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Abstract With the consideration of mechanism of
prevention and control for the spread of viral diseases,
in this paper, we propose two novel virus dynam-
ics models where state feedback control strategies are
introduced. The first model incorporates the density of
infected cells (or free virus) as control threshold value;
we analytically show the existence and orbit stability
of positive periodic solution. Theoretical results imply
that the density of infected cells (or free virus) can be
controlled within an adequate level. The other model
determines the control strategies by monitoring the
density of uninfected cells when it reaches a risk thresh-
old value. We analytically prove the existence and orbit
stability of semi-trivial periodic solution, which show
that the viral disease dies out. Numerical simulations
are carried out to illustrate the main results.
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1 Introduction

Viruses are the most abundant type of biological enti-
ties and are found in almost every ecosystem on Earth,
which can infect all types of life forms, from animals
and plants to bacteria and archaea. Many serious dis-
eases, such as ebola, AIDS, avian influenza, and SARS,
are caused by viruses. The control and hence eradica-
tion of diseases is one of the major concerns in the study
of viral epidemiology. Since viral reproduction always
involves host cells and uses the cellular machinery for
the synthesis of their genome and other components,
there have been two methodologies used to mimic these
processes by mathematical models. Perhaps the earli-
est and simplest classical virus dynamics model was
developed by Kermack et al. in [1] and Anderson et al.
in [2,3] as follows

⎧
⎪⎨

⎪⎩

dx(t)

dt
= λ− δx − βxy,

dy(t)

dt
= βxy − μy,

(1)

where x denotes the density of uninfected cells and
y denotes the density of infected cells, λ is the rate of
production of uninfected cells, δ is their per capita death
rate, β is the rate of infection of uninfected cells, andμ
is the rate of disappearance of infected cells. Model (1)
is very important in viral epidemiology, which has been
studied by many authors. A more detailed description
of model (1) and its dynamic behaviors may be found
in [1–3] and the references therein.
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Not long after that many similar models which
include the dynamics of free virus or immune response
have been used to describe the short-term dynamics of
virus load during drug treatment and have helped to
estimate virus turnover rates in vivo. We refer to some
of them in [4–13] and the references therein. However,
Bartholdy et al. [14] and Wodarz et al. [15] found that
the turnover of free virus is much faster than that of
infected cells, which allowed them to make a quasi-
steady state assumption—that is, the amount of free
virus is simply proportional to the number of infected
cells. Therefore, the density of infected cells y in model
(1) also can be considered as a measure of the free virus
load.

In recent years, many researchers studied the evo-
lution of virus dynamics models from different per-
spectives. These include the existence of the threshold
value, which is the index for the persistence and extinc-
tion of a viral disease; the local or global stability of
virus-free equilibrium and the virus equilibrium; the
existence and stability of periodic solutions, to name
just a few (see, e.g., [16–25]). Particularly, Nakata
[26] studied the global dynamics of a viral infection
model with a latent period and nonlinear function which
denotes the incidence rate of the virus infection in vivo.
Wang and Zhao [27] considered the investigation of
the effects of periodic drug treatment on a standard
within-host virus model. Ball et al. [28] examined the
dynamics of strain replacement in a simple model that
includes a convex trade-off between rapid virus repro-
duction and long-term host cell survival. Lang and Li
[29] investigated the consequences of a more general
CTL response and show that a sigmoidal response func-
tion gives rise to complex behaviors previously unob-
served.

It is well known that exploring an effective and eas-
ily implementable control measure to keep the level
of spread of diseases is significant both theoretically
and practically. For example, of many strategies, the
efficient ways for elimination or control of malignant
neoplasm are still chemotherapy, radiotherapy, and
immunotherapy in clinical treatment in recent years.
The clinical data show that the course of these treat-
ments for some viral diseases is relatively short but
the density of various cells in vivo changed radically,
which in nature is submitted to short temporary effects
that are negligible compared to the process duration.
These short-time perturbations are often assumed to be
in the form of impulses in the modeling process.

Very recently, many works have been focused on the
analysis of mathematical models described by ordinary
differential equations with control effects [30–33]. Par-
ticularly, the state-dependent impulsive control strate-
gies are applied widely to the prevention of spread
of infectious disease due to its economic, high effi-
ciency, and feasibility nature. This idea can be found
in many other areas like agricultural production and
fishery industry; where the control measures, such as
catching, poisoning, releasing the natural enemy, and
harvesting, are taken only when the number of popu-
lation reaches an economic threshold value. Follow-
ing this idea, the dynamic behaviors of population,
epidemic and language models with state-dependent
impulsive effects are considered, and the existence and
stability of positive periodic solution by the Poincaré
map, properties of the Lambert W function, and analog
of Poincaré criterion are obtained [34–38].

Motivated by the above works, we propose, in this
paper, two novel virus dynamics models with state feed-
back control strategies. The main purpose is to investi-
gate the state feedback control strategies which govern
whether the viral disease dies out or not, and further
to examine how the state feedback control strategies
affect the prevention and control of viral disease.

This paper is organized as follows. In the next sec-
tion, we introduce two novel virus dynamics models
where the state feedback control strategies are consid-
ered, some basic definitions, and an important lemma.
The density of infected cells (or free virus) as con-
trol threshold value, and some sufficient conditions are
presented in Sect. 3 for the existence and orbital stabil-
ity of positive periodic solutions. In Sect. 4, the exis-
tence and stability of semi-trivial periodic solution are
obtained, where the density of uninfected cells is the
control threshold value. The numerical simulations are
carried out in Sect. 5 for illustration. Some concluding
remarks are presented in Sect. 6.

