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Abstract
This contribution presents the modeling and optimization of the operation of pro-
duction plants that are coupled via distribution networks and applies it to a part 
of the petrochemical production site of INEOS in Köln in Germany. The problem 
is formulated as a mixed-integer linear problem and solved to generate an opti-
mal monthly plan for a set of plants, tanks, and loading/unloading facilities, while 
respecting various constraints arising from technical limitations, physical couplings 
between the plants, production targets, and the schedule for import and export across 
the company borders via ships and trains. The optimization problem takes into 
account varying energy prices, the influence of the ambient temperature on the pro-
cesses, and the inventory management for different types of storages. We solve the 
optimization problem for the particular case and compare the results for a 1 month 
scenario to recorded data and show that a significant energy saving potential exists. 
We discuss the current limitations and outline potential improvements in the context 
of the application of the optimization model to optimal site planning that leads to an 
improved coordination of the production in the process industries.
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1  Introduction

Companies in the process industries operate under tough competition on the mar-
kets and under pressure to improve their energy and resource efficiency and to 
become “greener” (Baos et al. 2011). The value chain of chemicals with its logis-
tics and complex production processes is a large and tightly coupled system of sys-
tems (Engell and Sonntag 2016). The individual production steps ranging from the 
processing of raw materials, the production of intermediates to the formulation of 
tailored products and fine chemicals are coupled by flows of material and energy, 
usually with recycle streams. Often, the processing steps are geographically close 
and are performed at production complexes or sites such as in the petrochemical 
industry. The plants are physically coupled by shared resource networks through 
which for instance steam at different pressure levels or intermediate products are 
exchanged. These production sites cannot be regarded as autonomous systems that 
are decoupled from the environment, as complex interactions exist with the logistic 
network in which these systems are embedded (see Fig. 1). Often, the production is 
driven by the availability of resources or by customer demands. In addition to the 
complexity of the logistics, varying material and energy prices give rise to a dynam-
ically changing pricing landscape in which a site has to operate (Mitsos et al. 2018). 
These circumstances offer a significant potential for joint optimization that results 
in a well orchestrated overall system in which the available resources are used effi-
ciently and in which the overall system has an increased responsiveness towards the 
external factors and constraints (Lund et al. 2015).

The scope of optimization in the process industries is often limited to specific 
issues and domains, but recently there has been an increased interest and research 
activity in expanding the scope (Castro et  al. 2018). Figure  1 illustrates different 
domains which the scope of optimization can potentially embrace. Looking at the 
system from a bottom-up perspective leads to the natural choice of starting with 
the optimization on the plant level. If the focus is widened to the scope of a com-
plete production site and vertically across the different layers of the organization 

Fig. 1   Conceptual illustration of the scope of the paper
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(Harjunkoski et  al. 2014), the optimal shared resource allocation within chemical 
production processes by means of distributed market-based coordination schemes is 
a way to drive the operation of the individual processing plants to a site-wide opti-
mum (Wenzel et al. 2016). Looking at the upstream connections one can optimize 
the logistic (pipeline) network with the assumption that the processing plants are 
consumers with fixed inflow rates as Liu et al. (2016) propose. If one is concerned 
with the on-site storage and buffer capacities and their management coupled with 
the production, an optimization of the inventory can be done as in (Rodriguez et al. 
2018). Considering the external influences such as varying availability of energy 
from the grid leads to an optimization of the electric power procurement of the site, 
known as demand side management (Zhang and Grossmann 2016; Hadera et  al. 
2016; Leo and Engell 2018).

Optimizing the system as a whole, even if the modeling depth is limited, is a 
step further towards smart factories in the petrochemical industry (Li 2016), which 
are able to adjust their operation to the situation outside of the site such as low or 
even negative power prices due to the availability of electric power from renewable 
resources (Paraschiv et al. 2014).

New or improved solvers, more powerful computers, and efficient modeling 
frameworks enable formulating and solving more and more complex optimization 
problems and combining the scopes of the different optimization fields shown in 
Fig. 1. In this contribution we develop a generic MILP optimization model that is 
suited to generate an optimal schedule for the operation of physically coupled pro-
cessing plants under the consideration of external influences such as energy prices 
and logistic constraints. We motivate the development with a case study of a part of 
the petrochemical production site of INEOS in Köln in Germany, where an optimal 
schedule for the operation of the plants within the ammonia distribution network is 
aimed at.

The rest of the paper is organized as follows. First, the scope of the site-wide 
optimization and shared resource allocation is laid out and possible choices of opti-
mization models are discussed. Afterwards, the ammonia distribution network at 
INEOS in Köln is presented as a motivating example. Then a generic model for the 
purpose of site-wide scheduling of connected processing plants is formulated as an 
MILP. The model is parametrized for the INEOS in Köln ammonia distribution net-
work and the results are compared to historic production data that were recorded. A 
summary and an outlook on further developments conclude the paper.

2 � MI(N)LP for site‑wide optimization and shared resource allocation

Site-wide optimization  (Cheung and Hui 2004) or even enterprise-wide optimiza-
tion (Grossmann 2005; Varma et  al. 2007; Wassick 2009; Quaglia et  al. 2013) is 
a field of research and application that is highly relevant to the process industries 
and although the idea is not new, recent advances in mathematical programing and 
solution strategies have enabled the application to real world problems, though the 
remaining challenges are non-trivial (Grossmann 2012).
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One of the challenges is the complexity of the underlying physical and chemi-
cal principles which govern the behavior of the individual processing units. Reac-
tion kinetics and thermodynamics lead to significant non-linearities and the pres-
ence of different pieces of equipment, redundant production lines, or different 
operating windows lead to discrete decisions. Consequently, one ends up with the 
dilemma of either formulating the overall optimization problem as a mixed-inte-
ger non-linear program (MINLP) for which often only approximate solutions can 
be found (Belotti et al. 2013), or one decides to set up and solve a mixed-integer 
linear program that results from a (piece-wise) linear approximation of the non-
linearities (Grossmann 2012).

Applications of MI(N)LPs in the process industries are numerous and diverse, 
since the benefits that a system-wide optimization offers are significant. In the 
crude oil sector, refineries can for instance be modeled as large storage units 
and the distillation processes as constant level consumers (Más and Pinto 2003) 
and the resulting MILP can be solved by a decomposition strategy to handle its 
complexity. Production planning for petroleum refineries was done with a multi-
period optimization model by Neiro and Pinto (2005). Liu et al. (2016) propose 
a MILP model for the optimal operation of different gas oil separation plants that 
are operated in a joint distribution network for which the routing is optimized. In 
Zhao et al. (2017), an enterprise-wide optimization is proposed that incorporates 
the refinery and an ethylene plant in an integrated topology for a joint optimiza-
tion. Further, a site-wide optimization is also of interest for a combined optimi-
zation of utility consumption such as in heat-exchanger networks [see Kermani 
et al. (2017) and the references therein]. In this contribution, a generic formula-
tion of an optimization model is proposed for the generation of an optimal opera-
tion schedule for processing plants that are physically coupled by shared resource 
networks and storage tanks. These shared resources can be different streams of 
material and energy. An application of enterprise-wide optimization to shared 
resource networks is presented by Lv et  al. (2018) who optimize an interplant 
fresh water network. In Khor et al. (2014) an extensive review on the optimiza-
tion of water networks can be found. Martí et al. (2013) investigate the optimal 
sharing of oxygen in a reactor network. The optimal management of hydrogen 
networks in a petrol refinery is described by Sarabia et al. (2012). In Wenzel et al. 
(2016) price-based coordination is used to optimally allocate steam on different 
pressure levels at a petrochemical production site and in Wenzel et al. (2017) the 
work is extended to incorporate the intermediate products ethylene and propyl-
ene. The optimization of a utility network combined with the optimization of the 
hydrogen production is done based upon a MILP formulation by Hwangbo et al. 
(2017).

