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Abstract Documented and forecasted trends in rising sea levels and changes in storm-

iness patterns have the potential to increase the frequency, magnitude, and spatial extent of

coastal change hazards. To develop realistic adaptation strategies, coastal planners need

information about coastal change hazards that recognizes the dynamic temporal and spatial

scales of beach morphology, the climate controls on coastal change hazards, and the

uncertainties surrounding the drivers and impacts of climate change. We present a prob-

abilistic approach for quantifying and mapping coastal change hazards that incorporates

the uncertainty associated with both climate change and morphological variability. To

demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are

developed for the Tillamook County (State of Oregon, USA) coastline using a suite of

simple models and a range of possible climate futures related to wave climate, sea-level

rise projections, and the frequency of major El Niño events. Extreme total water levels are
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more influenced by wave height variability, whereas the magnitude of erosion is more

influenced by sea-level rise scenarios. Morphological variability has a stronger influence

on the width of coastal hazard zones than the uncertainty associated with the range of

climate change scenarios.

Keywords Climate change � El Niño � Exposure � Increasing storminess � Probabilistic

coastal hazard zones � Sea-level rise � Uncertainty

1 Introduction

Sea-level rise (SLR), increasing storminess, and development pressures all contribute to

making coastal communities vulnerable to coastal change hazards (e.g., Bindoff et al.

2007; Young et al. 2011; Strauss et al. 2012). A significant challenge for coastal planners in

reducing this vulnerability is the lack of tools or information that recognize the inherent

uncertainty of climate change and its influence on physical processes that shape the coastal

zone. Although they are the basis for coastal policies, regulations, and adaptation planning

efforts, many coastal change hazard mapping efforts (e.g., Allan and Priest 2001) effec-

tively ignore the non-stationarity of coastal processes, such as accelerating SLR and

changes in storminess.

Forecasts of potential impacts to coastal areas due to climate change and/or extreme

events have been performed on the US West Coast using qualitative indices (Thieler and

Hammar-Klose 1999); quantitative, event-selection or benchmark event approaches (e.g.,

Allan and Priest 2001); and response-based or structural function approaches (Revell et al.

2011). Fully probabilistic, full temporal simulation approaches that account for conditional

dependencies between relevant variables (e.g., Callaghan et al. 2008) are considered the

most robust and involve randomly sampling from fitted probability distributions in a Monte

Carlo sense. Both the response function and full simulation approaches have the potential

to include the non-stationarity associated with climate change.

In addition to the variability in physical processes, community exposure to coastal

change hazards varies depending on how communities currently use or plan to use hazard-

prone areas. There have been various efforts in recent years to estimate societal exposure to

various SLR scenarios throughout the world (e.g., Wu et al. 2009; Strauss et al. 2012), as

well as efforts to estimate the influence of SLR in increasing societal exposure to sudden-

onset coastal hazards, such as hurricane storm surge (e.g., Frazier et al. 2010). Lacking

from these studies are attempts to characterize community vulnerability to coastal change

hazards, such as chronic erosion associated with winter storms.

Within this context of hazard uncertainty and societal relevance, the objective of this paper

is to summarize a multi-scale, probabilistic methodology that incorporates the impacts of

projected climate changes and variability, as well as morphological variability, into coastal

change hazard assessments. We first develop a suite of climate change scenarios that reflect

various assumptions regarding SLR, storminess, and major El Niño occurrences and their

impact on future extreme water levels. Simple models are then used to quantify potential

coastal change hazards and generate a series of probabilistic hazard zones for select events

over a range of timescales (event to decadal) that account for both climate and morphological

uncertainties. We integrate these hazard zones with data on local infrastructure to examine

spatial variations in community exposure to coastal change hazards. Finally, we examine the
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relative contribution of sea level, wave climate, and the frequency of occurrence of major El

Niños to the magnitude and spatial extent of coastal change hazard zones.

To demonstrate this integrated approach, we focus on the multiple coastal communities

and littoral cells along dune-backed shorelines in Tillamook County on the northern coast of

Oregon (USA). Although we focus on one county and its littoral cells, the methodology is

applicable to all dune-backed shorelines in the US Pacific Northwest [covering approxi-

mately 45 % of the outer coasts of Oregon and Washington (Cooper 1958)], as well as other

coastal regions with similar physical settings. Methods presented here further the dialogue

on understanding community exposure to coastal change hazards that incorporate climate

change uncertainty and can be used by coastal planners in their efforts to balance community

growth and increased adaptive capacity to natural hazards over the next several decades.

2 Study area

Coastal Tillamook County in northwest Oregon contains four littoral cells separated by

bounding headlands (Fig. 1). Each littoral cell is further divided by at least one estuary.

Fig. 1 Map of the four littoral
cells of Tillamook County, OR,
as divided by five major
headlands, showing the coastal
communities, estuaries, and
recreational parks along the coast
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Two of the littoral cells have inlets stabilized by jetties (Tillamook Bay and Nehalem Bay),

whereas the mouths of the other estuaries are free to migrate and shift in response to

hydrodynamic forcing, as the sediment budget allows. The Rockaway littoral cell is the

largest and most densely populated in the study area with several tourism-driven com-

munities located along 25 km of shoreline. The focus in the Netarts littoral cell is the 7.5-

km-long Netarts Spit that includes Cape Lookout State Park, which has been experiencing

significant dune erosion and dune overtopping during the last few decades. The Sand Lake

littoral cell is largely uninhabited, aside from the small community of Tierra Del Mar. At

the southern end of the study area, the Neskowin littoral cell has experienced shoreline

progradation in the northern section (e.g., near Pacific City) and significant erosion in the

southern part. The erosion, averaging about 2.0 m per year since the 1960s (Ruggiero et al.

