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Abstract This paper proposes an image quality assessment (IQA) method for image
inpainting, aiming at selecting the best one from a plurality of results. It is known that
inpainting results vary largely with the method used for inpainting and the parameters set.
Thus, in a typical use case, users need to manually select the inpainting method and the
parameters that yield the best result. This manual selection takes a great deal of time and
thus there is a great need for a way to automatically estimate the best result. Unlike existing
IQA methods for inpainting, our method solves this problem as a learning-based ordering
task between inpainted images. This approach makes it possible to introduce auto-generated
training sets for more effective learning, which has been difficult for existing methods
because judging inpainting quality is quite subjective. Our method focuses on the following
three points: (1) the problem can be divided into a set of “pairwise preference order estima-
tion” elemental problems, (2) this pairwise ordering approach enables a training set to be
generated automatically, and (3) effective feature design is enabled by investigating actually
measured human gazes for order estimation.
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1 Introduction

Photos sometimes include unwanted regions such as a person walking in front of a filming
target or a trash can on a beautiful beach. Image inpainting is a technique to automatically
remove such areas (“damaged regions” in this paper) and restore them [4, 5, 7, 8, 12, 15,
17, 34]. However, it is known that inpainted results vary largely with the method used and
the parameters set.1 For example, He et al.’s method effectively repairs images including
horizontally or vertically repeated textures [12] and Huang et al.’s method is especially effi-
cient for structural images [15]. In the conventional approach to obtain the best inpainting
results, a user selects the inpainting technique and tunes the parameters by trial and error,
while observing the inpainted results. Since this is time consuming and requires special
knowledge, a method for automatically selecting the best result is required.

Unfortunately, no method has been established to determine the inpainting method and
its parameters before conducting inpainting. Instead, we feel that methods for image qual-
ity assessment (IQA) that assess the quality of inpainted images have possibility to tackle
this purpose. Assessing quality of inpainted images is widely acknowledged as a task that
is difficult for automation because its judgment is quite subjective. To handle such tasks,
many IQA methods for inpainting focus on how the gaze gathers when a human watches an
unnatural image [3, 10, 23, 26, 28, 29, 31]. Through the assumption that unnatural removal
of unwanted region gathers human attention, they tried to find a way to represent subjective
quality by means of objectively measurable indicators. To obtain human attention, most of
these IQA methods use a computational visual saliency map, which simulates human gaze
density [3, 10, 23, 26, 29].

Although the basic idea of using human attention is reasonable, these existing methods
are difficult to apply for comparing the qualities of two inpainted images due to the follow-
ing two factors. One is the difficulty in estimating human attention. Actual human attention
changes by contexts such as the reason for viewing. Isogawa et al. [16] revealed that the
human gaze pattern while watching inpainted images is different from any computational
saliency maps. The other one is the resolution of a saliency map, which is generally coarse.
Thus, it is difficult to apply this method to the current task in which the difference resides
in a locally ubiquitous way.

Estimation of subjective quality is not unique to inpainting image. In the research field
of subjective-evaluation-estimation, learning-to-rank approaches have been investigated
actively [1, 6, 11, 18–21, 33]. Although for learning based approaches, large and represen-
tative training data sets are essential to improve estimation accuracy, accumulating training
data is difficult in view of annotation cost and fluctuation of user annotation. The learning-
to-rank framework replaces the subjective evaluation tasks as an ordering task without
estimating an absolute score. It is considered that it opens up a new era within the research
field of subjective evaluation. The problem setting is quite reasonable and reduces prepa-
ration costs since it enables learning without absolute scores annotated by human subjects;
selecting the better one is rather easier than providing the scores for images to be subjec-
tively evaluated such as inpainted images. We consider that the learning-to-rank framework
has the potential to further reduce the training data accumulation by making good use
of ordering traits. Recently, some studies have automatically generated and/or augmented

1Inpainting quality is quite substantially affected by parameters such as multi-scale level or patch size to
search appropriate regions for restoration. For variations depending on such parameters, please refer to
Figs. 10 and 11.
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training data by image processing [9, 24, 25]. We believe this concept is also applicable to
IQA for inpainting.