Extending the optimization of shared resource networks, the scope of the model 
in this contribution is chosen according to Fig. 1 to incorporate decisions from dif-
ferent operational levels (Castro et al. 2018). The level of detail and the choice of the 
model equations are motivated by the application to the ammonia distribution net-
work of INEOS in Köln, which is explained in more detail in Sect. 3. Since the cur-
rent planning practice at INEOS in Köln is constraint driven rather than dominated 
by non-linearities, we propose to use a large-scale MILP formulation to optimize 
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the network including the tanks and the operation of the individual plants on the 
site, which are modeled by linear and affine functions as done similarly, e.g., by Gao 
et al. (2015).

3 � The ammonia distribution network at INEOS in Köln

In this contribution, the ammonia production plant (P1) as well as three connected pro-
cessing plants of INEOS in Köln are considered. The topology of the setup is shown in 
Fig. 2. The ammonia plant receives hydrogen (H2) from the cracker complex at the site 
and natural gas (NG) as reactant streams and fuel gas (FG) as the main energy carrier 
from the shared resource networks. The produced ammonia can be sent to two types of 
storage. One type are the deep-cooled storage tanks, Tc1 and Tc2, to which the ammo-
nia is sent via two compressors. In the case of high demand, the stored ammonia can 
be taken out of these tanks. It is warmed up by a heater, used in the downstream plants 
or sold to the market. The second type of tanks are the three spherical warm buffer 
tanks Tb1a, Tb1b, and Tb3, which are considerably smaller than the deep-cooled stor-
age tanks and which are used to buffer the production as well as the ammonia delivery 
and shipping facilities that transfer the ammonia across the borders of the site via ships 
or train vessels. The ammonia that is further processed on site is sent to three major 
ammonia consuming plants: The nitric acid plant (P3) and the two acrylonitrile (AN) 
plants (P4a) and (P4b), which differ in their size and in the number of reactors. The 

Fig. 2   Schematic topology of the INEOS in Köln ammonia distribution network with its processing 
plants P1, P3, P4a, and P4b. The full list of considered systems with their different operating modes is 
provided in Table 5
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nitric acid plant uses nitrogen from the ambient air as the second main reactant, the two 
acrylonitrile plants receive propylene (C3) from the cracker complex.

The purpose of the optimization of this network is to operate the plants at the overall 
optimum, which might not be identical to the optimum for each individual plant, as 
external influence factors (ambient temperature, prices for electric power and gas) have 
to be taken into account as well as the operating points of the connected plants. In addi-
tion, the logistics within and outside of the ammonia distribution grid play a major role, 
as they impose important constraints on the operation of the plants. The presence of 
numerous discrete decisions renders this problem a challenge both from the modeling 
perspective as well as from the optimization perspective. The integration of external 
influences into the site-wide ammonia distribution optimization offers a large poten-
tial to adjust the operation of the complex in order to achieve an overall energy and 
resource efficient operation with an increased responsiveness to external influences.

4 � Formulation of a generic MILP for site‑wide scheduling

In the following, a generic model that is suited to determine an optimal schedule for 
the operation of processing plants at a production site where the plants are coupled by 
several networks is formulated. The model considers the scope illustrated in Fig. 1 and 
is motivated by the case study shown in Fig. 2.

4.1 � Nomenclature

The symbols and the naming conventions used throughout this contribution are listed 
in Tables 1, 2, 3, and 4. The network connects several systems s ∈ S . The systems are 
tanks t ∈ T , production plants p ∈ P and nodes n ∈ N , which are connected by pipes 
(r, s, s�) ∈ � . The mass flows through the pipes in time interval j are denoted by ṁ(j)

r,s,s�
 

with resource r ∈ R going from system s to s′ . In every pipe only one resource is trans-
ported. A resource can be a pure raw material, a mixture with a fixed composition, or a 
carrier of energy as, e.g., steam at a certain pressure level. The amount of generation or 
consumption of electric power in system s in time interval j is denoted by P(j)

el.,s
.

4.2 � Nodes

The streams are joined or split in the nodes  N. The mass balance of the incoming 
streams �in,n and the outgoing streams �out,n has to hold for every time interval j ∈ J 
and for all nodes n ∈ N . It can be expressed by

Many streams on site are bounded by technical limitations. All mass streams are 
modeled as positive streams, i.e., the flow direction in every pipe is fixed. Thus, the 
following constraints are formulated:

(1)
∑

(r,s,s�)∈𝛤in,n

ṁ
(j)

r,s,s�
=

∑
(r,s,s�)∈𝛤out,n

ṁ
(j)

r,s,s�
∀ n ∈ N, j ∈ J.
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Table 1   Sets used for modeling

Symbol Meaning

ER,p (Index e) set of the reactors of plant p
EU,p (Index e) set of the units of plant p
J (Index j) set of time intervals in the optimization horizon
Ms (Index m) set of modes of system s
N ⊂ S (Index n) set of nodes
P ⊂ S (Index p) set of plants
PmR ⊂ P Set of plants with multiple independent reactors
PmU ⊂ P Set of plants with multiple independent units
R (Index r) set of resources
S (Index s) set of systems
T ⊂ S (Index t) set of tanks
Tc ⊂ T Set of deep-cooled storage tanks
Tb ⊂ T Set of spherical buffer tanks
U (Index (u) set of units in a plant
�in,s , �out,s Set of pipes leading to and leaving system s respectively
�(r, s, s�) Set of pipes for resource r from system s to system s′

𝛱b ⊂ 𝛱 Subset of pipes with restricted mass flows
�i(s,m,m

�) Set of impossible transitions
�p(s,m,m

�) Set of transitions that are associated with additional costs
�f (s,m,m

�) Set of transitions that require a fixed stay time

Table 2   Binary variables used 
for modeling

Symbol Meaning

y
(j)
s,m

Binary variable for system s being in mode m in interval j

z
(j)

s,m,m�
Binary variable for the transition from mode m to mode 
m′ of system s in interval j

Table 3   Continuous variables used for modeling

Symbol Meaning

m
(j)
r,s

The stored mass of resource r in system s in interval j

ṁ
(j)

r,s,s�
The mass flow of resource r from system s to system s′ in interval j

ṁ
(j)

prod,p
The production of the main product of plant p in interval j, equal to the 

associated flow ṁ(j)

r,s,s�

P
(j)

el.,s
The electric power production or consumption of system s in time interval j
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4.3 � Operating modes

All systems except nodes can have several operating modes Ms . Following the for-
mulation of Mitra et al. (2013), binary variables y(j)s,m for each mode and z(j)

s,m,m� for 
mode transitions are used. In (4) the systems are restricted to be in one mode at a 
time and in (5) the transitions between the modes are formulated.

Forbidden transitions are prohibited by forcing the respective binaries to zero:

(2)0 ≤ ṁ
(j)

r,s,s�
∀ (r, s, s�) ∈ 𝛱 , j ∈ J,

(3)lb
(j)

r,s,s�
≤ ṁ

(j)

r,s,s�
≤ ub

(j)

r,s,s�
∀ (r, s, s�) ∈ 𝛱b, j ∈ J.

(4)
∑
m∈Ms

y(j)
s,m

= 1 ∀ s ∈ P ∪ T , j ∈ J,

(5)
∑

m�∈Ms

z
(j)

s,m,m� −
∑

m�∈Ms,

z
(j)

s,m�,m
= y(j)

s,m
− y(j−1)

s,m
, ∀ m ∈ Ms, j ∈ J.

(6)z
(j)

s,m,m� = 0 ∀ (s,m,m�) ∈ �i, j ∈ J.