2 Model formulation and preliminaries

The basic reproductive rate for model (1) is R0 = λβ
μδ

,
which is defined as the average number of secondary
infected cells generated by a single infected cell placed
in an uninfected cell (or free virus). It is clear that (i) if
R0 < 1, then model (1) admits only a global asymptot-
ical stable virus-free equilibrium ( λ

δ
, 0); (ii) if R0 > 1,

then model (1) admits an unstable trivial equilibrium
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( λ
δ
, 0) and a unique globally asymptotically stable pos-

itive equilibrium (x∗, y∗), where

x∗ = μ

β
, y∗ = λ

μ

(

1 − 1

R0

)

. (2)

Generally, the objective of treatment and control for
viral disease is to reduce the density of free virus or
infected cells in vivo. For all this, we propose, firstly, a
novel virus dynamics model with state feedback con-
trol strategies, while regarding the density of free virus
or infected cells as control threshold value. The con-
trol model is governed by the following state feedback
impulsive differential equation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= λ− δx − βxy

dy(t)

dt
= βxy − μy

⎫
⎪⎬

⎪⎭
y �= Yc,

�x(t) = x(t+)− x(t) = −px(t)+ τ

�y(t) = y(t+)− y(t) = −qy(t)

}

y = Yc.

(3)

The meaning of model (3) is as follows: when the
density of infected cells (or free virus) y reaches the
critical threshold value Yc at time ti (Yc) at the i-th
time, control strategies (such as chemotherapy, radio-
therapy, immunotherapy, etc.) are taken and the den-
sities of uninfected cells x and infected cells (or free
virus) y immediately become (1− p)x(ti (Yc))+ τ and
(1−q)y(ti (Yc)), respectively, where p, q ∈ (0, 1), and
τ > 0.

Remark 1 It is clear that a priori time of control strate-
gies depends on the density of infected cells (or free
virus), which makes our control strategy a “state feed-
back control.”

On the other hand, from the dependencies between
the densities of uninfected cells and infected cells (or
free virus) in model (1), it is obvious that if the den-
sity of uninfected cells is high then infected cells (or
free virus) are growing fast. Therefore, regarding the
density of uninfected cells as control threshold value,
we propose another novel model simulating immune
boosting and viral suppressing as state feedback con-
trol strategies, and investigate its dynamical behaviors.
We suppose that, therefore, when the density of unin-
fected cells x reaches the risk threshold value Xr at time
ti (Xr ) at the i-th time, the control strategies are taken
and the densities of uninfected cells x and infected cells
(or free virus) y turn very suddenly to a great degree to

(1− p)x(ti (Xr ))+τ and (1−q)y(ti (Xr )), respectively,
where p, q ∈ (0, 1), τ > 0, and (1 − p)Xr + τ < Xr .

Under the assumption aforementioned, we come to
a control model that is governed by the following ordi-
nary differential equation with state feedback control
strategies:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= λ− δx − βxy

dy(t)

dt
= βxy − μy

⎫
⎪⎬

⎪⎭
x �= Xr ,

�x(t) = x(t+)− x(t) = −px(t)+ τ

�y(t) = y(t+)− y(t) = −qy(t)

}

x = Xr .

(4)

We assume, throughout this paper, that R0 = λβ
μδ
>

1. By the biological background, we only consider
models (3) and (4) in the region R

2+ = {(x, y) : x >
0, y > 0}, where the biology makes sense. Obviously,
R

2+ is divided into four domains with vertical isocline
dx
dt = 0 and horizontal isocline dy

dt = 0, followed by

I :=
{

(x, y) ∈ R2+ : dx

dt
< 0,

dy

dt
< 0

}

,

II :=
{

(x, y) ∈ R2+ : dx

dt
> 0,

dy

dt
< 0

}

,

III :=
{

(x, y) ∈ R2+ : dx

dt
> 0,

dy

dt
> 0

}

,

IV :=
{

(x, y) ∈ R2+ : dx

dt
< 0,

dy

dt
> 0

}

.

(5)

The global existence and uniqueness of solution for
models (3) and (4) are guaranteed by the smoothness
of the right-hand sides of models (3) and (4). For more
details, we refer to [39].

Lemma 1 Solutions of models (3) and (4) with the ini-
tial value in the interior of R

2+ at time t = t0 ≥ 0 are
positive.

The proof of Lemma 1 is obvious, hence we omit it
here.

Let S ⊂ R
2+ be a nonempty set and P0 ∈ R

2+ be
a point. The distance between P0 and S is defined by
ρ(P0,S) = inf P∈S |P − P0|. Let z(t) = (x(t), y(t))
be a solution of model (3) starting from initial point
z0 ∈ R

2+ at t = t0. We define the positive orbit as
follows:
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O+(z0, t0) :={z(t)=(x(t), y(t)) : t ≥ t0, z(t0) = z0}.
Definition 1 (Orbital stability [40]) A trajectory
O+(z0, t0) is said to be orbitally stable if for any
given ε > 0, there is a constant δ= δ(ε) > 0 such
that for any other solution z∗(t) of model (3), ρ(z∗(t),
O+(z0, t0))< ε for all t > t0 when ρ(z∗(t0), O+(z0,

t0)) < δ.

Definition 2 (Orbitally asymptotical stability [40]) A
trajectory O+(z0, t0) is said to be orbitally asymptot-
ically stable if it is orbitally stable, and there exists a
constant η > 0 such that for any other solution z∗(t)
of model (3), limt→∞ ρ(z∗(t), O+(z0, t0)) = 0 when
ρ(z∗(t0), O+(z0, t0)) < η.