In this paper, we show how we tackle the task of obtaining the best inpainted result
among inpainted images obtained through various methods and parameters. We also propose
a new learning-to-rank based ordering approach for inpainted images. Unlike existing IQA
methods for inpainting, our method has a new feature that does not use a computational
visual saliency map but uses our investigation of human gaze while watching inpainted
images. Another important proposal is automatic generation of training data. By making
good use of pair-wise learning, we propose automatic generation of training pairs to improve
estimation accuracy. The contributions of this paper are as follows:

– This is the first trial for applying learning-to-rank for IQA of inpainted images.
– The proposed method enables automatically generated training data to be introduced

by making good use of a ranking mechanism, although the learning target is quite
subjective.

– It proposes new image features dedicated to inpainted image quality assessment on the
basis of gaze measurement experiments.

This paper is based on our previous conference proceedings [16] and adds a comprehen-
sive investigation on how the proposed features work and a novel method for accumulating
training data automatically to improve estimation accuracy. The rest of this paper is orga-
nized as follows. In Section 2 we briefly review related work. Section 3 investigates actual
human gazes to design effective image features for learning. Section 4 describes the learn-
ing based ranking method we propose, which was developed with the knowledge detailed in
Section 3. In Section 5 we verify the method’s effectiveness by comparing it with existing
IQA methods. We also describe the effectiveness of introducing an auto-generated training
set. In Section 6, we conclude the paper with a summary of key points and mention future
work to be done.

2 Related work

This section reviews previous studies. Section 2.1 introduces IQA methods for image
inpainting whose purposes are the same as ours. Then, in 2.2, we introduce a learning-to-
rank approach that has attracted attention as a method for estimating subjective evaluations.

2.1 IQA methods for image inpainting

Estimating quality is one of the difficult issues for image inpainting. The main reasons are
the ambiguity in subjective evaluations, and the cost for obtaining training data. Because of
the former issue, although many effective IQA methods for degraded images, e.g., burred,
compressed, or noised images have been proposed [11, 19–21, 32], these methods cannot
be applied assessing inpainted images.

To overcome the former issue and to obtain subjective evaluations stably, there are three
main approaches: reflecting human reactions such as gaze transition [23, 26, 28], asking
subjects to provide their judgments [10], and combining them [29].

The basic concept of human reaction based IQA is that less natural inpainted regions will
gather more gazes because of the unnaturalness for human perception. Thus, this method
estimates inpainted image quality on the basis of gaze density before and after images are
inpainted [28]. To reduce the cost for measuring actual human gazes, many metrics use
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computational visual saliency maps instead of actual gazes [23, 26, 29]. A computational
visual saliency map (“saliency map” for short), is a topographically arranged map that rep-
resents estimated visual saliency only from the image. If saliency maps well reflect actual
human gaze patterns, substituting them for actual gazes will work well. However, the accu-
racy of saliency maps is unfortunately quite limited as we mention in Section 3, and thus
the performance of saliency map-based IQA methods is also limited.

Learning based approaches that depend on support vector regression (SVR) have also
been reported [10, 29]. For these methods, subjectively annotated rating scores are essential
for training regression models. Because of the need for absolutely subjective scores, all of
the training data should be manually annotated, which is the second issue for building an
IQA method for inpainting. Thus generating training sets requires quite high annotation
cost. To overcome this issue, our method generates training data automatically as described
in Section 4.2.

2.2 Ranking based image evaluation for subjective judgment

In many subjective evaluation tasks, it is difficult to provide absolute scores. For example,
scoring the degree of smiles is a quite difficult task and the scores may vary largely by
question. Since estimating such varied subjective scores is quite difficult, sidestep methods
have been widely considered. Learning-to-rank based approaches are now acknowledged as
a promising solution. Rather than absolute scores, they provide a learning framework for
merely ordering scores among target samples. Coming back to the above cited example,
sorting the images by degree of smile is easier than giving smile scores to each image.

Among learning-to-rank approach variants, pairwise learning-to-rank methods have
gathered attention due to the ease with which they can be implemented. They have been fre-
quently applied for estimating preference order [1, 6, 18, 33]. Chang et al. estimated the age
of a single face image [6]. Yan et al. obtained the most visually appealing color enhancement
of an image [33]. Abe et al. estimated the surface qualities of an object, such as glossiness
or transparency from its images [1], and Khosla et al. estimated the most memorable region
inside images [18].

