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With an increasing demand for raw materials, predictive models that support successful mineral
exploration targeting are of great importance.We evaluated differentmachine learning techniques
with an emphasis on boosting algorithms and implemented them in an ArcGIS toolbox. Perfor-
mance was tested on an exploration dataset from the Iberian Pyrite Belt (IPB) with respect to
accuracy, performance, stability, and robustness. Boosting algorithms are ensemble methods used
in supervised learning for regressionandclassification.Theycombineweakclassifiers, i.e., classifiers
that perform slightly better than random guessing to obtain robust classifiers. Each time a weak
learner is added; the learning set is reweighted to give more importance to misclassified samples.
Our test area, the IPB, is one of the oldest mining districts in the world and hosts giant volcanic-
hosted massive sulfide (VMS) deposits. The spatial density of ore deposits, as well as the size and
tonnage, makes the area unique, and due to the high data availability and number of known
deposits, well-suited for testing machine learning algorithms. We combined several geophysical
datasets, as well as layers derived from geological maps as predictors of the presence or absence of
VMSdeposits. Boosting algorithms such as BrownBoost andAdaboost were tested and compared
toLogisticRegression (LR),RandomForests (RF)andSupportVectormachines (SVM) in several
experiments. We found performance results relatively similar, especially to BrownBoost, which
slightly outperformed LR and SVMwith respective accuracies of 0.96 compared to 0.89 and 0.93.
Dataaugmentationbyperturbingdeposit location led toa7%improvement in results.Variations in
the split ratio of training and test data led to a reduction in the accuracy of the prediction result with
relative stability occurring at a critical point at around 26 training samples out of 130 total samples.
When lower numbers of training data were introduced accuracy dropped significantly. In com-
parison with other machine learning methods, Adaboost is user-friendly due to relatively short
training and prediction times, the low likelihood of overfitting and the reduced number of
hyperparameters for optimization. Boosting algorithms gave high predictive accuracies, making
them a potential data-driven alternative for regional scale and/or brownfields mineral exploration.
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INTRODUCTION

A continually increasing demand for raw
materials in modern societies and the depletion of
already-known resources highlights the importance
of mineral exploration to find new deposits. Proba-
bilistic modeling using digital information such as
remote sensing, geochemical, geophysical and geo-
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logical data is a useful tool for exploration and
mining since it provides low-cost, readily available
information that supports exploration and mine
development decision-making. Thus, new and reli-
able GIS-based methods for predicting prospective
areas and defining exploration targets would be an
asset to the mining industry.

Many knowledge-driven and data-driven geo-
computational methods for mineral potential map-
ping have been developed in recent years. Knowl-
edge-driven approaches require expert knowledge
about spatial associations between the evidential
layers and the mineral deposit type sought. Weights
assigned to each layer of spatial evidence reflect this
knowledge. This kind of approach is suitable for
regions that are not well-explored, so-called green-
field exploration terrains (Carranza and Hale 2003;
Carranza and Laborte 2015). On the other hand,
data-driven approaches are appropriate for moder-
ately to well-explored brownfield regions, where
mining companies are interested in identifying new
deposits in the proximity of known deposits or
operating mines (Carranza et al. 2008). In this sce-
nario, the weights assigned to the layers are spatial
associations between the evidential layers and the
already-known deposits (Carranza and Laborte
2015).

A wide selection of algorithms have been used
to find favorable areas using knowledge-based
methods such as evidential belief functions (e.g.,
Carranza et al. 2005; Tien Bui et al. 2012; Ford et al.
2016), fuzzy logic (e.g., Knox-Robinson 2000, Ny-
känen et al. 2008) or data-driven approaches like
weights of evidence (e.g., Chung and Agterberg
1980; Agterberg 1992a, b; Tangestani and Moore
2001; Xiao et al. 2015) and logistic regression (e.g.,
Reddy and Bonham-Carter 1991; Oh and Lee 2008)
Currently, there is a trend toward machine learning
techniques such as artificial neural networks (e.g.,
Singer and Kouda 1996; Porwal et al. 2003), decision
trees (Reddy and Bonham-Carter 1991), random
forest (RF) (Carranza and Laborte 2015; Rodriguez-
Galiano et al. 2015) and support vector machines
(SVM) (Zuo and Carranza 2011; Abedi et al. 2012).
Each of these algorithms has advantages and limi-
tations. Weights of evidence, for example, offer
intuitive implementation and resistance to the
‘‘curse of dimensionality’’ that arises in classification
problems when dealing with data in high-dimen-
sional spaces (Bellman 2015). Additionally, the
parameters of a linear model allow geoscientific
interpretations (Harris and Pan 1999; Porwal et al.

2003). Weights of evidence, however, requires many
known mineral occurrences for training and is not
suitable for poorly explored areas (Brown et al.
2000). Furthermore, the assumption of conditional
independence of the input data with regard to the
training sites affects the quality of the prediction of
the weights of evidence algorithm (Porwal et al.
2003; Zuo and Carranza 2011; Andrada de Palomera
et al. 2015). More complex methods like artificial
neural networks may provide great accuracy, espe-
cially when the relationships are nonlinear (Brown
et al. 2000; Zuo and Carranza 2011; Abedi et al.
2012). The black-box nature of the algorithms, as
well as the time and performance required to esti-
mate potentially many hyper-parameters can, how-
ever, be seen as a drawback when applying these
techniques (Rodriguez-Galiano et al. 2015).

Despite their significant advantages and several
promising studies in other fields such as ecotope
mapping (Chan and Paelinckx 2008), land-cover
classification (Ghimire et al. 2012), and ore reserve
estimation, to the authors� knowledge, only one pa-
per, by Cheng (2015), exists on boosting in mineral
exploration. In this paper, boosting along with
weights of evidence was used to overcome the
problem of conditional independence (Cheng 2015).
The objective of the current study is to present and
discuss a new approach for prospectivity mapping
using boosting algorithms. We implemented these
methods as python toolboxes in the ArcGIS plat-
form and performed several experiments on explo-
ration data from the Iberian Pyrite Belt (IPB) in
Spain to evaluate their accuracy, performance and
robustness in comparison with other machine
learning approaches such as SVM. The implemen-
tation within the ArcGIS platform allows the use of
results on mobile devices for ground-truthing and
thus provides a streamlined workflow for the
exploration industry. This is done by uploading the
modeling results to the ArcGIS cloud or server and
then accessing it using ArcGIS Collector, which al-
lows data acquisition in the field. In areas without
mobile coverage, working offline is also possible,
and data can be synchronized once there is coverage
again.

