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Abstract Riemannian Optimization (RO) generalizes standard optimization meth-

ods from Euclidean spaces to Riemannian manifolds. Multidisciplinary Design

Optimization (MDO) problems exist on Riemannian manifolds, and with the dif-

ferential geometry framework which we have previously developed, we can now

apply RO techniques to MDO. Here, we provide background theory and a literature

review for RO and give the necessary formulae to implement the Steepest Descent

Method (SDM), Newton’s Method (NM), and the Conjugate Gradient Method

(CGM), in Riemannian form, on MDO problems. We then compare the performance

of the Riemannian and Euclidean SDM, NM, and CGM algorithms on several test

problems (including a satellite design problem from the MDO literature); we use a

calculated step size, line search, and geodesic search in our comparisons. With the

framework’s induced metric, the RO algorithms are generally not as effective as

their Euclidean counterparts, and line search is consistently better than geodesic

search. In our post-experimental analysis, we also show how the optimization tra-

jectories for the Riemannian SDM and CGM relate to design coupling and thereby

provide some explanation for the observed optimization behaviour. This work is

only a first step in applying RO to MDO, however, and the use of quasi-Newton

methods and different metrics should be explored in future research.
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1 Introduction

There currently exist a variety of gradient-based optimization algorithms. These

algorithms are well-understood and widely used, but most have been derived for flat

spaces. However, it is possible to generalize these algorithms to curved spaces:

Riemannian Optimization (RO) methods are gradient-based optimization algorithms

derived for Riemannian manifolds. Due to the increased mathematical technicality

of these methods, and the fact that the traditional algorithms have proven to be as

successful as they have, RO is not widely known or commonly used, but

Multidisciplinary Design Optimization (MDO) may prove to be an ideal application

opportunity.

MDO problems exist on curved spaces—the feasible design manifolds defined by

the state equations (Bakker and Parks 2015a). Thus far, the literature only shows use

of the traditional ‘‘flat’’ algorithms on MDO problems, but given that these curved

spaces are, in fact, Riemannian manifolds, it makes sense to consider how RO

algorithms might perform in an MDO context. With our differential geometry

framework, we can now do that. In this paper, we will consider some MDO

problems and compare the Riemannian algorithms’ performance against that of the

Euclidean algorithms. We intend to focus on convergence behaviour over

computational cost (for the time being) in order to determine if further investigation

into the use of these algorithms is warranted.

2 Background

2.1 Riemannian geometry

Here, we reiterate and summarize relevant portions of theory which we have

previously presented in more detail (Bakker and Parks 2015a). Differential

geometry is concerned with doing mathematics (such as calculus) on generally

non-Euclidean spaces. In Euclidean geometry, the basic structures of space are

linear: lines, planes, and their analogues in higher dimensions, but differential

geometry deals with manifolds. Manifolds are abstract mathematical spaces which

locally resemble the spaces described by Euclidean geometry but may have a more

complicated global structure (Ivancevic and Ivancevic 2007); manifolds are like

higher-dimensional versions of surfaces.

A Riemannian manifold is a differentiable manifold with a symmetric, positive

definite bilinear form (known as the metric tensor). Given a Riemannian manifold

M, the metric tensor gij defines an inner product, and this makes it possible to

perform a number of different mathematical operations on the manifold. For

example, the infinitesimal length on the manifold is

ds2 ¼ gijdw
idwj ð1Þ

where wi are the coordinates of the manifold. Note the use of index notation with the

summation convention here and in the rest of this paper unless otherwise indicated.
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Our index notation includes the use of superscripts and subscripts to indicate con-

travariant and covariant indices, respectively. We recognize that using this convention

can be disorienting from an engineering perspective, but this kind of notational

bookkeeping is significant for calculating derivatives and handling coordinate system

changes, among other things, so we will hold to it as much as possible; we explain this

further in our foundational theory paper (Bakker and Parks 2015a).

The summation convention is that repeated indices in an expression are summed

over:

aibi ¼
X

i

aibi ð2Þ

If gij is known at a point on M, it is possible to calculate the Christoffel symbols at

that point:

Ci
kl ¼

1

2
gim

ogmk

owl
þ ogml

owk
� ogkl

owm

� �
ð3Þ

and they feature in two important places: the covariant derivative and the geodesic

equation; Ci
kl are essentially intermediate quantities—they are typically used for

calculating other pieces of information. The geodesic equation is

€wi þ Ci
kl _w

k _wl ¼ 0 ð4Þ

Solutions of the geodesic equation are the paths that particles moving along the

manifold would take if they were not subjected to any external forces (Ivancevic

and Ivancevic 2007). They are to curved spaces what straight lines are to flat spaces:

great circles on a sphere are a familiar example.

The covariant derivative, denoted with a subscript semi-colon, does two things: it

projects the derivative onto the tangent space (Boothby 1986), and it maintains the

tensorial character of whatever it derivates (Ivancevic and Ivancevic 2007). vi;j is the

derivative of vi with respect to wj (w are still the manifold coordinates), and vi;j is

then the covariant derivative of vi with respect to wj. The some sample formulae for

the covariant derivative are

vi;k ¼ vi;k þ Ci
jkv

j ð5Þ

vi;k ¼ vi;k � Cj
ikvj ð6Þ

tikl;q ¼ tikl;q þ Ci
qst

s
kl � Cs

kqt
i
sl � Cs

lqt
i
ks ð7Þ

Notice how covariant and contravariant indices are differentiated differently; also,

gij;k ¼ 0 (Szekeres 2004).

2.2 MDO background

MDO deals with the optimization of systems which have coupled subsystems. The

field originally grew out of structural optimization in aerospace design at NASA in
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the 1980s. Today, it is applied across a range of engineering disciplines, but

aerospace remains a significant application area. In MDO, problem coupling is dealt

with through decomposition and coordination strategies called architectures.

Martins and Lambe (2013) provide a comprehensive review of MDO architectures

and describe their functioning in detail.

A key part of performing optimization with these architectures is obtaining

relevant derivative information. The Global Sensitivity Equations (GSEs) are a

well-known way of obtaining the total derivatives of state variables with respect to

design variables by using partial derivative information from each discipline

(Sobieszczanski-Sobieski 1990). Optimum Sensitivity Analysis (OSA) can be used

similarly to obtain useful derivative information in multi-level optimization

problems, such as those which result from using MDO architectures (Barthelemy

and Sobieszczanski-Sobieski 1983), and adjoint derivatives have also proved to be

useful in computationally expensive MDO contexts (Martins et al. 2005). Martins

and Hwang (2012) summarize most of the relevant information regarding derivative

calculations in MDO.

MDO also has connections to a variety of related fields: optimal control (Allison

and Herber 2013), multi-objective optimization (Tappeta et al. 2000), metamod-

elling (Paiva et al. 2010), and multi-fidelity modelling (Thokala 2005). These

connections continue to be explored alongside research in basic MDO methods and

MDO applications.

2.3 MDO in Riemannian geometry

In this section, we summarize the translation of MDO into Riemannian geometry

(Bakker and Parks 2015a). Consider a generic MDO problem as

min f ðx; y; zÞ ð8Þ

gðx; y; zÞ� 0 ð9Þ

hðx; y; zÞ ¼ 0 ð10Þ

where x is the vector of local design variables, y is the vector of state variables, z is

the vector of global design variables, g is the vector of inequality constraints, and h
is the vector of state equations in residual form; (8) is just a rearrangement of the

state equations:

yi ¼ wiðx ið Þ; ~y ið Þ; zÞ; i ¼ 1; 2; . . . ð11Þ

where x ið Þ is the set of local variables for discipline i and ~y ið Þ is the set of all state

variables excluding yi. A two-discipline example of this is shown in schematic form

in Fig. 1. The variables can be further simplified by lumping them together: w ¼
x zf g and v ¼ w yf g.

