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Abstract The cellular automata model was described by

John von Neumann and his friends in the 1950s as a rep-

resentation of information processing in multicellular tis-

sue. With crystalline arrays of cells and synchronous

activity, it missed the mark (Stark and Hughes, BioSystems

55:107–117, 2000). Recently, amorphous computing, a

valid model for morphogenesis in multicellular information

processing, has begun to fill the void. Through simple

examples and elementary mathematics, this paper begins a

computation theory for this important new direction.

Keywords Amorphous computing � Computation theory �
Distributed processes � Asynchronous � Probability

measure

1 Introduction

Multicellular information processing is the computational

basis for morphogenesis in living organisms. How can a

process compute a pattern while working in a multicellular

medium which is lacking a rigidly defined architecture for

sharing information? The process is distributed over a

network of similar cells, growing and dividing at different

speeds, and reacting to different sets of neighbors. Chaotic

irregularities in neighborhood structure, computational

speed and in cell-to-cell communication seem to fly in the

face of the strict order and control usually expected of

computational processes. The creation of order in an

asynchronous, randomly structured network of cells is the

mystery of amorphous computing.

This paper presents a mathematical framework for

amorphous processes which gracefully supports routine

calculations, proofs of theorems and formal computation

theory. First, the model is defined. Then more than a dozen

processes are described. Their behavior is explored math-

ematically and by careful proofs of basic theorems. Useful

mathematical structures (e.g., the state-transition graph,

computations as Markov chains) develop out of applica-

tions of the model. The examples are seen to illustrate

important programming styles. An algebraic approach to

complexity is demonstrated through detailed calculations.

The last half of the paper begins with proofs of non-com-

putability results and an excursion into classical recursion

theory. Finally, I conclude with a methodical construction

of TearS—a complex dynamic amorphous process.

The wonderful possibility of extending computation

theory to distributed systems such as these came to me in

conversations with Professor John McCarthy (1978, Stan-

ford University, Palo Alto, CA). Subsequently, I have

received significant help in developing and publishing

these ideas from Dr Leon Kotin (Fort Monmouth, NJ), Dr

Edmund Grant (Tampa, FL), two very helpful referees and

the editor of this journal. I sincerely thank all six of you.

… organisms can be viewed as made up of parts which,

to an extent, are independent elementary units. … [A

major problem] consists of how these elements are

organized into a whole …’’ (John von Neumann 1948)

[A] mathematical model of a growing embryo [is]

described … [it] will be a simplification and an ide-

alization, … cells are geometrical points … One

proceeds as with a physical theory and defines ‘the

[global] state of the system. (Alan Turing 1952)
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An amorphous computing medium is a system of

irregularly placed, asynchronous, locally interacting

computing elements. I have demonstrated that

amorphous media can … generate highly complex

pre-specified patterns. … [I]nspired by a botanical

metaphor based on growing points and tropisms, … a

growing point propagates through the medium.

(Daniel Coore 1999)

2 The model

A fixed finite state automata A is used to characterize the

computational behavior of each cell in a multicellular

network. The initial and accepting states are not used, so

the automaton is represented by

A ¼ ðQ;Qþ; a; inputÞ

where Q is the set of cell-values, Q? is the set of input

values (describing multisets of values of neighboring cells),

a is the value transition function (or relation in the non-

deterministic case)

a : Q� Qþ ! Q

giving an active cell’s next value, and input is a function

(or relation) which reduces the values of neighbors to a

value in Q?.

The network consists of a set C of cells connected by a

set E � C2 of edges. (C, E) is assumed to be a finite simple

graph—i.e., edges are undirected (cd [ E if dc [ E), there

are no self-edges (cc 62 E), and there are no multiple edges.

Edges represent communication (with neighbors) (Fig. 1).

Using E ambiguously, the set of cells neighboring a given

cell c is denoted E(c) = {d | cd [ E}, and when c is

included E?(c) = E(c) [ {c}. The cell-values seen in

E(c) give us a multiset

M ¼ fq 2 Q j q is the cell-value of some d 2 EðcÞg

which characterizes c’s environment. In the theory

(C, E) is a variable. The input function reduces multisets

M to

inputðMÞ 2 Qþ:

Q? is a finite set of values describing multisets of Q, so it

may be convenient to include Q in Q?. The cells of

E(c) are anonymous (i.e., they have no addresses and so

cannot be distinguished) so the various assignments giv-

ing for example M = {1, 0, 0} are not distinguished by

input.

The term state is reserved for networks. A function s:

C? Q indicating values s(c) [ Q for cells c is a (network)

state. The multiset M of neighboring values at c is now

s½EðcÞ�:

But c sees only input(s[E(c)]) [ Q?. The set of all states is

a set exponent

QC

—a standard notation motivated by

jjQjjjjCjj ¼ jjfs j s : C ! Qgjj ¼ jjQCjj:

ðQCÞN; is the set of all infinite sequences of states.

An automaton A describes how each cell changes its

value. Given a state s, an active cell c will change its value

from s(c) to a(s(c), input(s[E(c)])). Communication is

based on c reading information from its environment,

rather than neighbors sending messages to c, so there will

be no input buffers and no overflow problems.

Cell-activity in amorphous computing is asynchronous.

Specifically, a state change is determined by the activity of

a random set r � C of cells. Given s and r the next state s0

is

s0ðcÞ ¼ aðsðcÞ; inputðs½EðcÞ�ÞÞ if c 2 r
sðcÞ otherwise.

�

This step is denoted s )r s0. Write s ) s0 when the tran-

sition is possible for some r. Usually (if a and input are

functions) non-determinism is restricted to the random

choice of r, and so s )r s0 and s )r s00 implies s0 = s00.
A schedule r0; . . .; rn; . . . of cell activity from an initial

state s0 determines a computation

s0 )r0
. . .sn )rn

snþ1. . .:

Computations may be visualized as infinite paths through

the tree of all finite sequences of states ordered by

sequence-extension. If at some point sn )r sn for all rFig. 1 A network (C, E) of 200 cells on a torus for HearT (Sect. 7)
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(equivalently sn )C sn) then sn is a halting state and the

computation is said to halt. Whenever s(c) = s0(c) for

s )c s0, the cell c is said to be unstable in s.

The measurement of behavior is based on the probability

of activity Pa(r) and the initial-state probability Pi(s).

Often Pa(r) = d||r|| � (1 - d)||C-r|| where d is the proba-

bility of a single cell being active and Pi(s) = ||Q||-||C||. The

probability of a computation step s ) s0 is

Psðs; s0Þ ¼ Rq�r�ðq[fÞPaðrÞ ¼ djjqjj � ð1� dÞjjC�ðq[fÞjj

where f = {d [ C | s )d s} is the set of cells stable in

s and q = {c | s(c) = s0(c)} the set of cells that must

change their value. Ps(s,s0) = 0 if not s ) s0. For every

s; 1 ¼ Rt2QC Psðs; tÞ: The probability of a finite sequence

being generated as a computation is

Pcfhig ¼ 1; Pcfhs0ig ¼ Piðs0Þ; and Pcfhs0; . . .; sm; smþ1ig
¼ Pcfhs0; . . .smig � Psðsm; smþ1Þ:

For example Pc{hs0, s0i} = Pi(s0) � Ps(s0, s0) = ||Q||-||C|| �
(1 - d)C-f, where q is empty and (C - f) is the set of cells

not stable in s0 (and so not active).

Finally the probability measure l on the set ðQCÞN of all

infinite sequences s of states begins on the basic open sets

Ohs0;...smi of infinite sequences extending hs0,… smi

lðOhs0;...;smiÞ ¼ Pcfhs0; . . .; smig;

and continues on to the Borel sets using Boolean operations

and limits. For example, in a few minutes one can work

from this definition to the measure of C, the set of all

computations, to get lðCÞ ¼ 1 and so the infinite set

ðQCÞN � C of infinite sequences which are not computa-

tions has measure 0. ðQCÞN is an infinite set as large as the

set of real numbers <.

The analysis presented here sees behavior in the context of

the set of all computations. The probability of success or

failure is the l-measure of corresponding sets of computa-

tions.1 The potential decisions, which step-by-step generate

branches filling out these sets of computations, should be

viewed as thermodynamic events. In many ways, the set of 2@0

potential computations is analogous to the decimals of [0,1].

Finally, there are issues of permissible information. If

we are to study amorphous computing then the introduction

of information that is not computed is as forbidden to us as

sneezing into a petri dish would be to a microbiologist.