GEOLOGY AND MINERALIZATION
OF THE IBERIAN PYRITE BELT

To evaluate the performance of boosting and
other commonly used ML algorithms, we used data
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from the IPB. This study area is ideal for data-driven
methods because there are a large number of known
deposits to be used for training and validation and
data with overlapping coverage is available. In
addition, no previous ML studies related to mineral
prospectivity have been carried out in the region.

The IPB is situated in the south of the Iberian
Peninsula, covering a 250 km by 60 km area from
the city of Sevilla (Spain) to the south-eastern part
of Portugal (Toscano et al. 2014). It is one of the
largest and most important volcanic-hosted massive
sulfide (VMS) metallogenic provinces (Leistel et al.
1998; Carvalho et al. 1999) and also one of the oldest
mining districts in the world (Carvalho et al. 1999).

The IPB hosts several giant ore bodies with
reserves of some hundreds of millions of tons (e.g.,
Rio Tinto, Neves Corvo, Aljustrel, Tharsis, Sotiel,
Aznalcollar; Velasco et al. 1998). According to
Carvalho et al. (1999), the original, pre-erosional
endowment of sulfides concentrated in approxi-
mately 90 deposits amounts to 1.7 billion tons. Of
this number, about 20% were mined and another
10–15% eroded. The high concentrations of S, Fe,
Zn, Cu, Pb, Sn and several other metals make it an
exceptional area for studying the genesis of this type
of mineralization. This has led to diverse studies in
different disciplines, including tectonics, magma-
tism, ore mineralogy, geochemistry, hydrothermal
alteration and metallogenesis, providing a rich
source of information (Carvalho et al. 1999). An
extensive literature exists on the geology and the
deposits of the IPB, a precise of which exceeds the
scope of this study. Thus, only an overview is pro-
vided. For more detailed information, the reader is
referred to the specific publications and references
provided (e.g., Almodóvar et al. 1997; Mitjavila et al.
1997; Barriga 1990a, b; González et al. 2002).

The IPB forms part of the South Portuguese
Zone of the Hercynian Iberian Massif (Fig. 1a,
Julivert and Fontboté 1974), which is interpreted as
a tecto-stratigraphic terrane accreted to the Iberian
Massif during the Middle Carboniferous (Quesada
1991). The South Portuguese Zone, together with
the Ossa-Morena Zone and the Central Iberian
Zone to the north, formed due to collision, with left-
lateral transpressional kinematics, of Laurentia
(South Portuguese Zone) with Gondwana (Ossa-
Morena Zone and Central Iberian Zone, Expósito
et al. 2003; Mantero et al. 2011; Martin-Izard et al.
2015). The southern boundary of the Ossa-Morena
Zone is the Arcana Metamorphic Belt, which is re-

garded as a major suture related to the Hercynian
convergence (Sáez et al. 1999).

The initial collision stages were dominated by
transtensional lateral escape of units from the South
Portuguese continental margin coeval with bimodal
magmatism, hydrothermal circulation and ore depo-
sition. These marginal units have been affected by the
transtensional event that formed the IPB. The major
overall effects of the collisional event were related to
structural inversion of the South Portuguese margin
as a response to the obduction of the OMZ active
margin onto it (Oliveira 1990; Sáez et al. 1996). This
led to a southerly propagation of a thin-skinned fold
and thrust-type orogen and was accompanied by the
transformation of the pre-existing platform into a
foreland basin (Oliveira 1990; Quesada 1991).

The genetic model for the formation of the VMS
deposits assumes that transtensional tectonic processes
during the early Carboniferous controlled the
emplacement of volcanic rocks with related
hydrothermal activity and ore deposition (Oliveira
1990; Moreno and González 2004; Mantero et al. 2011).
Oliveira (1990) and Gumiel et al. (2010) proposed that
the IPB formed in a series of restricted pull-apart ba-
sins within a transpressive orogeny and coeval with the
presence of a mantle plume (Simancas et al. 2006).
These models and the strong relationship of ore genesis
to fractures are generally accepted even though the
relationships between specific deposits and transten-
sional tectonics are not clearly understood (Simancas
et al. 2006; Martin-Izard et al. 2015). This is partly due
to the intense continuing superimposed deformation
during the progress of the Variscan orogeny, which
overprinted earlier transtensional structures.

For the same reason outlined above, establish-
ing a lithostratigraphic succession of the IPB is dif-
ficult (Routhier et al. 1980; Oliveira 1990). Oliveira
(1990) divided the IPB into a southern para-
utochthonous and northern, essentially allochtho-
nous, branch consisting of three main formations
that are well-established in the southern branch.
These formations were summarized by Leistel et al.
(1998) as follows, and used in this study as input
datasets (Fig. 1, Table 1: lithological units)

1. The oldest late Devonian Phyllitic Quartzite
(PQ) formation consists of shale and quartz
sandstone and rare conglomerates as well as
a 30 m thick top sequence containing bio-
clastic carbonate lenses and nodules. The
conglomerates are interpreted to have

73Boosting for Mineral Prospectivity Modeling



formed in shallow water and the top se-
quence as shelf deposition (Leistel et al.
1998). It crops out in the central part of the
study area. (Fig. 1).

2. The volcano-sedimentary (VS) sequence is
of late Famennian to early late Visean age,
(Van den Boogaard 1963; Oliveira 1983;
Oliveira et al. 1986; 1990), and has a thick-
ness between 100 and 600 m. The complete
VS sequence consists of six sub-sequences:

(a) A lowermost rhyolitic sequence (VA1)
composed of fine- to coarse-grained pyro-
clastics and lava. This is one of the host rocks
of the VMS deposits.