Next, for model (3), let

Γ1 := {(x, y) : x > 0, y = (1 − q)Yc}
and

Γ2 := {(x, y) : x > 0, y = Yc}.
For any point A0(x0,Yc) ∈ Γ2, consider O+(A0, t0)
starting from point A0 at time t0, then O+(A0, t0)
jumps to point A+

0 ((1− p)x0 +τ, (1−q)Yc) on section
Γ1 at t = t+0 due to control effects �x(t) = −px(t)+τ
and �y(t) = −qYc. Then, trajectory O+(A0, t0) inter-
sects section Γ2 at point A1(x1,Yc) again. Therefore,
we can define a Poincaré map on section Γ2 as follows:

x1 = F1(x0, p, q, τ,Yc) := F1(x0). (6)

Furthermore, we can define x2 = F1(x1) = F2
1 (x0),

. . ., xk = F1(xk−1) = F1(F
k−1
1 (x0)) = Fk

1 (x0), . . ..

Definition 3 A trajectory O+(A0, t0) of model (3) is
said to be order-k periodic if there exists a positive
integer k ≥ 1 such that k is the smallest integer for
Fk

1 (x0) = x0.

Similarly, we can define two sections to model (4) by

Γ3 := {(x, y) : x = (1 − p)Xr + τ, y > 0},
Γ4 := {(x, y) : x = Xr , y > 0}
and a Poincaré map on section Γ4

y1 = F2(y0, p, q, τ, Xr ) := F2(y0). (7)

Next, we consider the following autonomous system
with pulse effects:

⎧
⎨

⎩

dx

dt
= f (x, y),

dy

dt
= g(x, y), ϕ(x, y) �= 0,

�x = ξ(x, y), �y = η(x, y), ϕ(x, y) = 0,

(8)

where f and g are continuous differentiable functions
defined on R

2 and ϕ is a sufficiently smooth func-
tion with gradϕ �= 0. Let (μ(t), ν(t)) be a positive
T -periodic solution of system (8). The following result
comes from Corollary 2 of Theorem 1 of [41].

Lemma 2 (Analog of Poincaré criterion) If the Flo-
quet multiplier μ satisfies |μ| < 1, where

μ =
n∏

j=1

κ j exp

⎧
⎨

⎩

T∫

0

[
∂ f

∂x
(μ(t), ν(t))

+∂g

∂y
(μ(t), ν(t))

]

dt

⎫
⎬

⎭

with

κ j = 1
∂ϕ
∂x f + ∂ϕ

∂y g

[(
∂η

∂y

∂ϕ

∂x
− ∂η

∂x

∂ϕ

∂y
+ ∂ϕ

∂x

)

f+

+
(
∂ξ

∂x

∂ϕ

∂y
− ∂ξ

∂y

∂ϕ

∂x
+ ∂ϕ

∂y

)

g+
]

(9)

and f , g, ∂ξ
∂x , ∂ξ

∂y , ∂η
∂x , ∂η

∂y , ∂ϕ
∂x , and ∂ϕ

∂y have been cal-

culated at the point (μ(τ j ), ν(τ j )), f+ = f (μ(τ+
j ),

ν(τ+
j )), g+ = g(μ(τ+

j ), ν(τ
+
j )), and τ j ( j ∈ N ) is the

time of the j-th jump, then (μ, ν) is orbitally asymp-
totically stable.

3 Analysis of the virus dynamics model (3)

Since virus equilibrium (x∗, y∗) is globally asymptot-
ically stable for model (1), any solution of model (3)
without state feedback control strategy will eventually
tend to (x∗, y∗). If Yc ≤ y∗, we easily see that trajec-
tory of model (3) with initial value (x0, y0) ∈ Γ1 will
intersect section Γ2 infinitely many times, and when
Yc > y∗, then trajectory of model (3) starting from
point (x0, y0) ∈ Γ1 may intersect section Γ2 finitely
many times. Therefore, in this section, we give some
sufficient conditions for the existence and stability of
positive periodic solutions in two cases of Yc ≤ y∗ and
Yc > y∗, respectively.
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3.1 Case Yc ≤ y∗

The following result is on the existence of positive
order-1 periodic solution.

Theorem 1 For any p, q ∈ (0, 1), and τ > 0, model
(3) admits a positive order-1 periodic solution.

Proof For point A+
0 (x0, (1 − q)Yc) ∈ Γ1 in domain

II with x0 ≤ (1 − p)μ
β

, in view of the proper-
ties (5) of the phase space of model (3), trajectory
O+(A+

0 , t0) of model (3) will enter into domain III
or in succession enter into domain IV and finally
intersect Γ2 at point A1(x1,Yc). Therefore, we have
x1 >

μ
β

. At point A1, trajectory O+(A+
0 , t0) jumps

to point A+
1 ((1 − p)x1 + τ, (1 − q)Yc) on section Γ1

due to state feedback control strategies. Furthermore,
trajectory O+(A+

0 , t0) intersects section Γ2 at point
A2(x2,Yc).

From the facts x0 ≤ (1 − p)μ
β

and x1 >
μ
β

, then

x0 < (1 − p)x1 + τ . It follows that point A+
0 is left

point A+
1 . We claim that point A1 is right point A2.

In fact, if point A1 is left point A2 or the two points

coincide, then orbits ˜A+
0 A1 and ˜A+

1 A2 must intersect at
a point (x0, y0). This shows that there are two different
solutions which start from this point. It contradicts with
the uniqueness of solution for model (3). Therefore, by
Poincaré map (6), it follows that

x2 − x1 = F1(x0)− x1 < 0. (10)

On the other hand, for the intersection B+
0 (

μ
β
, (1 −

q)Yc) of line L1 : βx−μ = 0 and sectionΓ1, trajectory
O+(B+

0 , t0) intersects section Γ2 at point B1(x̂1,Yc)

and then jumps to point B+
1 ((1 − p)x̂1 + τ, (1 − q)Yc)

on section Γ1 and finally reaches point B2(x̂2,Yc) on
section Γ2 again. If there is a positive constant τ ∗ such
that (1 − p)x̂1 + τ ∗ = μ

β
, then B+

1 coincides with

point B+
0 for τ = τ ∗; that is, point B1 coincides with

point B2. Otherwise, point B+
1 is left point B+

0 due to
(1− p)x̂1+τ < μ

β
for τ ∈ (0, τ ∗) and is right point B+

0

due to (1 − p)x̂1 + τ >
μ
β

for τ > τ ∗. Further, from
the properties (5) of phase space of model (3), point
B2 is right point B1 for any τ ∈ (0, τ ∗) ∪ (τ ∗,+∞).
Namely, x̂2 > x̂1 for this case.