Thus, synchronous activity, serial activity and waves of

activity are special cases falling outside of the ideal. The

ideal I am speaking of is mathematical (the basis of

mathematical tractability), it is not necessarily what we see

in Nature.

Homogeneous programming has every cell using the

same program—this is to avoid hiding information in the

program assignment. But the cell program can have irrev-

ocable branches which lead to different cells committed to

different subprograms; this is acceptable because the pattern

is computed from a random initial state in a uniform way.

These concerns lead to processes that I call absolutely

amorphous. Absolutely amorphous processes are given the

information in (Q, Q?, a, input) only. They are important

to the theory, but are not common in Nature. Daniel Co-

ore’s model (2005) is amorphous but not absolutely

amorphous. It allows some structure outside of a and

input—e.g., non-random initialization of cells, cells with

individual clocks,2 and wave-like cell activity. After the

non-computability result in Sect. 9, models that are not so

absolutely amorphous take center stage.

Each (C, E) represents a particular architecture for shar-

ing information. In order to study amorphous processes,

(C, E) must vary freely as the general architecture-free the-

ory evolves. Presently, (C, E) does not vary while a process is

running; except in TearS, which is dynamic in that cells may

die, new cells may be added and cells may move.

The investigations presented here build on this model—

demonstrating its generality in examples, its tractability in

calculations and proofs, and its power as a foundation for a

computation theory. Except where credit is given, the analysis,

theorems and proofs presented here are the work of the author.

3 2PartitioN

Imagine programming a living cell. Colonies of your cells

eventually develop links3 allowing neighboring cells to

1 Since Floyd (1967a, b), and continuing with Broy (1986), Ward and

Hayes (1991), and others, attention had been focused on individual

runs/computations. Infinitely often these runs are successful (a result

of angelic decisions) and infinitely often they fail (a result of demonic

decisions). This approach to understanding non-deterministic pro-

cesses is as inappropriate as viewing real numbers one decimal at a

time. For arithmetic, viewing decimals in this way might have made

the existence of irrationals a subject of debate. For processes we see

something similar in Dijkstra (1988) and Schneider and Lamport

(1988).

2 My assumption that activity is random has mathematical advanta-

ges (see the proof of Theorem 3), but it allows extreme differences

between the activity levels of healthy cells—differences that would

not be seen Nature.
3 Cell-to-cell edges may correspond to gap-junctions in animal tissue.

Gap junctions are non-directed channels between the cytoplasms of

neighboring cells which allow the exchange of small molecules (up to

mw = 2,000). Viruses are too large to pass through gap junctions, so

if our model is to be biologically true, program fragments should not

pass between cells. This excludes many tricks seen in recursion

theory. Besides gap-junctions, cell-to-cell communication may be

hormonal (broadcast), mechanical, and electrical. Physically inde-

pendent bacteria communicate. In fact amorphous information

sharing between members of a species is ubiquitous in Nature.
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exchange information. You hope that the cell–cell com-

munication will lead to a global behavior for the colony—

even though the architecture and the speed with which cells

execute their program is not under your control. Never-

theless, using only your ability to program a cell, you hope

to orchestrate the behavior of the colony.

The first programming experiment is named 2PartitioN.

In it, cells are finite-state automata with values Q ¼ f0; 1g
and with the ability to read the collective values of neighbors.

According to the program, an active cell will change its value

if it has a neighbor with the same value. In other words, if an

active cell c with value s(c) has a neighbor d with

s(c) = s(d), then it will change its value to 1 - s(c).

2PartitioN is defined by Q = {0, 1}, Q? = Q [ {01},

aðvalue; inputÞ ¼
1� value if input ¼ value

or input ¼ 01

value otherwise,

8<
:

and for every multi-set M of neighboring cell-values

inputðMÞ ¼
0 if M contains only 0s;
1 if M contains only 1s;

01 otherwise.

8<
:

On C5, a ring of five cells, 2PartitioN never halts

because a circuit of odd length cannot avoid a 00 or 11

edge. A halting state exists if and only if the colony’s

network is bipartite.4 i.e., our process can find a partition.

This is true for every finite network. Thus, the network is a

free variable, as it must be in amorphous computing, and

2PartitioN is a general program for determining

bipartiteness. The input is the network.

Given X � C the external boundary, qX, of X, is defined

oX ¼ fb 2 C j b 62 X; bc 2 E for some c 2 Xg:

Theorem 1 Halting is Possible for 2PartitioN For

bipartite (C, E), halting states exist and every s0 )r0

. . .)rm�1
sm has an extension

s0 )r0
. . .sm )rm

. . .)rmþN�1
smþN ; ðN� jjCjjÞ;

with sm?N halting. If (C, E) is not bipartite, then halting is

impossible.5

Proof Assume that (C, E) is bipartite. For sm, let Xm � C

be a maximal connected set over which cd [ (E\ Xm
2 )

implies sm(c) = sm(d), then

sm )oXm
smþ1

defines sm?1. If sm is not halting, then Xm = C and qXm is a

non-void set of unstable cells, and sm?1(d) = 1 - sm(d) =

1 - sm(c) = 1 - sm?1(c) for every d [ qXm. Choose Xm?1

to be a maximal connected extension of Xm [ qXm over

which sm?1(c) = sm?1(d)

ðXm [ oXmÞ � Xmþ1:

Continue with smþ1 )oXmþ1
smþ2 etc. Since Xm � Xmþ1 �

� � � � C the process reaches C before N = ||C|| steps. A

fixed-point Xm = Xm?1 implies that oXm � Xmþ1 � Xm is

empty, and so Xm = C. At this point sm?N is halting. This

computation is just one of infinitely many. h

Another approach to proving such theorems begins with

a halting state r. Then set Xm to be the maximal set (not

necessarily connected) of cells c for which sm(c) = r(c). If

sm is not halting, then qXm is non-void and we may con-

tinue as above.

Theorem 2 Non-Halting States are )-Connected

Given any (C, E) and any pair s0, t of states, with s0 non-

halting, a computation s0 ) . . .) t from s0 to t exists.

Proof W.l.o.g, assume cd [ E such that s0(c) = s0(d). Let

X0 be a maximal connected subset of s0
-1(0) =

{c|s0(c) = 0}, then s0 )X0
s1: If X0 has more than one cell,

then every cell in X0 is unstable, so X0 � s�1
1 ð1Þ: For odd

j, let Xj be the maximal connected subset of sj
-1(1) which

extends Xj-1; for even j, let Xj be the maximal connected

subset of sj
-1(0) which extends Xj{-1. Then sj )Xj

sjþ1:

When sk
-1(0) = C, we set Xk = t-1(1) and get sk )Xk

t: h

Theorem 3 2PartitioN Halts on Bipartite Networks

Given a bipartite (C, E) and random computation

s0 ) ��� ) sm ) ��� for 2PartitioN

Pfs0 ) � � � sm ) � � � eventually haltsg ¼ 1:

Proof If cells are active with probability 0.5, then P{r is

active} = 0.5||r|| � 0.5||C-r|| = 0.5||C||. In general, if every

cell c has a probability of activity 1 [ dc [ 0, then there is

a d[ 0 for which

Pfr is active and ðC � rÞ is inactiveg	 d:

The probability of random activity taking a computation from

s0 to t in at most ||C|| steps (as in Theorem 1) is at least d||C||.

So for N = k||C||,

Pfs0 ) � � � ) sN has not yet haltedg� ð1� djjCjjÞk:

Since limk!1ð1� dÞk ¼ 0; the probability of never halting

is 0. h

Of course this does not mean that every computation on a

bipartite network halts. There are infinitely many non-halting

computations—just start with a non-halting s0 and an edge

ab [ E with s(a) = s(b), then exclude a, b from r0; . . .rm; . . ..

4 A graph/network (C, E) is bipartite if C can be partitioned into C0,

C1 so that every edge xy of E connects a cell in C0 to a cell in C1.

C0 = s-1(0) and C1 = s-1(1) for a halting s. Being bipartite is a

global property—if true, it cannot be determined by examining less

than the whole graph/network.
5 This theorem does not say that the expected halting time is

N B ||C||.
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Something similar is seen in basic measure theory—

l([0,1]) = 1 and l(R) = 0 for the set R of rationals, so

P fa random 0� x� 1 is irrationalg ¼ lð½0; 1�Þ � lðRÞ
¼ 1:0

and still there are infinitely many numbers that are not

irrational. Calculus, with infinite decimals as a metaphor

for infinite computations and the set measures as metaphor

for probability, is a part of my conceptual framework for

amorphous computations.