The total design space for this problem is Rm, where m is the total number of

variables, and the feasible design space Mfeas is an n-dimensional manifold, where n

is the total number of design variables, defined by the solutions to the state
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equations; Mfeas is a subspace of the total design space. Assuming sufficient

differentiability, the induced metric gij on Mfeas is

gij ¼
ovk

owi

ovk

owj
¼ dij þ

oyk

owi

oyk

owj
ð12Þ

where the derivatives of y with respect to w are calculated from the state equations

by using the implicit function theorem. The Christoffel symbols are then

Ci
kl ¼ gim

oys

owm

o2ys

owkowl
ð13Þ

Turning to the objective function derivatives, we know that for a scalar function, the

covariant derivative is identical to the regular derivative:

f;i ¼ f;i ¼
df

dwi
¼ of

owi
þ of

oyk
oyk

owi
ð14Þ

This is just the reduced gradient of f. However, taking the covariant derivative again

does not result in the reduced hessian. The reduced hessian and the second covariant

derivative of f are, respectively,

f;ij ¼
o2f

owiowj
þ o2f

owioyk
oyk

owj
þ o2f

owjoyk
oyk

owi
þ o2f

oymoyk
oyk

owi

oym

owj

þ of

oyk
o2yk

owiowj

ð15Þ

f;ij ¼ f;ij � Cl
ijf;l ð16Þ

As we have noted previously (Bakker and Parks 2015a), this differential geometry

perspective allows us to consider the constrained optimization problem as an

unconstrained problem on a Riemannian manifold. The resulting Lagrangian (on the

Riemannian manifold) could have inequality constraint terms, but it would not have

equality terms corresponding to the state equations because those constraints would

have already been ‘‘absorbed’’, for lack of a better term, into the Riemannian

manifold and its structure; any additional non-state equality constraints could fea-

ture in the Lagrangian, though.

Fig. 1 A two-discipline MDO schematic
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Since the variety of variables used in this paper could prove confusing, we have

provided a list of commonly used terms, in both vector (boldface) and index

notation where appropriate, in Table 1.

2.4 Theoretical background for Riemannian optimization

The metric tensor can be used to raise and lower indices. Consider the inner product

u; vh i. In general, this can be expressed as giju
ivj; in flat spaces, where gij ¼ dij,

giju
ivj ¼ diju

ivj ¼ ujvj ð17Þ

This procedure can actually be considered as simply taking the covariant form of u,

uj ¼ giju
i, and doing a tensor contraction with v: ujv

j. This is relevant because of

how it relates to objective function derivatives and gradients. Technically, the

objective function derivative of
oxi

¼ f;i is a covector, not a vector. However, the

gradient is a vector, so we use the metric tensor inverse to raise the necessary index

and get gijf;j as our gradient.

Geodesics, which are defined by (4), are an integral part of most RO derivations

and proofs. In Rn, gradient-based optimization algorithms do line searches; in RO,

the search is done along geodesics (at least in theory). A geodesic extending in the

direction n at point x can be denoted by expx tnð Þ : TxM ! M, t[ 0. The

exponential maps vectors in TxM to the manifold itself (Boothby 1986).

Although this notation is simple and elegant, in practice, these geodesics are

difficult to calculate (Yang 2007) as they require the solution of the geodesic

equation. Geodesics are often used in convergence proofs for RO algorithms

(da Cruz Neto et al. 1998; Ferreira and Svaiter 2002; Luenberger 1972). In practical

calculations, however, geodesics are usually approximated with a tangent step with

a constraint restoration step or a quadratic approximation (Gabay 1982).

Fortunately, it is still possible to do the convergence analysis with these

approximations (Qi 2011).

Table 1 Commonly used

quantities
Symbol Denotation

f Objective function

g, gi Vector of inequality constraints

h, hi Vector of state equations in residual form

w, wi Vector of all design variables

x, xi Vector of all local design variables

z, zi Vector of all global design variables

y, yi Vector of state variables (defined by the state equations)

gij, g Metric tensor

Ci
jk

Christoffel symbols

a;i Covariant derivative of a

a kð Þ Step length at iteration k

d kð Þ Step direction at iteration k
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In order to implement these more computationally tractable problems, we need

retractions. Retractions are first-order approximations to the exponential: Rx :
TxM ! M (Qi et al. 2010). For a vector n at a point x,

Rx nð Þ ¼ expx nð Þ ¼ xþ n ð18Þ

Baker (2008) gives three conditions for a retraction:

1. R is continuously differentiable

2. Rx 0xð Þ ¼ x (0x is the zero element on TxM)

3. DRx 0xð Þ ¼ 1TxM , the identity mapping on TxM

Another important concept is that of parallel or vector transport. Parallel transport is

the transportation of vectors between tangent spaces which preserves vector lengths

and angles (Ji 2007); it applies analogously to moving tensors between the products

of tangent and cotangent spaces (Whiting 2011). There is a connection which

‘‘connects’’ those tangent spaces. The connection is like a differential equation

which specifies how quantities on the manifold change locally, and we can represent

that connection with the Christoffel symbols. Parallel transport is the integration of

the connection along a path (Whiting 2011), and thus parallel transport is actually

defined by the connection (Li and Wang 2008).

Furthermore, for a given metric, there is a unique metric-compatible, symmetric

connection (Boothby 1986). This connection may be easy to specify, but it is

difficult to compute parallel transport in practice (Nishimori 2005). Therefore, Qi

(2011) defines vector transport as a relaxation of parallel transport corresponding to

retraction as a relaxation of the exponential mapping.

Finally, we consider convexity. In Rn, convexity of both sets and functions is

defined with respect to straight lines: a function f is convex if

f txþ 1 � tð Þyð Þ� tf xð Þ þ 1 � tð Þf yð Þ; t 2 0; 1½ � ð19Þ

and a set S is convex if

txþ 1 � tð Þy 2 S 8x; y 2 S; t 2 0; 1½ � ð20Þ

In Riemannian geometry, however, convexity is defined with geodesics instead of

straight lines (Bento et al. 2012); assuming that there is a unique geodesic c tð Þ
connecting x and y such that c 0ð Þ ¼ x and c 1ð Þ ¼ y, a function f is convex if

f c tð Þð Þ� tf xð Þ þ 1 � tð Þf yð Þ; t 2 0; 1½ � ð21Þ

and a set S is convex if

c tð Þ 2 S 8x; y 2 S; t 2 0; 1½ � ð22Þ

When geodesic uniqueness fails, so too does a unique definition of convexity

(Udrişte 1994). For a metric-compatible connection, convexity is in fact determined

by the choice of metric tensor (Rapcsák 1991): convexity is determined by the

geodesics, which are determined by the connection, which is in turn determined by

the metric tensor. Convexity is not, however, determined by the coordinate system
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used (Udrişte 1996a). This means that it is sometimes possible to transform non-

convex problems into convex problems through the choice of a favourable metric

tensor (Bento et al. 2012).

2.5 A review of the field

Luenberger (1972) wrote the first significant paper applying RO to equality-

constrained optimization. He used a projection operator to get the objective function

derivatives onto the tangent spaces (using the coordinates of the embedding space,

not coordinates specifically for the manifold itself) and proved convergence for a

descent method along the manifold geodesics.