(b) A second rhyolitic sequence (VA2) with
pyroclastics and lava. This is also a host rock
for the VMS deposits.

(c) A third rhyolitic sequence (VA3) of re-
worked tuff and siliceous shale.

(d) Basic lavas, locally pillowed and interca-
lated between VA1 and VA3, basic dykes

and sills intruded into the lower part of the
complex.

(e) A purple-blue shale layer that is used as a
marker horizon directly below VA3.

(f) An intermediate series consisting of pelite-
black shales and sandstone sequences con-
taining jasper and rare limestone.

The sequence is intercalated with VA1 and
VA2 volcanic rocks. The VS sequence crops
out in much of the IPB (Fig. 1) and is the
host lithology of the known VMS deposits,
either in the black shale such as Tharsis and
Sotiel or resting on acidic volcanic facies such
as Rio Tinto (Leistel et al. 1998).

3. The last formation is known as the Culm
facies (Schermerhorn 1971) or Baixo
Alentejo flysch group 69 and rests dia-
chronously over the underlying series. The
Culm group is a turbidite formation that
forms a south-westward prograding detrital
cover (Fig. 1).

Figure 1. (a) Overview showing the IPB (red box): SPZ South Portuguese Zone, OMZ Ossa-Morena Zone, CIZ Central Iberian Zone,

WALZ West Asturian-Leonese Zone. (b) Lithological map of the area with deposits and mineral occurrences. The VMS deposits were

used for modeling, while the Manganese occurrences were left out.
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DATA AND PRE-PROCESSING

A summary of the available data for this study
is provided in Table 1, and a flowchart outlining the
ideal workflow for pre-processing, modeling and
validation is shown in Figure 2. The data were pro-
vided as GIS layers by Atalaya Mining. The geo-
logical map in ArcGIS format contains linear
features such as faults, as well as polygons repre-
senting the respective lithological units described in
the previous section. Additional information about
the data can be found in the project report by IGME
(Conde Rivas et al. 2007).

Faults play a crucial role in the mineralization
process of the IPB, as they allow fluid flow and the
transport of metals. We calculated the Euclidean
distance from faults as an evidential layer. Different
lithological units such as volcanic rocks and intrusive
rocks may have acted as heat sources or played a
crucial role because of their chemical reactivity or
specific physical properties (black shales of VS se-

quence). The distance to lithological units was cal-
culated for modeling using our new pre-processing
tool ‘‘Multiclass to binary’’ that converts categorical
layers into binary layers with the option of calcu-
lating different distance metrics. This results in
continuous raster layers, similar to cost surfaces,
with the same spatial resolution. Besides the host
rock lithologies (VS1 and 2) and other volcanics that
could have acted as heat sources (undifferentiated
granites, gabbros and diorites, mafic volcanics,), the
other lithological units were also used as modeling
inputs to the ML algorithms enabling us to learn
whether the non-deposit characteristics and inverse
spatial relationships of the mapped feature to the
deposits might exist.

Geophysical data from the airborne campaign
conducted in 1997 was also utilized. The magnetic
data were leveled and were provided as total mag-
netic field data. This layer was used because many
sulfide minerals, e.g., pyrite, pyrrhotite and non-
sulfides found around VMS orebodies, e.g., mag-

Table 1. Data layers used as information sources in the IPB. Data provided by Departamento de Exploración y Geologı́a. Proyecto

Riotinto (Atalaya Mining); (Conde Rivas et al. 2007)

Dataset Evidential layer

Structures Distance to structures

(Faults and structures are crucial to the formation of the IPB deposits, see section about Geology)

Magnetometry (total magnetic

field)

Total Magnetic Field

Sulfide minerals, e.g., pyrite, pyrrhotite and non-sulfides found around VMS ore bodies, e.g., mag-

netite, have high values of magnetic susceptibility that can lead to positive magnetic anomalies

associated with VMS deposits.

Radiometric data (totals) Radiometrics

Radioactive elements K, U, and Th can be enriched or depleted in or around deposits or (altered)

lithological units related to deposits, the data can map valuable information for modeling.

Gravimetric data (Bouguer Ano-

maly map)

Bouguer Anomaly

Minerals found in VMS have relatively high specific gravity values that contrast with the lower specific

gravity values of sedimentary and volcanic host rocks, which can lead to a gravity anomaly.

Lithological units Distance to all units:

Shales, sandstones and quartzites (PQ): typically barren and pre-mineralization; characterizes non-

deposit locations

Felsic metavolcanics (VS): host lithologies

Metasediments, epiclastics (VS): host lithologies

Mafic metavolcanics (VS): host lithologies

Felsic and intermediate metavolcanics (VS): host lithologies

Undifferentiated metamorphic rocks: characterizes non-deposit locations

Granites and granodiorites (unspecified age): Might have acted as heat source (if syn-mineralization

rocks) or be characteristic for barren locations (if post-mineralization age)

Gabbros and diorites: Might have acted as heat source (if syn-mineralization) or be characteristic for

barren locations (if post-mineralization age)

Shales and metagraywacke (Culm): post-mineralization, characteristic for non-deposit locations

Ore deposits (points with center

coordinates)

Samples for training and testing
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netite, have high values of magnetic susceptibility
that can lead to positive magnetic anomalies asso-
ciated with VMS deposits (Morgan 2012). Radio-

metric data were provided as total counts. As
radioactive elements K, U, and Th can be enriched
or depleted in or around certain deposits or (altered)

Figure 2. Flowchart showing the overall workflow for pre-processing, modeling and validation using the new

toolbox.
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lithological units related to deposits, the data can
map valuable information for modeling. K-alter-
ation in mafic and felsic volcanics related to the IPB
deposits might cause strong gamma-ray signatures,
and thus, this dataset was included to capture
alteration features. Gravity data available as Bou-
guer gravity anomaly maps were the main data
leading to discovery of the IPB (McIntosh et al.
1999). Bouguer anomalies indicated an extension of
the IPB lithologies beneath 120 m of cover. Minerals
found in VMS deposits have relatively high specific
gravity values in contrast with lower specific gravity
values of the sedimentary and volcanic host rocks,
which can allow the mapping of VMS deposits di-
rectly by gravity data. All distance and geophysical
raster layers were resampled to 232 m pixel size and
projected into the metric coordinate system ETRS
1989 TM29.