Thus, from the above discussion, we get that

(i) if x̂1 = x̂2, then model (3) has a positive order-1
periodic solution;

(ii) if x̂2 > x̂1, then

x̂2 − x̂1 = F1(x̂1)− x̂1 > 0. (11)

By (10) and (11), it follows that Poincaré map (6)
has a fixed point. This amounts to saying that model
(3) has a positive order-1 periodic solution. This
completes the proof.

Let (φ(t), ψ(t)) be a positive order-1 periodic solu-
tion of model (3) with period T . On the orbital stability
of solution (φ(t), ψ(t)) of model (3), we have the fol-
lowing Theorem 2.

Theorem 2 If

κ =
∣
∣
∣
∣(1 − p)

β[(1 − p)φ(T )+ τ ] − μ

βφ(T )− μ

∣
∣
∣
∣

× exp

⎧
⎨

⎩
−

T∫

0

[δ + βψ(t)] dt

⎫
⎬

⎭
< 1, (12)

then (φ(t), ψ(t)) is orbitally asymptotically stable.

Proof Suppose that (φ(t), ψ(t)) intersects the sections
Γ1 and Γ2 at points C+((1 − p)φ(T )+ τ, (1 − q)Yc)

and C(φ(T ), Yc), respectively. Comparing with system
(8), we have

f (x, y) = λ− δx − βxy, g(x, y) = βxy − μy,

ξ(x, y) = −px +τ , η(x, y) = −qy, ϕ(x, y) = y−Yc,
(φ(T ), ψ(T )) = (φ(T ), Yc), and (φ(T +), ψ(T +)) =
((1 − p)φ(T )+ τ, (1 − q)Yc). Thus,

∂ f

∂x
= −δ − βy,

∂g

∂y
= βx − μ,

∂ξ

∂x
= −p, (13)

and

∂η

∂y
= −q,

∂ϕ

∂y
= 1,

∂ξ

∂y
= ∂η

∂x
= ∂ϕ

∂x
= 0. (14)

Furthermore, it follows from (13), (14), and (9) that

κ = (1 − p)g(φ(T +), ψ(T +))
g(φ(T ), ψ(T ))

= (1 − p)(1 − q)
β[(1 − p)φ(T )+ τ ] − μ

βφ(T )− μ
(15)

and

μ = κ exp

⎧
⎨

⎩

T∫

0

[−δ − βψ(t)+ (βφ(t)− μ)] dt

⎫
⎬

⎭
.

(16)
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On the other hand, integrating both sides of the sec-

ond equation of model (3) along the orbit C̃+C gives

ln
1

1 − q
=

∫ Yc

(1−q)Yc

dy

y
=

T∫

0

(βx − μ) dt

=
T∫

0

[βφ(t)− μ] dt. (17)

From (15)–(17), we obtain

|μ| =
∣
∣
∣
∣(1 − p)(1 − q)

β[(1 − p)φ(T )+ τ ] − μ

βφ(T )− μ

∣
∣
∣
∣

× 1

1 − q
exp

⎧
⎨

⎩
−

T∫

0

[δ + βψ(t)] dt

⎫
⎬

⎭

=
∣
∣
∣
∣(1 − p)

β[(1 − p)φ(T )+ τ ] − μ

βφ(T )− μ

∣
∣
∣
∣

× exp

⎧
⎨

⎩
−

T∫

0

[δ + βψ(t)] dt

⎫
⎬

⎭
.

By condition (12), we know that model (3) satis-
fies all conditions of Lemma 2. It then follows from
Lemma 2 that the order-1 periodic solution (φ(t), ψ(t))
of model (3) is orbitally asymptotically stable. This
completes the proof.

Remark 2 Generally, the condition (12) of Theorem 2
is not easy to test since the expression of periodic solu-
tion (φ(t), ψ(t)) is unknown. We note that, however,
it is also weaker since the exponent term of condition
(12) is less than 1.

The following corollary is a direct consequence of
Theorem 2.

Corollary 1 Let (φ(t), ψ(t)) be a positive order-1
periodic solution of model (3) with periodic T . If
∣
∣
∣
∣(1 − p)

β[(1 − p)φ(T )+ τ ] − μ

βφ(T )− μ

∣
∣
∣
∣ exp{−δT } < 1,

then (φ(t), ψ(t)) is orbitally asymptotically stable.

3.2 Case Yc > y∗

As already mentioned above, this case Yc > y∗ is com-
plex since the virus equilibrium (x∗, y∗) of model (1)
is globally asymptotically stable. Additionally, since

control measures are aimed at reducing the density
of infected cells (or free virus) y, we suppose that
(1 − q)Yc < y∗. We now have the following result
on the existence and orbital stability of positive order-
k periodic solution of model (3) with Yc > y∗.

Theorem 3 For any p, q ∈ (0, 1), and τ > 0, one of
the following statements is valid.

(a) If there is a positive constant x̂ = x̂(Yc) ∈ (0, x∗]
such that trajectory O+(E0, t0) of model (3) start-
ing from point E0(x̂, (1 − q)Yc) is tangent to line
L : y = Yc at point (μ

β
,Yc) and (1− p) λ

δ
+ τ < x̂ ,

then model (3) has a positive order-1 or order-2
periodic solution, which is orbitally asymptotically
stable.

