to the uniqueness of a Riesz
completion we conclude that Eρ equals G and, hence, can be viewed as a Riesz
subspace of C(X). In the case that E is a Riesz subspace of C(X), order denseness in
C(X) is equivalent with the property that for all f ∈ C(X) with f > 0, there exists
a g ∈ E satisfying 0 < g ≤ f . Here the notation f > 0 is used whenever f satisfies
both f ≥ 0 and f �= 0. In our case of general pre-Riesz spaces this equivalence does
not always hold. However, the latter condition is of interest to us and we take it as the
definition of E being pervasive in C(X). This corresponds to the definition given in
[8].

3 Weighted composition operators on subspaces of C(X)

Let E and F be order dense subspaces of C(X) and C(Y ), respectively, where X
and Y are compact Hausdorff spaces. Recall from Sect. 2 that E and F are pre-Riesz
spaces and that Eρ and Fρ can be viewed as order dense Riesz subspaces ofC(X) and
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C(Y ), respectively. Let T : E → F be a Riesz* homomorphism and T ρ : Eρ → Fρ

the Riesz homomorphism that extends T . An approach to show that T is a weighted
composition operator is to extend T ρ further to a Riesz homomorphism between
C(X) and C(Y ) and apply the general theory. However, generally not every Riesz*
homomorphism on E is the restriction of a Riesz homomorphism on C(X), which is
illustrated in the following example.

Example 3.1 Let X be the unit interval and E the space consisting of continuous
functions on X that satisfy f (0) = f (1). E is an order dense Riesz subspace ofC(X).
Let T : E → E be the inside-out operator defined by (T f )(x) = f (π(x)) for all
f ∈ E , where

π(x) = 1

2
− x + �[

x> 1
2

],

holds for all x ∈ X . Clearly, π is discontinuous at x = 1
2 . However, for all f ∈ E

we have f (0) = f (1) and, hence, that T f is continuous on X . Moreover, we obtain
the equalities (T f )(0) = f ( 12 ) = (T f )(1) for all f ∈ E , which shows that T is a
well-defined operator from E into E . T is a Riesz homomorphism on the order dense
Riesz subspace E of C(X). From the fact that weighted composition operators on
C(X) automatically have unique continuous composition maps we conclude that T
does not extend to a Riesz homomorphism on C(X).

This motivates us to impose an extra condition on E in order to obtain automatic
continuity of weight and composition maps for every weighted composition operator
on E . E is said to separate the points of X , or simply to be separating when no
confusion can arise what underlying topological space is considered, if for any x, y ∈
X , x �= y, there exists an f ∈ E with f (x) = 0 and f (y) = 1.
It turns out that this condition is sufficient to guarantee that theRiesz* homomorphisms
on E are exactly the weighted composition operators that extend toC(X). In the proof
of this assertion, we aim to apply the Riesz space theory to a Riesz homomorphism
on C(X) that extends T . Therefore, a crucial step in our proof is to extend T ρ further
to a Riesz homomorphism on C(X). Notice that this cannot be done generally by
the Lipecki–Luxemburg–Schep Theorem (see 4.36 in [1]), since C(Y ) fails to be
Dedekind complete. Keeping in mind that our desired structure for T , namely Eq. (2),
is determined pointwise, our strategy is to compose T ρ with a point evaluation on
C(Y ) to obtain a Riesz homomorphism from Eρ to the Dedekind complete space R.

Theorem 3.2 Let E and F be order dense subspaces of C(X) and C(Y ), respectively.

(i) If T : E → F is a Riesz* homomorphism, then there exist η : Y → R
+ and

π : Y → X such that

(T f )(y) = η(y) f (π(y)), f ∈ E, y ∈ Y. (2)

Moreover, if E, in addition, separates the points of X, then η and π can be taken
continuous on Y and {η > 0}, respectively, and π is uniquely determined on
{η > 0}.
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(ii) Any linear operator T : E → F that satisfies (2) for some η ∈ C(Y )+ and
π : Y → X continuous on {η > 0} is a Riesz* homomorphism.

Proof Suppose E and F are given as in the first statement of (i) and T : E → F
is a Riesz* homomorphism. Let T ρ : Eρ → Fρ be the Riesz homomorphism that
extends T . Since F is order dense in C(Y ), Fρ is a Riesz subspace of C(Y ). Let us fix
some y ∈ Y and define the Riesz homomorphism Ty : Eρ → R as the composition
of T ρ with the point evaluation in y, i.e., Ty f = (T ρ f )(y) for all f ∈ Eρ . We
apply Theorem 4.36 in [1] to Ty , which can be done since Eρ is a majorizing Riesz
subspace in C(X) and R is Dedekind complete, and obtain a Riesz homomorphism
T̂y : C(X) → R that extends Ty . Lemma 4.23 in [1] characterizes functionals on
C(X) that are Riesz homomorphisms. Namely, there exist η(y) ∈ R

+ and π(y) ∈ X
such that T̂y is given by T̂y f = η(y) f (π(y)), for all f ∈ C(X). Applying the above
reasoning for all y ∈ Y and recalling that T̂y extends Ty yields the desired result that
Eq. (2) holds.
In order to show the second part of (i), suppose that E , in addition, separates the
points of X . We redefine η(y) to be zero whenever (T f )(y) = 0 holds for all f ∈ E .
Equation (2) remains satisfied.
Suppose η is not bounded. Let f ∈ E be greater than the constant one function, then
T f is not bounded, which contradicts that T f is continuous. Therefore, we conclude
that η is bounded.
Fix y ∈ Y . We aim to show that η is continuous at y and that π is continuous at y
whenever η(y) is non-zero. To this end, we will show that every net (yα) in Y which
converges to y has a subnet (vβ) such that limβ η(vβ) = η(y) and (limβ π(vβ) =
π(y) ∨ η(y) = 0) hold. Let (yα) be a net in Y which converges to y. For any f ∈ E
the function T f is continuous and we get

η(y) f (π(y)) = (T f )(y) = lim
α

(T f )(yα) = lim
α

η(yα) f (π(yα)). (3)

Since X is compact and η(Y ) is bounded in R, there exists a subnet of (yα), which we
will denote by (vβ), such that (η(vβ))β converges to say t ∈ R and such that (π(vβ))β
converges to say x ∈ X . Therefore, for any f ∈ E we get, due to Eq. (3) and the
fact that f is bounded, (T f )(y) = t limβ f (π(vβ)). Moreover, by continuity of f ,
we obtain (T f )(y) = t f (limβ π(vβ)) = t f (x). In particular, η(y) f (π(y)) = t f (x)
holds. Supposeη(y) = 0holds, then t equals zero due to the existence of an f ∈ E such
that f (x) �= 0 by the majorizing property of E . Therefore, (yα)α has a subnet(vβ)β
such that limβ η(vβ) = η(y).
In the remaining case, namely ifη(y) > 0 holds, themajorizing property of E similarly
guarantees that t > 0 holds. Consequently, for any f ∈ E the equation f (x) =
c f (π(y)) is satisfied, where c = η(y)/t is non-zero and independent of f . Since E
separates the points of X , we obtain the equalities x = π(y) and c = 1. We conclude
that (yα)α has a subnet(vβ)β such that limβ π(vβ) = π(y) and, hence, that η is indeed
continuous at y. Moreover, Eq. (3) reduces to η(y) f (π(y)) = limβ η(vβ) f (π(y)),
hence, applying to a function f ∈ E with f (π(y)) �= 0 yields η(y) = limβ η(vβ). We
conclude that η is continuous at y. Additionally, π is uniquely determined on {η > 0}
due to E separating the points of X .
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Lastly, suppose that T : E → F satisfies (2) for some η ∈ C(Y )+ and π : Y →
X continuous on {η > 0}. The weighted compostion operator between the Riesz
completions Eρ ⊆ C(X) and Fρ ⊆ C(Y ) defined by η and π is a well-defined Riesz
homomorphism that extends T , hence T is a Riesz* homomorphism. 	