Table 4   Parameters used for modeling

Symbol Meaning

ar,s , br,s , cr,s , dr,s Affine model parameters for resources
ael.,s , bel.,s , cel.,s , del.,s Affine model parameters for electric power

lb
(j)

r,s,s�
, ub

(j)

r,s,s�
Lower and upper bounds on the mass streams in interval j

lb
(j)

c,t, ub
(j)

c,t
Lower and upper bounds on the mass in the tanks in interval j

K
fix,j

s,m,m′
Fixed time for system s required for the changeover from mode m to mode m′ in 

interval j

�
(j)

r,s,s�
Price of resource r in the associated stream in interval j

�s,m,m′ Price of a transition of system s from mode m to mode m′

� (j) Price of electric power in time interval j
�prod.,p Penalty on the load changes
�t Time step in hours
𝛥ṁmax,s Maximum allowed mass flow change for system s
� Small number

�a , (𝜗̂a) Ambient (estimated) temperature in ◦C

�a , �a Lower and upper ambient temperatures for the estimation of the shut down or start 
up times

� , � Lower and upper times required for a shut down or start up
�f Temperature independent time required for a shut down or start up
�v(�a) Temperature dependent time required for a shut down or start up
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Often, it is required that the plant stays in the new mode for a fixed time Kfix,j

s,m,m′ 
before the next transition, e.g., because shutting down a plant or starting it up cannot 
be done instantaneously. These constraints are formulated as

Note that for a minimum or a maximum stay time instead of a fixed stay time con-
straint (7) can be reformulated by changing the relation (see Mitra et  al. 2013). 
For the different transitions between the different modes, the values of Kfix,j

s,m,m′ are 
assumed to be either fixed values, or they are dependent on the ambient temperature. 
For all transitions with fixed times �f  the estimated required time is computed as

where 𝜗̂a is the estimated ambient temperature in time interval j. Obviously, the accu-
racy of the estimation depends on the length of the horizon, since there is no accurate 
weather forecast for more than a few days. One possibility is to use seasonal average 
temperature patterns for night and day times to optimize the schedule. Based on expe-
rience, the minimum and maximum times for starting up and shutting down are known 
for the specific units. At low ambient temperature �a the variable part of the time �v is 
� and at high ambient temperature �a the variable is �v = � . The variable estimated 
time 𝜏v(𝜗̂a) is then computed by simple interpolation for temperatures 𝜗̂(j)a ∈ [𝜗̂, 𝜗̂] . 
Outside of this temperature range the required time 𝜏v(𝜗̂

(j)
a ) is bounded according to

4.4 � Plant models

Since the derived models are intended to be used for medium to long term schedul-
ing, the plants are modeled as stationary input output mappings and the dynamics 
of ramping up or ramping down the production rate are modeled by the above con-
straints. Plants can either be operated as a whole or they can have multiple parallel 
units, such as reactors with different operating modes. Details will be provided in 
the following subsections.

4.4.1 � General plant model

For the plant models the production rate ṁ(j)

prod.,p
 of plant p at time j is a continuous 

model input. Further, the ambient temperature �(j)a  is considered as a non-influencea-
ble input parameter. It is assumed that within the operating range, the remaining 
streams of material and energy can be determined from ṁ(j)

prod.,p
 by affine equations. 

The following equations describe a plant that can only be operated as a whole:

(7)y
(j)

s,m� =

K
fix,j

s,m,m�
−1∑

�=0

z
(j−�)

s,m,m� ∀ (s,m,m�) ∈ �f , j ∈ J.

(8)K
fix,j

s,m,m� =
(
𝜏v(𝜗̂

(j)
a
) + 𝜏f

)
(𝛥t)−1, ∀ (s,m,m�) ∈ 𝛺f , j ∈ J,

(9)𝜏v(𝜗̂
(j)
a
) = max

(
𝜏, min

(
𝜏 − 𝜏

𝜗 − 𝜗

(
𝜗̂(j)
a
− 𝜗

)
+ 𝜏, 𝜏

))
∀j ∈ J.
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where the binary decision variable y(j)p,on in the first terms ensures that the plant does 
not consume or produce resources if it is not on. With this approach, a static con-
sumption or production of resources of a plant can be accounted for, even if no prod-
uct is being produced, which is relevant, e.g., if cooling water is continuously con-
sumed independent of the load of the plant.

4.4.2 � Plants with multiple parallel units

In Fig. 3 the modeling of a plant p with multiple parallel units is illustrated. In a 
plant with multiple parallel units, the planned overall product stream ṁ(j)

prod.,p
 is split 

in an internal node into single streams  ṁ(j)

prod.,p,eu
 that enter the individual units 

eu ∈ EU,p . The mass balance is ensured by

Similar to (10f.), the model of a single unit is a set of affine functions of the indi-
vidual product stream with the ambient temperature as external influence

(10)
ṁ

(j)

r,s,s�
= (ar,p + br,p ⋅ 𝜗

(j)
a
) ⋅ y(j)

p,on
+ (cr,p + dr,p ⋅ 𝜗

(j)
a
) ⋅ ṁ

(j)

prod,p
,

∀ (r, s, s�) ∈ 𝛤in,p ∪ 𝛤out,p, p ∈ P, j ∈ J,

(11)
P
(j)

el.,p
= (ael.,p + bel.,p ⋅ 𝜗

(j)
a
) ⋅ y(j)

p,on
+ (cel.,p + del.,p ⋅ 𝜗

(j)
a
) ⋅ ṁ

(j)

prod,p
,

∀ p ∈ P, j ∈ J,

(12)ṁ
(j)

prod.,p
=

∑
eu∈EU,p

ṁ
(j)

prod.,p,eu
, ∀p ∈ PmU , j ∈ J.

(13)
ṁ

(j)

r,s,s�
= (ar,p + br,p ⋅ 𝜗

(j)
a
) ⋅ y(j)

eu,on
+ (cr,p + dr,p ⋅ 𝜗

(j)
a
) ⋅ ṁ

(j)

prod,p,eu
,

∀ (r, s, s�) ∈ 𝛤in,eu
∪ 𝛤out,eu

, eu ∈ EU,p, p ∈ PmU , j ∈ J,

Fig. 3   Modeling of plants with multiple parallel units. The continuous input to the model is the desired 
product stream ṁ(j)

prod.,p
 . The ambient temperature �(j)a  is a non-influenceable input parameter. Incoming 

and outgoing streams are split and joint in internal nodes (circles, see (12ff.))
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As illustrated in Fig. 3, in a plant with multiple parallel units, there is a load inde-
pendent block (li) that accounts for the fraction of consumption or production of the 
plant that is independent of the amount of product ṁ(j)

prod.,p
 and of the number of run-

ning units. The load independent block is modeled as

where �in,li ∪ �out, li is the set of streams leaving and entering the load independent 
block of plants with multiple units. The equations for the electric power consump-
tion of the load independent block read as

The incoming and outgoing streams of the plants with multiple parallel units are the 
summation of the streams of the individual units and the streams of the load inde-
pendent block

The overall electric power consumption of plant p is formulated accordingly

4.4.3 � Operating modes of plants and units

In general, all plants and units can be in the modes on and off (see Sect.  4.3). Fur-
ther modes can be defined, if needed. Typical additional modes are the modes shutting 
down and starting up (Mitra et al. 2013). These modes are required if the time required 
for a shutdown or a start up are modeled with minimum or fixed stay times as in (7). If 
the modes shutting down and starting up are used, the direct transitions from on to off 
and vice versa are modeled as forbidden transitions.

For plants with multiple units, relations between the plant mode and the modes of 
the units have to be established. The constraint (20) guarantees that a plant can only be 
in mode on if at least one unit is in mode on, i.e., if all units are switched off, than the 
plant is switched off, too. Constraint (21) guarantees that the plant must be in mode on 
as soon as one of the units is in mode on.