What may perhaps be considered the foundational paper, however, was later

written by Gabay (1982). Gabay began from a constrained optimization problem

and used slack variables to convert the inequality constraints into equality

constraints. This is a fairly common practice in RO (Rapcsák 1989; Tanabe 1982).

He then addressed the question of partitioning the problem into dependent and

independent variables. Although some problems may have a natural partition

available to them, arbitrary partitions may lead to poor performance. Throughout the

rest of the paper, though, he avoided partitions and used projections from the

embedding spaces instead of an explicit manifold coordinate representation. This is

also fairly common when applying RO to general nonlinear optimization problems

(Luenberger 1972; Rapcsák and Thang 1995; Tanabe 1980). Rheinboldt (1996) is a

notable exception in using a QR factorization on the constraint derivatives to get an

orthonormal coordinate system at any given point on the manifold. Finally,

considering two different types of geodesic approximation (a tangent step with

constraint restoration and a quadratic approximation), Gabay (1982) developed a

Riemannian version of a quasi-Newton method.

Since then, several authors have developed Riemannian versions of algorithms such

as the Steepest Descent Method (SDM), Newton’s Method (NM) and the Conjugate

Gradient Method (CGM) (Smith 1994; Udrişte 1994). However, implementing

geodesic searches is difficult to do in general. As a result, many of the examples given

to demonstrate the algorithms use special manifolds – the Grassman and Stiefel matrix

manifolds are particularly popular—where it is relatively easy to calculate the requisite

quantities (Nishimori 2005; Qi 2011; Rapcsák 2002; Smith 1994).

In order to address this better, Qi (2011) looked in more detail at how to

approximate the geodesic search typically specified by the RO algorithms proposed.

She showed that the exponential map could be relaxed to the more general retraction

while maintaining algorithm convergence and gave conditions and proofs for that

convergence. Furthermore, different retractions actually produce different opti-

mization algorithms. As Ring and Wirth (2012) later pointed out, some retractions

are better than others: there is a problem-specific tradeoff between computability

and the number of iterations required for convergence.

Baker (2008) continued to look at retraction-based RO while extending trust

region methods to RO. Instead of directly applying Euclidean optimization

algorithms to Riemannian manifolds, he used the retraction to lift the objective

function on the manifold to the manifold tangent spaces and then applied the
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Euclidean algorithms on those flat spaces. For example, he would use one retraction

to build a trust region model in a tangent space, but he showed that a different

retraction could then be used to explore that trust region model. He further showed

that this process, even using two different retractions, was still convergent.

As already noted, the majority of the RO studies focused on equality-constrained

optimization; slack variables would be used to turn any inequalities into equalities.

There were, however, some exceptions to that general methodology. Udrişte

(1996b) used a logarthmic barrier function, and Ji (2007) explored this in more

detail. Ji focused on interior-point methods and self-concordant functions, and he

developed damped versions of SDM, NM, and CGM to deal with these inequality-

constrained RO problems. Udrişte (1994) also considered using a method of feasible

directions to address the same issue.

In parallel to all of this, Tanabe (1979a, b, 1980, 1982) looked at continuous

analogues to these discrete optimization processes in a Riemannian context.

Typically working through the projection-based approach of Luenberger and Gabay,

Tanabe used continuous versions of descent and constraint satisfaction processes

(with components tangent and normal to the manifold, respectively) to define the

optimization problem. He then used differential geometry to analyze those

dynamical systems on the manifold; the constrained optimization could be solved

with a numerical ordinary differential equation (ODE) integrator. Dean (1988) later

continued on in this vein and claimed that the problems thus generated were easier

to analyze than the corresponding discrete optimization algorithms.

Alongside algorithm development, there have also been a variety of pertinent

theoretical works done on the subject. Yang (2007) and Qi (2010) separately worked

to generalize the Euclidean Armijo search conditions to RO. Ferreira and Svaiter

(2002) similarly extended Kantorovich’s theorem to NM on Riemannian manifolds.

A number of proofs for the convergence of geodesic-based descent methods were

produced (e.g. da Cruz Neto et al. 1998), but most of these proofs required certain

curvature conditions on the manifold. Wang (2011), however, provided a curvature-

independent convergence proof.

On a more applied level, some authors had interesting experiences with choosing

different metric tensors. Udrişte (Udrişte 1996b), for example, proposed using the

hessian of the Lagrangian (for an inequality-constrained RO problem) as a metric

tensor; this could work to enforce feasibility during the optimization process. The

nature of manifolds with objective function hessians as their metric tensors was,

however, still an open problem 20 years ago (Udrişte 1994); any current

advancements in this regard are unknown to us. In general, though, it is possible

to choose the metric tensor in order to take advantage of problem-specific behaviour

if enough is known about the problem beforehand, and doing this does not affect the

location of the optima (Ring and Wirth 2012). Munier (2007) provided an example

of this: by choosing a particular metric tensor and using RO on the Rosenbrock

problem, he was able to turn the problem into a convex optimization, and this

produced a far more efficient solution process than the typical Euclidean methods.

There are three other areas worth mentioning, though we will not go into them in

detail. Firstly, Bento et al. (2012) touched on Multi-Objective Optimization (MOO)

on Riemannian manifolds in their paper. We have not seen any other work in this
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area, but given that single-objective RO is as established (though small) as it is, it

makes sense to expand into multiple objectives. Secondly, Whiting (2011) looked at

path optimization on Riemannian manifolds. This ties in to the calculus of variations

and ultimately control problems in Riemannian geometry. Although we have not

closely investigated this, we suspect that there exist a number of other works

considering Riemannian control problems. Thirdly, Potra and Rheinboldt (1989)

considered a differential geometric approach to Differential Algebraic Equa-

tions (DAEs). DAEs are related to equality-constrained optimization through

constrained ODE-based optimization (Tanabe 1980). Given the presence of

differential constraints in control problems, the study of these systems is probably

also relevant to constrained optimal control problems.

2.6 Comments on Riemannian optimization

A variety of theoretical results and methods has been produced for RO. Essentially,

if it can be done in Rn, it can be done analogously in Riemannian geometry (e.g.

trust region methods, quasi-Newton methods), and there are a plethora of

accompanying convergence proofs; this likely reflects the fact that most of the

RO researchers are mathematicians, not engineers.

One of the difficulties in applying these methods to real optimization problems is

finding appropriate manifold coordinate systems. Applications of the methods tend

to fall into one of two groups: using projections with matrix notation to stay in the

coordinate system of the embedding space (Gabay 1982; Luenberger 1972; Tanabe

1980), or working on manifolds with a special analytical structure that permits the

explicit calculation of the relevant quantities (Nishimori 2005; Qi 2011; Rapcsák

2002; Smith 1994). The former perspective is general but fails to take advantage of

the techniques and tools available for dealing with explicit manifold coordinates,

and the latter approach is useful in specific contexts but only deals with a small

subset of constrained nonlinear optimization problems. Essentially, coordinates (of

some sort) are needed to do the calculations, and, in general, the mathematics are

more easily grasped in a coordinate-based tensor notation than in either matrix or

coordinate-free notation.

3 Applying Riemannian optimization to MDO

With our differential geometry framework, we can now apply RO algorithms to

MDO; we have an explicit coordinate representation, and we can calculate all of the

relevant quantities. Furthermore, although we will not do this here, we could use our

previous derivations (Bakker et al. 2012) and apply these Riemannian algorithms to

several different MDO architectures.