2013), is threatening oceanfront residences in the community of Neskowin.

The dynamic beaches of Tillamook County, OR, are exposed to mesotidal conditions

and a relatively extreme wave climate. Monthly mean significant wave heights off the

coast of Oregon are on the order of 1.5 m in the summer with periods of *8 s, while wave

heights in the winter are typically double in height, averaging *3 m with periods on the

order of 12–13 s (Ruggiero et al. 2005). It is typical for winter storms to annually generate

wave heights[10 m, while some of the strongest storms on record have generated waves

up to 14 m (Allan and Komar 2002, 2006). Peak periods associated with these large wave

heights tend to be about 15–17 s, but can be as large as 20 s (Allan and Komar 2002). The

strong seasonal variability in water levels, *20 cm (Komar et al. 2011), is in phase with

the seasonal variability in the wave climate, resulting in significantly higher total water

levels (TWLs) during the winter season. During major El Niño events, water levels, wave

heights, and wave direction are all anomalous, resulting in regional and hotspot erosion

throughout the region.

3 Climate change scenario development

Climate change scenarios serve as the foundation for the coastal change hazard zones and

are based on the projections for SLR, the wave climate, and the probability of occurrence

of major El Niño events through the year 2100. Due to the inherent uncertainty in climate

projections (e.g., Hemer et al. 2013), our approach here is to broadly explore the range of

variability documented in the literature rather than dynamically or statistically downscaling

the various processes from models (Wilby and Dessai 2012).

The SLR projections were made by compiling estimates based on semiempirical

methods (e.g., Rahmstorf 2010) relating SLR to the global mean temperature for the IPCC

SRES scenario A1B. We integrate the uncertainty associated with the various A1B SLR

projections by fitting a quadratic equation to several high, medium, and low estimates and

then bracket the uncertainty associated with our A1B scenarios with a fitted ‘‘best-case’’

B1 scenario and fitted ‘‘worst-case’’ A2 scenario. Estimates range from 0.45 to 1.47 m of

SLR by 2100 relative to 2010 (Fig. 2a), a range of SLR projections comparable to those

presented in a recent report from the National Research Council specific to the US West

Coast (NRC 2012). Relative SLR scenarios relevant to the US Pacific Northwest were

determined by correcting the global SLR projections to account for processes that locally

alter sea-level projections, such as alongshore variations in land uplift rates due to the

subduction of the oceanic Juan de Fuca and Gorda plates under the continental North

American plate (e.g., Burgette et al. 2009; Komar et al. 2011).
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The extreme wave height climatology has been documented to be increasing over the

last few decades (Allan and Komar 2000, 2006; Méndez et al. 2006; Menéndez et al. 2008;

Ruggiero et al. 2010; Young et al. 2011), and this increase has been potentially more

responsible than changes in sea level alone for increasing the frequency of extreme events

along the PNW coast (Ruggiero 2013). Moreover, wave heights of different magnitudes

(i.e., exceedance percentiles) are increasing at different rates such that larger waves are

getting bigger faster (Ruggiero et al. 2010). Therefore, wave heights in our future wave

climate scenarios were allowed to change by quartile, depending on their exceedance

percentile of the wave height cumulative distribution function. We developed three simple

future wave climate scenarios: (1) wave heights increase at their present rate of 1.0, 1.5,

2.0, or 4.0 cm/year, depending on quartile, as documented by Ruggiero et al. (2010) until

2030; (2) wave heights remain at their present levels indefinitely; and (3) wave heights

decrease until the year 2030 at the same rate as the wave height increase scenario (Fig. 2b).

We extend our wave scenarios only for two decades due to the lack of a detailed under-

standing of the causation of the existing trends, and the uncertainty associated with

downscaling winds and waves from model projections (e.g., Hemer et al. 2013).

Major El Niños significantly affect both water levels and wave heights in the PNW and

have been associated with the most severe erosion and flooding hazards in the region

documented over the last few decades (Kaminsky et al. 1998). Over the period of wave

Fig. 2 a SLR, b wave climate, and El Niño projections combine to generate an initial matrix of c 18 initial
climate change scenarios for use in coastal change models. We further combine the B1-low SLR estimate
with the decreased intensity wave climate and no increase in El Niños and combine the A2-high SLR
estimate with the increased intensity wave climate and the doubling of El Niño frequency for a total of 20
scenarios covering a broad range of possible climate futures

Nat Hazards (2015) 75:2081–2102 2085

123



buoy measurements, there have been two major El Niños—one in 1982–1983 and another

in 1997–1998. Because little is certain about how El Niño frequency will change in the

future, we include one scenario in which the frequency of occurrence of major El Niños

doubles to approximately two per 15 years. Recent modeling work (Cai et al. 2014) has

suggested that a scenario of increased frequency of major El Niños due to greenhouse

warming is plausible. The additional El Niños are added by increasing water levels and

wave heights over the course of entire winters, to match the scale of the event during the

winter of 1997–1998. For comparison, we also develop a scenario in which the frequency

of El Niños remains the same as during the last several decades. Combining these SLR,

wave climate, and El Niño projections, we generate 20 climate change scenarios, covering

a broad range of climate uncertainty (Fig. 2c). In this application, we assume that each

climate change scenario has an equal probability of occurrence (i.e., a rectangular prob-

ability density function); however, it is straightforward to assess the impacts of an imposed

occurrence probability distribution function if warranted.

