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Remark 1In the sequel, the equation numbering follows
that of the original paper.

In the original version of the manuscript [1], Result 3.3
which states the conditions to ensure that the system
is in a harmless situation fails to describe some possi-
ble situations, especially when very different NESs are
considered. Therefore, Result 3.3 must be corrected,
just like Result 3.4 which results from it and gives
a quantitative characterization of the mitigation limit.
These corrections do not affect the results presented
in Sect. 4 and the numerical validation performed in
Sect. 5.

To know the steady-state regime from a given set
of parameters, the super-slow behavior of the system
must be checked in every successive subspace I}’ (see
Eq. 30) along the trajectory of the system and not only

The original article can be found online at https://doi.org/10.
1007/s11071-018-4438-0.
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in the last one (IE‘N) as it is done in the original ver-
sion of the paper. The behavior of the system in a
given subspace I/ is determined by the relative posi-
tion between the arrival point ¢ = [cy, ..., cy] (i-e.,
the point on the critical manifold S in 7} on which the
trajectory arrives after a jump at the slow timescale, it
is described more precisely below) and the fixed points
(stable and unstable). Note that if /;' does not contain
fixed point, the direction of the super-slow flow on the
critical manifold S is determined by the sign of the
function f (r1,...,ry)|=c (see Eq. 39).

To follow the trajectory of the system along S and
know which subspaces Ik“ are crossed, the transitions
at slow timescale (i.e., the jumps) between each I}
must be determined. At any point of the phase space,
the slow dynamics is described by the slow subsys-
tem (13). This is the case when the trajectory starts
from the initial conditions. Otherwise, for transitional
jumps between two subspaces I}/, the trajectory leaves
the critical manifold when it passes though a jump
point b = [by,...,bn] (a local extrema of S). If
all considered NESs are different, a jump point cor-
responds to the passage through a fold (defined by
Eq. 25) in only one direction. This mean that there
exists a direction, here assumed to be the ith direc-
tion, such that at r = b, dH;(r;)/dr;i = 0 but
dH,(ry)/dr, # 0 (forn = 1,...,N and n #
i). Therefore, the jump point b has the following
form
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M
b=[br b b by] 683
where rl.M/ " canbe rM of " (see Eq. 25). For the same

reason, when the trajectory leaves the jump point to
undergo the jump, only g; in (13b) becomes nonzero,
the other g, (forn = 1,..., N and n # i) remain
equal to zero (because of 14b). Consequently, the tran-
sitional jumps are described by the following equation

=0 (84a)
£,=0 for n=1,...,N and n #i (84b)
=g (®&, ... . 6.0, (84c)

From the previous equation, one can deduce that dur-
ing an transitional jump from a jump point b to the cor-
responding arrival point ¢, all the coordinates r, (for
n=1,...,N and n # i) remains constant. Only the
. . M/m u/d u/d
ith coordinate changes from r; tor;"" where r;
can be rj' or rl.d defined by Eq. (29). Therefore, the
arrival point can be determined from the jump point as

follows
C:I:bl,...,bi_l,riu/d,bi+1,...,bN]. (85)

The jump riM — rj' (resp. rl" — rfi) corresponds to
an increase (resp. decrease) of the coordinate r;.

An easy calculus shows that M identical NESs with
parameters a, i and « are equivalent to one NES with
parameters Ma, M and M«. This is consistent with
the Eq. (53). Therefore, in the NES network, all groups
of identical NESs can be replaced by one equivalent
NES and the previous reasoning can be used to describe
the trajectory of the system.

After these preliminary comments, the corrected
versions of Results 3.3 and 3.4 are now given.

Result 3.3 Definition 3.1 states that we consider a set
of initial conditionsrg = [r1(0), ..., rn(0)] as a small
perturbation of the trivial solution, i.e., ro € I{'.