In this paper, we will only consider gradient-based optimization techniques

(SDM, NM, and CGM), not metaheuristic methods. The key differences between

Riemannian and Euclidean optimization techniques lie in how derivative informa-

tion is handled and the path along which searching is done once a search direction

has been chosen; the former, at least, would not apply to 0-th order methods. Given
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that metaheuristics are often designed to avoid the need for gradient information—a

metaheuristic method might be chosen because the objective function is not

smooth—this takes away a significant amount of potential overlap between

metaheuristics and RO. For a method like Particle Swarm Optimization (Kennedy

and Eberhart 1995), for example, there might still be the possibility of having the

particles move along geodesics instead of straight lines, but calculating the geodesics

would require second-order derivative information about the state equations, so RO

methods may not be very helpful here, either. Although there may be potential

crossover between metaheuristics and RO, we will not explore that here.

3.1 Algorithm formulae

Consider a general optimization algorithm to be

w kþ1ð Þ ¼ w kð Þ þ a kð Þd kð Þ ð23Þ

where k in brackets indicates the iteration, w are the design variables, d is the step

direction, and a is the step length. To derive SDM and NM, let us start with a

second-order Riemannian Taylor series about (with no loss in generality) the origin:

f wi
� �

¼ f 0ð Þ þ f;iw
i þ 1

2
f;ijw

iwj ð24Þ

As we have already noted, the gradient is not f;i but gijf;i and thus our descent

direction for SDM is di ¼ �gijf;j. If we wish to explicitly calculate a step length a,

we substitute wi ¼ adi into (24), differentiate, solve for a, and get

a ¼ gijf;if;j

gijf;jf;ikgklf;l
ð25Þ

For NM, we start from (24) and differentiate to find an optimal search direction dj

and step length all at once. We get

f;ijd
j ¼ �f;i ð26Þ

If we let gij ¼ f;ij
� ��1

, then dj ¼ �gijf;i; it is implied that a ¼ 1 for NM. For CGM,

we will not rederive the method from scratch, but we will give the formulae for

Riemannian CGM (using a Fletcher-Reeves update scheme for the step direction).

For CGM, the first step and any restart step is the same as that of SDM. After that,

a kð Þ ¼ � dif;i

dif;ijdj

� �

kð Þ
ð27Þ

dikð Þ ¼ � gijf;j
� �

kð Þþ
f;ig

ijf;j
� �

kð Þ

f;igijf;j
� �

k�1ð Þ
dik�1ð Þ ð28Þ

The subscript index in parentheses is used to denote the iteration step where nec-

essary. Compare these with the corresponding formulae in (29), (30), and (31) for
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SDM, NM, and CGM, respectively. Note the non-covariant derivatives and lack of

metric tensor inverses.

a ¼ f;if;i

f;if;ikf;k
; di ¼ f;i ð29Þ

dj ¼ �gijf;i; gij ¼ f;ij
� ��1 ð30Þ

a kð Þ ¼ � dif;i

dif;ijdj

� �

kð Þ
; dikð Þ ¼ � f;i

� �
kð Þþ

f;if;i
� �

kð Þ

f;if;i
� �

k�1ð Þ
dik�1ð Þ ð31Þ

3.2 Algorithm approximations

In Sect. 2.4, we mentioned two kinds of approximations used in practice when

applying RO algorithms: retractions to approximate geodesics and vector transport

to approximate parallel transport. We will use both here.

Firstly, we will use a retraction to do a line search instead of a geodesic search in

some cases. This applies to the Riemannian and Euclidean versions of SDM, NM,

and CGM. A geodesic search requires integrating the geodesic equation from an

initial point (the design point at that iteration) with an initial ‘‘velocity’’ (given by

the search direction). For our purposes, the retraction Rw nð Þ ¼ wþ n, where w is

the point in space and n is the vector, will suffice. This retraction is easy to

calculate, and it is essentially just a typical line search performed as if the design

space were flat.

Secondly, we will always use vector transport instead of parallel transport.

Vector or parallel transport only applies to CGM (and not SDM or NM) because of

its step update scheme incorporating information from previous iterations. Parallel

transport would require us to integrate the connection, for the vector in question,

along a geodesic which would itself have already been determined by integrating

the geodesic equation (Szekeres 2004). Doing this would greatly increase the

computational cost of the optimization, however, and lacking a compelling reason to

implement parallel transport instead of vector transport, we will forego using it here.

As such, we will use the vector transport Tw 1ð Þ!w 2ð Þ nð Þ ¼ n, from w 1ð Þ to w 2ð Þ, which

corresponds to our retraction as a ‘‘flat’’ approximation of the Riemannian concept

in question.

3.3 Motivation

These RO algorithms are gradient-based optimization methods. Given the

widespread use of gradient-based optimization in MDO, there is value in developing

and applying new gradient-based optimization algorithms for use in MDO.

Although these RO algorithms have previously been used in other contexts, they

are new to MDO and therefore warrant testing on MDO problems to evaluate their

performance against comparable methods.
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Through the metric tensor and the covariant derivative, the RO algorithms take

the feasible design manifold’s properties into account in a way that the usual ‘‘flat’’

algorithms do not. If manifold properties do indeed affect the performance of

optimization algorithms, then the RO algorithms may therefore be more effective in

an MDO context because of their natural connection to manifold characteristics. We

will compare the effectiveness of the RO algorithms with their Euclidean

counterparts to investigate whether this is in fact the case. Numerical results one

way or the other will not be conclusive, but if the RO algorithms show promise here,

then perhaps further, more rigorous study will be warranted.

A cursory study of the formulae involved indicates that the RO algorithms are probably

more computationally expensive than the flat algorithms. Although we recognize this

now, we do not intend to address this at the present time. If the RO algorithms should prove

to be the more effective option, then a more in-depth comparison of algorithm cost and the

tradeoffs between cost and effectiveness may be worth doing.

3.4 Procedure

Having described the nature and operation of the Riemannian algorithms in

question, we now want to do a quantitative comparison of their effectiveness and

efficiency in terms of convergence percentage and iterations to convergence,

respectively. We will begin with a two-dimensional illustrative problem for

conceptual and visualization purposes, continue on with a two-discipline analytical

MDO problem, and conclude with some different objective functions for a

conceptual satellite design problem from the literature (Mesmer et al. 2013).

For the analytical problems, we will consider a calculated step size, a retraction-

based line search, and a geodesic search for each algorithm (both the Riemannian

and Euclidean versions). However, for the satellite design problem, we will only use

a calculated step size and a retraction-based line search because of the prohibitive

computational cost of applying a geodesic search in that context; see Sect. 5 for

further discussion of the computational costs associated with geodesic searches. For

each of these variants, we performed 100 optimization runs of each algorithm in

MATLAB� (The MathWorks Inc. R2010a) on each problem. The initial points for

each optimization were generated by sobolset over the design space and then solved

for the state variables using fsolve to give a feasible initial point. We then carried

out the optimization with the Multidisciplinary Feasible MDO architecture (Cramer

et al. 1994); we used fsolve to do the multidisciplinary analysis at each iteration.

Each problem only had explicit bounds on the design variables as constraints. We

enforced these constraints by implementing a feasible directions search method:

projected search directions were used when on design space boundaries and

calculated step sizes were truncated to keep them from crossing design space

boundaries. Figure 2 shows an example of how this works: a step from A to B would

be truncated to point C, on the boundary, and the step from C to D would then be

projected to point E. Our problems did not have non-state equality constraints (the

state equations were handled using a multidisciplinary analysis to solve for the state

variables), and the only inequalities present were explicit bounds on the design

variables, so all of the boundaries were flat. Had equality or nonlinear inequality
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constraints been present, we could have used a feasibility restoring step along with

the search direction projection.