The mineral deposit database used for training
and testing includes the location and main com-
modity of 351 deposits of pyrite, copper, lead and
zinc. The database was filtered to only include VMS
deposits (130 in total) and to exclude the other
metals and minor manganese occurrences.

METHODS

Implementation of Boosting Algorithms

AdaBoost, i.e., Adaptive Boosting is one of the
first and most widely used boosting methods, intro-
duced in 1997 by Freund and Schapire (1997). On
each boosting round (t), AdaBoost calls a given
weak learning algorithm h(t) and estimates how well
the prediction performs in order to recalculate the

weight of the weak learner b tð Þ (Eq. 1). The smaller

the error, the smaller b tð Þ, and therefore the smaller
the level of importance assigned to the final classi-

fier. In each round, the weight of the sample wtþ1
i is

redistributed, increasing the weight for incorrectly
classified elements and decreasing it for correctly
classified ones (Eq. 2). Therefore, the algorithm fo-
cuses on wrongly classified points identified in pre-
vious rounds. Thus, the final hypothesis hf is a
consensus of the weak learners given by their weight
(Eq. 3).

b tð Þ ¼ log 1�error tð Þ

error tð Þ

� �
ð1Þ

wtþ1
i ¼ wt

i b tð Þ
� �1� h tð Þ xið Þ�yij j ð2Þ

hf xð Þ ¼ sign
PT
t¼1

b tð Þ log 1
b tð Þ

� �
h tð Þ xð Þ

� �
ð3Þ

The original AdaBoost algorithm is shown to be
highly successful in binary classification, but its
performance decreases in multiclass cases (Zhu et al.
2006). The algorithm Stagewise Additive Modeling
using a Multiclass Exponential loss function
(SAMME, Zhu et al. 2006) is adapted from the
original AdaBoost technique to deal with multiclass
classifications. The way in which the weights of the
weak learners are calculated remains almost identi-
cal (Eq. 4), but the redistribution of weights for the
samples introduces the use of the function I að Þ to
account for multiple classes (Eq. 5). Here, the final
hypothesis is the class that has the highest weighted
value (Eq. 6).

b tð Þ ¼ log 1�error tð Þ

error tð Þ þ log K � 1ð Þ ð4Þ

w
tþ1ð Þ

i ¼ wt
ie

b tð ÞI h tð Þ xið Þ6¼yið Þ ð5Þ

hf xð Þ ¼ argmax
k

PT
t¼1

b tð ÞI h tð Þ xð Þ ¼ k
� �

ð6Þ

where I að Þ ¼ 1 if a is true
0 otherwise

�

Note that for binary classification (as is the case
in this study), SAMME results are equivalent to
AdaBoost. As SAMME is included in the machine
learning library Scikit-learn as AdaBoost, this algo-
rithm was used and implemented in this study.

The article by Zhu et al. (2006) introduces an-
other variant of SAMME, Stagewise Additive
Modeling using a Multiclass Exponential loss func-
tion for Real estimations (SAMME.R). SAMME.R
takes advantage of the possibility of weak learners
to deliver information not just of the classification,
but also a probability estimate of belonging to each
class. One important difference of this model is that
the weak learner is not used directly to calculate the
final hypothesis, but it is used instead to calculate
class probability estimates. These estimates are then
used to calculate the weak hypothesis (Eq. 7). Sim-
ilar to SAMME, the final classifier results in a class
with the highest value (Eq. 8: hf(x)).
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h
ðtÞ
k xð Þ ¼ K � 1ð Þ logP

ðtÞ
k xð Þ � 1

K

X
k0

logP
ðyÞ
k0 xð Þ

 !

ð7Þ

where

P
tð Þ

k xð Þ ¼ Weakw tð Þðc ¼ kjxÞ

w
ðtþ1Þ
i ¼ wt

ie
�K�1

K yilogPðtÞ xið Þ

hf xð Þ ¼ argmax
k

PT
t¼1

h
ðtÞ
k xð Þ ð8Þ

The main advantage of SAMME.R over
SAMME is that a solution can be reached more
quickly, and, in certain circumstances, better results
can be achieved when compared to those produced
by SAMME (Zhu et al. 2006).

The nature of AdaBoost makes it sensitive to
noise and outliers since in each boosting step the
incorrectly classified samples acquire more voting
power. Noisy points can have a profound impact on
results, thus creating bias in the predictions. A
solution to this problem, called BrownBoost, is
proposed by Freund (2001). Here, the number of
boosting iterations is not set beforehand but is
solved during the training stage. Instead of fixing the
iterations, a type of countdown timer is imple-
mented. When the countdown gets smaller, the
algorithm gives up on data points that are too diffi-
cult to classify. The time reduction along with the
weight of the weak learner on each iteration is given
by solving a differential equation. This process is
complicated and not intuitive; hence, the reader is
referred to the original publication by Freund (2001)
for a detailed description.

For all the presented algorithms, the final
hypothesis hf is calculated from a weighted sum of
weak hypotheses. If we assume that each of these
hypotheses considers just one evidential layer (e.g.,
decision stump), the importance of each regressor
can be calculated as a weighted sum of the impor-
tance given in each weak learner. In ArcGIS, the
information is provided in the processing report of
the modeling tool. This can be crucially important
for prospectivity modeling as it allows for assess-
ment of the role of each evidential layer to the
model and thus also changes to the predictive layers
to improve the model. Data layers that have low or
no importance to the final classifier can be omitted
from the model with minor effect on its predictive

power. This feature is available for BrownBoost,
RF, SAMME and SAMME.R.