Henceforth, for notational convenience let Tη,π : E → F denote the weighted
compositionoperator between E and F withweightmapη : Y → R

+ and composition
map π : Y → X , i.e.,

(
Tη,π f

)
(y) = η(y) f (π(y)), f ∈ E, y ∈ Y.

A predecessor of the Riesz* homomorphisms are the Riesz homomorphisms, an alter-
native class of operators on a pre-Riesz space E that extend to a Riesz homomorphism
on Eρ . A linear operator T : E → F between pre-Riesz spaces is called a Riesz
homomorphism if T ({ f, g}u)l ⊆ {T f, Tg}ul holds for all f, g ∈ E . Similarly to
Riesz* homomorphisms these operators extend to Riesz homomorphisms, but not all
Riesz homomorphisms between the completions are obtained as extensions. Also, a
composition of Riesz homomorphisms between pre-Riesz spaces is generally not a
Riesz homomorphism. These defects have motivated the definition of a Riesz* homo-
morphism.
Suppose E and F are pre-Riesz spaces and T : E → F is a positive linear operator.
Clearly, for any f, g ∈ E we obtain T ({ f, g}ul) ⊆ T ({ f, g}u)l . Therefore, any Riesz
homomorphism is a Riesz* homomorphism. A converse statement does not gener-
ally hold on pre-Riesz spaces, which will be illustrated later by a counterexample in
Example3.5. However, we show that on a wide class of subspaces of C(X), which
is contained in the class of separating order dense subspaces, the notions of a Riesz
homomorphism and a Riesz* homomorphism coincide.
A subspace E ofC(X) is called pointwise order dense if it satisfies f (x) = inf{g(x) :
g ∈ E, g ≥ f } (in R), for all f ∈ C(X) and x ∈ X . Clearly, this condition is a
pointwise version of being order dense in C(X), which justifies its name. Moreover,
any pointwise order dense subspace E of C(X) is separating and order dense. It is
routine to show that a norm dense subspace ofC(X) containing the constant functions
is pointwise order dense. Before proceeding, we exhibit several examples of subspaces
of C[0, 1] to highlight differences between order theoretic properties defined so far.

Example 3.3 Let X be the unit interval.

(i) For any k ∈ N∪{∞} the spaceCk([0, 1]) of continuously differentiable functions
on [0, 1] upto order k is pervasive, norm dense and pointwise order dense inC(X).

(ii) The Namioka space defined by N = {
f ∈ C(X) : f (0) + f (1) = 2 f

( 1
2

)}
is a

pervasive, order dense and norm dense subspace of C(X). However, N is not
pointwise order dense in C(X).

(iii) P[0, 1] the space consisting of all polynomials on [0, 1] is pointwise order dense
and norm dense, however, not pervasive in C(X).

(iv) P2[0, 1] the space consisting of all polynomials on [0, 1] of degree up to 2 is a 3-
dimensional pointwise order dense subspace ofC(X), as follows from arguments
in Example 4.4 in [9], that is not norm dense.
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Suppose that E and F are pre-Riesz spaces, T : E → F is a Riesz homomorphism
and f, g ∈ E are given. In the Riesz space Fρ we obtain the equality {T f, Tg}ul =
{T f ∨ Tg}l . Since T is necessarily positive we obtain

inf{T e : e ∈ E, e ≥ f, g} = T f ∨ Tg in Fρ, f, g ∈ E . (4)

Moreover, a linear operator T : E → F is a Riesz homomorphism if and only if it
satisfies (4). Using this characterization and Theorem3.2 we prove that any Riesz*
homomorphism on a pointwise order dense subspace ofC(X) is automatically a Riesz
homomorphism.

Theorem 3.4 Let E be pointwise order dense in C(X), F be order dense in C(Y )

and T : E → F be a linear operator. T is a Riesz* homomorphism if and only if T
is a Riesz homomorphism.

Proof Let E and F be given as in the statement and suppose T : E → F is a
Riesz* homomorphism. Due to Theorem3.2 there exist suitable η and π such that
T = Tη,π : E → F holds. Suppose f, g ∈ E are given. Since T is positive, T f ∨ Tg
is a lower bound of {T e : e ∈ E, e ≥ f, g} in Fρ . Next, let h be a lower bound of
{T e : e ∈ E, e ≥ f, g} in Fρ . For any y ∈ Y we have

h(y) ≤ inf
{
(T e)(y) : e ∈ { f, g}u}

= inf
{
η(y)e(π(y)) : e ∈ { f, g}u}

= η(y)
(
inf

{
e(π(y)) : e ∈ { f ∨ g}u})

= η(y)( f ∨ g)(π(y)) = (T f ∨ Tg)(y).

Therefore, h ≤ T f ∨ Tg holds, which shows that T satisfies condition (4). Here we
used that E is pointwise order dense in C(X) in the second last equality on f ∨ g ∈
C(X) and π(y) ∈ X . Recall that the other implication holds for general pre-Riesz
spaces as discussed earlier. 	

We conclude this section with an example that shows that the above theorem does not
hold generally for separating order dense subspaces of C(X).

Example 3.5 LetN be the Namioka space as defined in Example3.3(ii) and recall that
N is indeed separating and order dense, however, not pointwise order dense in C(X).
Let T : N → R be the functional that composes any f ∈ N by the point evaluation
at x = 1

2 . T is a Riesz* homomorphism by Theorem3.2. However, letting f, g ∈ N

be defined by f (x) = x and g(x) = 1 − x , we obtain T f ∨ Tg = 1
2 ∨ 1

2 = 1
2 , while

for any e ∈ N with e ≥ f, g we get e(0) ≥ g(0) ≥ 1 and e(1) ≥ f (1) ≥ 1, hence
T e = e( 12 ) ≥ 1 > T f ∨ Tg. Therefore, T does not satisfy condition (4) and, hence,
is not a Riesz homomorphism.

4 Complete Riesz homomorphisms

Recall that the Riesz* homomorphisms on a separating order dense subspace E of
C(X) are exactly the weighted composition operators, due to Theorem3.2. Using
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the structure of Riesz* homomorphisms on E we will investigate another type of
homomorphism, namely the complete Riesz homomorphisms, which encompasses the
Riesz* homomorphisms. First introduced and studied by Buskes and van Rooij [5],
complete Riesz homomorphisms are exactly the operators between pre-Riesz spaces
that extend to order continuous Riesz homomorphisms between the completions (see
[11]). We aim to characterize the complete Riesz homomorphisms between order
dense subspaces of C(X) and at the same time characterize the order continuous
Riesz homomorphisms between Riesz subspaces of C(X). More specifically, our aim
is to determine a necessary condition imposed on η and π that guarantees the operator
Tη,π : E → F to be a complete Riesz homomorphism.

Definition 4.1 Let E and F be partially ordered vector spaces. A linear operator
T : E → F is called a complete Riesz homomorphism if for any G ⊆ E , inf G = 0
implies inf T (G) = 0.

This definition is given for general partially ordered vector spaces. In this generality
any complete Riesz homomorphism is a Riesz homomorphism and, hence, a Riesz*
homomorphism (see [11]). A counterexample to the converse can easily be constructed
as follows. Let T = Tη,π : C[0, 1] → C[0, 1] where η is positive and non-vanishing
and π is constant. There exists a sequence in C[0, 1] that descends to zero and is
constantly one on the singleton π([0, 1]). Therefore, T is not a complete Riesz homo-
morphism. It holds generally that η ≥ 0 non-vanishing and π being an open map
suffice to guarantee that Tη,π is a complete Riesz homomorphism. However, imposing
openness on π is not necessary as will be shown in Theorem4.4.
A function π : Y → X is called weak open if for all non-empty U ⊆ Y open the
image π(U ) is dense somewhere, i.e., there exists a non-empty V ⊆ X open such that
π(U )∩V is dense in V , and π is called nowhere constant if for all non-emptyU ⊆ Y
open the image π(U ) is not a singleton. Obviously the former implies the latter and
π being open implies both properties.
When investigating complete Riesz homomorphisms, it is convenient to characterize
subsets of E with infimum equal to zero.