4 Defining coastal change hazard zones

Existing coastal change hazard zones in Oregon (e.g., Allan and Priest 2001) were

developed deterministically with an event-selection approach that includes an assessment

of the TWL and the application of a simple geometric dune erosion model (Komar et al.

1999, hereafter K99). We extend this work with a probabilistic treatment to evaluate the

influence of climate change and morphological change uncertainty on expected coastal

change hazards. A general expression for a coastal change hazard zone (CCHZ) can be

expressed as:

CCHZ ¼ CCRSB þ CCRclimateð ÞT þ CCevent þ CCHS ð1Þ

where CCRSB is the long-term (interannual to decadal scale) coastal change rate associated

with sediment budget factors not influenced by climate change (e.g., changes in sediment

supply due to engineering structures) and CCRclimate is the coastal change rate associated

with climate change-induced factors as expressed through the TWL. In many applications,

SLR will be the major component of this term but other factors that can influence TWL

trends can be included, such as increasing wave setup due to increasing wave heights or

climate-induced trends in storm surge. T is the time period of interest for the CCHZ,

typically on the order of several decades. Conservatism is built into the approach by the

inclusion of erosion associated with a significant (extreme) storm event, CCevent, added to

the long-term changes. In the case of increasing wave height scenarios, this approach

allows us to incorporate non-stationarity into analyses of the extremes. For example, the

100-year return level storm event in 2030 may be very different than the 100-year storm

event in 2011 (Ruggiero et al. 2010). The inclusion of the parameter CCHS attempts to

account for localized erosion due to processes that are difficult to resolve over large areas,

such as rip current embayments or hotspot erosion impacts during El Niños. Here, we

ignore the terms CCRSB and CCHS because they are typically poorly known and difficult to

model; however, they can easily be incorporated in future efforts as more sophisticated

tools become available.

The influence of SLR on CCRclimate is characterized with a simple ‘‘Bruun Rule’’ type

calculation (Bruun 1962), which provides order-of-magnitude estimates of the retreat of

unprotected coastlines due to SLR via mass conservation in the absence of significant
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sediment sources and sinks. Given a rise in sea level, S, the amount of landward shoreline

retreat, CCclimate, is found using

CCclimate ¼
L

Bþ h
S ¼ S

tan bsf

ð2Þ

where L is the cross-shore distance to the water depth, h is the depth beyond which

significant gradients in sediment transport do not occur (the closure depth), and B is the

elevation of an onshore feature (such as a beach berm) or a shoreline contour. The term L/

(B ? h) is equivalent to the inverse of shoreface slope, tan bsf. As sea level rises, the

shoreface slope is assumed to remain constant while the dune toe elevation becomes higher

relative to the land. Coastal retreat can also take place during large storm events or periods

of elevated water levels in the form of wave-induced, foredune erosion, in which the

magnitude of erosion depends on the elevation of the TWL relative to the toe of the

foredune (Sallenger 2000; Ruggiero et al. 2001; Stockdon et al. 2006). The TWL is defined

as:

TWL ¼ �gþ ga þ gr þ R ð3Þ

where �g is the time-averaged water level or mean sea level, ga is the astronomical tide

level, and gr is the non-tidal residual water level (i.e., storm surge and other oceanographic

processes that raise or lower water levels). These three factors make up the measured tidal

elevation, ET, and are added to the wave run-up (R). Run-up is composed of both setup and

swash, here calculated using the 2 % exceedance value of swash maxima as defined by an

empirical relation for extreme wave run-up by Stockdon et al. (2006).

When these substitutions are made, the TWL equation becomes

TWL ¼ ET þ 1:1 0:35 tan bbs H0L0ð Þ1=2þ
H0L0 0:563 tan b2

bs þ 0:004
� �� �1=2

2

 !

ð4Þ

where tan bbs is the beach slope, H0 is the deepwater significant wave height, and L0 is the

deepwater wave length, given as (g/2p)T2 where g is the acceleration due to gravity and

T is the peak wave period. This formula is applicable over a variety of beach conditions,

ranging from dissipative to reflective, and thus suitable for all dune-backed beaches in the

study area. Because the focus here is on extreme TWLs, in which run-up can occur over the

entire beach face, the backshore beach slope is used and is defined as the slope between the

mean high water (MHW) shoreline contour and the dune toe.