(14)
P
(j)

el.,eu
= (ael.,p + bel.,p ⋅ 𝜗

(j)) ⋅ y(j)
eu,on

+ (cel.,p + del.,p ⋅ 𝜗
(j)
a
) ⋅ ṁ

(j)

prod,eu
,

∀eu ∈ EU,p, p ∈ PmU , j ∈ J.

(15)ṁ
(j)

r,s,s�
= (ar,p + br,p ⋅ 𝜗

(j)
a
) ⋅ y(j)

p,on
∀ (r, s, s�) ∈ 𝛤in,li ∪ 𝛤out, li, p ∈ PmR, j ∈ J,

(16)P
(j)

el., li
= (ael.,p + bel.,p ⋅ �

(j)) ⋅ y(j)
p,on

, ∀p ∈ PmU , j ∈ J.

(17)ṁ(j)
r,s,p

=
∑

eu∈EU,p

ṁ(j)
r,p,eu

+ ṁ
(j)

r,p,li
, ∀(r, s, p) ∈ 𝛤in,p, p ∈ PmU , j ∈ J,

(18)ṁ
(j)

r,p,s�
=

∑
eu∈EU,p

ṁ(j)
r,eu,p

+ ṁ
(j)

r,li,p
, ∀(r, p, s�) ∈ 𝛤out,p, p ∈ PmU , j ∈ J.

(19)P
(j)

el.,p
=

∑
eu∈EU,p

P
(j)

el.,p,eu
+ P

(j)

el.,p,li
, ∀p ∈ PmU , j ∈ J.
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4.4.4 � Constraints on the load changes

To account for the response times of the different plants on site, ramping constraints 
are introduced which prevent drastic set point changes across the operational win-
dow of a unit or plant. Although the models are steady state models and have thus 
no inherent dynamics, the incorporation of the ramping constraints adds dynamics 
to the model.

where the latter part ensures that when a mode change from or to on is performed, 
the change of the mass flow from or to the maximum or minimum value is not 
restricted. Note that with this modeling approach a plant can switch from the modes 
off or starting up to the mode of operating at full load (on) instantaneously.

4.5 � Tanks

The tanks are described by mass balance equations. All incoming streams increase 
the level, all outgoing streams decrease it. The mass is balanced over the length of 
the time interval �t

Each of the tanks has lower and upper bounds on its level. The bounds result from 
technical limitations or from management decisions, e.g., to keep a certain level of 
inventory for the case of unforeseen shutdowns:

(20)y(j)
p,on

≤

∑
eu∈EU,p

y(j)
eu,on

, ∀ p ∈ PmU , j ∈ J,

(21)y(j)
p,on

≥ y(j)
eu,on

, ∀ p ∈ PmU , eu ∈ EU,p, j ∈ J.

(22)
ṁ

(j+1)

prod,p
≤ ṁ

(j)

prod,p
+ 𝛥ṁmax,p + ubprod,p ⋅ z

(j)
p,m,on

∀p ∈ P,m ∈ Mp⧵{on}, j ∈ J > 1,

(23)
ṁ

(j+1)

prod,p
≥ ṁ

(j)

prod,p
− 𝛥ṁmax,p − ubprod,p ⋅ z

(j)
p,on,m

∀p ∈ P,m ∈ Mp⧵{on}, j ∈ J > 1,

(24)

m
(j+1)
r,t = m

(j)

r,t + 𝛥t ⋅

⎛⎜⎜⎝
�

(r,s,s�)∈𝛤in,t

ṁ
(j)

r,s,s�
−

�
(r,s,s�)∈𝛤out,t

ṁ
(j)

r,s,s�

⎞⎟⎟⎠
∀ r ∈ R, t ∈ T , j ∈ J.

(25)lb
(j)

r,t ≤ m
(j)

r,t ≤ ub
(j)

r,t ∀r ∈ R, t ∈ T , j ∈ J.
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The basic modes for tanks that are considered are fill for filling, disc for discharging 
and idle, if neither is done. A mode-dependent reformulation of (2f.) for the inflows 
and outflows of the tanks is

These constraints ensure that a tank can only be filled if it is in the filling mode and 
it can only be discharged if it is in the discharging mode. Depending on the type of 
tank, uniqueness of the modes can be enforced [see (4)]. This is necessary if a tank 
can only be filled or discharged at a time.

4.6 � Logistics of external sinks and sources

Usually, there are several incoming and outgoing streams of material and energy 
across the boundaries of the system under consideration such as the streams that 
are depicted in Fig. 2. In our model, there are two types of incoming and outgoing 
streams. For one type it is assumed that the streams are available at sufficient quantity 
at all times, i.e., there is no shortage in supply within the predefined operating ranges 
of the plants. They are provided by adjacent processes and have lower and upper 
bounds on the quantity per hour that can be acquired. For the second type, discrete 
imports and exports of resources across the boundaries of the system are considered. 
These imports and exports can be realized by, e.g., trains, ships, or trucks. Technical 
limitations for the import and export can either be realized as bounds on the incom-
ing and outgoing streams or, in addition, handled using discrete modes of the arrival 
nodes. One example is the restriction to only load or unload one type of delivery. 
Then the receiving node has a unique operating mode from of a set of modes, e.g., {
ship, train, truck} [see (4)] and the bounds are modeled according to (26f.).

(26)lb
(j)

r,s,s�
⋅ y

(j)

t,fill
≤ ṁ

(j)

r,s,s�
≤ ub

(j)

r,s,s�
⋅ y

(j)

t,fill
∀ (r, s, s�) ∈ 𝛤in,t, t ∈ Tc, j ∈ J,

(27)lb
(j)

r,s,s�
⋅ y

(j)

t,disc
≤ ṁ

(j)

r,s,s�
≤ ub

(j)

r,s,s�
⋅ y

(j)

t,disc
∀ (r, s, s�) ∈ 𝛤out,t, t ∈ Tc, j ∈ J.

Fig. 4   Prices for natural gas and electric power during the horizon. Source: INEOS in Köln
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4.7 � External influence factors

The prices for electric power and natural gas from the grid as well as the ambient 
temperature vary during the day and month. In Fig. 4, the electric power prices 
and the gas prices in an exemplary month are plotted in €/MWh. The electric 
power price besides the ordinary day-night and weekdays-weekend pattern shows 
some hours in which the price is very far away from the average. These situations 
can be, for instance, holidays or weekend days where there is lots of wind, or 
sunshine, or both, and few consumers operate at their full capacity. During these 
hours it can be beneficial for the site to operate equipment with a high energy 
demand such as the large compressors. Although for the period shown in Fig. 4 
the gas price fluctuates only little, changes in the gas price happen frequently 
and can be significant (Hulshof et  al. 2016). Then it is beneficial to adjust the 
operation of major natural gas consumers on the site to save raw material costs 
during demand peaks or to use it in the case of excess supply, when the prices are 
low (Hadera et al. 2016). A broader review on demand response in the context of 
smart grids is provided by Siano (2014).

In Fig. 5 an exemplary ambient temperature plot of Cologne, Germany during 
a spring month is shown. It can be seen that the temperature differs significantly 
during the day as well as during the month. The ambient temperature has an influ-
ence on the plant and unit model equations (10ff.) as well as on the fixed and 
variable transition times of the different operating modes that are modeled by (8).

5 � Optimization of the ammonia network of INEOS in Köln

In the following, the scope of the model is defined and the model is parametrized 
for the ammonia network of INEOS in Köln. The objective function and its 
degrees of freedom are stated. Afterwards, the model is solved to generate a 
schedule for one month and its results are compared with historic data of INEOS 
in Köln to investigate the quality of the solution of the model.