Lemma 4.2 Let E be an order dense subspace of C(X) and let G ⊆ E+ be given.
Then inf G = 0 holds in E if and only if

∀ε > 0,U ⊆ X non-empty and open ∃ f ∈ G, y ∈ U such that f (y) ≤ ε. (5)

Proof Let G ⊆ E+ be given satisfying inf G = 0 in E . Suppose ε > 0 and U ⊆ X
be non-empty and open such that for all f ∈ G and y ∈ U we have f (y) > ε. Clearly,
ε� is a lower bound of G in C(X). E is assumed to be order dense in C(X), hence
there exists a g ∈ E with g � 0 and g ≤ ε�. However, this contradicts the assumption
that inf G = 0 holds in E , hence (5) holds.
Next, supposeG ⊆ E+ does not satisfy inf G = 0. There exists a lower bound g ∈ E
ofG such that g � 0. The positive part g+ of g is a non-zero positive element ofC(X)

and a lower bound of G. Since g+ is continuous, there exists an ε > 0 and a U ⊆ X
non-empty and open such that f (y) ≥ g+(y) > ε holds for all y ∈ U, f ∈ G. 	
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Another useful tool when investigating complete Riesz homomorphisms on pre-
Riesz spaces is the following extension lemma.

Lemma 4.3 Suppose E and F are pre-Riesz spaces and T : E → F is a complete
Riesz homomorphism, then T ρ : Eρ → Fρ is a complete Riesz homomorphism.

Proof Let G ⊆ (Eρ)+ be given such that inf G = 0 holds and define the set

B := { f ∈ E : ∃g ∈ G, f ≥ g} .

Since E is order dense in Eρ we obtain inf B = 0. In particular, inf T (B) = 0
holds as T is assumed to be a complete Riesz homomorphism. In order to show that
the infimum of T ρ(G) equals zero, we note that zero is a lower bound of T ρ(G) due
to the positivity of T ρ . Suppose h ∈ Fρ is another lower bound of T ρ(G). For any
f ∈ B there exists a g ∈ G by construction such that f ≥ g holds and, hence, we
get T f = T ρ f ≥ T ρg ≥ h. Therefore, h is a lower bound of the set T (B) that has
infimum equal to zero and thus is negative. 	


Arriving at the main result of this section, we note that no additional conditions are
imposed on the subspace F of C(Y ).

Theorem 4.4 Let E be an order dense subspace of C(X) and F a subspace of C(Y ).
Let η ∈ C(Y )+ and π : Y → X be such that Tη,π : E → C(Y ) maps into F.
Tη,π : E → F is a complete Riesz homomorphism if and only if π is weak open on
{η > 0}.
Proof Letη andπ be as in the statement and denote T = Tη,π . Supposeπ isweak open
on {η > 0} and G ⊆ E is given with inf G = 0. Let us put M := sup{η(y) : y ∈ Y }
and fix δ > 0 and U ⊆ Y non-empty and open. Due to Lemma4.2 it suffices to show
that there exists an f ∈ G and y ∈ U such that T f (y) ≤ δ holds. Suppose there exists
a y ∈ U ∩ {η = 0}, then for all f ∈ G we have (T f )(y) = 0 < δ and, hence, we
are done. We assume that U ⊆ {η > 0} holds and let V ⊆ X be non-empty and open
with π(U ) ∩ V dense in V . Such a V exists due to π being weak open on {η > 0}.
Letting ε := δ(M + 1)−1 > 0, there exists a f ∈ G and x ∈ V with f (x) ≤ ε

2 .
Therefore, we can find an x0 ∈ π(U ) ∩ V with f (x0) ≤ ε, since f is continuous. Let
y0 ∈ π−1({x0}) ∩U and observe that we get

(T f )(y0) = η(y0) f (π(y0)) ≤ M f (π(y0)) = M f (x0) ≤ Mε ≤ δ.

Hence, due to Lemma4.2, T is a complete Riesz homomorphism.
Conversely, suppose that π is not weak open on {η > 0}. In other words, there

exist δ > 0 and non-empty and open U ⊆ Y with U ⊆ {η ≥ δ} and π(U ) is nowhere
dense in X . Our aim is to show that T̂ = Tη,π : Eρ → Fρ is not a complete Riesz
homomorphism. In that case Lemma4.3 yields the desired contradiction.
Let us define

G := { f ∈ Eρ : f ≥ 0 and f ≥ 1 on π(U )}.
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We argue that inf G = 0 holds. Suppose it does not hold, then there exists a lower
bound of G, g ∈ Eρ with g > 0, since Eρ is a Riesz space. In particular, there exist
ε > 0 and W ⊆ X non-empty and open such that g ≥ ε holds on W . Recall that
π(U ) is nowhere dense, so π(U ) ∩ W is not dense in W . Therefore, the closure of

π(U ) ∩ W taken in W , V := π(U ) ∩ W
W
, is a closed strict subset of W . So there

exists aW0 ⊆ W non-empty and open withW 0 ∩V = ∅. Thus there is a f0 ∈ C(X)+
with f0 = 1 on V ⊇ π(U ) and f0 = 0 on W0. As Eρ is order dense in C(X), there
exists an f ∈ G with f (x) < ε for some x ∈ W0 ⊆ W , which contradicts that g
is a lower bound of G. However, any g ∈ T (G) satisfies g ≥ δ on the non-empty
open set U . Since Fρ is a Riesz subspace of C(Y ), Fρ is pervasive and there exists
an f ∈ (Fρ)+ with f > 0 on U that is a lower bound of T (G). 	

Let us remark that Theorem4.4 shows, in particular, that the order continuous Riesz
homomorphisms between order dense Riesz subspaces of C(X) and C(Y ) are exactly
the composition multiplication operators where the composition map is weak open on
the set where the multiplication map is non-zero.

Concluding this sectionwe remark that, in the special case that X andY are bounded
and closed intervals of R, the weak openness of π on {η > 0} clause in the above
theorem can be replaced by π being nowhere constant on {η > 0}.
Proposition 4.5 Let X and Y be bounded and closed intervals inR, E an order dense
subspace of C(X), F a subspace of C(Y ), η ∈ C(Y )+ and π : Y → X a map that
is continuous on {η > 0}. The linear operator Tη,π : E → F is a complete Riesz
homomorphism if and only if π is nowhere constant on {η > 0}.
Proof Due to Theorem4.4 it suffices to verify the equivalence of π being weak open
and being nowhere constant on some open subset of Y . Clearly the former implies
the latter. Suppose that U ⊆ Y is non-empty and open and π is nowhere constant on
U . In particular, there exist distinct points x, y ∈ X contained in π(U ). We can find
a, b ∈ U with a < b, π(a) = x and π(b) = y or the other way around. Without
loss of generality we assume that x < y holds. Restrict π to the continuous map
π̂ : [a, b] → X . For any x < z < y we can find, by the Intermediate Value Theorem,
a c ∈ (a, b) with π(c) = z. Therefore, (x, y) is contained in π(U ) and we conclude
that π is weak open on U .