In the space of all infinite computations, only three things

are needed to deduce that some property (say halting) occurs

with probability 1. First, every finite computation must have

extensions with that property. Second, there must be an upper

bound on the number of extra steps to get these extensions

(this is a consequence of the finiteness of C and Q). Third,

once an extension with the desired property is reached, every

extension of the successful extension will have the property

(true for halting states).

0,1-Lemma Let A be a process and X be a property of

computations. If (1) extensions of finite computation with

property X also have X, and (2) every finite computation

has an extension with property X; then with probability 1,

A0s computations eventually have property X:

There may be infinitely many computations which never

satisfy X, but this lemma tells us that we will never see them.

The fairness condition stated in Section 2 of Aspnes and

Ruppert (2007) describes the expected non-determinism in a

way similar to this Lemma, then later states ‘‘an execution will

be fair with probability 1’’. This paper, which came to my

attention from my referees, seems to be moving toward the

same measure-theoretic view of non-determinism used here.

4 BeatniKs and 3PartitioN

Here we have two simple variations on 2PartitioN. The

first, BeatniKs, is a relaxed version which can have halting

states which are not accessible, and so this process has a

probability of halting which is strictly intermediate

between 0 and 1. The second, 3PartitioN solves the NP-

complete problem of identifying 3-partite graphs.

Beatniks After World War II people who tried to be

different might be called ‘‘beatniks’’. Could everyone be a

beatnik? Let Q = {0, 1}, Q? = Q,

aðvalue; inputÞ ¼ 1� input

and for multisets M = s[E(c)]

inputðMÞ¼
0 if most of the values in M are 0;
1 if most of the values in M are 1;

randomðf0;1gÞ otherwise,

8<
:

where the random choice is evaluated every time that c is

active. This process has halting states on networks which are

bipartite or almost bipartite. Let Kn denote the complete graph

on n vertices. On K(2m) a state s is halting if and only if

||s-1(0)|| = m, so K6 has 20 halting states. K3;K5; . . .K

ð2mþ 1Þ have no halting states. For i [ 2, Ki is not bipartite.

Theorem 4 BeatniKs May Not Halt There are no

halting states on complete networks with 2m ? 1 cells.

Every tree with more than one cell has halting states.

However, even when halting states exist they may be )-

inaccessible from other non-halting states. When such

halting states exist the probability of halting is strictly

between 0 and 1.

Proof Every state s on an odd complete network K(2m ? 1),

will have at least m ? 1 cells of a given value—say 0. For any

0-valued cell c, s[E(c)] has at least half of its values equal to

s(c) and so input = 1 - s(c) or input = random({0, 1}), so

c is unstable. At least half of the cells in any state on K(2m ? 1)

are unstable. There are no halting states.

Given a tree, construct a halting state by assigning 0 to

an arbitrary first cell, then 1 to its neighbors, then 0 to their

neighbors, etc.

A binary tree T7 = [w, [u1, [v1, v2 ] ] , [v3, [u2, u3]]] on

C = {u1,…v1,…,w} has four never-halting states

r1, r2, r3, r4 defined by

r1 ¼ ½0; ½0; ½1; 1��; ½1; ½0; 0���; r2 ¼ ½1; ½0; ½1; 1��; ½1; ½0; 0���;

r3 = 1 - r1 and r4 = 1 - r2. In each state, w is unstable,

while the ui and vj are stable. Sets {r0, r1} and {r3, r4} are

closed under ). Still, being a tree, T7 has halting states t1
and t2 = 1 - t1. These halting states are inaccessible from

r0, r1, r2, r3. Initial states could be halting or never-halting

and so, on such trees,

0\Pfs0 ¼ t1 or s0 ¼ t2g�PfBeatniks halts on T7g. . .

� 1� Pfs0 ¼ r1 or. . . or s0 ¼ r4g\1:

h

It is not uncommon to see ‘‘something happens with

probability 1’’ or, ‘‘… with probability 0’’. But in Beatniks

on trees like T7 the probability of halting is strictly between

0 and 1. This suggests that our work could go beyond

traditional 0,1-laws and into analysis6 using Lebesgue

integration7 of real functions on the product space ðQCÞN
with measure l (Sect. 2).

6 ‘‘von Neumann thought that automata mathematics should be closer

to the continuous and should draw heavily on analysis as opposed to

[the] combinatorial approach’’ (Burkes 1970). Theorem 3 is an

example of a 0,1-law.

7 For the analytical approach, think of ðQCÞN as being analogous to

the unit interval [0, 1], <, and computations corresponding to
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3PartitioN Using a transition function a on

Q = {0, 1, 2} which allows a cell c to be stable

if sðcÞ 62 s½EðcÞ�; tripartite graphs can be partitioned in a

way similar to 2PartitioN on bipartite graphs. Although

they are not what we think of as being amorphous, every

circuit C2;C3; . . .Cm; . . . has a halting state.8 While com-

plete graphs K4;K5; . . .Kn; . . . have no halting states.9

Tripartite networks have at least six halting states.

This process is interesting because the problem of

finding a partition for a tripartite graph is NP-complete

(Garey and Johnson 1979). And so our eventual proof that

3PartitioN halts on tripartite (C, E) could be taken as a

demonstration of the computational power of this model.

Each network represents one instance of this family of

problems. Since networks are free variables, one may think

of them as being the input data structures. There is little

intelligence in 3PartitioN. Instead this process is executing

a blind search of the state space (which will take expo-

nential time) until a state satisfying a simple test is reached.

However, 2PartitioN’s global action is not NP-complete.

Seven types of neighborhoods are described Q? =

{0, 1, 2, 01, 02, 12, 012}. Let

aðvalue; inputÞ ¼ ðvalueþ 1Þ mod 3 ifvalueis ininput

value otherwise,

�

inputsðcÞ ¼

0 if only 0 is present in s½EðcÞ�;
1 if only 1 is present in s½EðcÞ�;
2 if only 2 is present in s½EðcÞ�;
01 if 0;1 are present in s½EðcÞ�; but not 2;
02 if 0;2 are present in s½EðcÞ�; but not 1;
12 if 1;2 are present in s½EðcÞ�; but not 0;
012 otherwise.

8>>>>>>>><
>>>>>>>>:

Theorem 5 Halting for 3PartitioN If (C, E) is tripartite,

then for every s0 there exists a halting computation s0)r0

� � � )rN�1
sN . . . with sN appropriately partitioning

(C, E) and N B 2||C||. 3PartitioN almost always (i.e.,

with probability 1) halts on tripartite (C, E).

Proof Let (C, E) have a halting state t. If sm is not halting,

let

rm ¼ fc j smðcÞ 6¼ tðcÞ and c is unstable in smg

and sm )rm
smþ1. Since unstable cells appear as edge pairs,

rm is non-void. No cell c can change its value more than

twice before it matches t(c) and is dropped from rm. So, the

process halts (possibly at t) in at most 2kCk steps. h

At first glance, this theorem seems to say that this NP-

complete problem can be solved in \2kCk steps. Obvi-

ously false. Remember that we started with an answer then

designed a computation to lead us to an answer. We didn’t

have to use a halting state in the proof of halting for

2PartitioN. So it is no surprise that this computation is short

and to the point. The hard part is to find t. If we could

always guess the right computation then tripartition would

be easy, and we would have something like P = NP.10

Non-determinism plays a key role in this proof.11 There

are many ways to see that randomness can add real power

to algorithms. Another is based on comparing the asyn-

chronous state-transition graph (QC, )) to its synchronous

subgraph (QC, )C) which is often not even connected.

Since computations correspond to paths through their

corresponding graph the possibilities for asynchronous

computations are far greater than for synchronous.

Recently, Nazim Fates has made a similar point ‘‘Ran-

domness Helps Computating’’ for cellular automata [11].

5 The state transition graph (QC, ), T)

Computations can be viewed as paths through the state

space. Asynchronous activity often gives computations

access to nearly every state.

From an automaton (Q, Q?, a, input) for cells and a

network (C, E) defining neighborhoods, (QC, )) is the

state transition graph. The state-transition graph may

contain halting states which eventually stop random paths.

For other processes, computations may be trapped by

Footnote 7 continued

decimals in f0; 1; . . .9gN. Consider the partial function h : ðQCÞN
! N which, for each s ¼ hs0; . . .si; . . .; i; is defined

hðsÞ ¼ min i ½siis a halting state� if s is a halting computation;
undefined otherwise.