(b) Suppose that for any x ∈ (0, x∗], trajectory
O+(A0, t0) of model (3) starting from the initial
point A0(x0, (1 − q)Yc) cuts line L : y = Yc

at point B(x̂0,Yc), where x̂0 ≥ x∗. Further, if
(1 − p) λ

δ
+ τ < x∗, then model (3) has a posi-

tive order-1 or order-2 periodic solution, which is
orbitally asymptotically stable.

(c) Suppose that for any x ∈ (0, x∗], trajectory
O+(F, t0) of model (3) starting from point F(x,
(1 − q)Yc) does not intersect with line L : y = Yc.
Further, if (1 − p) λ

δ
+ τ < x∗, then model (3) has

no positive order-k (k ≥ 1) periodic solution and
the virus equilibrium (x∗, y∗) is globally asymptot-
ically stable.

Proof We first prove conclusion (a). Suppose that there
is a positive constant x̂ = x̂(Yc) ∈ (0, x∗] such
that trajectory O+(E0, t0) of model (3) starting from
point E0(x̂, (1 − q)Yc) crosses section Γ1 at point
E0p(x̂1, (1 − q)Yc) and is tangent to line y = Yc at
point E1(

μ
β
,Yc). Then trajectory starting from point

(x, (1 − q)Yc) with x ∈ (x̂, x∗) will tend to virus
equilibrium (x∗, y∗) and not intersect with section Γ2.
Moreover, since (1− p) λ

δ
+τ < x̂ , then (1− p)x +τ <

x̂ for any point (x,Yc) ∈ Γ2 and x < λ
δ

. Therefore, for
any E(x,Yc) ∈ Γ2 and x < λ

δ
, trajectory O+(E, t0)

starting from point E(x,Yc)will intersect with Γ2 infi-
nitely many times due to state feedback control strate-
gies �x = −px(t)+ τ and �y(t) = −qYc.

Considering any two points Di (xi ,Yc) and D j (x j ,

Yc) on section Γ2, where xi , x j ∈ (0, δ
λ
), and xi < x j ,

it is obviously that point D+
i ((1− p)xi + τ, (1−q)Yc)

is left point D+
j ((1 − p)x j + τ, (1 − q)Yc) in view of

control strategies (1 − p)xi + τ < (1 − p)x j + τ <
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x̂ . Further, trajectories O+(Di , t0) and O+(D j , t0))
intersect section Γ2 at points Di+1(xi+1,Yc) and
D j+1(x j+1,Yc), respectively. We claim that

x j+1 < xi+1. (18)

In fact, if (18) is false, that is x j+1 ≥ xi+1, then
point D j+1(x j+1,Yc) is right point Di+1(xi+1,Yc),
or the two points coincide. So it follows that trajec-
tories O+(Di , t0) and O+(D j , t0) intersect at a point
(x̂, ŷ). This implies that there are two different solu-
tions which start from the point (x̂, ŷ), which contra-
dicts the uniqueness of solution. Inequality (18) is thus
valid.

Suppose that trajectory O+(C0, t0) of model (3)
starting from point C0(x0,Yc) (x0 <

λ
δ

) on section Γ2

jumps to point C+
0 ((1− p)x0 +τ, (1−q)Yc) on section

Γ1, and reaches section Γ2 at point C1(x1,Yc) again
due to the fact (1 − p) λ

δ
+ τ < x̃ , where x1 ∈ (x∗, λ

δ
)

and then jumps to point C+
1 ((1 − p)x1 + τ,Yc) at sec-

tion Γ1. At state C+
1 , trajectory O+(C0, t0) intersects

section Γ2 at point C2(x2,Yc), where x2 ∈ (x∗, λ
δ
).

By the Poincaré map (6) of section Γ2, it follows that
x1 = F1(x0) and x2 = F2

1 (x0). Repeating the above
process, we have xn+1 = Fn

1 (x0) (n = 0, 1, . . .). Par-
ticularly, model (3) has a positive order-1 periodic solu-
tion when x0 = x1 and a positive order-2 periodic solu-
tion when x0 �= x1 and x0 = x2.

Now, we consider the general situation for x0 �=
x1 �= x2 �= · · · �= xk (k > 2). On the relation of x0, x1,
and x2, there are the following two different cases.

(C1) x0 < x1

In this case, we can get from (18) that x1 > x2.
This results in the relation of x0, x1, and x2 to be
one of the following two cases.

(i) x2 < x0 < x1

In this case, x3 > x1 > x2 by (18). Repeating
the above process, we have

x∗ < · · · < x2k < · · · < x0 < x1 < · · · < x2k+1

< · · · < λ

δ
.

(ii) x0 < x2 < x1

Similar to (i), we have

x0 < x2 < · · · < x2k < · · · < x2k+1 < . . .

< x1 <
λ

δ
.

(C2) x0 > x1.
In this case, it follows from (18) that x1 < x2.
This results in the relation of x0, x1, and x2 to
be one of two cases.

(iii) x1 < x0 < x2

In this case, x2 > x1 > x3 by (18). Repeating
the above process, we have

x∗ < · · · < x2k+1 < · · · < x0 < · · · < x2k

< · · · < λ

δ
.

(iv) x1 < x2 < x0

Similar to (iii), we have

x∗ < x1 < · · · < x2k+1 < · · · < x2k

< · · · < x2 < x0.

Further, in (i) of case (C1), we have limk→∞ x2k =
θ∗ and limk→∞ x2k+1 = θ∗, where x∗ < θ∗ < θ∗ < d

λ
.