5 Bijective homomorphisms

In the previous sections we have considered three types of homomorphisms defined on
pre-Riesz spaces, namely, in order fromweak to strong,Riesz* homomorphisms,Riesz
homomorphisms and complete Riesz homomorphisms. Moreover, we characterized
themon separating order dense subspaces ofC(X).We turn our attention in this section
to bijective homomorphisms. More precisely, we address problems concerning their
inverses. Under what conditions on E and F is the inverse of a Riesz* homomorphisms
T : E → F necessarily of the same type?What are necessary and sufficient conditions
imposed on η and π under which Tη,π : E → F is an order isomorphism whenever E
and F are order dense separating subspaces of C(X)? We start by introducing order
isomorphisms and making elementary observations in a general setting.
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Let E and F be partially ordered vector spaces and T : E → F a linear operator.
T is called bipositive if for any f ∈ E one has f ≥ 0 if and only if T f ≥ 0 holds.
An order isomorphism is a bipositive linear bijection. Recall that a bipositive linear
operator is injective. The following observation on order isomorphisms holds in a
general setting where E and F need not even be Archimdean or directed.

Lemma 5.1 Suppose E and F are partially ordered vector spaces and T : E → F
is a linear operator. Then T is an order isomorphism if and only if T is bijective and
both T and T−1 are complete Riesz homomorphisms.

Proof Suppose T is an order isomorphism. It suffices to show that T is a complete
Riesz homomorphism, as T−1 is also an order isomorphism. To this end, let G ⊂ E+
satisfy inf G = 0. Suppose f ∈ F is a lower bound of T (G), then T−1 f is a lower
bound of G. Therefore, T−1 f ≤ 0 holds as the infimum of G equals zero. Applying
the positivity of T again yields T T−1 f = f ≤ 0, which proves that T is a complete
Riesz homomorphism.
For the converse, it suffices to observe that complete Riesz homomorphisms T are
positive. Suppose f is positive and let G := {0, f } then, in particular, inf G = 0 and
hence inf T (G) = 0 and T f ≥ 0 holds. 	

Lemma 5.2 Suppose E and F are pre-Riesz spaces, T : E → F is a Riesz* homo-
morphism and T ρ : Eρ → Fρ is the Riesz homomorphism that extends T , then the
following statements hold:

(i) If T is surjective, then T ρ is surjective.
(ii) If E is pervasive and T is injective, then T ρ is injective.

Proof (i): Let g ∈ Fρ be given and let f1, . . . , fn, g1, . . . , gm ∈ F be such that g =∧n
i=1 fi +∨m

j=1 g j holds in Fρ . As T is surjective there are a1, . . . , an, b1, . . . , bm ∈
E with fi = T (ai ) and g j = T (b j ), i = 1, . . . , n and j = 1, . . . ,m. We define
f := ∧n

i=1 ai + ∨m
j=1 bi and observe that f ∈ Eρ . The image of this f under T ρ is

computed as follows

T ρ f = T ρ

⎛
⎝

n∧
i=1

ai +
m∨
j=1

b j

⎞
⎠

=
n∧

i=1

T ρai +
m∨
j=1

T ρb j

=
n∧

i=1

fi +
m∧
j=1

g j = g,

hence T is surjective.
(ii): Suppose E is pervasive and let f ∈ (Eρ)+ be non-zero. Due to the pervasiveness
of E there exists a g ∈ E+ with 0 < g ≤ f . Since T ρ is positive this yields
0 ≤ Tg = T ρg ≤ T ρ f . As Tg �= 0 holdswe obtain T ρ f > 0.Next, suppose f ∈ Eρ

is non-zero such that T ρ f = 0 holds. Then we obtain T ρ f + = (T ρ f )+ = 0, hence
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by the above argument we obtain f + = 0. Similarly, we get T ρ f − = (T ρ f )− = 0
and f − = 0 follows. We conclude that T ρ is injective. 	

In particular, the above lemma shows that bijective Riesz* homomorphisms between
pervasive pre-Riesz spaces extend to bijective Riesz homomorphisms between the
Riesz completions. This fact allows us to obtain a result on the inverse of a bijective
Riesz* homomorphism on a pervasive pre-Riesz space.

Theorem 5.3 Suppose E and F are pre-Riesz spaces, E is pervasive and that T :
E → F is a bijective Riesz* homomorphism. Then T−1 is a Riesz* homomorphism
and, hence, T is an order isomorphism.

Proof Suppose T is a bijective Riesz* homomorphism. Lemma5.2 yields that T
extends to a bijective Riesz homomorphism T ρ : Eρ → Fρ . The inverse of a bijec-
tive Riesz homomorphism between Riesz spaces is again a Riesz homomorphism, see
for example Theorem 2.15 in [3]. Therefore, (T ρ)−1 : Fρ → Eρ is a Riesz homo-
morphism that extends T−1 : F → E and, hence, T−1 is a Riesz* homomorphism.

	

Let us remark that any complete Riesz homomorphism T between pre-Riesz spaces

E and F is a Riesz homomorphism and, in particular, a Riesz* homomorphism (see
[5]). Therefore, if E is pervasive and T : E → F is a bijective operator of any of
these three types, then T is, in particular, a bijective Riesz* homomorphism and by
Theorem5.3 an order isomorphism. Thus, on pervasive pre-Riesz spaces the notions
of order isomorphism, complete Riesz homomorphism, Riesz homomorphism and
Riesz* homomorphisms coincide for bijective operators T and their inverses. We
next exhibit an example showing that this statement fails without assuming E to be
pervasive.

Example 5.4 Let X = [0, 1], η = �, π(x) = 1
2 x , x ∈ [0, 1], and E be the set

of polynomials on X . Then E is a pre-Riesz space and its Riesz completion Eρ is
the Riesz subspace of C([0, 1]) consisting of all piecewise polynomial functions.
Since non-constant polynomials can only be zero in finitely many points, one easily
verifies that E is not pervasive. Let T : E → E be the linear operator defined by
(T p)(x) = η(x)p(π(x)) = p( 12 x), for all x ∈ [0, 1] and p ∈ E . Theorem3.2 yields
that T is aRiesz* homomorphism.Moreover, sinceπ is aweak openmap, Theorem4.4
yields that T is even a complete Riesz homomorphism. Clearly, T is an injective
operator. Let g ∈ E be of the form g(x) = αnxn + · · · + α1x + α0, x ∈ [0, 1] with
α0, . . . , αn ∈ R. The pre-image f of g under T is given by f (x) = ∑n

i=0 βi x i where
βi := 2iαi for all 0 ≤ i ≤ n. We conclude that T is a bijective Riesz* homomorphism.
Suppose there exist a θ : X → R continuous and τ : X → X continuous on {θ > 0}
such that T−1 = Tθ,τ on E . T has the property that T�X = �Y holds so T−1

�Y = 1X
holds. For any x ∈ X we thus have θ(x) = 1. Denote by IX ∈ E the identity function
on X . For any x ∈ X we have

x = (T−1T IX )(x) = (T IX )(τ (x)) = IX

(
1

2
(τ (x))

)
= 1

2
τ(x).
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However, the equality τ(x) = 2x can not be satisfied on all of [0, 1], as τ has to map
into [0, 1]. Therefore, T−1 is not a weighted composition operator. Theorem3.2 shows
that T−1 is not a Riesz* homomorphism.

We turn our attention to the following result which answers the second problem
posed in the beginning of this section.

Theorem 5.5 Let E and F be separating order dense subspaces of C(X) and C(Y ),
respectively, and T : E → F a linear operator. T is an order isomorphism if and only
if T = Tη,π where η ∈ C(Y )+ is non-vanishing and π : Y → X is a homeomorphism.
Moreover, in this case there exists a δ > 0 such that η ≥ δ� and the homeomorphism
π is uniquely determined by T .