We considered the algorithm to have converged if the norm of the (projected)

negative gradient was less than 10�3. With gradient-based methods, we were only

concerned with finding a local minimum; questions of global optimality were

beyond the scope of our methods. We also terminated our algorithms if the norm of

the change in the design variables was below 10�6 or, for the line and geodesic

searches, if the search direction was an ascent direction.

In our CGM implementations, we used restarts after n iterations for a problem

with n design variables. For the retraction-based line searches, we bracketed the

one-dimensional minimum and then used golden section interval reduction search to

find that minimum along the search direction to within a design variable tolerance of

10�6. The geodesic search, however, determined the geodesic by integrating the

geodesic equation using ode15s, a stiff MATLAB� solver (The MathWorks Inc.

R2010a), until the one-dimensional minimum was found; the geodesic found either

a design space boundary or a point at which the projection of the negative gradient

along the search direction was below 10�3. To reduce ill-conditioning, the initial

direction for each geodesic search was normalized to unit length.

To summarize our implementation discussion, we have described our algorithm

implementation in a step-by-step format below.

1. Choose an initial design point and solve the state equations for y using fsolve.

Calculate any necessary derivative information.

2. Calculate the search direction from the derivative information for the chosen

algorithm type. Project the search direction onto the boundary if the design

point is on the boundary and the search direction is directed out of the feasible

design space.

3. Determine the step size: calculate it analytically and truncate it if it lands

outside of the feasible design space, or determine it using a line/geodesic

search.

4. Solve for the new state variable values and calculate any necessary derivative

information.

5. Repeat steps 2–4 until a termination criterion is met.

Fig. 2 Feasible search
directions constraint handling
diagram
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4 Results

4.1 Two-dimensional illustrative problem

For readability’s sake, we dispense here, and in Sect. 4.2, with the subscript/su-

perscript convention; all indices are subscripted. The first problem we considered

was

min f ¼ y� x2
1

� �2þe�x2 ð32Þ

h ¼ x1e
x1 þ x2 þ 0:5ð Þ3þ sinh y ¼ 0 ð33Þ

�1� x� 1 ð34Þ

This is not a true MDO problem. We created this problem for visualization and

explanation purposes: its small size allowed us to illustrate optimization behaviour

and algorithm implementation more easily than on higher-dimensional problems. It

does not have multiple disciplines, but it has design variables and a state variable

defined by a state equation (MDO problems have design variables and multiple state

variables defined by state equations); we can solve its state equation in residual form

with a root-finding algorithm (as can be done, in principle, with MDO problems);

and we can calculate the necessary Riemannian optimization quantities using our

MDO formulae. As such, it has some of the qualities of an MDO problem, and that

makes it useful for an initial demonstration. The optimization results for a calculated

step size, line search, and geodesic search are shown in Tables 2, 3, and 4,

respectively.

Table 2 shows that all of the methods converged for the calculated step size. In

this case, the Riemannian algorithms were all somewhat faster than their Euclidean

counterparts. As would be expected, SDM was the slowest and NM was the fastest.

The results in Table 3, however, now have two nonconverged runs for each of the

NM, and although the Riemannian SDM is still slightly faster than Euclidean SDM,

the Riemannian NM and CGM are now slightly slower than the Euclidean versions.

We also note that the line search methods are all roughly two iterations faster, on

Table 2 Algorithm iterations to convergence, two-dimensional illustrative problem (calculated step size)

SDM SDM—RO NM NM—RO CGM CGM—RO

Maximum 17 13 15 8 11 10

Minimum 5 5 3 2 4 4

Mean 10.75 9.45 5.92 5.03 7.67 6.54

% Convergence 100 100 100 100 100 100
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average, than the calculated step size methods. Finally, as we see in Table 4,

geodesic search produced results similar to line search in terms of the relative

performances of the algorithms, but the geodesic search was slightly slower, across

all algorithms, than the line search.

The nonconvergence in NM can be explained by considering the phase portraits

of _x ¼ d for the Euclidean and Riemannian versions; see (Bakker et al. 2013b) for

more on the use of ODEs to investigate optimization behaviour. Figure 3 shows the

phase portrait for Euclidean NM, and Fig. 4 shows the phase portrait for

Riemannian NM: the vectors have been normalized to show direction only, and the

thick black lines indicate where the hessian (for Euclidean NM) or covariant hessian

(for Riemannian NM) is singular. In some cases, the search direction for the

algorithm flips directions across these lines. If the (covariant) hessian is no longer

positive definite, the search direction may actually end up being an ascent direction,

and this terminates the line and geodesic searches—thus why they terminated

without converging.

Moreover, although this did not arise in our tests, it is clear that the

calculated step size could fail to converge for the Riemannian NM as it would

not for the Euclidean NM. Both algorithms have some areas of the domain

where the flow is away from the optimum (i.e. the problem is nonconvex in

those regions), but that flow is never directed into one of the corners for NM—

near the corners, there is always a component of the flow directed away from

that corner. As can be seen in Fig. 4, however, around x1; x2ð Þ ¼ �1;�1ð Þ, the

Riemannian NM flow is directed into the corner, and thus the algorithm would

terminate there.

Table 3 Algorithm iterations to convergence, two-dimensional illustrative problem (line search)

SDM SDM—RO NM NM—RO CGM CGM—RO

Maximum 16 12 6 8 8 8

Minimum 2 2 2 2 2 3

Mean 8.49 8.04 3.66 3.89 5.03 5.16

% Convergence 100 100 98 98 100 100

Table 4 Algorithm iterations to convergence, two-dimensional illustrative problem (geodesic search)

SDM SDM—RO NM NM—RO CGM CGM—RO

Maximum 15 14 6 10 8 9

Minimum 1 1 2 2 1 1

Mean 8.94 8.16 3.81 4.34 5.30 5.65

% Convergence 100 100 98 96 100 100
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4.2 Two-discipline analytical MDO problem

The next problem used was

min f ¼ z2
1 þ z2

2 � y1 þ e�y2 þ x2
1 ð35Þ

Fig. 3 Euclidean NM phase portrait, two-dimensional illustrative problem

Fig. 4 Riemannian NM phase portrait, two-dimensional illustrative problem
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y1 ¼ x1 � x2
2 � z1z2 þ y3

2 ð36Þ

y2 ¼ �x3x4 þ z1 þ z2
2 � y1 ð37Þ

�1�w� 1 ð38Þ

This problem is similar in form to, though greater in dimensionality than, the

analytical test problem created by Sellar et al. (1996) and used elsewhere (e.g.

(Bakker and Parks 2015b; Perez et al. 2004). Our state equations for disciplines 1

and 2 are in (35) and (37), respectively. If we take them and put them in residual

form, we obtain

h ¼
h1

h2

� 	
¼

y1 � x1 þ x2
2 þ z1z2 � y3

2

y2 þ x3x4 � z1 � z2
2 þ y1

( )
¼ 0 ð39Þ

Note how this corresponds to our description in Sect. 2.3. To reiterate, our opti-

mization algorithm takes steps in w, and the multidisciplinary analysis then solves

(39) to calculate y.