Fig. 5   Ambient tempera-
ture �a in Cologne, Germany 
(Deutscher Wetterdienst 2018)
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5.1 � Definition of the scope of the optimization

The aim of the optimization is to generate an optimal production schedule for the 
processing plants in the ammonia distribution network at INEOS in Köln, which 
is illustrated in Fig.  2 and described in Sect.  3. The scope of the optimization 
includes all areas of optimization that are shown in Fig. 1.

5.2 � Parametrization the optimization model

The model is parametrized by the topology given in Fig.  2 and by the technical, 
operational, and managerial constraints provided by INEOS in Köln, which will be 
discussed in the following sections.

5.2.1 � The processing plants

The processing plants in the network are listed in Table 5. The ammonia plant is 
the only ammonia producer on site. The other three plants consume ammonia. The 
plants all have the discrete modes on or off. Both acrylonitrile plants have individual 
reactors that additionally have the transition states shutting down and starting up. 
The transition states have fixed stay times that depend on the ambient temperature as 
modeled by (7).

Table 5   Systems considered in the ammonia distribution network

System Symbol Modes Comment

Ammonia plant P1 On, off NH3 producer
Nitric acid plant P3 On, off NH3 consumer
Acrylonitrile plant P4a On, off NH3 consumer
 Reactor 1 P4aReac1 On, off, shutting down, starting up NH3 consumer
 Reactor 2 P4aReac2 On, off, shutting down, starting up NH3 consumer

Acrylonitrile plant P4b On, off NH3 consumer
 Reactor 1 P4bReac1 On, off, shutting down, starting up NH3 consumer
 Reactor 2 P4bReac2 On, off, shutting down, starting up NH3 consumer
 Reactor 3 P4bReac3 On, off, shutting down, starting up NH3 consumer
 Reactor 4 P4bReac4 On, off, shutting down, starting up NH3 consumer

Deep-cooled tank Tc1 Fill, disc, idle NH3 deep-cooled storage
Deep-cooled tank Tc2 Fill, disc, idle NH3 deep-cooled storage
Buffer tank Tb1a Fill, idle NH3 warm storage
Buffer tank Tb1b Fill, idle NH3 warm storage
Buffer tank Tb3 Fill, idle, discs, disct, discp NH3 warm storage, handles import 

/ export
Compressor C1 On, off State change
Compressor C2 On, off State change
Heater H1 On Energy consumption linear with 

processed amount
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5.2.2 � The buffer tanks and storage tanks

As described in Sect. 3, there are two different types of ammonia storages. One type 
are the two deep-cooled storage tanks Tc1 and Tc2. The second are the spherical 
buffer tanks. All buffer tanks and storage tanks are listed in Table 5. In the follow-
ing, details for the two storage types are given.

Deep-cooled storage tanks for ammonia Tc ⊂ T cannot be filled and discharged at 
the same time (4). There are no restrictions on changing between the three modes and 
thus switching can be done after every time step �t . The tanks are only used for long 
term storage to keep a certain level of inventory for the situation of an unforeseen shut-
down or to build up an amount of ammonia for sale. Before the ammonia is stored in 
these tanks, it has to be cooled down by the compressors C1 and C2. When discharging 
the tank, the ammonia has to be heated up on the way to the warm buffer tanks. This 
operation requires energy that could be reduced by employing an optimal schedule of 
the overall network. During one time interval ammonia is only sent to one of the two 
tanks or only discharged from one of the two tanks. This constraint is based on a heu-
ristic of the plant personnel to minimize the pressure loss due to operating two pipes at 
the same time. It can be formulated as

Ammonia buffer tanks Tb ⊂ T  can be filled and discharged at all times. However, 
they have outlets to different nodes. They can discharge towards either of following 
processes (discp), ships (discs) or train vessels (disct) or stay idle (idle). However, 
there is no restriction to only one mode being active in each interval, e.g., it is pos-
sible to send ammonia to processes and a train vessel simultaneously. As in (27), 
the mass flows are set to zero if the corresponding discharge mode is inactive. There 
are no forbidden transitions between the available modes. In this contribution the 
imported amounts of ammonia via ships and trains are implemented as hard con-
straints. Thus, the discharging modes for trains and ships are fixed throughout the 
horizon (see Sect.  5.5). In theory, it is possible to import and export to and from 
ships and trains via all three ammonia buffer tanks. However, the current practice at 
INEOS in Köln is to only use Tb3 for import and export. Export suppression from 
Tb1a and Tb1b is enforced by

The restriction of importing ammonia only via the buffer tank Tb3 is formulated as

where ext denotes external sources.

(28)
∑
t∈Tc

y
(j)

t,m ≤ 1, m ∈ MTc
, j ∈ J.

(29)
∑

t∈Tb⧵Tb3

y
(j)

t,m = 0, ∀m ∈ discs, disct, j ∈ J.

(30)ṁ
(j)

NH3,ext,t
= 0, ∀t ∈ Tb⧵Tb3, j ∈ J,
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5.3 � The optimization problem

The optimization problem is stated in a condensed form as the following MILP

where f ∶ ℝ
nm×nṁ×nPel.

×ny×nz
→ ℝ is the objective function and m, ṁ , Pel. , y, and z are 

the decision variables with y and z as binaries. The optimization is formulated for 31 
days, with a resolution of �t = 1h , which results in a horizon J = {1, 2,… , 744} . 
The number of variables1 for the tank levels is nm = 7450 . The number of variables 
for the pipes is nṁ = 93,744 , the number of variables for the power nPel.

= 2232 , the 
number of the binary mode variables ny = 40176 , and the number of the binary tran-
sition variables nz = 138,384 . With this, the total number of variables is 281,986. 
The choice of the resolution of �t = 1 h , results in a large-scale problem which 
could in principle be avoided by choosing a more coarse resolution. However, the 
fine resolution is needed in this case study to account for the fixed stay times. In 
addition, we observed infeasibilities for the buffer tanks, ships, and trains which are 
caused, e.g., if a discharging mode of a tank is active for too long, which causes the 
tank to run empty.

5.4 � Objective function

The objective function is formulated over the scheduling horizon ∀j ∈ J . It contains 
the following contributions

The economic performance of the site over the horizon in terms of profit and addi-
tional costs that accompany certain transitions are accounted for. The terms contrib-
uting to the objective are discussed in the following in detail.

5.4.1 � System profit

For all plants and tanks (systems) the profit is calculated as the difference of the 
exported and the imported mass weighted by an (internal) price of the specific 
resource. In addition, the cost for electric power is considered

(31)
min
m,ṁ,y,z

f (m, ṁ, y, z)

s.t. model equations,

constraints,

(32)f (m, ṁ, y, z) = −
∑

s∈P∪T

fprofit,s +
∑

s∈P∪ER,p

ftransition,s.

1  For the sake of legibility of the implemented code we introduced a few redundant variables such as 
m

(j)

r,TcX
= m

(j)

r,Tc1
+ m

(j)

r,Tc2
 , which adds a few variables more to the problem. However, these redundancies 

are eliminated in the preprocessing of commercial solvers and do not influence the solution time signifi-
cantly.
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where �(j)

r,s,s�
 is the price of resource r for a specific stream and � (j) is the time-variant 

price of electric power. It is important to note that the prices �(j)

r,s,s�
 are also time-var-

iant for natural gas and they can be in principle time-variant for other streams, too. 
When summing up the profit terms for all tanks and plants the internal sales cancel 
out and only accumulation in tanks and transfers across the site boundary appear in 
the total balance.