Besides boosting algorithms, we also imple-
mented and applied other machine learning algo-
rithms for comparison to provide users with several
modeling options. The models for SAMME, SAM-
ME.R, RF, LR and SVM are from the Scikit-learn
library (Pedregosa et al. 2011), an open source ma-
chine learning library for Python. The BrownBoost
algorithm was coded from scratch, using some
modified SAMME code from Scikit-learn as tem-
plate. The code is described on GitHub. Each of
these algorithms was selected for different reasons.
RF belongs to the family of ensemble methods with
boosting and has been successfully applied for min-
eral prospectivity mapping in previous studies (Ro-
driguez-Galiano et al. 2012; Carranza and Laborte
2015). SVM is popular because of its ability to
generalize from training data (Al-Anazi and Gates
2010), making it one of the best algorithms for
prospectivity mapping, whereas LR is one of the
most widely used methods (e.g., Agterbeg 1981;
Reddy and Bonham-Carter 1991; Oh and Lee 2008).

Additional functions to help data processing
were written in Python using the ArcPy module
including Multiclass Split, Select and Create Ran-
dom Points, Enrich Points (Table 2). Train model,
Apply model and Model validation utility tools were
created for training and applying the machine
learning algorithms and for assessing accuracy and
performance based on functions also available in the
Scikit-learn library (Table 2).

Once a model is trained, the next step is to
calculate the response map, i.e., a prospectivity map,
to visualize the likelihood of mineralization occur-
ring in the study area. This is done by taking the
value of all the data layers and using the model to
calculate the result for every pixel. For all the dis-
cussed methods, it is possible to obtain continuous
output, i.e., its decision function, rather than just the
classification. SAMME, SAMME.R, BrownBoost,
LR and SVM have an implemented response func-
tion, while RF lacks this capability. Instead, the
probability of belonging to the prospective class is
used for RF.

Implementation of Validation Methods

In order to assess the quality of a model, good
validation methods are vital. We implemented the
most commonly used validation statistics from the
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Scikit-learn package. The calculation of the confu-
sion matrix (Table 3), i.e., error matrix, and several
other statistics to estimate the quality of the pre-
diction based on the confusion matrix:

Accuracy: Calculates the rate of correctly clas-
sified objects (Table 3 for abbreviations),

TPþ TN

TPþ FPþ FNþ TN

Precision: Reports the correct classification rate
using only the positively predicted cases,

TP

TPþ FP

Recall: Also called true positive rate or hit rate,

TP

TPþ FN

Fall-out: Also known as false positive rate,

FP

FPþ TN

In addition, a visualization tool for the receiver
operating characteristics (ROC) graph and the area

under the curve (AUC) numeric estimator (Bradley
1997; Fawcett 2006) based on Scikit-learn functions
and matplotlib plotting capabilities (Hunter 2007) is
implemented in the toolbox. This tool illustrates the
trade-off between benefits (recall) in the y-axis and
costs (fall-out) along the x-axis. For a classifier, this
trade-off is drawn as a point in the graph. If the
classifier can also provide continuous probability or
response function, the so-called ROC curve can be
drawn. It has been used previously in prospectivity
mapping and is considered a robust validation
method for spatial predictive models (Nykänen et al.
2015).

The final prospectivity maps can be re-classi-
fied by the user into prospective or non-prospective
areas by thresholding. Setting the threshold value
depends on whether it is better to risk not finding
all deposits or whether the goal is to minimize the
area of investigation. Another way to represent this
benefit–cost compromise is to plot the recall against
the proportion of prospective area (PPA), mostly
because the cost of exploration increases with the
area to be explored (Rodriguez-Galiano et al.
2012). This representation is called a success rate
curve.

Besides the pre-processing and modeling tools,
all described tools use the Matplotlib library and
are available in the newest version of the ArcGIS
Spatial Data Modeller (ArcSDM, version 5) in a
toolbox called �Experimental Tools� at the follow-
ing GitHub link (https://github.com/gtkfi/ArcSD
M).

Table 2. Tools implemented in the ArcGIS platform for data pre-processing, training of machine learning algorithms and assessing the

accuracy and performance of the models

Tool Description

Multiclass split Takes a multiclass polygon and creates a raster for each class with the distance to the class. This creates continuous

distance surfaces to be used as input for modeling.

Select random

points

Splits a set of points randomly. Used to create train and test sets.

Create random

points

Creates points with a random location inside a given area

Enrich points Extracts the values of a multilayer raster at given positions. Used for extracting the data values from evidential layers

into a table with the information of deposits and non-deposit point as input file to train the classifier (see Fig. 2).

Train model Produce a Machine Learning model using one of the implemented algorithms

Apply model Uses the information of a model to produce a prediction map of the evidential layers.

Model validation Obtain statistics and graphs about the performance of a prediction map.

Table 3. Confusion matrix for binary classification

Predicted

Positive Negative

Real

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)
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PERFORMANCE EXPERIMENTS
AND EFFECT OF DATA AUGMENTATION

Several experiments were conducted to assess
the performance of the different machine learning
algorithms as well as the effects of data augmenta-
tion to the prospectivity mapping of VMS deposits.
Training and test data sets were created from 130
deposits. For model training purposes, data that
represents both deposits and non-deposits (areas
where the sought mineral is absent) were selected.
The VMS deposits were used as located in the GIS,
but the non-deposits present difficulties due to the
lack of complete data coverage, which is typical of
most exploration projects. This can lead to choosing
non-deposit areas that actually host a deposit at
depth. Approaches for selecting non-deposits loca-
tions for training and testing found in the literature
include using previous prospectivity studies and
selecting points of low prospectivity (Porwal et al.
2003; Nykänen 2008), selecting deposits of other
mineral deposit types (Nykänen et al. 2015) or a
selection of random points within the study area but
at a certain distance to known deposits (Rodriguez-
Galiano et al. 2015; Carranza and Laborte 2015).
The latter is implemented in this study as it is the
most widely used and accepted approach in the lit-
erature. It can also be used on areas without previ-
ous prospectivity studies. Accordingly, the same
number of non-deposit points was created randomly
at least 5 km away from known deposits and at least
500 m away from each other. The Enrich Points tool
was used to write all the data from the evidential
layers into the attribute table of the training and test
points that were used as inputs for the ML algo-
rithms.