Hence θ∗ = F1(θ
∗) and θ∗ = F1(θ∗). So model (3)

has an orbitally asymptotically stable positive order-2
periodic solution. Similarly, in (ii) of case (C1) and (iv)
of case (C2), model (3) has an orbitally asymptotically
stable positive order-1 periodic solution. In (iii) of case
(C2), model (3) has an orbitally asymptotically stable
positive order-2 periodic solution. This proves (a).

Next, we prove conclusion (b). If for any x0 ∈
(0, x∗], trajectory O+(A0, t0) of model (3) starting
from initial point A0(x0, (1 − q)Yc) cuts the line L :
y = Yc at point A1(x1,Yc), where x∗ < x1 < λ

δ
,

then for any E(x,Yc) ∈ Γ2, trajectory O+(E, t0)
will intersect with section Γ2 infinitely many times
due to state feedback control strategies and the fact
(1 − p) λ

δ
+ τ < x∗. Similar to conclusion (a), we

can also obtain that model (3) has a positive order-1 or
order-2 periodic solution, which is orbitally asymptot-
ically stable. Conclusion (b) thus follows.

Finally, we turn to (c). If for any x ∈ (0, x∗], the
trajectory O+(G, t0) of model (3) starting from point
G(x, (1−q)Yc) does not intersect with line L : y = Yc,
then trajectory starting from point (x, (1 − q)Yc) of
section Γ1 with x ∈ (0, x∗] will tend to virus equilib-
rium (x∗, y∗) and not intersect with section Γ2. Fur-
thermore, any other trajectory intersects section Γ2 at
most finitely many times, and then tends to virus equi-
librium (x∗, y∗) due to (1 − p) λ

δ
+ τ < x∗. In this

case, model (3) has no positive order-k (k ≥ 1) peri-
odic solution and virus equilibrium (x∗, y∗) is globally
asymptotically stable. This is (c). This completes the
proof.
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Remark 3 From conclusion (a) of Theorem 3, we note
that (1−p) λ

δ
< x̂ is a sufficient condition for system (3)

to have a positive order-1 or order-2 periodic solution.

Remark 4 Conclusion (c) of Theorem 3 shows that the
state feedback control strategies are invalid when the
controlled strengths p, q, and τ remain at a relatively
low level and threshold value Yc is greater than y∗.

4 Analysis of the virus dynamics model (4)

Similar to Sect. 3, we also divided two cases to give
some sufficient conditions for the existence and stabil-
ity of periodic solutions for model (4).

4.1 Case of Xr ≤ x∗

The following result is on the extinct of y.

Theorem 4 For any solution (x(t), y(t)) of model (4)
with initial condition (x0, y0) ∈ R2+, if x0 ≤ Xr then
limt→∞ y(t) = 0.

Proof Suppose that (x(t), y(t)) be any solution of
model (4) with initial value (x0, y0) ∈ R

2+ and x0 ≤
Xr . Since any trajectory of model (4) starting from
domain I will enter into domain II , where I and II
are given by (5), solution (x(t), y(t)) must intersect
with section Γ4 at a point A(Xr , y1), and then jump to
section γ3 at point A+((1 − q)Xr + τ, (1 − q)y1) due
to state feedback control strategies. Obviously,

0 < y1 <
λ− δ[(1 − p)Xr + τ ]
β[(1 − p)Xr + τ ] := ω.

So we consider only trajectories which start from points
(x0, y0) ∈ Γ3 and y0 ≤ ω.

Suppose that trajectory O+(E0, t0) of model (4)
starting from point E0((1 − p)Xr + τ, y0) (where 0 <
y0 ≤ ω) first intersect section Γ4 at point E1(Xr , y1)

and then jumps to point E+
1 ((1− p)Xr +τ, y+

1 ) on sec-
tionΓ3 due to control strategies, and reaches sectionΓ4

at point E2(Xr , y2) again, where y1, y2 ∈ (0, λ−δXr
βXr

).
Repeating the above process, we can get two point
sequences {E+

n ((1− p)Xr +τ, y+
n )} and {En(Xr , yn)},

where y+
n = (1 − q)yn . The corresponding impulsive

time sequences are marked by {tn}.
Integrating both sides of the first equation of model

(4) from the orbit ˜E+
n En+1 we have

tn+1 − tn ≥
Xr∫

(1−p)Xr +τ

dx

λ− δx

= 1

δ
ln

(
λ− δ(1 − p)Xr − δτ

λ− δXr

)

> 0.

(19)

Further, integrating both sides of the second equation

of model (4) from the orbit ˜E+
n En+1, we can get

yn+1∫

y+
n

dy

y
=

tn+1∫

tn

(βx − μ) dt ≤
tn+1∫

tn

(βXr − μ) dt.

This together with (19) shows that

yn+1 ≤ y+
n

(
λ− δ(1 − p)Xr − δτ

λ− δXr

) βXr −μ
δ

= (1 − q)yn

(
λ− δ(1 − p)Xr − δτ

λ− δXr

) βXr −μ
δ

.

From the above recursive formula, it can be easily
shown that

yn+1 ≤ (1 − q)n y1

(
λ− δ(1 − p)Xr − δτ

λ− δXr

) n(βXr −μ)
δ

.

This results in limn→∞ yn = 0, where we used the facts
(1 − p)Xr + τ < Xr and βXr − μ < 0. Moreover,
limt→∞ y(t) = 0. This completes the proof.

Let y ≡ 0 for t ∈ [0,∞) in model (4), we can get
the following reduce model

⎧
⎨

⎩

dx(t)

dt
= λ− δx(t), x �= Xr ,

�x(t) = −px(t)+ τ, x = Xr .