5.4.2 � Transition costs

Shutting down and starting up a reactor or plant does not only require a specific amount 
of time (see Sect. 4.3), but is also associated with costs. The costs for these procedures 
are taken from past experience and are included in the cost function. For instance shut-
ting down a reactor requires a predefined cleaning procedure that has a fixed associated 
cost. Accounting for the transition costs is done by the binary transition variables and 
individual prices �s,m,m′ for all transitions that lead to additional costs

We assigned marginally different values �s,m,m′ for identical equipment such as the 
reactors to break ties. The following relation is an example for the reactors in plant 
P4a:

This formulation improves the solution time, because the time that the optimizer 
requires to evaluate symmetric solutions (Margot 2010) is reduced. The optimizer 
chooses the cheapest transition among the transitions of identical equipment and if � 
is small, the structure of the overall solution is not changed. In this case study no 
extra penalty on the size of the load change is considered. However, such a penaliza-
tion could be added in a straightforward fashion by a linear reformulation of the 
absolute change of the load 𝛿prod.,p|ṁ(j)

[
(j + 1)]prod., p − ṁ

(j)

prod.,p
| , where �prod.,p is a 

parameter that penalizes the size of the load change.

(33)

fprofit,s(m, ṁ, y, z) =
�
j∈J

⎛
⎜⎜⎝

�
(r,s,s�)∈𝛤out,s

ṁ
(j)

r,s,s�
⋅ 𝛼

(j)

r,s,s�
−

�
(r,s,s�)∈𝛤in,s

ṁ
(j)

r,s,s�
⋅ 𝛼

(j)

r,s,s�

−
�
s∈S

P
(j)

el.,s
⋅ 𝛾 (j)

�
,

(34)ftransition,s(m, ṁ, y, z) =
∑
j∈J

∑
(s,m,m�)∈𝛺p

z
(j)

s,m,m� ⋅ 𝛽s,m,m� .

(35)𝛽P4aReac1,m,m� = 𝛽P4aReac2,m,m� + 𝜖, 0 < 𝜖 ≪ 𝛽P4aReac2,m,m� .
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5.5 � Formulation of the optimization scenario

To determine the quality of the solution of the site-wide optimization model, a prob-
lem instance of an example scenario provided by INEOS in Köln is formulated and 
solved. Past recorded production data from one sample month2 has been taken as a 
reference. The optimization problem takes the monthly production target and initial 
conditions for all modes and tanks levels into account. The following sections pro-
vide a detailed description of the scenario.

5.5.1 � Background

The scheduling horizon is one month in Spring (31 days), where it is assumed that 
in the subsequent month a plant shut down of the ammonia plant P1 happens. Con-
sequently, all plants have to operate such that for the next month a sufficiently large 
amount of ammonia is stored on site to ensure an uninterrupted operation of the down-
stream processes. Given a planned schedule of purchases and sales of ammonia, the 
tank levels and the operating levels of the plants are optimized in order to reach the 
defined target amount of ammonia that is stored on site at the end of the month while 
meeting the predefined monthly production capacities for the products.

5.5.2 � Logistic constraints

For the optimization, the schedule of logistics w.r.t. the ships and trains is given in 
Fig. 6. During the investigated month there are five ships that need to be unloaded. The 

Fig. 6   Purchases and sales via ships and trains during one month. The loading and unloading is assumed 
to be done with maximal flow rates. For the sake of illustration, the number of symbols indicates the time 
that is required for loading or unloading of ships and trains. One train vessel symbol refers to ≈ 5 h of 
processing time. To unload a ship requires ≈ 12 h of processing time

2  Note that due to confidentiality considerations the authors are not allowed to share detailed sensitive 
data about the production schedule.
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schedule for the trains is illustrated by different numbers of train vessels, where one 
train vessel requires ≈ 5 h of loading or unloading time. For the processing of these 
imports and exports the mass flow rates have been fixed, since it is assumed that the 
processing is done as fast as possible at fixed flow rates.

where the reduced load ũb(j)
NH3,s,s

�
 is necessary to process amounts that cannot be 

processed during a full number of time intervals n × �t, k ∈ ℕ , i.e., if the unloading 
would require 4.5 h at full load, then during the first four hours the bound is set to 
full load ub(j)

NH3,s,s
�
 and in the subsequent time interval the remainder is processed at 

the reduced load ũb(j)
NH3,s,s

�
 . This expresses the same situation as if one would pro-

cess 4.5 h at full load.

5.5.3 � Energy prices and ambient temperature

The energy prices for power and natural gas as well as the ambient temperature 
vary over time during the scheduling horizon. The time varying prices influence the 
objective function  (33) and need to be estimated for the length of the scheduling 
horizon J. An extensive review of electric power price forecasting can be found in 
Weron (2014) and more general for forecasting methods in energy planning models 
in Debnath and Mourshed (2018). Since in this contribution we simulate the optimi-
zation model against a set of historic data of INEOS in Köln, the optimizer knows 
the prices in advance. In practice, of course only predictions which are subject to 
uncertainty are given. The prices for power and gas for the considered scenario are 
shown in Fig. 4 for the scheduling horizon in €/MWh.

The ambient temperature varies on different time scales. There are daily and sea-
sonal variations. In the model, the ambient temperature influences the model equa-
tions of the resource consumption and production of the plants (10ff.) and it influ-
ences the fixed transitions times for shutting down and starting up the reactors listed 
in Table 5 (see 8). As for the energy prices, in this contribution the ambient tem-
perature is known to the optimizer for the complete scheduling horizon.

5.5.4 � Initial conditions and target amounts

For all the systems listed in Table 5, the modes at the beginning of the horizon j = 1 
are fixed to the modes that were recorded by INEOS in Köln. Also, the initial levels 
of all tanks within the network were fixed.

(36)
ṁ

(j)

NH3,s,s
� =

⎧
⎪⎨⎪⎩

ub
(j)

NH3,s,s
�
if import or export is performed at full load

ũb
(j)

NH3,s,s
�
if import or export is performed at reduced load

0 otherwise

∀j ∈ J, (NH3, s, s
�) ∈ 𝛤in,site ∪ 𝛤out,site,
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As explained in Sect. 5.5.1, at the end of the horizon a specific minimum target 
amount of ammonia that is stored on site had to be realized. Hence, the following 
constraint is introduced that sums up the amount of ammonia stored in all tanks at 
j = J + 1

where m(j=J+1)

NH3,⊚
 is a given value taken from the data of INEOS in Köln.

The current practice for the site-wide scheduling at INEOS in Köln is to fix 
monthly production targets for the processing plants. These targets can be translated 
into ammonia consumption targets of the plants that produce subsequent products 
from ammonia. Thus, the following constraints are added to the problem formula-
tion for the plants P3, P4a, and P4b

where ṁ(j)

NH3,t,p
 denotes the amount of ammonia that every plant p (except for the 

ammonia plant) receives from the buffer tank t during the scheduling horizon (see 
Fig. 2). The fixed consumption target mNH3,p,⊚

 is taken from the actual production 
capacities in the scenario.

5.6 � Implementation

The optimization problem was implemented with the help of the mathematical 
modeling package JuMP (Dunning et al. 2017), which is a package written in Julia 
(Bezanson et  al. 2017). This implementation is independent of the chosen solver, 
since JuMP enables the use of many open-source and proprietary solvers. For this 
contribution the commercial solvers CPLEX 12.8.0.0 and Gurobi 8.0.1 as well as 
the two open source solvers Cbc (Coin-OR 2018) and GPLK (GLPK (GNU Linear 

(37)
∑
t∈T

m
(j=J+1)

NH3,t
≥ m

(j=J+1)

NH3,⊚
,

(38)mNH3,p,⊚
=
∑
j∈J

∑
t∈Tb

ṁ
(j)

NH3,t,p
⋅ 𝛥t, ∀p ∈ P⧵P1,

Fig. 7   Comparison of the optimized and recorded plant production levels w.r.t. the usage of ammonia 
(dashed lines represent recorded data). The exact numbers of the usage are confidential
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Programming Kit) 2018) were tested with different settings for the relative MIP gap 
(see Table 6).