The first experiment was designed to evaluate
the performance of the ML algorithms described
above. The VMS deposits set were randomly parti-
tioned into a training dataset with 90% of the de-
posits (117 points), and 10% as an independent test
data set (13 points). This was repeated nine times to
collate nine different pairs of testing and training
datasets, and the results obtained during modeling
were averaged to avoid outliers in the results. After
creating the training and test data, the BrownBoost,
SAMME, SAMME.R, LR, RF, and SVM algo-
rithms were trained and applied to the evidential
layers to create the response maps. During the
model creation process, the algorithm automatically
calculates a threefold-validation score, which is re-

corded in the modeling report. Additionally, the
models were evaluated with the respective inde-
pendent proportioned test data set pair described
above.

To evaluate the performance of the algorithms
with restricted data, a second experiment was per-
formed by decreasing the size of the training dataset
and assigning the remainder to the test data set.
Training datasets were selected from 10 up to 90%
and with a step size of 10%, for the 130 original
VMS deposits. For the performance experiment, the
random selection was repeated nine times for each
size of training data set to avoid outliers. The algo-
rithms were trained, applied and evaluated the same
way as in the first experiment.

Finally, a third experiment was conducted to
address the issue of the number of deposits
(= training samples) required to train the models.
For most available datasets, deposits are repre-
sented by single point features representing the
center of a deposit while an ore deposit in reality is
an area of variable dimensions. One strategy to
overcome this or similar problems in machine
learning is to use data augmentation. One of the
simplest and widely used approaches consists of
adding training samples perturbed with noise: Noise
is added to training samples in order to obtain
additional samples that represent a class. The ap-
proach selected for this study is perturbing the
location of the deposits and creating new points
physically close to the centers of known deposits.
The level of perturbation spread around the center is
based on expert knowledge about the dimensions of
the VMS deposits and/or, trial and error during
modeling.

Sets of 13, 26, 39, 52 and 65 random points were
created using the data augmentation tool: a tool that
creates random additional deposit points within a
specified distance of the known deposit. The new
points were constrained to less than 1 km away from
the known deposits. This distance was chosen be-
cause the deposits sizes range up to lenses or sheets
4 to 5 km long and 1.5 km wide (Carvalho et al.
1999). By choosing a radius of one around the cen-
tral pixel, we averaged the deposits sizes. The cre-
ated points were labeled as deposits and merged
with the real deposits, to create an integrated set of
training points together with the same number of
non-deposit points. BrownBoost and SAMME.R
algorithms were trained with the augmented data-
sets, and the resulting models were evaluated.
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RESULTS

The first experiment was designed to assess the
performance of the different machine learning
algorithms. High overall accuracies (> 89%) were
achieved for all implemented algorithms (Table 4),
but RF and boosting produced the highest accura-
cies. Besides, the overall accuracy, average val-
ues ± standard deviations for AUC, Precision, PPA
and Recall are summarized for each algorithm in
Table 3. All boosting methods produce a perfect
score in true positive (and false negative) rate which
in turn gives a recall value of 1. LR performed worst
determined by all accuracy measures, except for
PPA according to which SVM performs the worst.

Table 5 shows the average importance of each
information layer done with the nine runs of
SAMME. The most important evidential layer is the
distance to undifferentiated metamorphic rocks
which is quite surprising considering the genesis of
the deposits. However, it is followed with similar
importance by the distances to granites (340-
300 Ma), metapelites and volcanics that are closely
related to the genesis of the deposits (compare with
previous sections). The most important geophysical
data layer is the Bouguer anomaly map, while the
total magnetic field map contributes less than 2%.
Gravity data were previously used successfully to
locate deposits in the area, and this result is in
accordance with these findings (McIntosh et al.
1999). Note, however, that the importance of a layer
in a SAMME model might differ from the way the
other algorithms use the data.

The results of the sample size reduction are
summarized in Figure 3. In terms of overall accu-
racy, the results from all ensemble methods decrease
except for the lowest number of training data where
SAMME.R has a greater loss of performance com-
pared to the other algorithms. SVM has, in general,
the same rate of accuracy decrement as ensemble
methods but at a slightly lower accuracy. We clearly
see that boosting algorithms outperform LR and
SVM but follow a similar decrease in accuracy with
the reduction of samples. LR performed the worst in
terms of accuracy. An exception here was the last
experiment (with 13 training points), which was the
most accurate model. This might indicate that LR is
better suited for very small numbers of training
samples even though small sample sizes in general
introduce bias. The AUC graph has a much more
stable slope until reaching a breakpoint of 13 sam-
ples (Fig. 3b). In general, all algorithms seem to be

quite stable and perform best with more than 80
training points. Accuracy decreases rapidly, how-
ever, when less training points are used and dimin-
ishes rapidly when only 13 points are used.

Results for data augmentation experiment are
summarized in Figure 4. There is a small increase in
accuracy and AUC from 76 to 83% for BrownBoost
and SAMME.R compared to the experiments
without augmentation. When increasing the number
of augmented deposits to more than 13 deposits, the
results did not improve further, with values staying
at approximately 81% for accuracy and 90% for
AUC. This is most likely due to the increase in noise
in the data.

After analyzing the performance of the algo-
rithms and data augmentation, the complete set of
130 deposits along with 130 random non-deposits
were used to create the final response maps with
BrownBoost, LR, RF and SVM using all evidential
layers (Fig. 5). All boosting algorithms provide
similar accuracies. An example of the results from
BrownBoost is shown in Figure 5. SVM, RF and LR
have significant differences in terms of the predictive
map patterns. The smooth spatial patterns created
by variations in the pixel values in SAMME,
SAMME.R and BrownBoost are caused by the dis-
tance metrics (L2) used in the calculations.

The scaling of the outputs is different due to the
different nature of the algorithms. While most
algorithms provide information on the decision
function, which is usually centered on 0, RF delivers
probability estimations. Therefore, the output values
exist in the set [0,1] and are usually centered on 0.5.
The threshold differentiating prospective from non-
prospective areas is usually chosen in the above-
mentioned centers, but they can be changed to in-
crease recall or fall-out values.

DISCUSSION

The results of this study confirm that boosting
algorithms are a promising alternative to other ML
algorithms. The results agree with previous studies,
which suggest that data-driven approaches, espe-
cially of SVM (Zuo and Carranza 2011; Rodriguez-
Galiano et al. 2015) and RF (Rodriguez-Galiano
et al. 2012; Carranza and Laborte 2015) are suit-
able for probabilistic modeling such as mineral
prospectivity modeling.