To statistically determine extreme TWLs for the annual and 100-year return level at

each time period of interest, we use the peak-over-threshold method of extreme value

theory (Coles 2001) that requires a high threshold and models exceedances over this

threshold. We assume that the number of exceedances in a given year follows a Poisson

distribution and that the threshold excesses are modeled using the generalized Pareto

distribution. The threshold value is set such that, on average, five TWL events per year are

analyzed, a value equal to about the 97–98th exceedance percentile of the overall TWL

climatology. While this application of extreme value theory assumes stationarity in the

TWL time series, climate change-induced trends in the TWL are accounted for by cal-

culating extreme values separately for each time period of interest.

Waves begin to impact dunes and erosion occurs when the TWL exceeds the elevation

of the dune toe during extreme events. To quantify the amount of coastal change that can

take place during a period of elevated TWLs, we apply the simple K99 geometric foredune
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erosion model that assumes a dune toe will retreat upward and landward as a function of

the maximum TWL experienced during a large event, while maintaining a constant

backshore beach slope. The maximum expected storm-induced dune erosion, DEmax, is

calculated as

DEmax ¼
TWL� EJ

tan bbs

ð5Þ

where EJ is the elevation of the junction between the dune and the upper beach, or the toe

of the dune. The K99 dune erosion model is typically fairly conservative (Mull and

Ruggiero 2014) and likely overpredicts the amount of erosion that might actually occur

during a single storm event. Other event-scale coastal change models can be used if the

necessary input data are available (e.g., dune height, sediment grain size, surf zone width,

breaking wave depth, and storm duration), such as the equilibrium dune erosion model of

Kriebel and Dean (1993) or the wave impact model of Larson et al. (2004).

To account for the long-term effect of SLR which acts to move the dune toe

elevation landward and upward, EJ is adjusted by the change in sea level, S, that occurs

over the time period of interest so that for the application presented here, the amount of

coastal change that takes place during, for example, the annual or 100-year return TWL

event is

CCevent ¼
TWLevent � EJ þ Sð Þ

tan bbs

ð6Þ

In the case of the increasing wave height scenarios, the approach outlined here incorporates

non-stationarity into the analyses of the extremes.

5 Morphometric and hydrodynamic inputs

Shoreface slopes, tan bsf, which are inputs to Bruun Rule calculations, were estimated by

calculating the slope between the approximate multidecadal depth of closure and the MHW

shoreline (2.1 m contour, relative to NAVD88), derived from lidar data. Nearshore

bathymetry was extracted at 500-m alongshore intervals from a 6 arc-second digital ele-

vation map (NOAA Center for Tsunami Research 2004). The 20-m isobath was chosen for

estimating shoreface slopes; however, results were fairly insensitive to a range of rea-

sonable values (15–25 m). The 500-m resolution of alongshore varying shoreface slopes

was interpolated to match the more highly resolved- and variable-beach morphometrics.

The remaining morphometric parameters were derived from high-resolution lidar data

collected in September 2002 (NOAA Coastal Services Center 2002) and are summarized in

Mull and Ruggiero (2014), where dune toe elevation and backshore beach slope were

defined for thousands of cross-shore profiles every few meters along the southwest

Washington and Oregon coastlines.

We account for beach and dune morphometric variability by randomly sampling dune

toe elevations and beach slopes from distributions. Using the highly resolved spatial

variability in the lidar dataset as a proxy for temporal variability [following the approach of

Ruggiero and List (2009)], the backshore beach slope is allowed to vary by randomly

sampling from a normal distribution defined by the median and standard deviation of 1-km

shoreline segments in each littoral cell. Beach level variations due to rip current embay-

ments are indirectly accounted for by incorporating the spatial variability within a 1-km
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stretch of shoreline. Dune toe elevations are normally distributed where the mean is the

lidar-derived value, and the standard deviation is defined by the vertical error associated

with its selection and interpolation, mean total RMSE = 0.66 m (Mull and Ruggiero

2014). One hundred random dune toe and beach slope configurations were combined with

each of the 20 climate change scenarios, resulting in 2,000 computations of storm-induced

coastal change at each of the lidar-derived profiles.

In Tillamook County, the beach and foredune morphology varies both within and

among the four littoral cells (Fig. 3). The mean and standard deviation of the relevant

parameters extracted from the 2002 lidar data are summarized in Table 1. The dune toe and

dune crest elevations averaged for the entire county are approximately 5 and 11 m,

respectively. The dune-backed beaches in the Netarts littoral cell have the highest mean

dune crest elevation (13.6 ± 4.1 m) but one of the lowest mean dune toe elevations

(4.8 ± 0.6 m), suggesting that while these dunes are relatively more susceptible to wave-

induced erosion, they may not be as likely to overtop. The smallest dunes are found in the

Rockaway littoral cell, where the average dune crest elevation is 8.4 ± 1.7 m, though the

dune toe elevation is slightly above the county average at 5.2 ± 0.8 m.