Proof Suppose T is an order isomorphism. Due to Lemma5.1, T is a complete Riesz
homomorphism and, in particular, a Riesz* homomorphism. Therefore, Theorem3.2
says that there exist η ∈ C(Y )+ and π : Y → X continuous on {η > 0} such that
T = Tη,π . Suppose that η(y) = 0 holds for some y ∈ Y . For any g ∈ T (E) we
then obtain g(y) = 0, which contradicts the surjectivity of T since F is majorizing
in C(Y ). Therefore, η is indeed non-vanishing and by compactness of Y there exists
a δ > 0 such that η(y) ≥ δ for all y ∈ Y . Remark that, since {η > 0} = Y holds, π is
continuous and uniquely determined everywhere. Suppose that π is not injective and
let y1, y2 ∈ Y be such that y1 �= y2 and π(y1) = π(y2) hold. For any f ∈ E we have,

(T f )(y1) = η(y1) f (π(y1)) = η(y2)
η(y1)

η(y2)
f (π(y2)) = η(y1)

η(y2)
(T f )(y2).

Therefore, we obtain a λ ≥ 0 such that g(y1) = λg(y2) holds for all g ∈ Im(T ).
However, since F separates the points of Y this contradicts the surjectivity of T .
Next we show that π is surjective. Supposing the converse, there exists a x0 ∈ X with
x0 /∈ π(Y ). Since π is continuous, π(Y ) is compact in X and, hence, π(Y ) is closed
due to X being a Hausdorff space. In particular, there exists an open neighborhood U
of x0 disjoint from π(Y ). Due to Urysohn’s lemma there exists an f ∈ C(X) with
supp( f ) ⊆ U and f < 0. Since E is order dense in C(X) there exists a g ∈ E , g ≥ f
and g � 0. However, for all y ∈ Y , (Tg)(y) = η(y)g(π(y)) is satisfied while η ≥ 0
and π(y) /∈ U . Therefore, g(π(y)) ≥ f (π(y)) = 0 holds for all y ∈ Y , so Tg ≥ 0,
contradicting the bipositivity of T on E .
Conversely, suppose T = Tη,π for some η ∈ C(Y )+ non-vanishing and a homeo-
morphism π : Y → X and let δ > 0 be such that η ≥ δ�. Let us define a weighted
composition operator R : F → E by

R f := 1

η ◦ π−1 ( f ◦ π−1), f ∈ F.

For all f ∈ F and y ∈ Y we have (T R f )(y) = η(y)(R f )(π(y)) = f (y), so
T R = IdF . Similarly, RT equals the identity operator on E and, hence, R = T−1.
Both T and T−1 are positive since their weight maps are positive and thus T is an
order isomorphism. 	
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Corollary 5.6 Let E and F be separating order dense subspaces of C(X) and C(Y ),
respectively. An order isomorphism T : E → F extends to an order isomorphism
T̂ : C(X) → C(Y ).

Proof Suppose T : E → F is an order isomorphism. Theorem5.5 says that T = Tη,π

for some non-vanishing η ∈ C(Y )+ and a homeomorphism π : Y → X . Therefore,
T̂ = Tη,π : C(X) → C(Y ) is a well-defined linear operator and by again applying
Theorem5.5 we conclude that T̂ is an order isomorphism. 	


Suppose E is a separating order dense subspace ofC(X). The automorphism group
of E , denoted by Aut(E), is the set consisting of all order isomorphisms from E to
itself equipped with the group action of composing operators. Due to Theorem5.5
the automorphism group of C(X) is isomorphic to the direct product G × Hom(X),
where G is the group consisting of all η ∈ C(X) satisfying η ≥ δ� > 0, for some δ ∈
(0,∞), equipped with pointwise multiplication and Hom(X) is the group consisting
of homeomorphisms from X to itself. Here the isomorphism map from G ×Hom(X)

to Aut(C(X)) is given by (η, π) �→ Tη,π .
Let T be an automorphism on E . Due to Theorem5.5, T = Tη,π with (η, π) ∈
G ×Hom(X) and, moreover, π is uniquely determined by T . One easily verifies that
η is also uniquely determined by T , since E separates the points of X . Combining
these observations with Corollary5.6 yields that the automorphism group of E embeds
in Aut(C(X)). More precisely, Aut(E) is the subgroup of Aut(C(X)) consisting of
the operators that leave E invariant.
In general, Aut(E) and Aut(C(X)) need not be isomorphic even if E is in addition
pervasive. Namely, any automorphism Tη,π on C[0, 1] where η or π is not differen-
tiable does not restrict to an automorphism on Ck[0, 1]. In Sect. 7 we characterize
the automorphism group of a more general class of partially ordered vector spaces,
namely, the spaces Ck

0 (M) of arbitrary order k and where M is a locally compact
smooth manifold.

6 Locally compact spaces

In the previous sections we have investigated Riesz* homomorphisms on separating
order dense subspaces of the space of continuous functions on somecompactHausdorff
space. Most results developed so far only use the compactness structure on bounded
subsets. In this section we aim to generalize Theorem3.2 to Riesz* homomorphisms
between spaces of functions on locally compact spaces.
For the rest of this section, let X and Y be locally compact Hausdorff spaces. Consider
the subspace C0(X) of C(X) consisting of all functions f ∈ C(X) that vanish at
infinity, i.e., for all ε > 0 the set { f ≥ ε} is compact in X . Clearly C0(X) is a Riesz
space that coincides with C(X) whenever X is compact. We aim to characterize the
Riesz* homomorphisms on pre-Riesz subspaces of C0(X). However, before we can
do so we have to show that Riesz homomorphisms on the whole space C0(X) are of
the desired weighted composition form. Similar to the C(X) case the proof uses the
structure of positive bounded linear functionals on C0(X). In 7.3 of [6] the positive
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bounded linear functionals on C0(X) are characterized to be exactly those functionals
that are given by integration against a finite Radon measure μ.

Theorem 6.1 A linear operator T : C0(X) → C0(Y ) is a Riesz homomorphism if
and only if T = Tη,π for some η ∈ Cb(Y )+ and π : Y → X continuous on {η > 0}.
Moreover, in this case π is proper on {η ≥ ε} for each ε > 0, i.e.,

K ⊆ X compact, ε > 0 ⇒ π−1(K ) ∩ {η ≥ ε} compact. (6)

Proof Fix a y ∈ Y and define the positive linear functional Ty : C0(X) → R by
Ty f := (T f )(y), for f ∈ C0(X). Since positive operators between Banach lattices
are norm continuous, T is normbounded. Therefore, Ty is a positive and normbounded
functional and by Folland [6, 7.3] Ty is given by integration against a finite Radon
measure μ.
Suppose μ is supported in more than one point, i.e., there are distinct s, t ∈ supp(μ),
where supp(μ) consists of all x ∈ X such that for all open U ⊆ X that contain x we
have μ(U ) > 0. Since X is a Hausdorff space, we obtain disjoint open sets A, B ⊆ X
with s ∈ A, t ∈ B andμ(A), μ(B) > 0. Furthermore, by inner regularity of the Radon
measure μ we can assume that A and B are contained in some compact set K ⊆ X .
Due to Urysohn’s lemma there exist f, g : X → [0, 1] continuous with f = 0 on
X\A, g = 0 on X\B and f (s) = 1, g(t) = 1. Observe that f, g ∈ C0(X) hold as
they are zero outside the compact set K . By construction f and g are disjoint, hence
their images under T are disjoint, i.e. Ty f ∧ Tyg = 0. However, for ε ∈ (0, 1], we
also have

Ty f =
∫

f dμ ≥
∫

{ f ≥ε}
ε dμ = ε · μ({ f ≥ ε}) > 0,

since the set { f ≥ ε} contains the point s which lies in the support of μ, since ε ≤ 1.
Similarly, Tyg > 0 holds, which contradicts our earlier conclusion that Ty f ∧Tyg = 0
holds. Thus, supp(μ) is a singleton.
Let x0 ∈ X be the unique element in the support of μ. For any f ∈ C0(X) we have

Ty f =
∫

f dμ =
∫

{x0}
f dμ = f (x0) · μ({x0}).