Learning-to-rank has also been introduced in IQA methods [11, 19–21]. Gao et al. [11]
and Xu et al. [19, 20] proposed blind image quality assessment frameworks for degraded
images, e.g., blurred or compressed images or images with white noise. In addition, Ma
et al. introduced learning-to-rank to assessing retargeted images [21]. Although retargeted
images are quite different from general degraded images that existing IQA methods deal
with, they examined and investigated the effects of learning-to-rank based IQA for image
retargeting.

Unlike existingmethods, the method discussed in this paper focuses on assessing inpainted
images. Since estimating the quality of inpainted images is a quite different task than assess-
ing other deteriorated images, we designed new image features dedicated for assessing
inpainted images. In addition, this paper shows that by using pairwise learning traits we can
produce training data automatically and use the data to improve estimation accuracy.

3 Toward effective image features: eye gaze investigation

Many IQA methods use visual saliency maps as substitutes for actual gazes. However, we
have doubts about the coherence of computational visual saliency and actual human gazes,
especially when observing inpainted images. Therefore, before we go into the proposed
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method, we will describe an eye gaze measurement experiment we conducted for two pur-
poses. The first was to show the difference between measured gazes and the saliency map
and to reveal the difficulty in using saliency maps instead of actual human gazes for IQA.
The second was to analyze the region and features within inpainted images we should focus
on to assess the quality of the images on the basis of measured gazes and the corresponding
subjective evaluations.

3.1 Procedure and set-up of eye tracking experiment

We conducted this experiment with the aim of verifying coherence between the measured
gazes and the saliency map. We also obtained subjective scores for each image to investigate
how gazes affected the total subjective image quality. Figure 1 shows the test procedure, in
which subjects repeated three tasks: (a) stare at a white cross on a black background for two
seconds to fix their initial viewpoint, (b) observe images for 10 seconds, and (c) provide 5-
point opinion scores representing image quality unnaturalness. The scores 1-5 respectively
corresponded to Very noticeable, Rather noticeable, Slightly noticeable, Hardly noticeable,
and Unnoticeable. Higher scores are better since they indicate that the unnaturalness that
occurs with inpainting is unnoticeable.

The observed image in task (b) includes original images and inpainted images. Original
images are images that are not inpainted. Inpainted images were generated with two meth-
ods, i.e., those reported by He et al. [12] and Huang et al. [15]. The subjects had no prior
knowledge on the types of images displayed (i.e., whether they were original images or
images that had been inpainted by using the methods reported by He et al. [12] and Huang et
al. [15]). To prevent the subjects from having prior knowledge of the material, we generated
three types of images generated from each of 100 original images. We asked 24 subjects (8
males and 16 females) with normal vision to report the image quality after observing the
displayed images. These subjects were divided into three groups and the subjects in each
group watched the same type of image. Each subject watched 100 images. We applied
a stationary Tobii eye tracker for gaze measurement. The LCD monitor used for stimulus
presentation was 21 inches (1280×1080 pixels). The monitor-observer distance was 60 cm.

3.2 Integrity between computational saliency maps and human visual attention

In Fig. 2, (a) shows an inpainting target image and (b) shows the inpainted result in which
an undesired man standing in front of a boat was removed. Measured human attention is

Fig. 1 Three step test procedure of the preliminary experiment conducted to elucidate the relationship
between human gaze and subjective scores. Subjects are required to; a stare at the white cross to fix initial
viewpoint, b observe an image, and c provide a 5-point opinion score (subjective assessment) of the image
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Fig. 2 Comparison between observed human visual attention and computational visual saliency. a Inpainting
target image. b Inpainted image. c Human visual attention overlaid on (b) (red gathers more gazes). e–
f Computational visual saliency overlaid on (b) (red gathers more gazes). Saliency maps are (d) Hou et
al.’s [14] used in Voronin et al.’s metric[29], e Achanta et al.’s [2] used in Trung et al.’s metric [26], and (f)
Walther et al.’s [30] used in Oncu et al.’s metric [23]