After a transient response from rg the trajectory
reaches the critical manifold S. If the slow-flow has

a stable fixed point r§ = [rs’"l, e r;N] (trivial or

nontrivial) in I, i.e.,
e If. (86)

then the system is in a harmless situation (trajectories
reach inevitably r}) and undergoes complete suppres-
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sion for the trivial fixed point or mitigation through
periodic response (PR) for the nontrivial fixed point.

If condition (86) is not respected, the trajectory
reaches the jump point of I{!. Note that I{ has only
one jump point. The coordinates of the correspond-
ing arrival point ¢, contained in the next crossed 17,
are determined from those of the jump point through
Eg. (85).

The following reasoning is valid at each arrival in
anew I. In each I} crossed by the critical manifold S
there are two exit points corresponding to the passage
by a fold in two different directions (here the ith and
the jth directions). Therefore, these two exit points are
jump points denoted b® and b®

b(i) = I:bgi), ey bi(?p rl'M/m’ bi(ilzl’ T bg\l/)] ’ (87)

and

D[y D Mm ) ()
b0 = [b{7 . b2 B ] 88)

Three situations are possible:

Situation 1. There are no fixed points in 1 k“, then,
depending of the sign of the func-
tion f(ri,...,rN)lr—e b®D or b® s
reached and the trajectory leaves I}!.
The arrival point is between an unsta-
ble fixed point and bW (resp. b)), then
p® (resp. b(i)) is reached and the tra-
Jectory leaves I}}.

A stable fixed point is the first neigh-
boring point of the arrival point ¢, and
then the stable fixed point is reached.

Situation 2.

Situation 3.

Afterward, if the trajectory leaves I}, the new arrival
point and the next I¥ are determined and so on.

The procedure stops when one of the following con-
ditions are met resulting in harmless or harmful situa-
tions:

— [HIS]: The system is in a harmless situation if

e [HIS(a)]: situation I or 2 holds, and along the
trajectory a I is met again. In this case, the
system is in a harmless situation correspond-
ing to a mitigation through strongly modulated
response (SMR).

o [HIS(b)]: situation 3 holds in I} with k # 2N.
In this case, the reached fixed point has a small
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amplitude and the system is in a harmless sit-
uation corresponding to a mitigation through
periodic response.

— [HfS]: The system is in a harmful situation if situ-
ation 3 holds in I}! = I3,,. Indeed, in this case, the
reached fixed point has a large amplitude close to
that of the case without NES.

Note the procedure will stop due to the finite number
of subintervals I}

Result 3.4 From a given set of parameters, Result 3.3
gives a theoretical prediction of the resulting steady-
state regime and therefore allows to know if the system
is a harmless or harmful situation. Consequently, the
mitigation limit, denoted py, can be predicted theoret-
ically as the first value of p for which situation 3 holds
in I} = I3y (i.e., scenario HfS).

As usual in the example shown in Figs. 7 and 8
of the original paper, the mitigation limit corresponds
to the value of the parameter p corresponding to the
transition from harmless to harmful situation. In this
example, three NESs are considered (N = 3) and
the last harmless situation before the transition (with
respect to p) to harmful situation corresponds to a SMR
in which the trajectory reaches 15y, _.. The subinter-
val I¢ contains unstable fixed points and the larger

one is denoted r}, = [r:’l, r:’z, r;"j]. Therefore, the
harmless situation corresponds to the scenario HIS(a)
described above. Moreover, the arrival point ¢ in = Ig
is due to a jump in direction r3 from a jump point
b = [b1, ba, ri"]. Consequently ¢ = [by, by, r}] and
the mitigation limit is the solution of 7 ;(p) = r5.
Indeed, at this special value, the response of the system
switches from H1S(a) to HfS in which rj; is reached. On
Fig. 7, the mitigation limit corresponds therefore to the
intersection between the branch of the 3 coordinate of
the larger unstable fixed point and 5 as it is defined in
the original version of the paper.
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