The high level of accuracy based on indepen-
dent test samples (0.962 for BrownBoost and
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SAMME, and 0.949 for SAMME.R) indicates that
the purely data-driven approach using boosting
algorithms can generalize and extract relationships
in data related to VMS mineral systems in the Ibe-
rian Pyrite Belt. The smoothly curved spatial pat-
terns observed in BrownBoost (and SAMME,
SAMME.R that are not shown) prospective maps
(Fig. 5) are produced by the influence of the evi-
dential layers using distance measurements. The
calculated distance is the l2 norm or Euclidean dis-
tance, causing the characteristic circular patterns.

The differences between the machine learning
algorithms are rather small compared to the vari-
ability between different runs. Thus, with this
amount of data, it is not possible to confirm that one
of the methods outperforms the others and future
studies in other settings are thus required to better

evaluate these ML algorithms. The availability of an
assortment of methods in the newly created Exper-
imental tools in the ArcSDM v. 5 is therefore a great
asset for testing the modeling of different scenarios.

The high accuracy of SAMME and SAMME.R
compared to the BrownBoost algorithm indicates
relatively low levels of noise in the data. Brown-
Boost is an algorithm designed to deal with noisy
data (Freund 2001) and does not present a signifi-
cant advantage over other boosting methods in this
setting. Noisier datasets could assess the capabilities
of BrownBoost better and should be experimented
with in future studies.

In accordance with Rodriguez-Galiano et al.
(2015), the accuracy and AUC decrease with a lower
number of training samples. This result could be
expected since with less information the algorithms

Table 4. Evaluation metrics for VMS deposit prospectivity models using BrownBoost, LR, RF, SAMME.R, SAMME and SVM (234 train

points and 26 test points) in the Iberian Pyrite Belt. The average ± the standard deviation between runs is shown as well

Metric BrownBoost LR RF SAMME.R SAMME SVM

Accuracy 0.962 ± 0.033 0.893 ± 0.074 0.966 ± 0.036 0.949 ± 0.047 0.962 ± 0.043 0.936 ± 0.047

AUC 0.997 ± 0.008 0.945 ± 0.044 0.999 ± 0.004 0.972 ± 0.049 0.99 ± 0.023 0.982 ± 0.023

Precision 0.932 ± 0.058 0.883 ± 0.086 0.948 ± 0.065 0.912 ± 0.073 0.934 ± 0.072 0.914 ± 0.085

PPA 0.436 ± 0.007 0.465 ± 0.02 0.46 ± 0.022 0.441 ± 0.005 0.442 ± 0.012 0.523 ± 0.027

Recall 1.0 ± 0.0 0.915 ± 0.09 0.991 ± 0.026 1.0 ± 0.0 1.0 ± 0.0 0.974 ± 0.038

Table 5. Average importance of the evidential layers of the SAMMEmodels to predict prospectivity of VMS deposits in the Iberian Pyrite

Belt. SAMME models with 117 train points, 100 decision stumps as estimators and learning rate of 1

Evidential layer Average importance

Distance to undifferentiated metamorphic rocks 14.16%

Distance to granites and granodiorites 12.74%

Distance to metagraywacke and metapelites 9.14%

Distance to silicic metavolcanic rocks 8.43%

Distance to Gabbro and diorite 8.39%

Bouguer anomaly 8.31%

Distance to metasediments, and epiclastic rocks 5.37%

Distance to gravel, sand and clay 4.88%

Distance to basic metavolcanic rocks 4.14%

Radiometrics (totals) 4.11%

Distance to metapelites, sandstone and quartzite 3.56%

Distance to basalt and dolerite 3.21%

Distance to faults 3.04%

Distance to silicic and intermediate metavolcanic rocks 2.93%

Distance to reddish metapelites and jasper 2.53%

Total magnetic field 1.96%

Distance to marl and sand 1.76%

Distance to metapelites and metagraywacke 1.29%
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are not capable of generalizing correctly. By creating
artificial points representing the VMS deposits using
data augmentation, the accuracy of predictions im-
proves by several percent. However, choosing an
optimal distance from known deposit points
reflecting the deposit size or radius that will contain
the information relevant for the formation of the
deposit, is fundamentally dependent on the knowl-
edge of the geologist.

It is important to note that the results of this
study are constrained by the quality and resolution
of datasets. The data were ideal for developing and
testing the new data-driven tools due to the many
known deposits in the area but, as indicated by
Rodriguez-Galiano et al. (2015) and Schaeben and
Semmler (2016), assumptions with respect to the
general superiority of boosting algorithms for min-
eral prospectivity mapping should be further tested

Figure 3. Plot of average (a) accuracy (%) and (b) area under the curve (AUC) plotted against the number of training deposits for

BrownBoost, Logistic Regression, Random Forest, SAMME.R, SAMME and Support Vector Machine. We observe a decrease in both

metrics with a general better performance of boosting algorithms. Accuracy remains relatively stable until a critical point of ca. 26 train

deposits. The same is true for the AUC measure. Please refer to the section about accuracy assessment for more details about the metrics

used.

Figure 4. Plot of average (a) accuracy and (b) area under the curve (AUC) plotted against the number of augmented deposits for

BrownBoost and SAMME.R. For both metrics, accuracy (%) and AUC (refer to section accuracy assessment for more details), we

observe an increase when using data augmentation. However, augmentation by more than ca. 26 deposits does not lead to improved

results anymore.
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by additional new studies in other settings and for
other deposit types.