�

For a process which halts with probability 1, the expected halting time

isZ
QC

hðsÞdlðsÞ:

This would be the sort of analytical result that von Neumann had in

mind.
8 Alternate 0,1 value assignments as you move around Cm, until the

last cell which is set to 2.
9 Any three cells with values 0,1,2 form a triangle, so the fourth cell

cannot be stable with one of these values.

10 The input s0 consists of x = ||C|| � log2(||Q||) bits of information, so

P and NP would be sets of computations of length p(x), where p is a

polynomial.
11 I conjecture that, if the non-determinism seen in r-selection is

pseudo-random, rather than strictly random, then there can exist a

tripartite graph and s0 for which 3PartitioN fails. The failure would of

course be due to the computed . . .rm; . . . containing a pattern which

perpetuated instability. This could also be true of halting for

2PartitioN. To give the reader something to work with, I assume

that pseudo-random means computable using memory which is linear

in ||C|| ? ||Q||—as if the process were being simulated in a machine

which generates the . . .rm; . . . with this bound on memory.
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attractors—minimal disjoint non-void subsets of QC which

are closed under ). Attractors are seen in HearT, HearT*

and SpotS3.

2PartitioN is an unrestricted search which eventually

stumbles into a halting state. Such searches take time

which is exponential in kCk : add one cell to C and the

number of states (and the expected search time) increases

by a factor of ||Q||. Search time is on the order of ||Q||||C||.

A computation could reach a state s one cell-value away

from a halting state and still wander away from the solution

losing all of the ground gained. This is the nature of the

undirected random search.

UðsÞ ¼ jjfc j c is unstable in sgjj determines a gradient

on the state space leading down to halting states. Giving a

process the ability to move down such a gradient will dra-

matically improve the expected halting time; ideally, while

preserving the power of asynchronous activity. This must be

done locally for the process to remain amorphous.

The state space also provides a framework for algebraic

calculations. From activity probabilities p(r), we can

define transition probabilities

Pfs) tg ¼ Psðs; tÞ ¼
X
s)rt

pðrÞ:

Expected values can be defined and calculated. For example,

the expected halting time of computations starting at

s, h(s) (here defined on states s, not computations s as in

Sect. 4) is defined recursively by equations

hðsÞ ¼ 1þ
X

t

Pfs) tghðtÞ and hðrÞ ¼ 0;

for unstable s and halting r. If halting states exist these

equations may be solved. Using the uniform probability

qðsÞ ¼ kQk�kCk that s is initial, the expected halting time

for the process is

E½steps to halting from s0� ¼
X

s

qðsÞhðsÞ:

This can be expressed by an equation using the transition

matrix T.

Imagine states (linearly ordered, or with integer codes)

as indices for vectors and matrices. Define the transition

matrix T, by

Tt;s ¼ Pfs) tg:

Probability vectors q are column vectors indexed over QC.

Let qs ¼ qðsÞ be the probability that s is an initial state. Then,

qm ¼ Tmq is the distribution qmt ¼ Pft ¼ smg

that t is the mth state of a random computation. Examples

of these algebraic calculations are given in Sect. 6.

Every process involves three graphs—the cell-commu-

nications graph (C, E), the value-transition graph (Q, ?)

defined by a, and the state-transition graph (QC, )).

A state s:(C, E)? (Q, ?) is a homomorphism if it pre-

serves edges—i.e., if

cd 2 E implies sðcÞ ! sðdÞ or sðdÞ ! sðcÞ:

In 2PartitioN, every state is a homomorphism because

(Q, ?) is complete.

Homomorphisms are similar to continuous functions.

Homomorphisms also exist between (C, E) and itself, or

(QC, )) and itself. In these cases, a one-one homomor-

phism is an automorphism. H � QC is the set of states

which are homomorphisms. Any minimal non-void subset

of QC which is closed under ) is an attractor. Often,

attractors are subsets ofH—e.g., HearT and 2PartitioN. On

C4, HearT has one attractor which contains 168 homo-

morphisms (mechanically counted).

Now, in addition to infinite branches in a )-tree

(Sect. 2), and decimals in [0, 1], we have paths through the

state graph (QC, ), T) as metaphors for computation.

6 Four programming styles

2PartitioN may be thought of as a random search mecha-

nism with a definition (in local terms) of a halting state.

Search continues in response to a failure of a state to satisfy

the definition. 2PartitioN* is a gradient-descending pro-

cess whose computations tend to move down the instability

gradient of (QC, ), T) until the definition is satisfied. A

third style can be seen in 2PartitioN#—a non-homoge-

neous.12 version of 2PartitioN which never activates a

given cell. Search is now restricted to states extending the

given cell’s original value. This is motivated by the idea of

a crystal growing from a ‘‘seed’’. A fourth style uses

control on activity. In 2PartitioNw, cell activity occurs in a

wave rolling through the network. A wave of activity is

used by Turing (1952) in his solution to the leopards’ spots

problem.

2PartitioN* For the instability gradient, we might try

inputðMÞ¼
0; if most values in M equal 0;
1; if most values in M equal 1;
randomðf0;1gÞ; otherwise;

8<
:

and a(state,input) = 1 - input. But this process fails on

the tree T7 of Theorem 4. The correct definition follows.

Let P{M = 0} be the fraction of M’s values equal to 0,

define

12 ‘‘Non-homogeneous’’ because one cell is not executing the a used

by the other cells. Not absolutely amorphous because the designation

of an inactive cell takes place outside of a, input. The gradient

sensitivity of 2PartitioN* is, on the other hand, defined within input

and based only on local information.
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inputðMÞ ¼ 0; with probability PfM ¼ 0g;
1; with probability 1� PfM ¼ 0g;

�

and a(state, input) = input. For s0 on T7, {s0,s1} is no

longer closed under ). A state s is halting if and only if

P s½EðcÞ� ¼ sðcÞf g ¼ 0 for each c;

which is equivalent halting for 2PartitioN. But is 2Parti-

tioN* faster?

Using the algebraic methods described in Sect. 5 on C6 with

activity probabilities p(c) = 2-1 and QC indexed as follows

we calculate13 transition probabilities for 2PartitioN* (2Parti-

tioN) as…
P
fs1) skg ¼ 16

210 ð¼ 16
210Þ;

P
fs2) s4g ¼ 24
210 ð¼ 32

210Þ;
P
fs2) s6g ¼ 72

210 ð¼ 32
210Þ;

P
fs2) s22g ¼ 72
210 ð¼ 32

210Þ;
P
fs4) s1g ¼ P
fs4) s22g ¼ 9

210 ð¼ 16
210Þ;

P
fs4) s2g ¼ 27
210 ð¼ 16

210Þ;
P
fs22) s22g ¼ 1 ð¼ 1Þ:

The expected halting times h(s) for 2PartitioN* are defined

by equations

hðs1Þ¼1þð 1
26 hðs1Þþ���þ 34

210 hðs4Þþ���Þ;...
hðs4Þ¼1þð 34

210 hðs4Þþ���þ 33

210 hðs7Þþ���þ 32

210 hðs21Þþ���Þ; ...
hðs22Þ¼0;...etc:

Equivalently, working in matrices and vectors with these

indices, T*’s values include

T
2;1 ¼ T
4;1 ¼ T
22;1 ¼
16

210
; T
1;4 ¼ T
22;4 ¼

9

210
;

T
22;22 ¼ 1; T
n;22 ¼ 0 ðn 6¼ 22Þ; . . .

with the symmetry T
j;i ¼ T
65�j;65�i. The expected halting times,

for t halting and s non-halting, are defined using matrices as

where is the vector of all 1’s and h is the vector of

expected halting times—e.g., h22 ¼ 0—all indexed over

QC. Solve these equations, then for the initial state use q ¼
\ � � � 2�6; � � � [ to get

E(2PartitioN halting time) ¼ 16:57;

E(2PartitioN* halting time) ¼ 9:39;

E(2PartitioN# halting time) ¼ 14:95:

Add the edge 14 to C6 to get a network with slightly higher

average cell degree—call it C4C4. Repeat the algebra and

the speed-ups are better

E(2PartitioN halting time) ¼ 22:27;

E(2PartitioN* halting time) ¼ 8:21;

E(2PartitioN# halting time) ¼ 12:97:

So algebraic analysis shows a significant speedup, on these

small networks. I have no algebra for 2PartitioNw, but

simulations suggest

E(2PartitioNwhalting time) � E(2PartitioN# halting time)

and this method of waves has been demonstrated by Coore

(1999).