overlaid in (c). Calculated visual saliency maps obtained with calculation methods proposed
by Hou et al. [14], Achanta et al.’s [2], and Walther et al.’s [30] are respectively shown in
(d), (e), and (f ). These maps have actually been used for assessing the image quality of
inpainted images; they were respectively used by Voronin et al. [29], Trung et al. [26], and
Oncu et al. [23]. From these maps, we can observe that the resolution of computational
visual saliency maps is quite coarse and their results are significantly varied. Addition-
ally, saliency maps are quite different from human visual attention. As shown in Fig. 2b,
inpainting failed to fill the shape of the boat. Because this failure produces significant unnat-
uralness, the most salient areas for actual human gazes were those around the damaged
boat (See Fig. 2c). The areas around the boat in (d) and (e) were somewhat salient, but
were more salient in other areas (e.g., the other boats or the oars). In (f ) no saliency around
the boat was represented at all. These results suggest that it is difficult to use computational
visual saliency maps as a substitute for human gazes. Thus, it is essential to come up with
new image features that represent such unnaturalness.

3.3 Correlation between subjective quality and human visual attention
to damaged region contours

Human gazes are potentially an excellent means for assessing inpainting quality, and a met-
ric based on human gazes was proposed by Venkatesh et al. [28]. This metric categorizes
eye gaze position into two categories, i.e., inside and outside damaged regions. They use the
difference of amount of gazes between pre- and post- inpainted images. We were inspired
by this simple and effective idea and so tackled further analysis of eye gaze patterns in
categories other than inside and outside damaged regions. This section shows how we ana-
lyzed what we should focus on to assess the quality of the inpainted images on the basis
of knowledge of human attention and corresponding subjective evaluations. We believe that
this knowledge will be useful in developing an IQA method for image inpainting.

We analyzed the characteristics of observed gaze and corresponding MOS levels. The
MOS values are the average of the 5-point annotated scores provided by subjects as
described in the previous section. We first investigated on where human beings tend to
watch for inpainted results. Fig. 3a shows an example gaze histogram for the inpainted
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Fig. 3 Gaze measurement results; a gaze histogram with Fig. 2b, b relationship between the subjective score
and density of gaze within the vicinity of damaged region’s contour

image in Fig. 2b. Its vertical axis is the time the gaze was oriented and the horizontal axis is
the distance from the contour of a damaged region, where a negative value means inside the
damaged region. As shown in the histogram, around the contour, i.e., distance = 0, gathers
more gazes, which indicates the contour of the damaged region tends to be salient.

To be more specific, Fig. 3b shows the relationship between subjective score and gaze
density within the vicinity of a damaged region’s contour for two different inpainting meth-
ods. Green and red points are for the methods proposed by He et al. [12] and Huang et
al. [15]. Here, we set the contour vicinity to be within 30 pixels from the contour. This corre-
sponds to the 1.0 degree view angle we used in our experimental setup. As shown in Fig. 3b,
the correlation coefficients r for the inpainted results provided by He et al. and Huang et
al. are respectively r = −0.63 and r = −0.47. These results indicate a high negative cor-
relation exists between subjective scores and gaze density around the contour. Thus there is
a high probability that the image features around the contour are important for preference
estimation.

4 Proposed method

Now we are ready to describe our proposed method. Our goal is to obtain the best result
among inpainted images that are generated with different inpainting methods and parame-
ters. In Section 4.1, we describe our pairwise ordering method and in Section 4.2 show how
we automatically generated large auto-generated training set in which manual intervention
was not required. Then, in Section 4.3 we show effective image features for this approach,
which include the knowledge given in Section 3.

4.1 Ranking by assessing image quality with learning

Aiming at tackling the difficulty in reflecting subjective evaluations for inpainted results to
scores, we based our preference order estimation on a learning-to-rank approach. Figure 4
shows the overview of our proposed method.
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Fig. 4 Proposed method overview

Before we explain the details, let us briefly explain a typical pairwise learning-to-rank
algorithm. This algorithm premises a ranking function f (x), which computes the strength
of the target attribute for each sample, as described below. Hereafter, we use xi to denote a
feature vector extracted from sample image zi . The f (x) is trained so that the ordering of
the output value from the function f (x) reflects the user annotated preference order zi � zj

between image pairs. In a word, the function f should satisfy the following formula:

zi � zj ⇐⇒ f (xi) > f (xj ) (1)

We modeled f with the linear function f (x) = ω�x. Then inequalities (1) can be written
as below.

zi � zj ⇐⇒ ω�(xi − xj ) > 0 (2)

This mirrors the problem of binary classification. To implement the formulation that uses
binary classification to calculate the preference order of pairs of images, the pair-wise learn-
ing to rank approach is widely used. From among the various methods yielding pair-wise
learning to rank, we adopted RankingSVM [13] as it is used widely [1, 18, 33] due to its
effectiveness and ease of implementation.