Fig. 3 Alongshore varying morphometrics for dune-backed beaches in Tillamook County, OR. For each
parameter, the gray dots represent the raw data while the colored lines are the values smoothed in the
alongshore direction to eliminate variability less than 250 m using a quadratic loess filter (Plant et al. 2002)
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After characterizing the local morphology, wave and water-level time series are gen-

erated so that extreme TWLs can be calculated as input conditions to the coastal change

models. A combined time series is first produced that synthesizes data from wave buoys in

the region (NDBC 2007) to develop as complete a significant wave height and spectral

peak period record as possible (following Allan et al. 2012). The wave record is then joined

with the Newport, Oregon tide gauge record, which dates back to the mid-1960s (NOAA

2007). Following the methods described in Ruggiero et al. (2001), we generate an hourly

TWL time series by combining hourly estimates of run-up with hourly tide gauge mea-

surements (Eq. 3). Since the wave run-up model depends on local beach slope, separate

TWL time series are developed for all possible beach slopes relevant to our study region.

For our north-central Oregon coast study site, the joint time series extends from 1976 to

2009 and is approximately 85 % complete due to data gaps.

Extreme value theory is then applied to the joint time series to develop design condi-

tions relevant for present-day conditions, i.e., the annual and 100-year return level TWL.

By definition, the annual event has on a 100 % chance of occurring every year, while the

100-year event, representing a much larger, and more rare, storm with a higher TWL, has a

1 % chance of occurring every year. We construct 20 projected TWL time series (per

representative beach slope)—one for each of the 20 climate change scenarios. The pro-

jected TWL time series are extended through the year 2100 by repeating the observed time

series approximately three times and incorporating non-stationarity by applying the climate

change scenarios to the wave height and water-level components of the TWL. These

synthetic TWL time series allow us to compute extreme design conditions at any time over

the next century (e.g., 2030, 2050, and 2100) for each scenario, covering a broad range of

climate change variability.

Because the extreme TWLs vary smoothly across the range of beach slopes, lookup

tables of the extreme values through time are developed to interpolate extreme TWL

values for any slope. For the 20 climate change scenarios and 100 combinations of slope

and dune toe parameters, 2,000 sets of extreme TWLs for each event at each time period of

interest are calculated by interpolating from the lookup tables. The resulting extreme

TWLs were used in conjunction with the derived morphometrics to quantify future coastal

change hazards.

Extreme TWL values for the annual and 100-year events in 2009, 2030, 2050, and 2100

were calculated for a range of backshore beach slopes for each of the 20 climate change

scenarios (Eq. 4). Extreme TWLs vary depending on the local beach slope, where TWLs

reach higher elevations on steeper beaches (Fig. 4). As the magnitude of extreme TWL

Table 1 Mean and standard deviations (SD) of beach and foredune parameters for the littoral cells of
Tillamook County, Oregon, relative to NAVD88, as extracted from 2002 lidar data (Mull and Ruggiero
2014)

Littoral cell Shoreface slope Backshore slope Dune toe elev. (m) Dune crest elev. (m)

Mean SD Mean SD Mean SD Mean SD

Rockaway 0.013 0.002 0.037 0.01 5.2 0.8 8.4 1.7

Netarts 0.013 0.001 0.051 0.02 4.8 0.6 13.6 4.1

Sand Lake 0.015 0.001 0.041 0.01 5.2 0.7 11.7 3.3

Neskowin 0.017 0.001 0.037 0.01 5.1 0.9 10.8 2.7

County-wide 0.015 0.003 0.039 0.01 5.1 0.8 10.7 3.2
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events increases through time, the uncertainty in those TWLs also increases due to the

increasing uncertainty associated with each of the climate change components (Fig. 4).

At each of the cross-shore profiles in Tillamook County, for all 100 configurations of

morphology, the annual and 100-year return level event TWL elevations were interpolated

from the extreme TWL curves generated for each of the 20 climate change scenarios.

Figure 5 illustrates the alongshore varying mean TWLs for the Neskowin littoral cell in

2009 as compared to the present-day (2002) dune toe and dune crest elevations. The mean

TWL is greater than the elevation of the dune toe in almost all cases—79 % (98 %) of the

time for the annual (100-year) event—indicating that some amount of storm-induced

coastal change associated with these two extreme TWL events is likely under present-day

conditions, even before any amount of additional SLR occurs. When averaged across all

littoral cells, the 100-year TWL event is found to be *0.9 m larger than the annual event.

Throughout the century, the highest TWLs are experienced in the Netarts littoral cell

because it contains the steepest backshore slopes. On average, the TWLs increase by

Fig. 4 Uncertainty range of extreme TWL elevations, in meters, over a range of backshore beach slopes
through time, for both the annual (left) and 100-year (right) TWL events. The gray areas represent the
uncertainty or range of TWLs given the 20 climate change scenarios, while the dark colored lines show the
mean values

Nat Hazards (2015) 75:2081–2102 2091

123



*0.7 m from 2009 to 2100 for the both the annual and 100-year TWL events, corre-

sponding to a 10–12 % increase.

6 Magnitude of coastal change

The total magnitude of potential coastal change estimated for each cross-shore profile

results from a combination of the projected shoreline retreat associated with rising sea

levels (CCclimate) and the maximum expected wave-induced foredune erosion in response

to a given extreme TWL event (CCevent). We first examine how these two components

combine to produce the total predicted coastal change by quantifying them individually.

Figure 6 illustrates the retreat distances associated with the three SLR scenarios, the

alongshore varying mean of the 2,000 estimates for the 100-year TWL event, and the mean

total estimate of potential erosion for the Neskowin littoral cell in 2050. For this time

period, the expected mean dune erosion caused by this extreme TWL event (Eq. 6) is

greater than the shoreline retreat associated with both the low and medium SLR (Eq. 2).

