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Abstract In this paper we propose, describe and evaluate the novel motion capture
(MoCap) data averaging framework. It incorporates hierarchical kinematic model, angle
coordinates’ preprocessing methods, that recalculate the original MoCap recording making
it applicable for further averaging algorithms, and finally signals averaging processing. We
have tested two signal averaging methods namely Kalman Filter (KF) and Dynamic Time
Warping barycenter averaging (DBA). The propose methods have been tested on MoCap
recordings of elite Karate athlete, multiple champion of Oyama karate knockdown kumite
who performed 28 different karate techniques repeated 10 times each. The proposed meth-
ods proved to have not only high effectiveness measured with root-mean-square deviation
(4.04 ± 5.03 degrees for KF and 5.57 ± 6.27 for DBA) and normalized Dynamic Time
Warping distance (0.90 ± 1.58 degrees for KF and 0.93 ± 1.23 for DBA), but also the
reconstruction and visualization of those recordings persists all crucial aspects of those
complicated actions. The proposed methodology has many important applications in classi-
fication, clustering, kinematic analysis and coaching. Our approach generates an averaged
full body motion template that can be practically used for example for human actions
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recognition. In order to prove it we have evaluated templates generated by our method in
human action classification tasks using DTW classifier. We have made two experiments.
In first leave - one - out cross - validation we have obtained 100% correct recognitions. In
second experiment when we classified recordings of one person using templates of another
recognition rate 94.2% was obtained.

Keywords Signal averaging · Movements’ templates · Motion capture · Kalman filter ·
Dynamic time warping · Barycenter averaging · Karate

1 Introduction

Many researches on physical activities are based on evaluation of a single or several kinetic
or kinematic parameters like maximal force, velocity or acceleration for which mean value
and standard deviation among participants is calculated [16, 64, 66]. Even when an empiri-
cal model is presented, very often it does not apply full body [27, 39, 49, 57, 58, 65]. This
is a big simplification of those models because for example in martial arts the elite fight-
ers use whole body to get the high speed and impact of techniques. The aspects like, for
instance, movement’s trajectory that is a crucial part of accurate technique performance is
often not taken into account. There are of course some exceptions from that trend [47],
however very often experiments are performed on low precision hardware and it is impos-
sible to get accurate results. What is more, often the evaluation of kinematic models is
done on group of sportsmen that have long experience and it is assumed that they perform
some action ”correctly” and ”optimally” [50]. But while analyzing the results, we see shal-
lowness of evaluation: we know the average results on some activities, however we know
nothing about the averaged body motion trajectories with which that results were obtained.
In this paper we will present the motion capture signal averaging techniques which allow to
generate actions’ templates from a group motion capture (MoCap) recordings. Those tem-
plates have many potential applications, for example kinematic analysis, coaching, actions
classifications, clustering etc.

The human motion’s models based on training on MoCap data typically use Markov
Models [42], graph representation [13] or Dynamic Time Warping (DTW) [1, 51, 61].Very
often those methods do not employ full body evaluation or operate in reduced PCA space
[14] in which not all features are taken into account during calculation.

Authors usually use forward kinematic model to determine the position and orienta-
tion of the body parts with given joints angles. On the other hand, we can estimate joint
angles with desired or known position of body parts when the inverse kinematic model is
used [56]. In our paper we decided to use local coordinate systems (hierarchical model) for
angles calculation instead of projection of angles on sagittal, frontal and transversal planes
[66]. Thanks to this we simplify the movements features calculation, because in hierarchi-
cal model data (beside to root joint) is invariant to any outer coordinate system. Of course
hierarchical model can be recalculated to kinematic model that uses angles description rela-
tive to common fixed axis and vice versa. However if we would like to compare two MoCap
recordings of the same action gathered from two persons that perform movements facing
different direction (for example when they vector that links shoulders of one person is per-
pendicular to the same vector designed by shoulders of the other person) we will obtain
different angles values. In case of hierarchical kinematic model all angles besides Hips can
be directly compared without additional calculation. That is because of the fact that Hips
is a root of the hierarchical model and only this joint is responsible for the global rotation
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of the whole body. Also the local coordinate system is more intuitive for coaches and
athletes. It is easier to explain the movement (especially three-dimensional actions!)
relatively to other parts of the body than to virtual planes which are more usable when we
describe one- or maximally two-dimensional actions.