The Euclidean and Riemannian SDM consistently failed to converge for the

calculated step size: both produced optimization runs which were apparently

chaotic. This can happen with SDM if the step size is too large (van den Doel and

Ascher 2012). Table 5 shows the Riemannian versions performing worse than the

Euclidean ones in terms of both iterations to convergence and convergence

percentage.

Surprisingly, Riemannian SDM and CGM with line search produced no

converged runs. Further investigation showed that the problem lay in the methods’

behaviour at design space boundaries. Consider the diagram in Fig. 5: it shows the

search directions �f;i and �gijf;j pointing outwards into an infeasible region (shaded

in grey) along with the projections of those search directions onto the design space

boundary. Since gij is positive definite, the angle between �f;i and �gijf;j is less than

90�. However, in this instance, the directions fall on opposite sides of the constraint

normal, so the search directions’ projections point in opposite directions. The

projection of �f;i has to be a descent direction, so the projection of �gijf;j must be an

ascent direction and thus the line search terminates the algorithm without

converging. The same thing can and does happen with NM. See our comments at

the end of Sect. 5.2 regarding why Riemannian SDM and CGM may be prone to

this kind of behaviour. Occasionally, the optimization also failed because the

Table 5 Algorithm iterations to

convergence, two-discipline

analytical MDO problem

(calculated step size)

NM NM—RO CGM CGM—RO

Maximum 13 11 96 97

Minimum 2 3 11 12

Mean 4.11 4.78 31.68 38.47

% Convergence 95 81 98 72
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multidisciplinary analysis failed to converge (as with the lone SDM failure in

Table 6

As with line search, the Euclidean NM was faster than the Riemannian NM and

the Riemannian SDM and CGM completely failed to converge for geodesic search

(Table 7). Choosing geodesic search over line search does not affect the initial

search direction, and the problem lay in the search direction, not the search method.

The geodesic search also produced slightly higher average iterations to convergence

than the line search and reduced the convergence percentage in all algorithms save

the Riemannian NM.

Fig. 5 Projections and direction
splitting on design space
boundaries

Table 6 Algorithm iterations to

convergence, two-discipline

analytical MDO problem (line

search)

SDM NM NM—RO CGM

Maximum 20 5 7 34

Minimum 6 2 3 13

Mean 12.65 3.13 4.21 24.05

% Convergence 99 76 68 64

Table 7 Algorithm iterations to

convergence, two-discipline

analytical MDO Problem

(geodesic search)

SDM NM NM—RO CGM

Maximum 25 5 10 33

Minimum 6 2 3 14

Mean 13.46 3.38 4.90 24.67

% Convergence 100 65 71 63

Riemannian optimization and multidisciplinary… 681

123



4.3 Satellite design problem

Here, we employ a satellite design problem as described by Mesmer et al.

(2013).1 A full description is also provided in (Bakker 2015). In lieu of that full

description, we provide a list of the problem’s disciplines in Table 8, a list of

design variables in Table 9, a list of state variables in Table 10, and a Design

Structure Matrix (DSM) (Browning 2001) in Table 11 to qualitatively indicate

the problem’s structure.

We use total mass, total cost, and the weighted sum of total mass and Signal-

to-Noise Ratio (SNR) (appropriately normalized) as the three different objec-

tives under consideration. Because of the increased computational cost of

running these optimizations, however, we limited our runs to 20 iterations and

forewent the geodesic search; some of the optimization runs took over an hour,

and in our previous problems, the geodesic search could take an order of

magnitude longer than the line search. Geodesic search was consistently worse

than line search in our previous results, so we felt justified in omitting the

geodesic search on this problem.

Table 8 Satellite design

problem disciplines
Discipline Number

Payload 1

Propulsion 2

Power 3

Attitude determination and control systems (ADCS) 4

Thermal 5

Structures 6

Table 9 Satellite design problem design variables

Symbol Description Discipline(s) used

fdown Downlink frequency 1

fup Uplink frequency 1

Pt Satellite transmitter power 1

Pgt Ground transmitter power 1

Dgr Ground receiving antenna diameter 1

Dgt Ground transmitting antenna diameter 1

� Battery energy density 3

Dst Satellite transmitting antenna diameter 1, 4, 5

Dsr Satellite receiving antenna diameter 1, 4, 5

1 The problem description is too lengthy to include here, but full details of the satellite design problem

are available from the authors upon request.
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The calculated step size optimizations on the total mass all failed to converge

except for the Riemannian SDM and CGM runs, as seen in Table 12; the handful of

nonconverged runs for those algorithms failed because they produced points where

the multidisciplinary analysis failed to produce a feasible design. Euclidean SDM

and CGM, on the other hand, went immediately to the design space boundaries and

then began taking very short steps until they ran out of iterations. As for NM, the

Riemannian version diverged off into a corner of the design space because the

covariant hessian was not positive definite—the negative eigenvalues of the

covariant hessian were sometimes an order of magnitude larger than its positive

Table 10 Satellite design problem state variables

Symbol Description Discipline of Origin

SNR Signal-to-noise ratio 1

Mst Satellite transmitting antenna mass 1

Msr Satellite receiving antenna mass 1

Mtransp Transponder mass 1

Mpayload Payload mass 1

Ppayload Payload power requirement 1

Vtransp Transponder volume 1

Mprop Propellant mass 2

Vprop Propellant tank volume 2

MSA Solar array mass 3

AS Solar array area 3

Mbatt Battery mass 3

Vbatt Battery volume 3

MADCS ADCS mass 4

PADCS ADCS power requirement 4

VRW Reaction wheel volume 4

Mthermal Thermal system mass 5

Pthermal Thermal system power requirement 5

Ls Satellite bus length 6

rs Satellite bus radius 6

ts Satellite bus thickness 6

Mbus Satellite bus mass 6

Table 11 Satellite design

problem DSM
1 2 3 4 5 6

1 X � � � � �
2 X � � �
3 � X � � �
4 � � X � �
5 � � � X �
6 � � � X
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eigenvalues—and the Euclidean NM failed to calculate a search direction because

the hessian was singular everywhere.

The results in Table 13 for line search optimizations, however, were rather

different. Euclidean NM still failed to calculate a search direction, and Riemannian

NM still produced ascent search directions because the covariant hessians were not

positive definite; SDM and CGM both performed much better. The Euclidean SDM

and CGM both required significant computational time but few iterations. The

algorithms would begin from an unconstrained point and then reach a new variable

bound at each iteration until they finally ended up at the optimum. The nature of the

problem enabled Euclidean SDM and CGM to do this, and that is why they always

took four iterations to converge.

The total cost objective was more complicated than the total mass function, and

this increased complexity is likely why none of the calculate step size algorithms

converged. With the line search (results shown in Table 14), Riemannian and

Euclidean NM failed for the same respective reasons as they did with the total mass

objective, and Euclidean SDM and CGM displayed the same behaviour as before

but with seven iterations rather than four. Riemannian SDM failed on nine

occasions due to either direction splitting or running out of iterations, but in 80% of

the runs, it took nine iterations to converge in a manner similar to SDM, CGM, and

Riemannian CGM.