When these variables are summated in both the cross-shore and alongshore to compute an

overall mean and standard deviation associated with each erosion component, the overall

mean for CCclimate is shown to be only half that for CCevent (17.9 vs. 36.3 m). The

Fig. 5 Example of extreme TWLs for the Neskowin littoral cell in 2009. The left panel shows the shoreline
and location of two coastal communities in the littoral cell. The alongshore varying beach slopes (red) are
shown in the middle panel. The right panel shows the mean TWLs (cyan) for the annual (dashed) and
100-year (solid) events as compared to the dune toe (orange) and dune crest (yellow) elevations
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alongshore variability in the total mean coastal change is influenced most by the variability

in CCevent, which exhibits much greater alongshore variability than CCclimate, as a direct

result of the variability in the morphological parameters from which each of the terms is

calculated (tan bbs and EJ vs. tan bsf).

Though it varies slightly between littoral cells, the difference in magnitude of total

coastal change forecasted between the annual and 100-year TWL events for any time

period of interest is *17 m (Eq. 6). The Neskowin littoral cell is forecasted to have the

least amount of shoreline retreat due to increasing sea levels, as it has the steepest

shoreface slopes (tan bsf) of the county (Eq. 2). However, because there are many areas of

relatively flat beaches backed by foredunes with low dune toes, it is estimated to experi-

ence the greatest amount of event-based coastal dune erosion throughout the century.

In 2009, 100 % of the CCHZ is attributed to storm-induced erosion of the foredune

associated with a given extreme TWL event (Eq. 6). When averaged across the four littoral

cells, CCevent is responsible for about 33 m (50 m) of erosion associated with the annual

(100-year) TWL event in 2009 (Eq. 6). As the century progresses, this magnitude stays

relatively constant, increasing by only 0.5–1 m even though the waves are allowed to

increase/decrease until 2030. Shoreline retreat associated with rising sea levels (CCclimate),

however, starts at 0 m in 2009 and increases to *50–70 m in 2100, depending on the

littoral cell (Eq. 2). As the magnitude of CCclimate increases, so does its relative

Fig. 6 Example of alongshore varying mean coastal retreat distances associated with the 100-year TWL
event in 2050 for the Neskowin littoral cell, in meters. The panel on the right shows the potential retreat
associated with the low, medium, and high SLR scenarios for CCclimate (blue; from left to right), CCevent

(green), as well as the total predicted mean retreat (black)
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contribution to the total coastal change until shoreline retreat due to rising sea levels

becomes the dominant factor late in the twenty-first century (Fig. 7). While dependent on

our choice of dune erosion model (K99 is a conservative model), it is interesting that this

shift occurs around 2070 for the annual return TWL event and not until 2090 for the

100-year event.

7 Coastal change hazard zones

At each time period of interest and for both of the extreme TWL events that have been

chosen, 2,000 estimates for the total magnitude of coastal change were calculated. Dune

erosion associated with the annual and 100-year TWL events for 2009, 2030, 2050, and

2100 presented here serve only as an example of the extreme events and time periods that

can be analyzed, and different planning horizons and event extremities could be used by

coastal planners. Regardless of the event chosen, the cross-shore distribution of the

resulting coastal change estimates is highly alongshore-variable based on the local beach

morphology. After examining hundreds of distributions, it was determined that a normal

distribution was characteristic of most of them (Fig. 8). By assuming a normal distribution

of the coastal change estimates, the results can be statistically summarized with the phi-

losophy that decision makers have the option of choosing the level of risk they are willing

to accept or what confidence level should trigger a particular policy option. Here, the 95 %

confidence interval for the magnitude of change expected by a certain time period is

defined as the mean and ±2 standard deviations around the mean.

The raw coastal change estimates predicted from the simple models are highly variable

in the alongshore due to the high-resolution of the lidar dataset from which the calculations

Fig. 7 County-wide average of mean coastal retreat, in meters, resulting from increasing sea levels
(CCclimate; blue) versus the annual (CC1y event; green dashed) and 100-year (CC100y event; green solid) annual
chance TWL events through 2100 (left) as well as the relative percent of total retreat of each coastal change
component (right)
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are based. Presenting the data in this way could exhibit too much variation for coastal

planning purposes; therefore, the alongshore varying coastal change lines are smoothed

with a quadratic loess filter to eliminate variability less than 250 m (Plant et al. 2002).

In addition to the increase in magnitude of the total coastal change hazards throughout

the century, there is also an increase in the uncertainty associated with the calculations of

expected coastal change. This increase has direct implications for the estimated impacts to

coastal communities and shoreline properties because the hazard zones are ultimately

defined based on these statistics. From the smoothed, alongshore varying coastal change

distances for the mean and 95 % confidence interval, a suite of coastal change hazard

zones were defined based on the probability of retreat exceeding a certain distance. In other

words, there is a 98 % probability that the actual retreat will be greater than the mean -2r,

a 50 % probability it will be greater than the mean, and only a 2 % probability that the

magnitude of retreat will be greater than the mean ?2r (Fig. 8). The two landward most

zones, therefore, compose the 95 % confidence interval within which the retreat for a given

year and TWL event is most likely to achieve. The seaward edge of the 98 % exceedance

probability zone is the alongshore-smoothed position of the 2002 lidar-derived dune toe.