In our method, function f is trained with the pair of image feature vectors described in
Section 4.3 with their preferences. We call a training data set of this type a “query” (see
Fig. 4e). Basically, all preferences for generating queries are manually annotated by sub-
jects. First, inpainted images with several parameters are generated with a masked image
as shown in Fig. 4i–a. These results are used to make a pair of train images like those in
Fig. 4i–b. Then, as shown in Fig. 4i–c, subjects were asked to provide their preference judg-
ment (x) to a pair of inpainted images (z). Subjects’ preferences are reflected to all image
pairs (Fig. 4i–d).

However, the training data shortage problem still remains. To solve this problem, we
additionally propose a way to automatically generate training data as shown in Fig. 4ii.
In this case, auto-generated images (Fig. 4ii–a) are used instead of inpainted images. The
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difference is that we already know that preferences depend on the degradation level. Thus
we can skip to annotation; images with preferences (Fig. 4ii–d) are directly generated with
image pairs (Fig. 4ii–b). In the next section we will describe how we designed a way to
automatically generate a training set for which manual annotation is not required.

4.2 Auto-generated training data

Existing learning-based IQA methods for inpainting learn the relationship between image
features and corresponding scores provided by subjects. Thus, they require user annotated
samples. Here, we propose one effective solution, i.e., an IQA method for inpainted images
by pairwise ordering. It is effective because it does not need any absolute scores but only
pairwise relationships.

We add some distortions, such as proportional changes in pixel values or applying a low
pass filter, to the original images that tend to occur as the result of inpainting. Several levels
of such distorted images and original images generate training data with the assumption that
increased distortion lessens preference. Of course, the original image has better quality than
the distorted image. Because our method requires only pairwise relationships, not absolute
scores, this simple relationship in which images become more distorted can work as a train-
ing data source. Figure 5 shows examples of several levels of auto-generated images for
training. The i-th auto-generated train image Ii is synthesized by combining the original
image Iorig and the i-th distorted image Di as below.

Ii(x, y) =
{

D
γ

i (x, y) ((x, y) ∈ �)

Iorig(x, y) (otherwise)
(3)

γ =
{

c (brighter or darker color distortion)

b (blur distortion)
(4)

where � is a masked region to reflect distortion (see Fig. 5a).
The reason we apply color and blur distortion is to simulate typical failures occurring as

a result of inpainting. Human attention is considered to be quite sensitive to unnaturalness
that is produced by differences in brightness and frequency components in images. To rep-
resent unnaturalness of this type, we focus on three types of distortion, i.e., that caused by

Fig. 5 Auto-generated images for training set. a Original image with region to be synthesized, which is
masked in red. b Multi-levels of auto-generated images with (i) brighter color distortion, (ii) darker color
distortion, (iii) blurred distortion
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brighter colors, darker colors, and blurring. The former two distortions represent undesired
inpainted results in which the colors of inpainted regions are brighter or darker color than
those outside the contour of the inpainted region. The latter represents undesired inpainted
results in which there is edge discontinuity around the inpainted region. Distorted images
of these types are generated as follows.

Brighter and darker color distorted images
We define the i-th brighter/darker damaged image as below:

D
(c)
i (x, y) = Iorig(x, y) + α β i (5)

β =
{ +1 (brighter color distortion)

−1 (darker color distortion)
(6)

where α is a scalar parameter. In the work we report in this paper, we set α = 10.
Blurred distorted image
We define the i-th blurred distorted image as below:

D
(b)
i (x, y) =

∑
(k,l)

Iorig(x − k, y − l) G(k, l) (7)

Here, G is a 2-dimensional Gaussian distribution with kernel size γ and we set γ = 2i + 1.