In other words, Ty is a weighted point evaluation, hence T is a composition multipli-
cation operator T = Tη,π . In the proof of Theorem3.2, where we considered theC(X)

case, we showed that η and π are automatically continuous on Y and {η > 0}, respec-
tively. Our arguments there only require that any bounded net in X has a convergent
subnet, which still holds for locally compact X since a bounded net is eventually con-
tained in a compact subset of X . Therefore, we conclude that η and π are continuous
on Y and {η > 0}, respectively. Additionally, η inherits the positivity and boundedness
from T .
In order to prove the converse, we start with a composition multiplication operator
T = Tη,π : C0(X) → C0(Y ). To show that T is necessarily a Riesz homomorphism
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we observe that the supremum of two functions f, g ∈ C0(X) equals the pointwise
maximum of the two and a compositionmultiplication operator respects any pointwise
structure.
Finally, suppose K ⊆ X is compact and ε > 0 is such that π−1(K ) ∩ {η ≥ ε} is not
compact. Let f ∈ C0(X) be equal to one on K ; such an f exists by compactness of
K . For any y ∈ π−1(K ) ∩ {η ≥ ε} we have (T f )(y) = η(y) f (π(y)) = η(y) ≥ ε.

However, π−1(K ) ∩ {η ≥ ε} is not compact which contradicts T f ∈ C0(Y ). 	

Analogously to Theorem3.2 the previous result extends to Riesz* homomorphisms
on separating order dense subspaces, which is the content of the following result.

Theorem 6.2 Let E and F be order dense subspaces of C0(X) and C0(Y ), respec-
tively, let E be separating and T : E → F be a linear operator. T is a Riesz*
homomorphism if and only if T = Tη,π for some η ∈ Cb(Y )+ and π : Y → X
continuous on {η > 0}. Moreover, in this case η and π satisfy (6).

Proof Suppose T is a Riesz* homomorphism and let T ρ : Eρ → Fρ be the Riesz
homomorphism extending T . Observe that Eρ and Fρ are Riesz subspaces of C0(X)

and C0(Y ) respectively. Let us fix y ∈ Y and define the functional Ty : Eρ → R

by Ty f := (T ρ f )(y) and observe that Ty is a Riesz homomorphism. Due to Eρ

being majorizing in C0(X) and R being Dedekind complete, Ty extends to a Riesz
homomorphism T̂y : C0(X) → R. The arguments of Theorem6.1 show that Ty is
a positive scalar multiple of a point evaluation and, hence, that T ρ is a weighted
composition operator T ρ = Tη,π : Eρ → Fρ . In particular, due to E being order
dense and separating in C0(X), arguments in the proof of Theorem3.2 show that η

and π are continuous on Y and {η > 0}, respectively. Moreover, η inherits positivity
and boundedness from T .
Let T = Tη,π : E → F be given for some η ∈ Cb(Y )+ and π : Y → X continuous on
{η > 0}. Suppose K ⊆ X is compact and ε > 0 is given such that π−1(K )∩{η ≥ ε} is
not compact. Let us take a g ∈ C0(X)with g equal to one on K and use the majorizing
property of E to find an f ∈ E greater than g. For any y ∈ π−1(K )∩{η ≥ ε}we have
(T f )(y) = η(y) f (π(y)) ≥ η(y) ≥ ε. However, π−1(K ) ∩ {η ≥ ε} is not compact,
which contradicts T f ∈ F ⊆ C0(Y ). Therefore, (6) is satisfied.
We conclude the proof by observing that T ρ : Eρ → Fρ defined by T ρ = Tη,π is a
well-defined Riesz homomorphism that extends T . 	

Theorem 6.3 Suppose E and F be order dense subspaces of C0(X) and C0(Y ),
respectively, E separating and T : E → F a bijective linear operator. T is an order
isomorphism if and only if T = Tη,π holds, where η ∈ C(Y ) satisfies 0 < δ� ≤ η ≤
D� for some δ, D > 0 and π : Y → X is a homeomorphism. Moreover, in this case
π is uniquely determined by T .

Proof Suppose T : E → F is an order isomorphism. Due to Theorem6.2 we obtain
T = Tη,π for some η ∈ Cb(Y )+ and π : Y → X continuous on {η > 0}. Similar
arguments as in the proof of Theorem5.5 show that η is non-vanishing and π is
invertible and,moreover, that T−1, the inverse of T , is aweighted composition operator
with a positive weight map equal to the reciprocal of (η ◦π−1). In particular, T−1 is a
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positive operator and, hence, T−1 is order bounded. E is majorizing in C0(X) so the
weight map of T−1 is bounded. Since π is bijective, we infer that the reciprocal of
η is bounded. Combining this with the fact that η is bounded, we obtain the desired
δ, D > 0 such that 0 < δ� ≤ η ≤ D�. In conclusion we observe, since η and
its reciprocal are non-vanishing, that π and π−1 are continuous and hence π is a
homeomorphism. 	


At this point it is convenient to characterize pervasive subspaces of C0(X) and
relate the pervasive condition to order denseness. Note that, in contrast to [8], we do
not restrict the notion of pervasiveness to majorizing subspaces.

Lemma 6.4 Let E ⊆ F be a subspace of a Riesz space F. The following assertions
are equivalent.

(i) E is pervasive in F, i.e., for every f ∈ F with f > 0 there exists a g ∈ E such
that 0 < g ≤ f .

(ii) For every f ∈ F, f > 0, one has f = sup{g ∈ E : 0 ≤ g ≤ f }.
Moreover, if E is pervasive and majorizing in F, then E is order dense in F. In the
case that X is a locally compact Hausdorff space and F = C0(X), then (i) and (i i)
are equivalent with:

(iii) For every non-empty open set U ⊆ X there exists a positive non-zero f ∈ E sat-
isfying supp( f ) ⊆ U, where supp( f ) equals the closure of {x ∈ X : f (x) �= 0}.

Proof Theorem 1.34 on page 31 of [3] proves the equivalence of (i) and (ii) in the case
that E is a Riesz space. However, the proof of this theorem only uses existence of a
supremum of two elements in F . Hence, the result extends immediately to partially
ordered subspaces of F .
Next we suppose that E is pervasive and majorizing in F and let f ∈ F be given. By
assumption there exists a g ∈ E with g ≥ f . Let h := g − f ≥ 0 and apply property
(ii) to obtain h = sup{e ∈ E : 0 ≤ e ≤ h}. From the equality f = g − h we obtain

f = g − sup{e ∈ E : 0 ≤ e ≤ h}
= inf{g − e : e ∈ E, 0 ≤ e ≤ h}
= inf{e ∈ E : f ≤ e ≤ g},

where the last equality is due to g ∈ E and the fact that 0 ≤ e ≤ h holds if and only
if g ≥ g − e ≥ f . In particular, for any lower bound v of {e ∈ E : f ≤ e} we have
v ≤ inf{e ∈ E : f ≤ e ≤ g} = f . Hence, f = inf{e ∈ E : f ≤ e}, which shows
that E is order dense in F .
Next, suppose F = C0(X) holds, where X is a locally compact Hausdorff space.
Let E be a pervasive subspace of F and let U ⊆ X be open and non-empty. Due to
Urysohn’s lemma we know there exists a non-zero f ∈ C(X)+ with supp( f ) ⊆ U .
Since E is pervasive in F , there exists a g ∈ E satisfying the same properties as f
and hence E satisfies property (iii).
Conversely, suppose that (iii) holds and let f ∈ C0(X)+ be non-zero. Let us fix an
0 < ε < ‖ f ‖∞, then the setU := { f > ε} is a non-empty open subset of X . Applying
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property (iii), there exists a non-zero g ∈ E+ with supp(g) ⊆ U . Let h = εg/‖g‖∞,
then h ∈ E+, h �= 0 and h ≤ f are all satisfied and thus E is pervasive in C0(X). 	