(20)

It can be easy to calculate that model (20) has a T
periodic solution which is given by

x(t) = λeδ(t−nT ) − λ+ δ[(1 − p)Xr + τ ]
δeδ(t−nT )

for all nT < t ≤ (n + 1)T , where

T = 1

δ
ln

{
λ− δ[(1 − p)Xr + τ ]

λ− δXr

}

,

x(0) = (1 − p)Xr + τ and x(T ) = Xr . This means
that model (4) has the following semi-trivial periodic
solution for nT < t ≤ (n + 1)T (n = 0, 1, 2, . . .)
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⎧
⎨

⎩

φ(t) = λeδ(t−nT ) − λ+ δ[(1 − p)Xr + τ ]
δeδ(t−nT )

,

ψ(t) = 0.
(21)

On the stability of this semi-trivial periodic solution,
we have the following Theorem 5.

Theorem 5 For any p, q ∈ (0, 1), τ > 0, and Xr ≤
x∗, the semi-trivial periodic solution (21) is orbitally
asymptotically stable.

Proof Suppose that (̃x(t), ỹ(t)) is a solution of of
small-amplitude perturbation of periodic solution (φ(t),
ψ(t)) with initial value (̃x(0), ỹ(0)) = ((1 − p)Xr +
τ, ỹ0), which first intersects sectionΓ4 at point (Xr , ỹ1)

and then jumps to point ((1 − p)Xr + τ, ỹ+
1 ). Fur-

ther, solution (̃x(t), ỹ(t)) intersects section Γ4 at point
(Xr , ỹ2) again. Repeating the above process, we have
two point sequences {((1 − p)Xr + τ, ỹ+

n )} and
{(Xr , ỹn)}, where ỹ+

n = (1 − q)ỹn . Further, by Theo-
rem 4, it is clear that limt→∞ ỹ(t) = 0. This shows that
semi-trivial periodic solution (21) is orbitally asymp-
totically stable. This completes the proof.

4.2 Case of x∗ < Xr <
λ
δ

From the properties (5) of the phase space of model
(4), we know that there a point E0((1 − p)Xr + τ, γ )

such that trajectory O+(E0, t0) is tangent to the section
Γ4 at the intersection E1(Xr ,

λ−δXr
βXr

) of section Γ and

isocline dx
dt = 0, where γ = γ (Xr , p, τ ).

If (1 − q) λ−δXr
βXr

< γ , then trajectory O+(E, t0)

starting from point E(Xr , y) (where y ≤ λ−δXr
βXr

) will
intersect with Γ4 infinitely many times due to control
strategies �x = −pXr + τ and �y(t) = −qy(t).

For any two points Ei (Xr , yi ) and E j (Xr , y j ) on
section Γ4, where yi , y j ∈ (0, λ−δXr

βXr
), and yi < y j , in

view of control strategies, E+
i ((1− p)Xr +τ, (1−q)yi )

is on below E+
j ((1 − p)Xr + τ, (1 − q)y j ). Namely,

(1 − q)yi < (1 − q)y j . It implies that

0 < yi+1 < y j+1 <
λ− δXr

βXr
. (22)

Similar to the discussion of Theorem 3, we give the
following result on the existence and orbital stability
of periodic solution.

Theorem 6 For any p, q ∈ (0, 1), τ > 0, and Xr >

x∗, if

(1 − q)
λ− δXr

βXr
< γ = γ (Xr , p, τ ),

then model (4) admits an order-1 periodic solution
which is orbitally asymptotically stable.

Remark 5 We want to make clear that the order-1 peri-
odic solution in Theorem 6 may be a positive periodic
solution, or it may also be a semi-trivial periodic solu-
tion by condition (22).

5 Numerical simulation and discussion

To illustrate the theoretical results and the feasibility of
state control strategies, we perform numerical simula-
tions for different control parameters p, q, τ , Yc, and
Xr using the software MATLAB. We fixed parameters
as those in papers [4,8,11] with λ = 50, δ = 0.1,
β = 0.002, and μ = 0.5 in model (1). It is easy to
calculate that model (1) has a unique globally asymp-
totically stable virus equilibrium (x∗, y∗) = (250, 50),
which is illustrated here by the blue line in Fig. 1a.

Firstly, we choose the control parameters to be p =
0.3, q = 0.5, τ = 50, and Yc = 45 < y∗, respectively.
Using Theorem 1, we know that model (3) has a positive
order-1 periodic solution (φ(t), ψ(t)) which is shown
by red line in Fig. 1a. At the same time, Fig. 1a also
shows that the periodic solution starting from the initial
point (φ(0), ψ(0)) = (251.8965, 22.5000). Further,
by the condition of Corollary 1, it can be easily shown
that

|μ| =
∣
∣
∣
∣(1 − p)

β[(1 − p)φ(T )+ τ ] − μ

βφ(T )− μ

∣
∣
∣
∣ e−δT

= 0.7 × 0.002 × 251.8965 − 0.5

0.002 × 288.4236 − 0.5
× e−0.1T < 1.

Therefore, it follows that (φ(t), ψ(t)) is orbitally
asymptotically stable by Corollary 1, which is shown
in Fig. 1b.

Further, we fixed the values of q, τ , and Yc as men-
tioned before and choose p to be 0.2, 0.4, 0.6, and 0.8,
respectively. Numerical simulations show that the den-
sity of y can be controlled within a certain limit and
the period T of order-1 periodic solution for model
(3) increases with the increase of immune strength p,
which is shown in Fig. 2a. The similar numerical results
are presented in Fig. 2b.
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Fig. 1 The existence and orbital asymptotical stability of order-
1 periodic solution of model (3) with p = 0.3, q = 0.5, τ =
50, and Yc = 45 < y∗: a the blue line shows that equilibrium
(x∗, y∗) of model (3) without control is globally asymptotically
stable, the red line shows the existence of periodic solution of
model (3); b the orbitally asymptotical stability

Secondly, let p = 0.3, q = 0.5, τ = 50, and
Yc = 55 > y∗; it is easy to see that model (3) has
a positive locally orbitally asymptotically stable order-
1 periodic solution by parts (a) or (b) of Theorem 3,
which is shown in Fig. 3. However, we only change
model parameter Yc = 56, and fixed x(0) = 250
and y(0) ∈ [5, 35], it can be found that the attraction
domains of positive order-1 periodic solution and virus
equilibrium appear alternately from Fig. 4. It is differ-
ent from the case of Yc = 55. Therefore, the value of
control threshold value Yc plays an important role in
the treatment of various diseases.