4.3 Features for learning-to-rank

Using the observation provided in Section 3, we designed image features for our framework.
We call this image feature patch-based contour consistency (PBCC). As we described in
Section 3, human perception is quite sensitive to color or edge discontinuities between in/out
of damaged/distorted regions, which we combined to design the PBCC.

The PBCC consists of the following two components: (1) differences between in/out of
damaged/distorted region, and (2) normalized image around the contour. The former rep-
resents continuity across the contour of the damaged/distorted region. The latter represents
the relative quality of images; the coherence of image quality between the inside and out-
side parts of a damaged region largely affects subjective quality. Thus, even if the image
quality within the damaged region is the same, its perceptive quality varies depending on its
surrounding region’s quality.

To make the features dedicated for evaluating inpainted images, these components are
computed along contours of the damaged/distorted region as shown in Fig. 6. We set the

Fig. 6 Damaged/distorted region and its contour. Pin(p) and Pout (p) show masked or non masked regions
in patch P(p), which is centered at point p
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features as x = (Xd,Xs), where Xd and Xs respectively represent the first and the second
components. Xd and Xs are computed as below;

Xd = ||S(Pin) − S(Pout )||22 (8)

Xs =
∑

p∈δ�S(Pout (p))∑
p∈δ�1

(9)

where � and δ� respectively denote a damaged/distorted region and its contour. Equa-
tion (8) represents squared 2-norm. Pin(p) and Pout (p) show masked or non masked
regions in patch P(p), which is centered at point p (See Fig. 6). In addition, S(Pin(p)) and
S(Pout (p)) represent average features of Pin(p) and Pout (p) as shown below.

S(Pin(p)) =
∑

q∈P(p)∩� s(q)∑
q∈P(p)∩�1

(10)

S(Pout (p)) =
∑

q∈P(p)∩�̄ s(q)∑
q∈P(p)∩�̄1

(11)

To the extent of the work we report in this paper, we used s(p) = (u(p), v(p)),
where u(p) = (uR(p), uG(p), uB(p)) and v(p), each denoting RGB pixel values and edge
strength.

5 Experiments

This section describes how we investigated the effectiveness of the proposed method. We
will start by detailing the experimental setups used in Section 5.1. We will then verify the
effectiveness our method by using the image features we derived and auto-generated train-
ing data as described in Sections 5.2 and 5.3, respectively. Section 5.4 then compares our
method with the other existing IQA methods. For easy understanding, Fig. 7 shows the flow
chart of the experiments conducted in this section.

Fig. 7 The flowchart for experiments conducted in Section 5. In Section 5.2, we investigated the effi-
cacy of our proposed image representation. Section 5.3 verifies the effectiveness of auto-generated training
data and Section 5.4 compares the estimation accuracy of our method and previous methods to assess their
performance
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5.1 Experimental setup

To generate training and test images, 111 images with manually masked damaged regions
were prepared. The 111 images were inpainted with two inpainting methods [12, 15] and
six parameters (3 patch sizes and 2 levels of multi-scale parameters) were used for each
method. The quality of the images was evaluated by 24 subjects (12 males and 12 females)
with normal vision. To make the users’ judgment easy, we randomly displayed a pair of
inpainted images side-by-side as shown in Fig. 8. Subjects were asked to choose one of three
options: r: right image is better, l: left image is better, and n: no preference order (i.e., it is
hard to decide which one is better or which one is worse). Excluding inpainted images with
extremely poor quality, we obtained 2,466 image pairs. We excluded poor quality images
because they might change subjects’ judgement criteria during the experiment.

We implemented RankingSVM with SVM Rank [27] with Radial Basis Function (RBF)
as the kernel function (γ = 2−7), and the regularization parameter (C = 2−5). We used a
desktop PC (Intel Core i7, 3.4GHz CPU, 32GB memory) and used Matlab to implement the
existing method, and Visual Studio 2012 to implement the proposed method.

5.2 Performance comparisons for different image features

This subsection verifies the effectiveness of PBCC, the proposed image feature described
in Section 4.3. Table 1 compares the performances attained with seven different image fea-
tures: Fall [11], GIST [22], EMD kernel [10, 29], Saliency, Fin, Fout , and PBCC. Note
that in verifying performance with these image features we used the same training data and
estimator; only the image features were different.