Fig. 8 Conceptual diagram illustrating the delineation of the CCHZs, which are defined probabilistically
based on the 95 % confidence interval (CI) for the cross-shore distribution of expected coastal retreat
distances
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The zones delineating various probabilities of coastal change exceedance provide

decision makers with the ability to select probabilities that best match their risk tolerance.

For example, an emergency manager may have a low-risk tolerance for life loss or other

impacts to individuals and therefore use the most conservative zone delineating the 2 %

exceedance. In contrast, a public works official deciding on the placement or upkeep of

coastal infrastructure may have a higher risk tolerance than the emergency manager and

may therefore be content using only the 50 % exceedance zone.

With these considerations in mind, coastal change hazard zones were developed for all

dune-backed beaches of the four littoral cells in Tillamook County, for the annual and

100-year return level TWL events in 2009, 2030, 2050, and 2100. Mapped coastal change

hazard zones take into account local geology (i.e., retreat was not allowed to cut through

bluffs and erosion-resistant uplands), but do not take into account existing shore protection

structures (e.g., riprap). Both the magnitude of predicted coastal change and the width of

the hazard zones increase through time as the hazard become more severe and the

uncertainty increases.

8 Variations in community exposure

Variations in the exposure of coastal communities to future coastal change hazards were

estimated by integrating the physical model-based coastal change estimates with geospatial

structure data using geographic information system software. The location of structures

was derived based on the manual interpretation of 2009 aerial imagery (NAIP 2009) and on

field reconnaissance. Results indicate that the number of structures in our study area

potentially exposed to coastal change hazards increases throughout the century but these

increases are not spatially consistent (Fig. 9). Note that here we are not modeling changes

in development patterns or population distributions in Tillamook County and assume that

the future landscape has the same number and spatial distribution of infrastructure and

structures. Therefore, any estimated changes in societal exposure forecasted for the twenty-

first century are due to climate change impacts alone. Planned work will integrate scenarios

of land change and population demand (e.g., Sleeter et al. 2012) with the coastal hazard

zones outlined in this paper. Related, further research will examine the influence of shore

protection structures and the potential role of future adaptation strategies on reducing

societal exposure to coastal change hazards on the Oregon coast.

The Rockaway littoral cell contains the greatest number of structures that are in coastal

change hazard zone, both today and in the future. In 2009, there were 281 and 534

structures in coastal change hazard zones associated with the annual and 100-year TWL

events, respectively. By the year 2050, the number of potentially exposed structures are

more than doubles to 536 (793) structures due to the annual (100-year) TWL event and

then to 968 (1116) structures by 2100. The Neskowin and Sand Lake littoral cells have far

fewer structures within the hazard zones; however, the communities in these cells are much

smaller than the City of Rockaway Beach and may sustain more significant losses as a

whole. The fewest impacts to structures will be in the Netarts littoral cell because there is

no coastal development along Netarts Spit, except for campground facilities in Cape

Lookout State Park.

Trends of increased exposure through time will be a common theme throughout coastal

areas, especially those that are heavily developed close to the shoreline. As the amount of

forecasted coastal change increases so will the impact to adjacent infrastructure, depending

on the community’s spatial distribution and density. The relative impact of these hazards
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will depend on the community’s size and resilience, with smaller communities potentially

being more sensitive to coastal infrastructure damage or loss. Methods outlined here to

characterize the magnitude, uncertainty, and spatial variability of coastal hazard zones, as

well as potential changes in structures exposure to these hazards, provide land-use planners

and emergency managers with insight on potential changes in and implications of societal

vulnerability over time. This information can serve as a critical input in the development of

land-use scenarios, comprehensive land-use plans, resource management plans, and cap-

ital-improvement plans that each seeks to balance community development with long-term

sustainability and resilience.

9 Influence of model components on coastal change hazards

We first assessed the relative contribution of sea level, wave climate, and the frequency of

occurrence of major El Niños to the hazard zones by isolating the impact of the 20

individual scenarios using extreme TWLs in the Neskowin littoral cell in 2050. Standard

deviations for each of the scenarios are small (less than *0.5 m), implying that there is

relatively minimal variability in the TWLs that result from the 100 different morphological

configurations. We conducted a sensitivity analysis by investigating the relative impact of

Fig. 9 Number of structures within the CCHZs through time for all littoral cells of Tillamook County
associated with the 98, 50, and 2 % exceedance probabilities. The medium and light purples (50 and 2 %
exceedance probabilities) indicate the 95 % confidence interval for the number of structures likely to be
impacted
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each one of the climate controls on the extreme TWLs by holding two of the three climate

controls constant and comparing the extreme TWL values between the low and high

projections of the third component. Based on the differences for all sets of projections and

averaging the results, variability in the TWL based on the wave height scenarios has more

of an impact on the extreme TWLs (0.4 m) than does the variability in the SLR scenarios

(0.2 m) or the El Niño scenarios (\0.1 m).