Following these trials, we ran optimizations on the weighted sum of the total

mass and SNR. This objective, unlike the previous two, did not have a singular

hessian everywhere in the design space. However, it also produced no converged

Table 12 Algorithm iterations

to convergence, satellite design

problem, total mass (calculated

step size)

SDM—RO CGM—RO

Maximum 15 16

Minimum 5 5

Mean 9.42 9.70

% Convergence 98 97

Table 13 Algorithm iterations

to convergence, satellite design

problem, total mass (line search)

SDM SDM—RO CGM CGM—RO

Maximum 4 8 4 8

Minimum 4 5 4 5

Mean 4 6.71 4 6.48

% Convergence 100 100 100 100

Table 14 Algorithm iterations

to convergence, satellite design

problem, total cost (line search)

SDM SDM—RO CGM CGM—RO

Maximum 7 20 7 9

Minimum 7 9 7 9

Mean 7 9.62 7 9

% Convergence 100 91 100 100
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runs. The hessian was not singular, but it was not positive definite, and as a result,

the Riemannian and Euclidean NM diverged for the calculated step size. When

using line search, they terminated when the search direction became an ascent

direction (within the first few iterations in all NM cases). Euclidean SDM and CGM

typically ran out of iterations without converging for both line search and calculated

step size because their progress at each iteration was very small. The Riemannian

versions using a calculated step size failed in a similar fashion; they failed by

direction splitting or running out of iterations when using line search. All of the

algorithms occasionally ended up at points with nonconverged multidisciplinary

analyses.

That being said, Riemannian SDM and CGM did get very close to converging on

a number of occasions: the convergence criterion was that the norm of the projected

gradient had to be less than 10�3, and several of the runs would have counted as

converged if the criterion had been less strict, as shown in Table 15. In these cases,

the difference in objective function value between these runs and the true optimum

was less than 0.5%. The algorithms appeared to have failed at this point due to

direction splitting. The objective function derivatives in the satellite design problem

were, in general, of much greater magnitudes than in the previous problems. Given

that, and given the fact that the runs recorded in Table 15 all produced objective

function values which were extremely close to the true optimum, it may be that the

convergence criterion was more strict than necessary here.

5 Discussion

5.1 Optimization results

Geodesic search was not as effective as line search. We knew ahead of time that it

would be more expensive to implement, but if it provided better performance, it

might be worth developing a computationally cheaper approximation. However,

such an effort would not seem to be justified. Furthermore, although the Riemannian

algorithms were sometimes better than the Euclidean ones when using a calculated

step size, the Euclidean algorithms were generally better overall when line search or

geodesic search was used.

Both Euclidean and Riemannian NM diverged on the satellite design problem

objective functions, but they did so in different ways—the covariant hessian was not

singular when the hessian was, and in other optimization problems, that could be an

advantage. Riemannian SDM and CGM had convergence problems because of

direction splitting, however. Their convergence problem was due to the way in

which the constraints were handled: penalty functions, for example, might have

Table 15 Percentage of nearly

converged runs, satellite design

problem, weighted sum

objective (line search)

Convergence criterion SDM—RO CGM—RO

\0:1 7 9

\0:01 5 7
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enabled the algorithms to avoid this problem. If this difficulty were overcome, the

Riemannian version could be more effective as the weighted sum satellite design

results hinted at. Feasible directions is a standard method and easy to implement,

though, and it is particularly convenient for simple bounds on design variables. On

other test problems, which we did not present here, we also found that the

Riemannian algorithms had greater difficulties with ill-conditioning in oh
oy due to the

presence of gij and Ci
jk.

Given that the Riemannian algorithms are likely to have a higher cost per iteration

than the Euclidean algorithms, it would seem that the Euclidean methods are better

than the Riemannian ones as we have developed them here. That being said, real-world

phenomena, such as nonconvexity, in our satellite design problem made it difficult for

any of the algorithms to converge. Final conclusions on the relative performances of

Riemannian and Euclidean algorithms would require comparisons with algorithms

sophisticated enough to converge reliably on such problems.

5.2 Riemannian optimization and design coupling

We now wish to analyze the algorithms themselves further for any a priori

performance information which we might glean. In particular, we would like to look

at the algorithms’ interaction with design coupling and direction splitting.

Previously, we identified two different schools of thought on measuring design

coupling: one focuses on design structure (i.e. the number and arrangement of

variables and functions) in its evaluation of coupling, whereas the other uses design

sensitivity information, and they put their respective measures of coupling to

different uses (Bakker et al. 2013a); our paper on design coupling provides more

detail on each school and their approach to design coupling

Here, we will focus on sensitivity-based coupling—coupling that measures how

strongly the state variables depend on the design variables. Sensitivity-based

coupling changes throughout the design space, unlike structure-based coupling, but

we are now also making a slight innovation by considering how sensitivity changes

with search direction as well as location. In other words, oy
ow varies as w changes, but

we will also consider how the choice of d kð Þ interacts with oy
ow.

We begin by stepping out of Riemannian geometry briefly to examine the matrix

gij and its eigenvalues. Consider a vector in the design space Dw of unit length (i.e.

DwiDwi ¼ 1). The (first-order approximation to the) change in the state variables

corresponding to this vector is

Dy ¼ oy

ow
Dw ð40Þ

which is equivalent to

Dyi ¼ oyi

owj
Dwj ð41Þ
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Using the knowledge that gij ¼ dij þ oyk

owi

oyk

owj, we can see that

DwigijDw
j ¼ DwiDwi þ DyiDyi ¼ 1 þ DyiDyi ð42Þ

In matrix notation, g ¼ Iþ oy
ow

h iT
oy
ow

h i
, so

DwTgDw ¼ DwTDwþ DyTDy ¼ 1 þ DyTDy ð43Þ

Therefore, the eigenvalues of gij are all greater than or equal to one. Eigenvectors

with eigenvalues equal to one will be in directions of constant y on the manifold,

and eigenvectors with large associated eigenvalues will be in directions of large

change in the state variables.

If the eigenvalues of gij are greater than or equal to one, then the eigenvalues of

gij are less than or equal to one, and thus g�1Dw


 

� Dwk k. More specifically, if ki

is an eigenvalue for gij and ni is its corresponding (normalized) eigenvector, the

eigenvectors are all mutually orthogonal (because gij is symmetric), and we can

represent Dw as Dw ¼
P
i

aini, where Dwk k2¼
P
i

a2
i . With this representation,

g�1Dw ¼
X

i

ai

ki
ni ð44Þ

g�1Dw


 

2¼

X

i

a2
i

ki
2
� Dwk k2¼

X

i

a2
i ð45Þ

In other words, multiplying a vector (we ignore the distinction between vectors and

covectors here) by g�1 will never result in an increase—and typically will result in a

decrease – in vector magnitude. Furthermore, even if g�1Dw is re-normalized so that

its norm is the same as the original Dw, the new vector will have had its direction

changed from the original one, and the new direction will be ‘‘less coupled’’ than the

original one: as (44) shows, the multiplication by g�1 shrinks the vector in directions of

large change in the state variables proportionate to the degree of that change (repre-

sented by ki). ‘‘Uncoupled directions’’—directions of constant y—are left unchanged.

We can see, therefore, that the Riemannian versions of SDM and CGM will

always have ‘‘flatter’’ trajectories, with respect to y, than their Euclidean

counterparts. Figure 6 shows an example of this: the black path corresponds to

_xi ¼ �f;i, and the light grey path corresponds to _xi ¼ �gijf;j. The trend is easier to

see in the differential equation rather than the original iterative algorithm; see

Bakker et al. (2013b) for more on the use of differential equations in analyzing

optimization algorithms.