According to SAMME, the distance to undif-
ferentiated metamorphic rocks is the most important
layer predicting the location of pyrite deposits fol-
lowed closely by distance to granites, metapelites
and felsic volcanic rocks. The presence of undiffer-
entiated metamorphic rocks is rare in the study area
and remote from the deposits (Fig. 1). This result is
somewhat surprising, and several explanations may
be postulated. These include, for example, the spa-
tial pattern of the lithological units (Fig. 6). Many
deposits and non-deposits are aligned following a
pattern described by the distance to undifferentiated
metamorphic rocks that might also indicate some
symmetry of the overall structures or paleogeogra-
phy and therefore be related to the ore system.
Another explanation may be related to data issues
like artifacts. More research needs to be conducted
to solve this question, especially since the perfor-
mance of the algorithm is very good. The distance to
granites (Devonian, probably syngenetic) and espe-
cially felsic volcanics (VS1 and 2 as main host
lithologies) is crucially important. These lithologies

are related to the genesis of the deposits as outlined
in the geological and data processing sections. As,
however, no other prospectivity model has been
published for the IPB, we cannot compare our
findings to other studies.

The low importance of the distance to the faults
layer (only in the SAMME model) appears to dis-
agree with previous research relating fractures to the
pyrite deposits of the IPB (Simancas et al. 2006;
Martin-Izard et al. 2015). One possible reason for
this is the nature of the weak learners. Decision
stumps account just for one evidential layer at a time
and the information of distance to faults might not
contain enough information to accurately model the
deposits� presence. The same information might be
contained in another layer in a slightly better way.
Further studies on different weak learners and how
they affect the importance of evidential layers are
required to better understand this result. Comparing
the four response maps created by boosting (Fig. 5),
a prospective band is present in the southwest of the
map. Several manganese deposits are located in this
area (compare to Fig. 1).

Figure 5. VMS prospectivity map created with 130 training deposits (black) with BrownBoost (a), LR (b), SVM (c) and RF (d).
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The proportion of prospective area in our re-
sults appears to be higher in comparison with other
mineral prospectivity studies (Porwal et al. 2003;
Carranza and Laborte 2015; Rodriguez-Galiano
et al. 2015). However, a comparison is not straight-
forward since (a) the studies are conducted on dif-
ferent areas and with different datasets and, (b) the
threshold between the classes can be changed man-
ually and the results are based on different cost
functions and estimates. In addition, this effect can
be caused by (a) the fact that decision stumps (used
as weak learners) do not optimize the covered area
but rather the prediction error; (b) large portions of
the area are, indeed, prospective and, most likely (c)
more, or more detailed, evidential layers are needed
to further decrease the PPA values for the IPB. Due
to the geology with steeply dipping synclinal struc-
tures, three-dimensional approaches would be ideal
to capture the complexity of the geological setting.
Recent exploration has focused on better under-
standing the three-dimensional setting. Such data-
sets are, as yet, unavailable for this area to be used in
prospectivity modeling studies.

CONCLUSION AND FUTURE WORK

The reported results indicate that boosting
algorithms are a possible data-driven alternative to
other machine learning and knowledge-based
methods of prospectivity mapping. They perform
well in the mineral prospectivity mapping conducted
in this study and are also robust enough when using
small training datasets.

Moreover, boosting methods provide a set of
desirable qualities that include:

(1) the ability to find nonlinear relationships
between variables that might be ignored by
knowledge-based methods,

(2) they provide information on the importance
of regressors to the final model,

(3) resistance to overfitting for scenarios with
low noise and

(4) the number of parameters to customize is
small, making it very user-friendly.

(5) importantly, conditional independence is
not a problem.

Figure 6. Map of distance to undifferentiated metamorphic rocks, color classification for visual enhancement.

Showing training points with deposits (black) and non-deposits (blue). The general direction of lithological

contacts is clearly visible.
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As all tools were implemented into the ArcGIS
platform, modeling results can be synchronized with
mobile apps such as ArcGIS Collector to use results
directly during fieldwork and to add data into the
database. Thus, a streamlined workflow for indus-
trial application is available. The results of the study
confirm that research on the algorithms used in the
study should continue. Future research should also
focus on other boosting algorithms such as gradient
boosting or LogitBoost. LogitBoost, as well as on
other types of ore deposits. The boosting algorithms
should also be considered for other fields of re-
search, including mapping of oil and water resources
or for geohazard mapping.
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nalcóllar massive sulphide deposits, Iberian Pyrite Belt,
Spain. Mineralium Deposita, 33, 111–136.

Andrada de Palomera, P., van Ruitenbeek, F. J. A., & Carranza,
E. J. M. (2015). Prospectivity for epithermal gold–silver de-
posits in the Deseado Massif, Argentina. Ore Geology Re-
views, 71, 484–501.

Barriga, F. J. A. S. (1990a). Metallogenesis in the Iberian Pyrite
Belt. In R. D. Dallmeyer & E. M. Garcia (Eds.), Pre-Meso-
zoic geology of Iberia (pp. 369–379). Berlin: Springer.

Barriga, F. J. A. S. (1990b). Metallogenesis in the Iberian Pyrite
Belt. In R. D. Dallmeyer & E. M. Garcia (Eds.), Pre-Meso-
zoic geology of Iberia (pp. 369–379). Berlin: Springer.

Bellman, R. E. (2015). Adaptive control processes: A guided tour.
Princeton: Princeton University Press.

Bradley, A. P. (1997). The use of the area under the ROC curve in
the evaluation of machine learning algorithms. Pattern
Recognition, 30, 1145–1159.

Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G.
(2000). Artificial neural networks: a new method for mineral
prospectivity mapping. Australian Journal of Earth Sciences,
47, 757–770.

Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions
for data-driven geologically constrained mapping of gold
potential, Baguio district, Philippines. Ore Geology Reviews,
22, 117–132.

Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of
coherent deposit-type locations and their application in data-
driven mineral prospectivity mapping. Ore Geology Reviews,
33, 536–558.

Carranza, E. J. M., & Laborte, A. G. (2015). Data-driven pre-
dictive mapping of gold prospectivity, Baguio district,
Philippines: Application of random forests algorithm. Ore
Geology Reviews, 71, 777–787.

Carranza, E. J. M., Woldai, T., & Chikambwe, E. (2005). Appli-
cation of data-driven evidential belief functions to prospec-
tivity mapping for aquamarine-bearing pegmatites, Lundazi
district, Zambia. Natural Resources Research, 14, 47–63.

Carvalho, D., Barriga, F., & Munhá, J. (1999). Bimodal-silici-
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