Here, we briefly introduce each of the compared features. Fall was originally used for
learning-based-IQA of degraded images. GIST is one of the most commonly used global
image features and is used for learning-based IQA for retargeted images. The EMD kernel
is calculated on the basis of EMD and has been used in learning-based-IQA for inpainted
images. Fin and Fout are the original features of this paper and represent the inside and out-
side parts of inpainted regions. The two methods represented by (12) and (13). were used
for verifying the effectiveness of contour consistency on which PBCC focuses. Saliency

Fig. 8 Annotation interface for obtaining training data. Two different inpainted results are displayed side by
side. Subjects annotate their preferences among three options: r: right image is better, l: left image is better,
and n: no preference order
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Table 1 Performance
comparison for different image
features [%]

Feature Estimation accuracy

Fall [11] 44.47

GIST [22] 60.80

EMD kernel [10, 29] 53.27

Saliency [30] 57.03

Fin 45.73

Fout 40.45

PBCC(Ours) 70.10

Fin =
∑

q∩� s(q)∑
q∩�1

(12)

Fout =
∑

q∩�̄ s(q)∑
q∩�̄1

(13)

Table 1 shows the estimation accuracy obtained, which is the ratio at which the prefer-
ence order is correctly estimated among annotated pairs. As can be seen from the table,
PBCC correctly estimated the image pair preferences at 70.10%, as opposed to the 40.45%
to 60.80% obtained with other methods. These results confirm the effectiveness of the
proposed PBCC.

5.3 Verification of effectiveness depends on the amount of auto-generated
training data

In this section we will show the results obtained in an investigation we conducted, which
indicate that the system performance changes depending on the size of the auto-generated
training set. First, we will show the results obtained withN = 0, in which no auto-generated
images are included. Second, we will show how an auto-generated training set affects the
performance. We used 100 original images to generate auto-generated image levels of N =
1 to 10. Each level included the three types of distortion described in Section 4.2. N levels
of auto-generated images make N+1C2 combinations of pair images, including comparisons
with the original image. All of these N+1C2 pairs are used for training. We investigated the
effect of the amount of data with N = 1 to 10. Figure 9 shows .a line graph in which the
left y-axis shows estimation accuracy depending on N , which means the number of auto-
generated images. Estimation accuracy without any auto-generated training set is annotated
with a blue line for reference. The ratio of subjectively annotated training data to the data
as a whole is shown by the orange line for the right y-axis. The training set in which N

was 3 consists of 900 pairs of samples based on the 100 original images, with three types
and three levels (six distortion combinations). In the same way, the training set in which N

is for comparison of computational saliency maps. The same as PBCC, Saliency is calcu-
lated so that it represents the inside and outside parts of inpainted regions and depends on
how PBCC is claculated. We used Walther et al.’s computational saliency map [30], as it is
used by previous work [23].
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Fig. 9 Investigation of performance depending on the amount of auto-generated training set. Estimation
accuracy depending on distortion level N is shown with magenta line with left y-axis. Accuracy without
any auto-generated data is shown in blue line. Ratio of subjectively annotated training data to whole data is
shown in orange bar graph with right y-axis

was 4 consists of 1800 pairs based on the 100 original images, with three types and four
levels (10 distortion combinations). These results indicate that a larger training set is more
effective; however, a set larger than certain levels of images results in worse performance.

One of the possible causes for this is that training sets with similar data may result in
worse total prediction accuracy. If N is increased, a similar training set generated with the
same original images will also increase. This additional data may decrease the effectiveness
of learning. We also consider that another cause may be that the rate of subjective annotated
data decreases as the amount of auto-generated data becomes larger. In the next section, we
will show how we used two settings with different amounts of auto-generated data as our
proposed methods: N = 0 with no auto-generated images, and N = 3, which was most
effective for learning.