We can further see that direction splitting will be a problem if a strong change in

y corresponds to a decrease in the objective function along a boundary: �gijf;j will

point further away from �f;i under such circumstances and thus be more likely to be

caught on the wrong side of the constraint normal. The satellite design problem’s

objective functions, for example, depend strongly on the state variables, and this
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may explain the poor performance of the Riemannian algorithms there. Even when

the algorithms did not terminate as a result of direction splitting, moving in less

coupled directions would have meant less change in the objective function and thus

why more iterations would have been required even when the algorithms did

converge. Conversely, we can say that Riemannian SDM or CGM could be

particularly effective on problems where it would be advantageous for the

optimization trajectory to be ‘‘flatter’’ with respect to the state variables.

Although we have not come across particular design problems where this is the

case, this may still be valuable information in light of the No Free Lunch (NFL)

theorem (Wolpert and Macready 1997). According to the NFL theorem, no one

algorithm is better than another when their respective performances are averaged

over all possible optimization problems. As such, the key to improved optimization

lies in being able to say, a priori, when one optimization algorithm will be better

than another on a given problem. Our analysis of coupling suggests that Riemannian

SDM and CGM will perform better than their Euclidean counterparts on problems

where it is beneficial to have less variation in the state variables over the course of

the optimization. Similarly, the results of that analysis, combined with our

experimental results, show that the Euclidean versions will be better on problems

where the objective function varies strongly with the state variables and the

optimum lies on the design space boundary.

Unfortunately, NM is not amenable to similar analysis. Here, we begin from f;ij

instead of gij, and we can break it up into components f;ij ¼ f;ij � Ck
ijf;k. However,

the �Ck
ijf;k term, which determines the difference between the Euclidean and

Riemannian trajectories, does not have a simple representation in terms of implicit

derivatives:

Fig. 6 Riemannian and Euclidean ODE trajectories
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As f;k goes to zero, the Euclidean and Riemannian trajectories will become more and

more similar, but beyond that, there is little to say in terms of general statements.

5.3 Riemannian optimization in the broader context of MDO

RO algorithms are simply different versions of standard gradient-based optimization

algorithms, and as such, they are similarly general within an MDO context. These

algorithms are not part of the decomposition process—that is handled by the

architecture. As with standard gradient-based algorithms, RO algorithms can then

be applied to the problem after the architecture has been implemented (e.g. MDF

with Riemannian CGM, or regular CGM, or another algorithm entirely). In

principle, the Riemannian algorithms described and tested here can be applied

wherever gradient-based algorithms are already used in MDO; a Riemannian quasi-

NM algorithm could be used where a quasi-NM algorithm is currently being used,

for example.

The presence of potentially different architectures does add some complexity,

however. Riemannian algorithms require a metric tensor and Christoffel symbols

(which are themselves produced from basic sensitivity information). As we have

shown elsewhere (Bakker et al. 2012), MDF uses the original feasible design

manifold, and thus the metric tensor and Christoffel symbols used with MDF are the

metric tensor and Christoffel symbols for the original problem. The decompositions

involved in MDO architectures alter the original manifold, though. To be more

precise, the optimization processes in the different architectures occur on different

manifolds—ones which are created by the decomposition process. This means that

the metric tensors and Christoffel symbols will be calculated with different formulae

than were shown here. However, we have already calculated those metric tensors

and Christoffel symbols from basic sensitivity information for six different MDO

architectures elsewhere (Bakker et al. 2012). Those calculations could be done, in

principle, for any other architecture of interest, as well. In other words, the search

direction for the Riemannian SDM will still be

dj ¼ �gijf;i ð47Þ

but the gij needed to determine gij will not be calculated using (12). We show how to

calculate gij for those other architectures in (Bakker et al. 2012).

RO algorithms have the same strengths and weaknesses as other gradient-based

methods have in comparison to metaheuristic or hybrid methods. The comparative

capabilities and limitations of gradient-based, metaheuristic, and hybrid methods, in

general, are well-known. The comparative capabilities and limitations of Rieman-

nian and standard Euclidean methods on MDO problems are the subject of our

inquiry here.

Lest it need be said again, RO algorithms are just like regular gradient-based

algorithms. The two differences lie in the modified derivative information (e.g. the
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covariant derivative vs. a regular gradient) and the modified search path (along

geodesics vs. along straight lines). Any differences in behaviour may be traced to

those two properties; in all other respects, they are the same. The burden of this

paper has been to compare these single-objective, gradient-based methods in terms

of their efficiency, measured by the number of iterations to convergence, and their

effectiveness, measured by their percent convergence.

RO methods could therefore be incorporated into hybrid optimization methods

anywhere in MDO that standard gradient-based algorithms currently are. To be even

more general, the modified derivative information used in RO could be used

anywhere that regular derivative information currently is, and the modified search

direction used in RO could be used in some of the places where line searches

currently are; the need for derivative information to calculate geodesics limits

geodesic search as compared to line searches. However, implementing RO

algorithms on MDO and comparing them with other gradient-based algorithms,

as we have done in this paper, is both logically and chronologically prior to any

extensions into hybrid optimization methods.

5.4 Recommendations and future work

We have shown our Riemannian optimization algorithms to be less efficient and less

effective, on the whole, than their Euclidean counterparts. In order to be sure of

Euclidean superiority, however, we would need to develop and test a Riemannian

quasi-NM (the various implementations of quasi-NM form a standard against which

other gradient-based algorithms are measured), consider different methods for

handling inequality constraints, and test on a wider range of MDO problems. We

also showed line searches to be better than geodesic searches on our test problems.

That being said, the results for any Riemannian algorithm will depend on the metric

being used: both the search directions and the geodesics depend on the metric (for a

metric-compatible connection). We used the induced metric, but other metrics could

prove to be more favourable. It could also be beneficial to look into convexifying

the original optimization problem through the imposition of a particular metric. In

Sect. 2.5, we mentioned this being done elsewhere, but we did not go into detail

about how this might profitably be applied to MDO. Finally, our analysis of the

search directions and their relationship to design coupling for Riemannian SDM and

CGM was informative, and it might be similarly informative to analyze geodesic

trajectories to further explain our performance results.

6 Summary

We began our paper by reviewing the background theory for our MDO differential

geometry framework, the additional theory necessary for doing RO, and the RO

literature. Given the historical lack of crossover between RO and MDO, we

considered this to be particularly important in presenting our results to the MDO

community. With this in place, we showed how to apply RO algorithms to MDO

through the use of our framework.
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We then tested some of these algorithms on MDO problems using our differential

geometry framework’s induced metric. Our results here showed geodesic search to

be consistently less effective than line search, and the RO algorithms were generally

not as good as the Euclidean algorithms when using a feasible directions method to

handle inequality constraints. That being said, the Riemannian SDM and CGM with

calculated step size proved to be a stark exception to this trend when applied to one

version of our satellite design problem: they significantly outperformed the

Euclidean algorithms in that case. The covariant hessian was also nonsingular in

many cases when the regular hessian was singular, so the Riemannian NM was often

able to calculate a step direction when the Euclidean NM could not. The

nonconvexity we encountered, however, demonstrated the need to compare

performance with more robust optimization algorithms (like quasi-NM) and using

additional test problems for more conclusive results.

Through our analysis of the algorithms themselves, we showed how the

Riemannian SDM and CGM interact with design coupling: they produce steps in

directions which are less strongly coupled than their Euclidean counterparts. This

has provided us with some ability to predict the performance of those methods

relative to each other based on a priori information about the relationship between

the state variables and the objective function.

Most importantly, we have now set the stage for further investigation into the

application of RO to MDO—we have shown both that it can be done and how it may

be done. Our preliminary work here in reviewing, testing, and analyzing RO

methods, moreover, has pointed out avenues of future exploration in this area.
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