The magnitude of forecasted coastal change also increases with increasing sea level and

wave height projections, where total retreat distances range from 43.8 ± 22.9 m

(59.1 ± 27.9 m) for the lowest scenario, LLM (Fig. 2c), to 66.1 ± 25.8 m

(82.1 ± 29.7 m) for the highest scenario, HHH, for the annual (100-year) TWL events

(Eq. 1). The range of SLR projections contributes more to the total variability in the

magnitude of retreat (CCRclimate) than does the range of projections for wave climate

(CCevent), regardless of the time period of interest (Table 2), which is counter to the results

looking at influences on extreme TWLs. The reason the smaller change in the TWL results

in a bigger change in the estimated retreat for the SLR scenarios is that the SLR component

of the TWLs is divided by the shallow shoreface slope (tan bsf), using the equation for

CCclimate (Eq. 2). In contrast, dividing the event component of the TWL by steeper

backshore beach slopes (tan bbs), as is the case for CCevent (Eq. 6), results in relatively

smaller retreat distances.

For example, scenarios involving the high SLR projection result in 15.9 m of additional

erosion, on average, associated with the 100-year TWL event in 2050 over those involving

the low SLR projection (Eq. 1). This corresponds to a 25 % increase in the magnitude of

retreat between scenarios involving the low versus high SLR projections when wave height

and El Niño scenarios are held constant (Table 2). For the same year and TWL event, the

total coastline retreat predicted for scenarios involving the high wave climate projection,

where wave heights are allowed to increase through the year 2030, is only 7.5 m greater

(equivalent to a 10 % increase) than the scenarios with the low projection where wave

heights decrease over the same time period. Because the total predicted retreat increases

significantly between 2050 and 2100 but the range in the wave height scenarios stays

relatively the same (since wave heights were only allowed to increase until 2030), the

relative percentage decreases over time.

Doubling the frequency of El Niño events in the future, however, does not have a

significant impact on the width of the hazard zones. The magnitude of erosion pre-

dicted for the 100-year return TWL event is insensitive to a doubling in the frequency

Table 2 Relative impact of SLR, wave climate, and El Niño scenario ranges alone, with the other two
components held constant, on the total predicted coastal change, expressed in terms of magnitude and
percent increase (%) from the lowest to highest projection

TWL event Year Sea-level rise Wave climate El Niño frequency

Magnitude (m) % Magnitude (m) % Magnitude (m) %

100 % annual chance 2030 7.3 18 2.8 6 0.1 0

2050 15.6 33 5.7 10 1.1 2

2100 42.7 63 6.0 7 1.4 2

1 % annual chance 2030 7.1 13 3.8 6 0 0

2050 15.9 25 7.5 10 0 0

2100 42.6 51 6.7 6 0 0
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of El Niño, and the annual return TWL event only increases the total predicted retreat

by 2 %. These results may be due to the fact that while this scenario brings the total

number of major El Niños to four every 30 years, it modifies waves and water levels

for only a few months approximately every 15 years. Therefore, the TWLs between the

climate change scenarios with and without a doubling of El Niños are quite similar.

To determine which parameter is contributing more to the overall width of the coastal

hazard zones, we examined the relative influence of uncertainty associated with climate

change and morphological variability. Because the hazard zone width—or landward

extent—is defined using the 95 % confidence interval in erosion modeling results, this can

be done by comparing the alongshore varying standard deviations of each component. For

one configuration of morphological parameters (i.e., the alongshore varying mean beach

slope and dune toe elevation), the alongshore average standard deviation of the 20 climate

change scenarios around the mean is found to be *7.8 m (Fig. 10). In contrast, the

standard deviation of the set of 100 iterations of morphology around any given climate

change scenario is *18.3 m, on average, which is more than double that of the uncertainty

due to climate alone. Figure 10 illustrates how the standard deviation of both components

varies alongshore for the Neskowin littoral cell, and how they compare to the standard

deviation of all 2,000 erosion estimates combined. Based on these sensitivity analyses,

morphological variability is more important than the uncertainty associated with the range

of climate change scenarios applied here in determining the width of the coastal hazard

zones. As statistical theory suggests, the total uncertainty (orange line in Fig. 10) results

from the quadrature addition of the climate (blue line) and morphological (green line)

uncertainties.

Fig. 10 Variability in coastal retreat estimates due to climate (blue) versus morphology (green) and the
total variability of these uncertainties combined (orange) associated with the annual TWL event in 2050 for
the Neskowin littoral cell
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10 Conclusions

Our probabilistic method of quantifying and mapping coastal change hazards for a

variety of dune-backed environments incorporates a range of projections for SLR, wave

climate, and El Niño frequency, recognizes the uncertainty and variability associated

with the impact of future climate change on extreme water levels and coastal change,

and accounts for morphological variability. Rather than imposing one set of hazard zones

on a local government, the approach presented here allows for decision makers to choose

the level of risk they are willing to accept as well as what time period and design event

for which they would like to develop adaptation plans. Results demonstrate that, despite

significant uncertainties, coastal change hazards are likely to increase in the future and

that community exposure to these hazards varies substantially. In order to most accu-

rately portray the potential impacts of climate change on coastlines, one must consider

not only SLR but also changes in storminess which can play a large role in the extreme

water levels experienced at the shoreline and can cause increased episodic erosion of

protective foredunes.
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