Regarding Theorems6.2 and 6.3 we are interested to know whether the space
Ck
0 (X), where X ⊆ R

d is an open subset and k ∈ N ∪ {∞}, is separating and order
dense in C0(X). It turns out that this in fact holds and that Ck

0 (X) is even pervasive.
This is the content of Theorem6.5 which is easily proved using Lemma6.4. In the
next section we show a more general version of this statement, namely Theorem7.2,
where X is replaced by any locally compact smooth manifold, therefore, we omit the
proof.

Theorem 6.5 Let d ∈ N and X ⊆ R
d be an open subset and k ∈ N ∪ {∞} be given.

Then Ck
0 (X) is a separating, pervasive and order dense subspace of C0(X).

7 Applications

Wededicate this section to an investigation of various spaces consisting of functions on
a locally compact Hausdorff space X that can be embedded as a separating, pervasive
and order dense subspace of C0(X). An immediate result in this vain is obtained by
observing the following chain of embeddings

Ck
0 (X) ⊆ Ck,α

0 (X) ⊆ UC0(X) ⊆ C0(X),

where X is an open subset of R
d and Ck,α

0 (X) is the space consisting of real-valued
functions on X that vanish at infinity having continuous derivatives up to order k
such that the kth partial derivatives are Hölder continuous with exponent 0 < α ≤ 1,
meaning that | f (x) − f (y)| ≤ C‖x − y‖α holds for all x, y ∈ X and some constant
C > 0.UC0(X) denotes the space of uniformly continuous functions on X that vanish
at infinity. Moreover, Ck,α

0 (X) equals the space LC0(X) consisting of all Lipschitz
continuous functions on X whenever k = 0 and α = 1 hold. Due to Theorem6.5 the
above embeddings yield that LC0(X),Ck,α

0 (X) andUC0(X) are separating, pervasive
and order dense subspaces of C0(X).
In the remainder of this section we exhibit two more elaborate examples of spaces
consisting of functions that can be embedded as separating, pervasive and order dense
subspaces of C0(X). Namely, first we investigate spaces of differentiable functions
on a locally compact smooth manifold. Secondly we consider Sobolev spaces on a
domain of R

d satisfying certain regularity conditions.
We recall several elementary definitions concerning smooth manifolds (see [7]). Let
(X, τ ) be a second countable Hausdorff space. X is called a d-dimensional topological
manifold if there exists an open cover (Ui )i∈I of X such that for all i ∈ I , Ui is
homeomorphic to an open subset Vi of R

d . In that case, the collection of triplets
A = {(Ui , hi , Vi ) : i ∈ I } is called an atlas of M , where hi : Ui → Vi are
homeomorphisms. One such a triplet is called a chart of U . M = (X,A) is an m-
smooth manifold if in addition for all i, j ∈ I the gluing map (hi ◦ h−1

j )|h j (Ui∩Uj ) :
h j (Ui ∩ Uj ) → hi (Ui ∩ Uj ) is m-times differentable as a map on R

d , or simply a
smooth manifold whenever m = ∞.
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Definition 7.1 Suppose M is a m-smooth d-dimensional manifold and f : M → R

is a continuous map. Then f is calledm-times differentiable if for all charts (U, h, V )

of M the map ( f ◦ h−1) : V ⊆ R
d → R is m-times differentiable.

Let M be a m-smooth d-dimensional manifold and let C∞
0 (M) be the space of

functions that vanish at infinity that are infinitely many times differentiable according
to Definition7.1. A useful tool when dealing with the space C∞

0 (M) is the notion
of a partition of unity. Suppose U = (Uα)α∈A is an open cover of M . A partition
of unity subordinate to U is a collection of continuous functions ϕα : M → [0, 1],
α ∈ A, such that supp(ϕα) ⊆ Uα , {supp(ϕα) : α ∈ A} is a locally finite cover and∑

α∈A ϕα = 1. Since the supports of the ϕα form a locally finite cover,
∑

α ϕα has only
finitely many non-zero terms in a neighborhood around every point and we encounter
no convergence problems. A partition of unity is called m-smooth if every ϕα is a
m-smooth function. An important result in the study of m-smooth manifolds is the
existence of am-smooth partition of unity subordinate to any given open cover (see [7,
Theorem 2.25, p.54]). A useful consequence of the existence of a m-smooth partition
of unity is the existence of m-smooth bump functions on M . Let U and V be open
subsets of M such that V ⊆ U holds. LettingU1 = U andU2 = M\V we get an open
cover {U1,U2} of M , hence there exists a subordinated m-smooth partition of unity
{ϕ1, ϕ2}. Observe that ϕ1 is a m-smooth map on M with values in [0, 1], supported in
U and constantly one on V . A map ϕ1 satisfying these properties is called am-smooth
bump function of V supported in U .
For the remainder of this section letM be an n-dimensional locally compactm-smooth
manifold with m ∈ N ∪ {∞} and k ≤ m an integer or k = ∞.

Theorem 7.2 The space Ck
0 (M) is a separating, pervasive and order dense subspace

of C0(M).

Proof The existence of bump functions inCk
0 (M) described above immediately yields

that Ck
0 (M) separates the points of M and is pervasive due to Lemma6.4. Moreover,

due to the same lemma it suffices to show thatC∞
0 (M) ismajorizing inC0(M) to obtain

order denseness.We first argue that it is sufficient to majorize positive f ∈ C0(M) that
vanish nowhere. To this end, we show the existence of a positive function h ∈ C0(M)

that vanishes nowhere, since then f ∨ h ∈ C0(M) is positive, vanishes nowhere
and is greater than f . Lemma 2.23 in [7] states that there exists a countable locally
finite cover (Un)

∞
n=1 of M consisting of precompact open sets. Let W1 = U1 and

observe that (Un) covers the compact set W 1, hence there exist n1, . . . , nk ∈ N such
that W 1 ⊆ ⋃k

j=1Un j =: W2. Inductively, we obtain a cover (Wn) of M consisting

of precompact open sets satisfying Wn ⊆ Wn+1, for all n ∈ N. For n ∈ N let
hn ∈ C0(M) be a bump function of Wn supported in Wn+1 and let h = ∑

n 2
−nhn .

Clearly, h ∈ C0(M) satifies h(x) > 0 for all x ∈ M .
Suppose f ∈ C0(M) is positive and non-vanishing. Without loss of generality we can
assume that ‖ f ‖∞ = 1 holds after rescaling. For any n ∈ N we define the open set
Vn = {p ∈ M : 2−(n+2) < f (p) < 2−n} and V0 = {p ∈ M : f (p) > 2−2}. The
collection (Vn)∞n=0 is a locally finite countable open cover of { f > 0}, which equals
M . Let (ϕn : M → R)∞n=0 be a partition of unity subordinate to (Vn)∞n=0 and define
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g(p) :=
∞∑
j=0

2− jϕ j (p), p ∈ M.

For any point p ∈ M only finitely many terms are non-zero in a neighborhood of p,
hence g is well-defined and m-smooth. Let ε > 0 be given and let j0 ∈ N be such that
ε >

∑∞
j= j0 2

− j , then we get

{g ≥ ε} ⊆
j0⋃

n=0

Vn ⊆ { f ≥ 2−( j0+2)}. (7)

Indeed, whenever p ∈ M\⋃ j0
n=0 Vn we have g(p) = ∑∞

j= j0 2
− jϕ j (p) ≤∑∞

j= j0 2
− j < ε, showing the first inclusion while the second inclusion follows from

the construction of the set Vn . Since f vanishes at infinity, the set on the right hand side
of (7) is compact. Therefore, the closed set {g ≥ ε} is compact, showing that g vanishes
at infinity.We are left to show that g ≥ f holds. Let p ∈ M and n ∈ N the largest index
such that p ∈ Vn . Then we have g(p) = ∑n

j=0 2
− jϕ j (p) ≥ 2−n ∑n

j=0 ϕ j (p) = 2−n .
On the other hand, we have f (p) < 2−n ≤ g(p) as p ∈ Vn holds. 	