5.4 Comparison with existing methods

We conducted experiments in which we compared our method with other IQA methods for
image inpainting, i.e., ASV S and DN by Ardis et al. [3], GDin by Venkatesh et al. [28],

Table 2 Prediction accuracy
comparison with existing image
quality assessment metrics [%]

Method Estimation accuracy

ASVS [3] 58.04

DN [3] 60.22

GDin [28] 55.88

BorSal [23] 50.46

StructBorSal [23] 51.55

Ours (w/o auto-generated data) 70.10

Ours (w/ auto-generated data) 73.87
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Fig. 10 Correctly ordered images with proposed method; a original image with damaged region masked in
red while b and c are inpainted pairs of images that subjects annotated as (b) � (c)

and BorSal, StructBorSal by Oncu et al. [23]. Because we did not use an actual eye gazes
for this experiment, we used a saliency map instead of human gaze for GDin; this is the
same method that was used in the comparison experiment reported by Oncu et al. [23]. For
our method we used N = 0 without an auto-generated training set and N = 3 with such a
set; the results obtained were presented in Section 5.3.

Table 2 shows the prediction accuracy obtained for each metric. Our method without/with
auto-generated training data correctly estimated the image pair preferences at 70.10% and
73.87% respectively, as opposed to the 50.46% to 60.22% obtained with other metrics. Thus,

Fig. 11 Incorrectly ordered images with proposed method; a original image with damaged region masked
in red while b and c are inpainted pairs of images that subjects annotated as (b) � (c)
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Fig. 12 To show the cause of the other existing methods’ failure, a saliency map is overlaid on the left top
and bottom images in Fig. 10. a–c are related to Fig. 10; original image and inpainted images. Upper images
show that there are no significant differences between the two inpainted images. In the lower images, b
gathered more gazes although subjects preferred (b)

the improvement our method achieved over existing methods was around 13 percentage
points.

Figures 10 and 11 respectively show example outputs of correct and incorrect estimation
obtained with our method. In both figures, (a) is an original image with a damaged region
marked in red, and (b) and (c) are the inpainted results annotated by subjects as (b) �
(c). In Fig. 10, (b) images are successfully inpainted while example (c) was an inpainting
failure in terms of both color consistency and structure. Our method successfully estimates
preferences for such image pairs. We consider that because our image feature design focuses
on the unnaturalness produced by color or structural discontinuity, it works well as the
Fig. 10 results show. It is especially notable that none of the other existing metrics correctly
estimated the preferences for the top left images in Table 2. Other than StructBorSal [23],
these methods also failed to estimate preferences for the bottom left images.

We consider that these methods failed due to the uncertainty of the computed visual
saliency maps. To demonstrate the cause of the previous method’s failure, Fig. 12 shows a
saliency map overlaid on the left half images of Fig. 10. In Fig. 12, (a) to (c) correspond to
(a) to (c) in Fig. 10; the original image and inpainted pairs of images. All subjects answered
that (b) was better than (c).

The upper (c) in Fig. 12 includes an inpainting failure around the stairs. However, nei-
ther (b) nor (c) gather saliency around the inpainted region. Also, the lower (c) in Fig. 12
has color and structural discontinuity, which generates huge unnaturalness. However (b)

gathers more saliency on un-inpainted regions. We consider that this type of uncertainty and
instability in saliency maps impede IQA quality.

Our method’s limitation is shown in Fig. 11. In this figure, (b) has a blurred region and
also has color discontinuity, but it is relatively natural in context. In (c), if we hide the left
half of the picture, it is quite natural. However, structural unnaturalness occurs in the left half
of the image and generates context unnaturalness. Because human perception is considered
to be more sensitive for contextual failures, subjects preferred (b). Currently our method
does not consider any semantic information, thus for such image pairs it generates ordering
failures.
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6 Conclusion

In this paper we described an image quality assessment method we developed for image
inpainting. Three key ideas of our method are that (1) we use a ranking-by-learning algo-
rithm to estimate the ordering of inpainted images on the basis of subjective quality, (2)
our ranking system easily introduces auto-generated training data for more effective learn-
ing, and (3) we introducing image features that reflect differences around a contour of
damaged regions on the basis of gaze measuring experiments which showed that a high
negative correlation exists between subjective quality and gaze density around the con-
tour. Unlike existing image quality assessment (IQA) methods for image inpainting, ours
makes it possible to introduce auto-generated training data, due to introduction of our pair-
wise learning. Preference order estimation experiment results suggest the method’s efficacy.
Especially with auto-generated training sets, the estimation performance was about 13 per-
centage points higher than that of existing IQA methods. In future work, we will introduce
other image features such as describing semantic unnaturalness inside inpainted images.
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