Theorem 6 2PartitioN* Halting On a bipartite network,

2PartitioN* almost always halts.

Proof Similar to the proof of halting for 2PartitioN

except that (due to the non-determinism) qXn and qXn?1

may not be disjoint, so X0 � � � �Xm � Xmþ1 � � � �C:

If k is the maximal degree of cells in (C, E), then the

expected number of times that an s-unstable cell c, must be

active before s(c) changes is at most k ¼ 1
k

1þ 1
k

k�1
k

2þ
� � � þ 1

k
ðk�1

k
Þjðjþ 1Þ þ � � � : For some �[ 0; these compu-

tations will halt in k||C|| steps with probability 	 �: And

so, computations of length mk||C|| fail to halt with proba-

bility \ð1� �Þm: Over the long run, these processes fail to

halt with probability 0 ¼ limm¼1ð1� �Þm: h

Theorem 7 2PartitioN# 2PartitioN# halts on bipartite nets.

Proof The original proof for 2PartitioN works here. h

For 3PartitioN*, I have no gradient. A successful gradient

for 3PartitioN would enable the process to halt in (expected)

polynomial time—polynomial in ||C|| � log2(||Q||).

7 Patterns in attractors

Three versions of SpotS, for spatial patterns, and

HearT*, for temporal patterns, are developed in this sec-

tion. SpotSi were inspired by Turing (1952).

SpotS1 has values r for red and y for yellow. A red cell

is not stable until its neighbors are all yellow. A yellow cell

is not stable until it has a red neighbor. If reds are not

13 Imagine s4 )r s5. In 2PartitioN, r = {1, 2, 3} is only possibility,

so T5,4 = 2-6 = 16 � 2-10. But in 2PartitioN* a second possibility is

r = {1, 2, 3, 4}, and in each cell has a 2-1 chance of receiving the

appropriate input, so the probability of the transition is

T
5;4 = 2-62-3 ? 2-62-4 = 3 � 2-10. For the transition s6 )r s6,

eight cases make T6,6 = 2-3 and 32 cases make T
6;6 = 9 � 2-5 [ 2-2.
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tightly packed, then yellow surrounds a yellow cell, mak-

ing it unstable, it becomes red.

Theorem 8 SpotS1 Halts On every (C, E), SpotS1 will

halt.

Proof First, build a halting state from a first red cell c1 by

coloring q{c1} yellow, then choose a second red cell from

c2 [ q({c1} [ q{c1}) and on until a halting t has been

constructed. Second, use t to construct a computation sat-

isfying the necessary three properties (Sect. 3), finally

conclude that almost every computation halts. h

SpotS2 This process wraps each red cell in a ring of blue

cells and then constructs a minimal yellow background, with

some white where unavoidable. White surrounded by white

is unstable and becomes red. We require (1) reds to have blue

neighbors only, (2) blues to have exactly one red neighbor,

(3) yellows to have at least one blue neighbor, and (4) whites

to have yellow neighbors but no blue neighbors. The first

requirement guarantees that yellows have no red neighbors.

Given Q = {r, b, y, w} and Q? = Q [ {o}, define

aðvalue; inputÞ ¼ input; if input¼ r;b;y;w;
randomðfr;b;ygÞ; otherwise,

�

inputðMÞ ¼

r; if M contains only b;
b; if M contains exactly one r;
y; if M contains at least one b;
w; if M contains only y;
o; otherwise.

8>>>><
>>>>:

Halting states exist on every network, so computations

eventually halt. The only flaw is that blue rings, for

different red cells, are allowed to touch. SpotS3 corrects

this problem (Fig. 2).

SpotS3 detects touching blue rings. Dynamic indices

(hidden variable) are introduced Q = {r1, r2, r3, b1,

b2, b3, y, w}. Invisible changes r1! r2! r3! r1! . . .

and b1! b2! b3! b1! . . . advance red indices while

neighboring blues keep up. So that a stable blue bi will be at

most one behind its rj center—i.e., j = i or j = (i ? 1)

mod3. Touching blue rings follow different red centers and

eventually have an index conflict—i.e., a bi will see its rj

neighbor and a bk neighbor k = (j ? 1)mod3. This is indi-

cated by input = o. A destabilized spot is deconstructed.

Let Q? = Q [ {o} then, for j = (i ? 1)mod 3 and

k = (j ? 1)mod 3,

inputðMÞ

¼

rj if M contains bi and possibly bj but nothing else,

bj if M contains only rj;bi;bj; y;

y if M contains blues and whites but no reds,

w if M contains only y;

o otherwise,

8>>>>>><
>>>>>>:

aðvalue; inputÞ

¼
randomðfr1; r2; r3; b1; b2; b3; ygÞ; if input ¼ o;

input; otherwise.

�

This process eventually settles into an attractor whose

states have fixed color assignments and changing indices

on red and blue values (Fig. 3).

HearT* is a gradient following process which develops a

temporal pattern by coordinating cellular oscillators. HearT*

is not intended to halt, instead computations enter attractors

composed of states which are homomorphisms of the net-

work into (Q, ?). The gradient approaching these attractors

is determined by the number of edges broken by s.

Given Q = {0, 1, …c, 9} and Q? = Q, define

aðvalue; inputÞ ¼ ðvalueþ inputÞ mod 10;

inputsðcÞ ¼
0 if BsðcÞ\BscðcÞ;
1 otherwise.

�

BsðcÞ¼kfd 2 EðcÞ j neither ðcÞ ! sðdÞ; nor sðdÞ !sðcÞgk
counts edges at c broken by s. When applied to

scðdÞ ¼ sðdÞ if d 6¼ c;
ðsðcÞ þ 1Þ mod 10 otherwise.

�

Bc
sðcÞ counts edges broken by advancing s(c). Once HearT*

reaches a homomorphism, subsequent states will be

homomorphisms. The original HearT differs in that

inputsðcÞ ¼
0 if BsðcÞ ¼ 0 and 0\BscðcÞ;
1 otherwise.

�

This removes the B-gradient used to guide HearT* to an

attractor. HearT and HearT* have the same attractors But

before entering an attractor Bs occasionally increases—

even for HearT*.14

In the plot at Fig. 3, we see computations for HearT* and

HearT on the 200-cell network shown in Fig. 1. Both pro-

cesses begin at the same state, but HearT*’s search (blue)

Fig. 2 A state from an attractor for SpotS3

14 From s = 0131 on C4 we have B0131 = 2. There will be three, out

of 16 possible next-states, which move up-gradient—

B0242 = 4, B0241 = 3, B0142 = 3.
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reaches an attractor and begins coordinated oscillations in

fewer than 500 steps, while HearT is still searching (red)

after 2,000 steps. This plot shows ||sn
-1(0)|| as a function of n.

The table below gives another view of self-organization

by HearT*. The initial state s0 has about 20 cells for each

value. At step 200, cells are competing for values of 1 and

4. After step 400, the colony settles in on a single value.

Finally, morphogenesis for HearT* is seen in Fig. 4 as an

orbit through a space of value-count pairs (xm, ym) =

(||sm
-1(9)||, ||sm

-1(0)||) for m = 0…1,500. A counter-clock-

wise, outward spiral begins at s0 near (20,20). At the bottom,

motion to the right, is due to increasing the number of cells

whose value is 9. Then, motion to the top-left shows cells

moving from 9 to 0. Increased organization is seen as

increased radius for the spiral.

Strogatz (2003) has written on systems of oscillators

which vary continuously and so are not as simple as our

finite-state automata. He mentions a conjecture by Peskin

asserting that ‘‘[global] synchronization will occur even if

the oscillators are not quite identical’’. Given this, we might

ask ‘‘if cells in HearT are reduced from ten values to nine

values, or increased to eleven; will the process continue to

oscillate?’’. I conjecture ‘‘yes’’, as long as the nine’s don’t

touch the ten’s.

HearT* is robust in the face of colony growth, and cell

death. Living samples of cardiac tissue develop a heart-beat

without centralized control.15 An interesting experiment,

after such a colony has self-organized and begun to beat,

would be to cool (thus slow) the cells on one half of the

culture but not the other. If cells in the warmer half slow their

beat to match their cooler mates, then these living tissues are,

like HearT, behaving to preserve continuity of values with

neighbors—just like our homomorphisms (Fig. 4).

8 Algebraic calculations

OddParitY is defined on Q = {0,1} with Q? = Q by

aðvalue; inputÞ ¼ 1� input

inputsðcÞ ¼
0 s½EðcÞ� contains an even number of 1s;
1 otherwise.