6 � Results and discussion

This section contains the results for the described scenario. The optimized schedule 
and its production rates and tank levels are compared to the historic daily operation 
at INEOS in Köln for that month. For the discussion of the optimized schedule we 
use the results with the smallest MIP gap, which were obtained within 60 min by the 
solver Gurobi (see Table 6).

Operation of the plants and their reactors. Figure  7 shows the optimized 
hourly production rates of the plants with respect to the ammonia usage, i. e, the 
ammonia plant P1 produces ammonia and the others consume it. The dashed lines 
represent the recorded operation at INEOS in Köln. The optimized schedule for 
the ammonia plant assigns full load towards the end of the month, while at the 
beginning the load is set to the lower bound, which is about 80% of the NH3 pro-
duction capacity. In between, the optimized production trajectory of the plant is 
ramped up and down twice between the lower and upper bound without a com-
plete shut down of the plant. The ramping is determined by the constraints (22f.). 
The reasons for the particular pattern can be explained by the pattern of the gas 
price (see Fig. 4), which is slightly lower at the end of the month. In addition, the 
ammonia plant reduces its load to not exceed the amount that is taken from the 
proceeding processes plus what is required at the end of the month as defined in 
(37) and (38). The ammonia production does not exceed the minimum required 
amount of ammonia on site, because additional ammonia has to be stored in the 
deep-cooled storage tanks Tc1 and Tc2, which requires an additional consump-
tion of electric power without the possibility of sales within the horizon.

The schedule that is computed for the nitric acid plant P3 has the largest num-
ber of set point changes among the plants. The plant is not shut down completely, 
since for this action a high transition cost is assigned by (34). It is more efficient 
to reduce its load, which is done by ramping up and down between the upper and 
the lower bounds of the ammonia takeup capacity. It is visible that there exists 
a coupling between the operation of plants P1 and P3. At the beginning of the 
horizon the load of P1 is reduced and the load of P3 is reduced, too. However, the 
coupling is not straightforward, since the plants are connected via the ammonia 
storages. The intermediate reduction of the load of P3 is either caused by a short-
age in the buffer tanks or by a propagation of the load reduction of P1 during an 
earlier time interval. Similar to the operation of P1, P3 does not operate at maxi-
mum load throughout the horizon in order to not exceed the monthly target. The 
required operational load is shifted according to the needs of the site.

In the optimized schedule for the AN plant P4a all the reactors are operated 
either at full load, or switched off completely, which is done in the last quarter of 
the horizon (see Figs. 7, 12). For this plant it is more beneficial to shut down indi-
vidual equipment and pay the one time transition cost (34) instead of reducing the 
load of the reactors. A similar situation can be observed for the other AN plant 
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Fig. 8   Optimized tank levels of all individual tanks

Fig. 9   Integrated amount in the tanks grouped by type of the tank (TcX = Tc1 + Tc2, TbX = Tb1a + 
Tb1b + Tb3). Dashed lines correspond to the recorded data

Fig. 10   Tank levels of the deep-cooled storage tanks Tc1 and Tc2. Dashed lines correspond to the 
recorded data
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P4b, which switches off one of the four reactors in the first third of the horizon 
(see Fig. 7, 12). For these reactors it is more economical to operate them at their 
maximum load or to switch them off, which is related to large constant terms 
in the affine model equations (13f.). The assignment of the timings for the shut 
downs is done either because of the prices for gas and electric power or according 
to the availability of ammonia in the buffer tanks, which is affected by the pur-
chase and sale schedule and which is coupled to the operation of the remaining 
plants.

When the optimized schedule is compared to the recorded operation one can 
see that the optimizer makes use of the possibility to switch off reactors or even 
complete plants. The recorded operation at INEOS in Köln changes the load of the 
plants slowly rather than performing sudden changes, which is typical for the opera-
tion of large continuous processes. In contrast, the optimizer evaluates the tradeoff 
between shutting down and operating at a less efficient operating point such as the 
lower bound.

Fig. 11   Tank level the buffer tank Tb3. The dashed line corresponds to the recorded data

Fig. 12   Operating modes of the different pieces of equipment. The transitions from shutting down and 
starting up are indicated by ramps
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Optimized tank levels. Figures 8, 9, 10, and 11 give insight into the optimization 
results for the tank levels. Figure 8 shows the optimized tank levels of all individual 
ammonia tanks within the network. It is visible that the optimizer strives to fill all 
tanks towards the end of the month, which is in line with the required value defined 
in the scenario (37). The difference between the two different tank types, namely 
the deep-cooled storage tanks Tc1 and Tc2 (denoted as TcX) and the buffer tanks 
Tb1a, Tb1a, and Tb3 (denoted as TbX) becomes visible in Fig. 9 where the levels 
of the grouped tank types are compared to the recorded data. The integrated amount 
of ammonia on site matches exactly the amount that was recorded. However, the 
distribution is different. Although, the optimizer and INEOS in Köln use the tanks 
TbX to buffer the imported and exported amount (wavy pattern of TbX), the final 
amount in the buffer tanks is larger compared to the recorded data and the amount 
in the deep-cooled storage tanks is smaller. This results from minimization of the 
costs on site, where the optimizer strives at spending as little money as possible for 
storing ammonia. Sending ammonia towards the deep-cooled storage tanks via the 
compressors requires liquefaction, which adds extra costs and reduces the resource 
efficiency on site.

Figure 10 gives further details on the filling of the individual deep-cooled storage 
tanks Tc1 and Tc2. Starting from the initial values, both tank levels increase. The 
optimizer chooses to first fill Tc1 at a higher rate, then Tc2 is preferred from 400 h 
on. In contrast to the recorded data, the optimizer decided to alternate between the 
filling of the two tanks. This is possible because switching between the two tanks 
can be done after every time interval �t without any further cost. Overall it can be 
seen that especially Tc1 has still some capacity left at the end of the planning hori-
zon in the optimized schedule, which is caused by the minimization of the storage 
cost on site and thus by a minimization of the amount that is stored in the deep-
cooled tanks.

Figure  11 shows the trajectory of the buffer tank Tb3. This buffer tank pro-
cesses the flows of ammonia that enter or leave the site via ships and trains (see 
Sect. 5.5.2). It is clearly visible that the pattern of the ship arrivals is reflected in 
both the recorded data and the optimized schedule (cf. Fig. 6). The optimized sched-
ule generally has a higher filling level, which is especially of importance at the end 
of the horizon, where more ammonia is stored in comparison with the recorded data. 
The optimizer uses this free capacity to store ammonia on site without the necessity 
to cool it down. Further differences can be found in the emptying procedure. The 
tank needs to be nearly empty to receive the load of a ship when it arrives. While in 
the recorded operation the tank is emptied earlier than required, which might be due 
to experience and implicit uncertainty handling of the site management, the opti-
mizer empties the tanks just before the ship arrives, since there is no safety margin 
included in the formulation.

Optimized operating modes. Figure  12 illustrates the operating modes of the 
major equipment and plants on site. Most of the plants stay switched on throughout 
the horizon, which is plausible for the operation of large petrochemical processes. 
Reactors are switched off only in the plants P4a and P4b. Plant P4a is completely 
shut down (both of its reactors are switched off) and in plant P4b one reactor is 
switched off. It is also visible that the shut down and start up times differ from 
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reactor to reactor and in addition they are temperature dependent [cf. the shut down 
time of the reactors P4aReac1 and P4bReac1, see (8)].

It is interesting to analyze the switching of the compressors C1 and C2, which is pre-
dominantly determined by the need to liquefy ammonia to reach the target capacity at 
the end of the month in the deep-cooled storage tanks. In addition to these needs, the 
optimizer considers the price of electric power to run the power consuming devices dur-
ing times of low prices of electric power as illustrated for the compressors in Fig. 13. 
In the figure, a selection of regimes of low and high prices for electric power are high-
lighted. It can be seen that the optimizer chooses to switch the compressors on during 
times of low prices and decides to turn them off if the price of electric power is elevated.