Further, we fixed Yc = 55, q = 0.5, and τ = 50
and change the control strength p to be 0.35, 0.45,
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Fig. 2 The trajectories of model (3) with τ = 50, Yc = 45, and
a: q = 0.5, p = 0.2, 0.4, 0.6, and 0.8, respectively; b p = 0.3,
q = 0.1, 0.3, 0.5, and 0.7, respectively

0.55, 0.65, and 0.75, respectively. Numerical simula-
tions in Fig. 5 show that trajectories intersect with sec-
tion Γ2 finitely many times and then tend to virus equi-
librium (x∗, y∗)when p is small, but trajectories inter-
sect with section Γ2 infinitely many times and model
has a orbitally asymptotically stable periodic solution
with increase of parameter p. The plots in Fig. 5 show
also that control strength p has only a small effect on
the periodic of treatment cycle. Similar results can be
obtained if we choose q as a control parameter. How-
ever, if we fixed Yc = 55, p = 0.3, q = 0.5, and
change the control strength τ to be 120, 80, 40, and 0,
respectively. As shown in Fig. 6, the periodic of treat-
ment cycle decrease as control strength τ increases.
This implies that when we reduce the concentration
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Fig. 3 The existence and orbital asymptotical stability of order-
1 periodic solution of model (3) with p = 0.3, q = 0.5, τ = 50,
and Yc = 55 > y∗

0 10 20 30 40 50 60 70 80
0

20

40

60

t

y

0 10 20 30 40 50 60 70 80
0

20

40

60

t

y

Yc=55

Yc=56

Fig. 4 Comparison of control threshold values Yc = 55 with
Yc = 56, where p = 0.3, q = 0.5, and τ = 50

of infected cells (or free virus) we also should reason-
ably control the concentration of uninfected cells in the
course of treating disease because the high concentra-
tions of uninfected cells will promote the growth of
infected cells (or free virus).

Thirdly, we discuss the existence and stability of
semi-trivial periodic solution of model (4). Here, we
choose p = 0.3, q = 0.5, τ = 5, and Xr = 250 = x∗.
By Theorem 5, it follows that model (4) has a orbitally
asymptotically stable semi-trivial periodic solution,
which are shown in Fig. 7. Theoretical results and
numerical simulations show clearly that infected cells
(or free virus) y dies out if we control the density of
uninfected cells x within a certain range. It also pro-
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Fig. 5 The effect of control strength p for the dynamical behav-
iors of model (3) with Yc = 55, q = 0.5, and τ = 50
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Fig. 6 The effect of control strength τ for the dynamical behav-
iors of model (3) with Yc = 55, p = 0.3, and q = 0.5

vides theoretical basis for finding a new measure to
prevent the spread of virus disease. In fact, this is also
consistent with the results in [42], where Ross proposed
a mathematical model to study the spread between
human beings and mosquitoes for malaria in earlier
1911. A concept of threshold density is introduced and
it is concluded that “· · · in order to counteract malaria
anywhere we need not banish Anopheles there entirely–
we need only to reduce their numbers below a certain
figure.”

Finally, fixing p = 0.5, τ = 10, and Xr =
350 > x∗, model (4) has an orbitally asymptotical
stability of positive order-1 periodic solution when
q = 0.4385 as shown in Fig. 8. At the same time,
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Fig. 7 The existence and orbitally asymptotical stability of semi-
trivial periodic solution of model (4) with p = 0.3, q = 0.5,
τ = 5, and Xr = 250 = x∗
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Fig. 8 The existence of positive periodic solution of model (4)
with p = 0.5, q = 0.4385, τ = 10, and Xr = 350 > x∗

many numerical simulations show that the attraction
domain of this periodic solution is very small; that
is, the stability of this periodic solution is very sen-
sitive to the initial value of solution. The plots in Fig.
9 show that the solution tends to virus equilibrium for
q = 0.43, tends to positive order-1 periodic solution
for q = 0.4385, and tends to the semi-trivial peri-
odic solution for q = 0.44, respectively. It implies
that control strength q is sensitive for the persistence
and extinction of infected cells (or free virus) y for
Xr > x∗. This is the relevant contents of Theorem 6 and
Remark 5.
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Fig. 9 The effect of control strength q for the dynamical behav-
iors of model (4) with p = 0.5, τ = 10, and Xr = 350 > x∗

6 Concluding remarks

The dynamic complexity of two novel virus epidemic
models with state feedback control strategies are ana-
lyzed systemically in this paper. Firstly, choosing the
density of infected cells or free virus as a control thresh-
old value, some sufficient conditions on the existence
and orbitally asymptotical stability of positive order-
1 or order-2 periodic solution of model (3) are pre-
sented by the Poincaré map, the analog of Poincaré cri-
terion and qualitative analysis method. This amounts
to that we can control the density of infected cells or
free virus at a low level over a long period of time by
adjusting control strength. It is concluded that the state
feedback control strategies are feasible and effective.
Further, choosing the density of uninfected cells x as
control threshold value, we obtain that the existence and
orbitally asymptotical stability of periodic solution. In
particular, the existence and orbitally asymptotical sta-
bility of semi-trivial periodic are obtained. This implies
that infected cells or free virus y dies out if we control
the density of cells x within a certain range. It provides
theoretical basis for finding a new measure to prevent
and control the spread of viral disease.
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