�

An s is halting if and only if every s[E?(c)] has odd parity,

or

X
d2EþðcÞ

sðdÞ

0
@

1
A mod2 ¼ 1:

On C6, OddParitY has four halting states:

111111, 100100, 010010, 001001 ; C10 has one, and K4

has eight. But, based on previous proofs, it is hard to

imagine a general proof of halting for this process.

Theorem 9 OddParitY Halting Halting states exist on

every (C, E).

Fig. 4 HearT
 : an (xm, ym) orbit xm = ||sm
-1(9)||,ym = ||sm

-1(0)||

Fig. 3 Gradient-directed wave formation in HearT*, but not HearT

15 See videos of tissues it at http://www.youtube.com/watch?v=Y5u

KMM8Od9g or http://www.youtube.com/watch?v=BJTFeBGO_i0 or

Google ‘‘cardiomyocytes beating in vitro’’.
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Proof (This proof is based on Sutner (1989).) Work in

linear algebra with QC as the vector space, mod2 arithmetic

in Q and dimensions indexed by c 2 C: Halting is defined

by where E is the network’s adjacency

matrix,16 I is the identity matrix and is the all-1s vector.

If (E ? I) is invertible then otherwise

range(E ? I)= QC and so

kernelðE þ IÞ ¼ rangeðE þ IÞ? 6¼ ;:

If then has a solution

s which is halting. Now prove that is in the range.

Let be the all-0s vector and be the subvector of

v formed by restricting indices to Ct. For in ker-

nel(E ? I) let

(Ct, Et) is formed by deleting t’s 0-valued cells, so

(from t being in the kernel) implies

then, since every d has odd degree.

Edges are counted twice when summing cell-degrees, so

with ||Et|| equal to the number of edges in EtX
d2Ct

degreeEt
ðdÞ ¼ 2 Etk k ¼ 0;

since degreeE_t(d) is always odd, Ctk k is even,

and Finally, OddParitY

always has a halting state. h

Sutner’s proof has (C, E) as a free variable and so it is

not sensitive to the size of the network. I find this proof’s

power surprising (Fig. 5).

In 2009 and 2010, my students Arash Ardistani and

Robert Lenich independently calculated the expected

halting time as a function E(p) of p (the uniform probability

of cell activity, previously denoted d) for processes on C4

and several other small networks. Here is how it was done

with C4-states s1; . . .s16 indexed as in Sect. 6 The

expected halting time hi from a non-halting si satisfies

hi ¼ 1þ
X

j¼1...16

Pcfsi) sjg � hj

and hj = 0 for halting sj, where for example Pc{s3 ) s4}

= p2(1 - p)2 ? p(1 - p)3 = p(1 - p)2, etc. Solve these

16 equations for the hi to get equations such as

. . .; h3 ¼ �6p3 þ 15p2 � 14pþ 6

2pð2p2 � 3pþ 2Þð1� 2pþ p2Þ ; . . .:

Now, use these p-terms in EðpÞ ¼
P16

i¼1
1
16

hi to get

EðpÞ ¼ 3

32

�7� 20 
 p2 þ 8 
 p3 þ 18 
 p

ð2 
 p4 � 7 
 p3 þ 10 
 p2 � 7 
 pþ 2Þ 
 p

� 3

32

6 
 p3 � 15 
 p2 þ 14 
 p� 6

p 
 ð�1þ pÞ2 
 ð2 
 p2 � 3 
 pþ 2Þ

� 5

32

6 
 p3 � 15 
 p2 þ 14 
 p� 6

p 
 ð2 
 p2 � 3 
 pþ 2Þ 
 ð1� 2 
 pþ p2Þ

� 3

32

�7� 20 
 p2 þ 8 
 p3 þ 18 
 p

p 
 ð2 
 p2 � 3 
 pþ 2Þ 
 ð1� 2 
 pþ p2
:

Which is optimized by solving 0 ¼ d
dp

EðpÞ for p. The

solution p = 0.4064 gives E(0.4064) = 6.636. E(p) is

plotted above for 2PartitioN computations on C4 starting

(1) from s0 = [0, 0, 0, 0], and (2) from a (uniformly)

random initial state s0. We see

lim
p!0

EðpÞ ¼ 1 and lim
p!1

EðpÞ ¼ 1

because p = 1 corresponds to synchronous activity and

p = 0 corresponds to no activity, neither of which solves

the problem. So the fastest process is asynchronous (i.e.,

0 \ p \ 1). All other processes on all other nets

showed the expected halting time going to infinity

as p approached 0, and (most of processes) as it

approached 1.

9 Limits on amorphous computability

Imagine a process, call it ElectioN, which eventually halts

with exactly one cell in a computed value. I will prove that

no program exists which computes the desired state in the

Fig. 5 Expected halting times, E(p), as a function of activity p

16 Indexed over C, Ec,d = 1 if cd is an edge, =0 otherwise.
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absolutely amorphous model. This non-computability

result is analogous to the non-computability, by Turing

Machine, of the halting problem’s solution. The problem of

election in a distributed process has been discussed since

Le Lann (1977) and recently in dynamical amorphous

processes17 by Dereniowski and Pelc (2012).

In the following, a halting state s for ElectioN on

(C, E) is assumed to exist. Then a larger network (C0, E0) is

constructed with a halting state s0 for which ks�1ðaÞk 6¼ 1

for every a 2 Q: By contradiction, no program exists for

computing ElectioN’s halting states in an absolutely

amorphous environment (Fig. 6).

Theorem 10 ElectioN is not Absolutely Amorphous No

program exists which, independent of the underlying net,

almost always18 halts in a state s with ||s-1(a)|| = 1 for

some a 2 Q:

Proof Assume ElectioN has a program, and that

(C, E) has an s which is halting for that program. By

assumption, ||s-1(a)|| = 1 for some a. Let C0 be the set of

0,1-indexed copies of cells in C—i.e.,

C0 ¼ fci j c 2 C and i ¼ 0; 1g:

Choose a non-void subset F � E which is not a cut-set19 of

(C, E), then define edges on C0 by

E0 ¼ fc0d0; c1d1 j cd 2 E � Fg [ fc0d1; c1d0 j cd 2 Fg:

(C0, E0) is connected. Construct s0 by s0(c0) = s0(c1) = s(c) for

every c 2 C: From the construction, we have

s0½E0ðc0Þ� ¼ s0½E0ðc1Þ� ¼ s½EðcÞ�

for every c 2 C; so inputs0 ðc0Þ ¼ inputs0 ðc1Þ ¼ inputs0 ðcÞ
and

aðs0ðc0Þ; inputs0 ðc0ÞÞ ¼ aðs0ðc1Þ; inputs0 ðc1ÞÞ
¼ aðsðcÞ; inputsðcÞÞ:

Thus, s0 is halting on (C0, E0), ||s-1(a)|| is even for every

a. No value occurs exactly once. By contradiction, Elec-

tioN is not absolutely amorphous.20 h

When a unique value or token is needed, it can be

provided in s0; but then the initial state is not random and

the process is not absolutely amorphous.

The trick of Theorem 10 can be used to prove that there

is no absolutely amorphous process, Not2PartN (a com-

pliment for 2PartitioN), which halts precisely on networks

which are not bipartite. And, to prove that there is no

absolutely amorphous process, StricT3PartN, which rec-

ognizes networks which are tripartite but not bipartite.

Proof sketch: assuming that Strict3PartN exists, a halting

state s exists on C3 = ({a, b, c}, {ab, bc, ca}). Join copies

C31 and C32 by crossing the bc edges (producing b1c2 and

b2c1 in place od b1c1 and b2c2) to construct C6, and define a

state t on C6 defined from s by t(ai) = s(a),

t(bi) = s(b), t(ci) = s(c). Obviously a1,a2 are stable, but

what about the b’s and c’s? For b1; . . .

tðb1Þ ¼ sðbÞ;

Fig. 6 A stability-preserving

construction

17 Dereniowski and Pelc (2012) capture dynamics by allowing

identical anonymous agents to move through a given fixed graph.