Energy savings for deep-cooled ammonia storage. There are many aspects that 
can be considered to evaluate the quality of the optimized schedule. One aspect is to 
look at the electric power required for the storage of deep-cooled ammonia. There 
are two factors that lead to savings. First, the alignment of the liquefaction of ammo-
nia with the power price leads to savings. Second, the minimization of the amount 

Fig. 13   Operating modes of the two compressors plotted jointly with the prices for electric power. The 
vertical stripes illustrate exemplary regimes of low and high prices for electric power

Fig. 14   Relative savings in power because of less liquefaction of ammonia in the deep-cooled storage 
tanks and alignment of the compressor operation to the power prices. 100% corresponds to the costs that 
occurred on site for the given price of electric power and the processed amount of ammonia
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of liquefied ammonia reduces the power consumption. As an example, the relative 
power expenses integrated over the horizon are shown in Fig. 14. At the beginning, 
both the recorded and the optimized trajectories start at zero expenses. Since the 
power price is negative at the beginning (see Fig. 4), the relative expenses become 
negative. The data is scaled such that at the end of the horizon the recorded opera-
tion reaches 100% of the expenses. It can be seen that the optimized schedule leads 
to less expenses than the recorded data. At the end of the horizon, the optimized 
schedule saved ≈ 25% of the costs for the liquefaction, which is caused by less lique-
fied ammonia and the adjustment of the compressors to the power prices.

Solution times. The solution times required to solve the optimization model sig-
nificantly depend on the scenario and how many logistic constraints and operating 
modes are prefixed. In addition, we tested the performance of different solvers, two 
commercial ones and two open source solvers. The results are shown in Table 6 for 
varying tolerances of the MIP gap of the solvers. Both open source solvers were not 
able to find a solution to the problem instance within the allowed time of 60 min. In 
terms of the objective values, CPLEX and Gurobi perform similarly if the allowed 
time is 60 min and the tolerance for the relative MIP gap is set to 10−4 . For the most 
coarse termination tolerance of 10−2 , Gurobi finds a solution within the tolerance 
much faster than CPLEX. For a termination tolerance of 10−3 both solvers require 
comparable solutions times with similar relative MIP gaps.

7 � Conclusion

From the generic model proposed in Sect.  4 it is possible to generate an optimal 
schedule for the operation of processing plants coupled by resource networks. 
The results for the provided scenario of INEOS in Köln could be obtained within 

Table 6   Details on the solution time with different solvers

The italics indicate that the maximal allowed time has been reached before convergence was achieved
The bold numbers indicate the best solutions that were found
The maximum allowed time for all solvers was set to 60 min
a Windows 10 PC with an Intel® Core™ i7-6700 CPU 3.40 GHz with eight cores and a 32 GB RAM

Solver Max. relative MIP gap Solution timea (s) Objective value Relative 
MIP gap 
(%)

CPLEX EPGAP = 10−2 458 −1.37810 × 10−7 0.59
CPLEX EPGAP = 10−3 812 −1.38466 × 10−7 0.10
CPLEX EPGAP = 10−4 3600 −�.����� × 10� 0.05
Gurobi MIPGap = 10−2 183 −1.37574 × 10−7 0.79
Gurobi MIPGap = 10−3 804 −1.38517 × 10−7 0.09
Gurobi MIPGap = 10−4 3600 −�.����� × 107 0.04
Cbc Ratiogap = 10−2 No solution found
GLPK MIPRelativeGap = 10−2 No solution found
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a reasonable time if the termination tolerance is not chosen too tight. The results 
are plausible and they are in good agreement with the recorded data. The optimizer 
reduces the production cost by shifting the operation periods and loads of the pro-
cesses and the operation of energy consuming equipment. In the perspective of 
demand side management the benefits are limited because of the inflexibility of the 
processes, which is not uncommon in the petrochemical industry. The large produc-
tion plants are slow in changing their operating point and are directly coupled to 
the operation of the adjacent processes. Since between the ammonia plant and the 
compressors there is no intermediate storage, the operation of the compressors is 
strongly linked to the operation of the plant, which is limited by ramping constraints. 
In addition, the overall system is heavily driven by logistic constraints, which sig-
nificantly reduces the degrees of freedom for an optimizer to improve the operation. 
The logistic constraints of the arrivals of ships and trains are fixed in this contribu-
tion. However, with the generic modeling approach presented in Sect. 4 it is possible 
to vary the arrival times of the ships and trains as well.

One issue that we noted is that the contributions of the individual terms in the 
objective function vary by orders of magnitude. The predominant terms are the pro-
duction loads of the plants, since these terms determine the profit of the site and 
are the main driving force. The “minor” decisions such as when to shut down one 
reactor do not have a large impact on the objective. Hence, the solution for these 
“minor” decision can vary depending of the chosen tolerance and solver. If one is 
not satisfied with the pattern of the solution and the respective setting of the opera-
tion modes, one can implement further constraints that are inspired by daily opera-
tion such as minimum stay time constraints. This will avoid that equipment like the 
compressors switch their modes too frequently.

Towards a practical implementation, the efficiency of the optimization model can 
be further improved if more discrete variables are fixed by experience or external 
references. In this situation, however, the optimization model might represent more 
the reality of the current operation than revealing the potential improvements of the 
overall system, i.e., there is the risk of modeling the site-wide operation with all the 
constraints that are in practice regarded as constraints, but which potentially prevent 
the system to operate at an even better operating point.

An important point that needs to be addressed is the prediction of the prices of 
gas and electric power, as well as of the ambient temperature. If it is intended to take 
these into account, then precise predictions are necessary to adjust the operations 
in time. The fact that the optimizer in this contribution is aware of the exogenous 
influences over the complete horizon has to be kept in mind when interpreting and 
evaluating the results and potential savings.

8 � Summary and future work

We first presented a generic MILP model for the optimization of the operations of 
coupled production plants that can have multiple units. The optimization model 
takes into account the storage tanks and the logistics of the site as well as demand 
side management. The model was parametrized for the petrochemical production 
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site of INEOS in Köln, where four processing plants are physically coupled by a 
joint distribution network. For a scenario based on historic data, an optimization 
problem was formulated to generate a one month schedule for the operation. The 
solution of the optimization problem is in good agreement with the recorded opera-
tion of INEOS in Köln, since the relevant constraints for the operation of the net-
work are captured in the model. We showed that there is a significant saving poten-
tial with respect to the power consumption for the deep-cooled storage tanks on site. 
The optimization model was solved by the two commercial solvers CPLEX and 
Gurobi, while the two open source alternatives failed. Gurobi found a solution with 
a slightly smaller MIP gap within an allowed time of one hour.

Future work includes the incorporation of educated guesses or estimations for 
the energy prices as well as the ambient temperature, since the required planning 
horizon is supposed to be longer than a reasonable prediction horizon of the energy 
market or the weather. In addition, to cope with the inherent uncertainty of train and 
ship schedules as well as unforeseen failures in the production, a moving horizon 
formulation and daily rescheduling is proposed. This can be extended by stochas-
tic formulations (Sand and Engell 2004; Cui and Engell 2010). Another interesting 
aspect to study is the extension of the described network by more plants and pos-
sibly by connecting it to more shared resource networks such as steam or other base 
chemicals shared on site. Further, it can be interesting to apply distributed optimiza-
tion algorithms such as market-based coordination in order to perform the optimiza-
tion of coupled production plants that belong to different business units or compa-
nies that operate at large chemical sites or in industrial clusters as done by Wenzel 
et al. (2016) for coupled continuous plants.
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