Suppose M and N are m- and n-smooth manifolds of independent dimension and
let k ≤ n,m be an integer or k = ∞. Combination of Theorems6.2 and 7.2 yields that
any Riesz* homomorphism T : Ck

0 (M) → Ck
0 (N ) is a weighted composition operator

T = Tη,π , where η ∈ Cb(Y )+ and π is continuous and proper on {η > 0}. Moreover,
Theorem6.3 gives a characterization of the order isomorphisms Tη,π : Ck

0 (M) →
Ck
0 (N ). We aim to give a full description of the automorphism group Aut(Ck

0 (M)).
To this end we show that any bijective weighted composition operator on Ck

0 (M) has
automatically k-smooth weight and composition maps, which is precisely stated and
proved in Lemma7.4.We exhibit an intermediate observation concerning the existence
of k-smooth maps on M that locally behave like coordinate projections in R

d .

Lemma 7.3 Suppose M is d-dimensional, p ∈ M and (U, h, V ) is a chart of M
with p ∈ U. For any index 1 ≤ n ≤ d there exists a k-smooth function f ∈ C0(M)

and a neighborhood U0 of p contained in U such that f = fn ◦ h on U0, where
fn(x1, . . . , xd) = xn, for all (x1, . . . , xd) ∈ R

d .

Proof Suppose p ∈ M is given and (U, h, V ) is a chart in M containing p. LetU0 be
a neighborhood of p with U 0 ⊆ U and ϕ : M → R a k-smooth bump function of U0
supported in U . Define g : M → R by g(q) = fn(h(q)) for all q ∈ U and g(q) = 0
elsewhere, where fn is the n-th coordinate projection in R

d as in the statement of the
lemma. Since ϕ is supported inU the map f on M defined by f = ϕ · g is k-smooth.
Moreover, since ϕ is constantly equal to one on U0, f = fn ◦ h holds on U0. 	

Lemma 7.4 Suppose T = Tη,π : Ck

0 (M) → Ck
0 (N ) is a well-defined bijective

weighted composition operator, then η and π are k-times differentiable on N.

Proof Let q ∈ N be given and U a compact neighborhood of q in N . Recall from
Theorems6.3 and 7.2 that there exist δ, D > 0 such that δ� ≤ η ≤ D� and that
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π is a homeomorphism. In particular, π(U ) is compact in M . Let V be a compact
neighborhood of π(U ) and f ∈ Ck

0 (M) be a bump function of V . From (T f )(p) =
η(p)( f (π(p)), for p ∈ N , we obtian that T f equals η on π−1(V ) which containsU .
Since T f ∈ Ck

0 (N ) holds, we infer that η is k-times differentiable at q.
Next, let us fix q ∈ N . Let (U ′, h′, V ′) be a chart of M with π(q) ∈ U ′ and (U, h, V )

a chart of N with q ∈ U and 1 ≤ n ≤ d. Due to Lemma7.3 we find an f ∈ Ck
0 (M)

and some neighborhood Un of π(q) contained in U ′ such that f = fn ◦ h′ holds on
Un , where fn is the n-th coordinate projection on R

d . Since the reciprocal of η is
well-defined and k-times differentiable on N , we get η−1(T f ) = f ◦ π and, hence,
( f ◦ π) is k-times differentiable on N . Therefore, the map ( fn ◦ h′ ◦ π) is k-times
differentiable onπ−1(Un)which is a neighborhood of q, sinceπ is a homeomorphism.
In particular, ( fn ◦ h′ ◦ π ◦ h−1) is k-times differentiable on h(π−1(Un)). Let W :=
h(π−1(U1)) ∩ · · · ∩ h(π−1(Ud)) and observe that the map (h′ ◦ π ◦ h−1) is k-times
differentiable on this neighborhoodW of q when composed with any of the coordinate
projection onR

d . In conclusion, (h′ ◦π ◦h−1) is k-times differentiable at q and, hence,
π is k-times differentiable at q in accordance to Definition7.1. 	


We obtain the following description of the automorphism group of Ck
0 (M).

Theorem 7.5 Let M be an m-smooth manifold of arbitrary dimension and let k ≤ m
be given, where m, k ∈ N∪{∞}. The automorphism group of Ck

0 (M) can be described
by

Aut(Ck
0 (M)) � G × Diffk(M),

where G is the multiplicative subgroup of Ck
0 (M) consisting of all η that satisfy δ� ≤

η ≤ D� for some δ, D > 0 and Diffk(M) consists of all k-times diffeomorphisms on
M.

We turn our attention to Sobolev spaces on a domain of R
d . Definitions and termi-

nology used concerning Sobolev spaces are taken from Adams (see [2]). Let d ∈ N

be given and  a domain in R
d , i.e.,  ⊆ R

d is open. For anym ∈ N and 1 ≤ p < ∞
we define the Sobolev space Wm,p() as the space consisting of L p-functions f
on  for which all distributional partial derivates Dα f , with 1 ≤ |α| ≤ m, are in

L p. Equipped with the norm ‖.‖m,p defined by ‖ f ‖m,p = (
∑

0≤|α|≤m ‖Dα f ‖p
p)

1
p ,

the space Wm,p() is a Banach space. For smooth functions the distributional and
classical partial derivatives coincide, hence, we infer C∞() ⊆ Wm,p().
For our purpose of characterizing the Riesz* homomorphisms between Sobolev
spaces, we need to be able to embed Wm,p() in a space of continuous functions.
Suppose for now that any equivalence class u ∈ Wm,p() contains a unique con-
tinuous function. We define the space Wm,p

0 () to be the norm-closure of C∞
0 () in

Wm,p(). Our aim is to show thatWm,p
0 () is a pervasive, separating and order dense

subspace of C0(). To this end it suffices to show that

C∞
0 () ⊆ Wm,p

0 () ⊆ C0() (8)
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holds. It turns out that this holds true if we impose a regularity condition on . The
following definitions can be found on page 66 in [2].

Definition 7.6 Let d ∈ N and  ⊆ R
d open be given.

(i) Let x ∈ R
d be given and open balls B1, B2 in R

d with x ∈ B1 and x /∈ B2. The
set Cx := B1 ∩ {x + λ(y − x) : y ∈ B2, λ > 0} is a finite cone with vertex x .

(ii) Every domain  for which there exists a finite cone C such that each x ∈  is
the vertex of a finite cone Cx contained in  and congruent to C is said to have
the cone property.

The classical Sobolev Embedding Theorem (see for example Theorem 5.4 part
III(C) in [2]) states that if  is a domain in R

d which has the cone property and
mp > d holds, then Wm,p

0 () ⊆ C0() holds. In particular, Eq. (8) is satisfied which
yields the following corollary.

Theorem 7.7 Suppose 1 and 2 are domains in R
d having the cone property, 1 ≤

p, q < ∞ and m, n ∈ N be such that pm > d and qn > d hold. If T : Wm,p
0 (1) →

Wn,q
0 (2) is a Riesz* homomorphisms, then there exist η : 2 → R bounded positive

and π : 1 → 2 such that (T f )(ω) = η(ω) f (π(ω)) holds for all f ∈ Wm,p
0 (1)

and almost every ω ∈ 2.

Theorem7.7 is very similar to a result by Biegert, which states that any Riesz
homomorphisms on W 1,p

0 () is a weighted composition operator, Theorem 4.4 in
[4]. In his proof Biegert does not use the order structure of the space W 1,p() nor
the Sobolev Embedding Theorem. Due to the latter he does not need to impose the
cone property on  or any condition on p and d. However, in constrast to Biegert’s
result Theorem7.7 can deal with Sobolev space upto any order as long as pm > d
is satisfied. Remark that Wm,p() is a Riesz space exactly when m = 1 holds. In
conclusion, under extra conditions on , p and d we can generalize the result of
Biegert to higher order Sobolev space by considering Riesz* homomorphisms.
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