They answer the question ‘‘for which initial configurations of agents

is leader election possible‘‘. Agents which are Turing machines which

are initially given an upper bound on the size of the graph. They show

‘‘leader election is possible when the initial configuration is asymetric

and agents can learn [the asymetry], regardless of the actions of the

adversary [demon]’’, so their result is not inconsistent with the non-

computability result proved here.
18 Given a measure l on set of events, we say that an action almost

always succeeds if and only if the set of successes has measure 1, and

the set of failures has measure 0.
19 F � E is a cut-set for the connected graph (C, E) if (C, E - F) is

not connected

20 In a 1980 paper, Angluin (1980) proved there exists no election

algorithm for a class of graphs containing both a graph G and a strict

covering G0 of G [by c]. Her proof (not unlike this proof) carried

computation steps on edges ab of G back to c-1(ab) of G0 to reach a

contradiction [on G0].
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t½Eðb1Þ� ¼ t½fa1; c2g� ¼ ftða1Þ; tðc2Þg ¼ fsðaÞ; sðcÞg
¼ s½EðbÞ�;

and aðtðb1Þ; t½Eðb1Þ�Þ ¼ aðsðbÞ; s½EðbÞ�Þ ¼ sðbÞ ¼ tðb1Þ;

so t is stable at b1. The remaining cells are the same, and so

t is a halting state. But C6 is bipartite - contradiction.

To go further into recursion theory these processes must

be expressed in the integer framework of Kleene’s partial

recursive functions. I cannot expect to carry everything into

recursion theory because the random choice function is not

Turing computable. But the deterministic part, of what has

been developed here is computable, and since the structures

are finite they can be coded21 eventually into N:

10 TokeN, GradienT and RaiN

A token is a unique value which moves through a network,

from one cell to a neighbor, without being assigned to more

than one cell at a time. Assuming that s0 has s0ðaÞ ¼ T 2 Q

for exactly one cell and s0(d) = q for all others, TokeN is a

process whose computations move T randomly through

(C, E) and without duplication. Further, TokeN is shown to

be self-stabilizing in the sense of Dijkstra.

TokeN First, the movement of T is described informally

as follows.

(1) Neighbors b, c of s(a) = T cycle q! r ! s! q

while sðaÞ ¼ T ! T as long as s[E(a)] does not contain

exactly one r (i.e.,receiver), but sðaÞ ¼ T ! T1 is

allowed when the neighborhood contains exactly one

r. All others, do q! q:

(2) The neighborhood of s(a) = T1 may have changed at

the moment of T ! T1; so T1! T (the advance is

retracted) if s[E(a)] does not still contain exactly one r.

But if s[E(a)] still has exactly one r = s(b), then the

token holder advances one more step T1! T2 ¼
sðaÞ: Neighbors of s(a) = T1 never change their

value while s(a) = T1, T2, so a new r cannot appear

among neighbors of a after T1.

(3) For neighbors of s(a) = T2, the token is passed to

b the singular receiver r ! T : At a; T2! T2 as long

as T 62 s½EðaÞ�; but T2! q after s(b) = T.

Now we go back to (1), except that T has passed from

a to b.

This process uses values Q = {q, r, s, T, T1, T2};

inputs T, qrs, r!qs are used in stage 1 and T1, T2 for stages

2 and 3. Thus Q? = Q [ {qrs, r!qs}.

aðvalue; inputÞ

¼

r if value ¼ q and input ¼ T ;

if value ¼ r and input ¼ T1;

s if value ¼ r and input ¼ T ;

if value ¼ s and input ¼ T1;

q if value ¼ s and input ¼ T ;

if value ¼ q and input ¼ T1;

if value ¼ q and input ¼ q; qrs; r!qs

if value ¼ T2 and input ¼ T ;

T if value ¼ T and input ¼ qrs;

if value ¼ T1 and input ¼ qrs;

if value ¼ r and input ¼ T2;

T1 if value ¼ T and input ¼ r!qs;

T2 if value ¼ T1 and input ¼ r!qs;

value otherwise.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

inputðMÞ

¼

T if M contains T;

T1 if M contains T1;

T2 if M contains T2;

qrs if M contains any of q; r; s; but the r is not unique,

r!qs if M has exactly one r; and possibly q’s and s’s;

q otherwise.

8>>>>>>>><
>>>>>>>>:

Dijkstra (1974) describes a network stabilization

problem. Certain actions must be performed serially by the

processors in the network. This requires a network procedure

which manages a token (which grants the privilege to act).

But the network is prone to failures which create a state with

more than one token—an unstable state. If TokeN is used as a

token manager on Dijkstra’s network then (given enough

time) it will, with probability 1, merge excess tokens until

only one remains. To prove this imagine a finite sequence of

states s0; . . .; sm is which sm has two Ts. A finite extension

. . .sm ) � � � ) smþn can always be found which moves these

tokens to a place where they share a neighbor d. Then extend

the computation to . . .sm ) � � � ) smþn ) � � � ) smþnþo

which ends with both tokens being simultaneously passed

to d—thus merging them. There is only one token in sm?n?o

and by the 0,1-Lemma, this merger of multiple tokens

happens with probability 1.

GradienTN Let Q ¼ f0; 1; 2; . . .;N � 1g up to some

large N, Q? = Q and input(M) = min(M)modN and

alpha(value,input) = (input ? 1)modN for M = s[E(c)].

Given networks with exactly one cell r (for root) inactive,

21 Let N
 be the least set containing N and closed under the formation

of lists. Most of the model described in Sect. 2 can be developed in

N

—i.e., C = [0, 1, …p] is a set of cells, E � C2 is a list of pairs,

Q = [0, 1, …q], Q? = [0, 1, … r] for q B r and a � Q� Qþ � Q is

a list of ordered triples. Multisets are represented as counting vectors

indexed over Q—i.e., [0, 3, 0, 0, 1, 0] represents {1, 1, 1, 4} when

q = 5. We have put no upper bound on the degree of cells, so Input

has an infinite domain and so it must remain a defined but computable

recursive function. Only the random choice function is excluded, but

our processes’ deterministic state-to-halting-state functions can be

defined random choice. Details are available in Stark (2013).
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and states s having 0 = s(r) and 0 \ s(c) for c = r, this

process eventually assigns to c a value equal to the length

of the shortest path connecting c to r. After value N - 1,

the counting starts over at 1. Subsequent processes may

appear to pass values down-gradient to r, by allowing

values to be read from up-gradient cells.

RipplE given a state s 2 f0; 1; 2gC; signals the presence

of a 2 to the rest of the network (imagine 0s) by propagating

out 2s, then reducing 2s to 1s, then 1s to 0s—all moving

away from the original s0(c) = 2. Values circulate

0! 2! 1! 0: With Q? = {0, 1, 2, 01, 12, 02, 012}

define

aðvalue; inputÞ

¼

2 for value ¼ 0 and input ¼ 2; 02;

2 for value ¼ 2 and input ¼ 0; 02;

1 for value ¼ 2 and input ¼ 1; 2; 01; 12; 012;

1 for value ¼ 1 and input ¼ 2; 12;

0 for value ¼ 0; 1 and input ¼ 0; 1; 01; 012;

0 for value ¼ 1 and input ¼ 02;

0 for value ¼ 0 and input ¼ 12;

8>>>>>>>>>>><
>>>>>>>>>>>:

inputðMÞ ¼

0 for M containing only 0s;
. . . . . .
12 for M containing only 1s; 2s;
. . . . . .
012 for M containing 0s; 1s; 2s:

8>>>><
>>>>:

The first two lines in a’s definition apply to cells just

before, and at the leading edge of the ripple. In the

remaining lines, the presence of a 1 indicates that the ripple

has passed.

In RaiN, new 2-values spontaneously appear (as input, not

as computed values) in states during this computation and

trigger their own ripples (like rain drops on a pond). Unfor-

tunately, if they appear near a 1, they will degenerate (third

line above) without a ripple. So a pre-2 value 3 will represent

the rain drop. We need only add 3 to Q and two lines to a

aðvalue; inputÞ ¼
3 for value ¼ 3 and input 6¼ 0;
2 for value ¼ 3 and input ¼ 0;

. . . same as for RipplE . . .

8<
:

Input will be blind to 3, and the new 3 is preserved until its

neighbors settle down to 0s. RaiN is used in XHalT?.

11 Composition and other operations

Operations on processes—product, serialization, and

composition—are presented by example.

TokeN2 is the product of TokeN (QT, QT?, a, input)

with itself. This construction uses QTT = (QT)2 and

QTT
? = (QT

?)2—pairs of values from TokeN. Projections are

(sq)1 = s and (sq)2 = q for sq 2 QTT ; and M1 ¼ fv j vw

2 Mg; etc. for M � QTT : The program is completed by

inputTTðMÞ ¼ ½inputTðM1Þ; inputTðM2Þ� for M � QTT ;

aTTðvalue; inputÞ ¼ ½aTðvalue1; input1Þ; aTðvalue2; input2Þ�:

(T and TT are used as subscripts on Q to avoid confusion

with the set exponent QC.)

To have tokens move through (C, E) independently,

activity in the first and second dimension must be inde-

pendent. For r = [r1,r2] where r1; r2 � C;

s)TT
r s0 is s1 )T

r1
s01 and s2 )T

r2
s02:

Usually, process products are a framework for the

exchange of information (between the processes). But not

in TokeN2.

SeriaLY is the token-activated serial-execution of Y. This

process could as well be called if-TokeN-then-Y. Informa-

tion from the first process (the presence of the token at a cell)

is used to determine the cell activity which executes Y. Since

there is only one token, Y experiences serial execution.

For example, let Y be 2PartitioN, and T2P be

SeriaL2PartitioN. The languages are QT2P = QT 9 Q2P and

QT2P
? = QT

? 9 Q2P
? . Transition and input, for s : C ! QT2P

and M = s[E(c)] on (C, E), are

aT2Pðvalue; inputÞ

¼ aTðvalue1; input1Þ;a2Pðvalue2; input2Þ½ � if value1 ¼ T;

aTðvalue1; input1Þ;value2½ � otherwise,

�

inputT2PðMÞ ¼ inputTðM1Þ; input2PðM2Þ
� �

:

If both processes are active at r and a cell c 2 r holds the

token, then

s)T2P
r s0 if and only if s1 )T

r s01 and s2 )2PN
c s02:

XHalT? is the product of X with a process which copies the

X’s old value from s(c)1 to s(c)2 before X assigns a new value to

s(c)1, and finally RaiN (which spreads news of some

s(c)1 = s(c)2 to other cells by s(c)3 = 3). After X has a

halting state in s1, this process will have solid 0s in s3. For RaiN,

let QR = {0, 1, 2, 3} and QR
? = {0, 1, 2, 3, 01, 02, 12, 123}.

Set QXH? = QX 9 QX 9 QR and QXH?
? = QX

? 9

QX
? 9 QR

?, then

aXH?ðvalue; inputÞ

¼

aXðvalue1; input1Þ; value1; 3½ �
if value1 6¼ value2;

aXðvalue1; input1Þ; value1; aRðvalue3; input3Þ½ �
otherwise,

8>>><
>>>:

where aR is RaiN, and

inputXH?ðMÞ ¼ ½inputXðM1Þ; 0; inputRðM3Þ�
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for M � QXH?: After X halts, RaiN will spread 0s to every

s(c)3.

(Y � X) is the composition of processes Y and X with

shared values QX = QY. It uses XHalT? to initiate Y. Set

QY � X = (QXH?) 9 QY and treat these values as having

projections—½value11; value12� 2 Q2
X ; value13 2 QR; value2

2 QY so value1 = [value11, value12, value13]—then define

aY�Xðvalue; inputÞ

¼
aXH?ðvalue1; input1Þ;aYðvalue11; input11Þ
� �

if 0\value13;

aXH?ðvalue1; input1Þ;aYðvalue2; input2Þ
� �

otherwise,

(

and for QY � X
? = QXH?

? 9 QY
? and M � QY�X ;

inputY�XðMÞ

¼
inputXH?ðM1Þ; inputYðM11Þ
� �

if 0\value13;

inputXH?ðM1Þ; inputYðM2Þ
� �

otherwise.

(

Y runs on the intermediate values computed by X, pro-

ducing nonsense, until X reaches its halting state (indicated

by 0 = value13). Finally, working from X’s halting state,

Y’s calculations break away and continue on their own. For

Y, there may be many false starts, but the values and inputs

from these false starts are forgotten each time RaiN signals

(by 0 \ value13) a change in X. Communication from XH?

to Y is seen in the first lines of each definition. If X becomes

trapped in an attractor without ever halting, then Y contin-

ues to generate nonsense. So the composition succeeds

only if X halts and then Y halts working from the state left

by X.

12 TearS of the Sun

The author worked with Dr Leon Kotin (Fort Monmouth,

NJ) in the 1970s and 1980s to develop early versions of this

process—see (Stark and Kotin 1987) for an informal pre-

sentation. In the past two or three decades many others e.g.,

Hubbell and Han (2012) have further developed amorphous

sensor networks.

A network with a moving cell r is represented as

(Cn, En) where En(c) - {r} is more-or-less constant for

c = r and En(r) is variable, n ¼ 0; 1; . . . (Stark and Kotin

1987). With r as its root and N large, GradienTN is con-

stantly re-computing the cell-to-root distances. A global

input xn : Cn ! f0; 1; . . .g of sensor reports—xn(c) = 0

representing no alarm—is maintained at the cells. Occa-

sionally, the movement of unknown individuals (i.e., bio-

logical, infra-red emitters) past a cell c is detected and

expressed as 0 \ xn(c). These sensing cells are probably

stationary. The objects being detected are not a part of the

network. A mechanism for moving information, describing

the location (relative to r) of alarms, down gradient to r is

included. I call this canopy intelligence process TearS (a

variation on RaiN). The information consists of value1 the

nature of the alarm and value3 the distance to the nearest

alarmed cell.

Let Q ¼ f0; 1. . .g � f0; 1; . . .;Ng � f0; 1; . . .;Ng;
where N is at least the diameter of the network. The

structure of sðcÞ ¼ value 2 Q is broken down into

s(c)1 = xn(c) sensor input at c, s(c)2 is computed by Gra-

dienTN to be c’s distance from r, and s(c)3 the distance

from s�1ðf1; . . .gÞ—the set of alarmed cells. TearS is

defined by

aðvalue; inputÞ

¼
value1; 0; ðinput3 þ 1Þ½ � for c ¼ r;

value1; ðinput2 þ 1Þ; 0½ � for 0\value1;

value1; ðinput2 þ 1Þ; ðinput3 þ 1Þ½ � otherwise,

8><
>:

and for M � Q

inputðMÞ ¼ ½maxðM1Þ;minðM2Þ;minðM3Þ�:

The root is not necessarily the only changing part of the

network. Cells die and randomly-positioned replacements

are rewoven into (Cn, En)—using this simple program.

With a little more work the information passed to the root

could include the threat’s size and structure e.g., Han

(2012).

TearS processes a dynamic stream of data xn in con-

stantly changing network (Cn, En). The name was inspired

by a similar process depicted in the movie TEARS OF THE

SUN (Fuqua 2003). Half-way through the movie, thousands

of solar-powered infra-red sensors, C - {r}, are dropped

into the canopy of a forest. Using radio-frequency packet-

passing, they begin building a network En. A lap-top

r carried by the hero is included in the network. The

environment takes its toll, requiring new sensors to be

dropped in as old sensors retire—(Cn?1,En?1). The network

re-weaves itself so that the hero is always informed of the

position of the advancing bad guys.

13 Conclusion

. . . The greatest challenge today in all of science, is

the accurate and complete description of complex

systems. Scientists have broken down many kinds of

systems. The next task is to reassemble them, at least

in mathematical models that capture the key proper-

ties of the entire ensembles. (Wilson 1998)

My hope is to see the development of a powerful

computation theory for issues of biological information

processing. The absolutely amorphous model is mathe-

matically tractable and approximates both mature
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biological tissues and the informal notion of amorphous

computing seen in current literature. This brings insights

obtained through pure mathematics close enough to reality

to be biologically relevant—just as Turing’s leopards’

spots problem (Turing 1952) and its solution highlighted

the value of reaction-diffusion mechanisms in theoretical

biology.

It is clear that the methods which I called blind search is

not biologically realistic—a leopard embryo cannot invest

geological time into computing its spots. This demonstrates

the importance of gradients on (QC, )) and activity

organized into waves as a means of directing development.

The entropy gradient championed by Schrödingier (1944)

may be the most promising, since Shannon entropy

(Shannon 1998) equates morphogenesis to information-

reduction. These issues are a part of computational ther-

modynamics (Bennett 2003; Feynman 1996).

Non-homogeneous processes are central to biology.

Perhaps models developed in this formalism can suggest a

need for non-homogeneity in toy organs.22

Classical computation theory can offer guidance,23 but

is the powerful integer-coding used classically impossible

or inappropriate24 for amorphous computation?

I cannot believe that amorphous computing is, as some

have speculated, completed. Three billion years of evolu-

tion have left us with fantastic processes which need

mathematical modeling.
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