We have tested two signal averaging approaches. The first is Kalman Filter (KF) [34],
which is very popular signal processing algorithm with many applications, for example in
Earth science [43], biomedical engineering [31], robotics [40], kinematic model synthesis
[8, 11, 33, 37] or object tracking [60]. The second averaging approach is based on DTW
barycenter averaging (DBA) [53], which was already initially applied to movements’ anal-
ysis [41, 59]. The evaluation of our new approach was done on karate techniques MoCap
dataset. There were two main reasons why we have chosen this particular type of physical
activities. At first it can be observed that even a few months of sport training can visibly
increase the improvement of gait and posture of people that do various activities, like fitness,
Tai Chi or Karate [55]. Due to this fact martial arts training becomes more and more popular
in all group ages from preschool children to retiree. Because of the large popularity of that
sport there is also a need of computer aided methods and applications that support training
[67, 69]. The second reason is that karate has a large group of well defined ”standardized”
attacking and defense techniques that are practiced by athletes. The model technique per-
formance constitutes the natural template of that action. By averaging a group of MoCap
recordings of the same actions we can not only compare the averaged performance of an
athlete to the model performance, but also numerically generate that template.

The main novelty of this paper is a proposition and evaluation of motion capture data
averaging framework. It incorporates hierarchical kinematic model, angle coordinates’ pre-
processing methods, that recalculate the original MoCap recording making it applicable for
further averaging algorithms, and finally signals averaging processing. We have tested two
signal averaging methods namely Kalman Filter (KF) and Dynamic Time Warping barycen-
ter averaging (DBA). We have tested our method on MoCap recordings of elite Karate
athlete, multiple champion of Oyama karate knockdown kumite who performed 28 different
karate techniques repeated 10 times each. The proposed methods proved to have not only
high effectiveness measured with root-mean-square deviation and normalized Dynamic
Time Warping distance, but also the reconstruction and visualization of those recordings
persists all crucial aspects of those complicated actions. The method we introduce in this
paper incorporates reliable and already known approaches (KF and DTW); however, if they
are applied in accordance with our research idea it results with valuable practical output.
Among them are for example classification, clustering, kinematic analysis and coaching.
In order to prove this we successfully use templates generated by proposed framework for
human action recognition task. In this paper we also introduce the ”Last-chance” nonlinear
averaging algorithm which is also our contribution. For our best knowledge there were no
other published papers that subject were averaging of whole body motion capture record-
ings of the same activity for movements’ templates generation. In order to generate motion
capture templates our algorithm requires several high-quality MoCap recordings of one per-
son that performs an actions to be averaged several times. However we did not find available
dataset that satisfy those needs to serve as general benchmark for our research. Because of
that we decided to make our own dataset and make it available for download [68]. It can be
used as the reference dataset for future research.

In the next section we will define the problem we want to solve, dataset we used for methodol-
ogy validation, MoCap hardware and kinematic model that was used to acquire this dataset.
We also introduce data preprocessing methods and template generation algorithms we have
designed. The third section presents validation results of our approaches. In fourth section
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we discuss the results by analyzing obtained numerical and visual data. The last section
summarizes the paper, shows potential applications and directions of further researches.

2 Material and methods

Let us assume that we have two time series:

X := (x1, x2, ..., xN), Y := (y1, y2, ..., yM); (1)

that represent the same human activity (movement) of the same body joint (for example
angle of right hand rotation about Z-axis), but acquired in different MoCap recordings. A
warping path (N,M) is a sequence p = (p1, · · · , pL) with:

pl = (nl,ml) ∈ [1, N ] × [1, M] for l ∈ [1, L] (2)

that satisfies the following conditions:

1. Boundary condition: p1 = (1, 1) and pL = (N,M).
2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nL and

m1 ≤ m2 ≤ ... ≤ mL.
3. Step size condition:

pl+1 − pl ∈ (1, 0), (0, 1), (1, 1) for l ∈ [1 : L − 1].
Intuitively, the sequences are warped in a nonlinear fashion to match each other [48]. However,

if N = M and pl+1 − pl = (1, 1), the warping is linear. Our goal is to generate a new time
series’ set that is averaged from many time series representing the same human activity. We
will take into account two cases: first, in which we consider that signals can be wrapped lin-
early, and second, in which signals will be wrapped nonlinearly. The averaging algorithms
will be named linear averaging algorithm and nonlinear averaging algorithm appropriately.

2.1 MoCap hardware and kinematic model

To do a MoCap, we have used Shadow 2.0 wireless motion capture system based on
accelerometers. We have chosen sensor-based MoCap system, because in case of optical-
based tracking even with a highly professional system there are many instances where
crucial markers are occluded or when the algorithm confuses the trajectory of one marker
with that of another [20]. The basic configuration of system consists of 17 sensors placed over
body on special costume. With the help of third-party applications and our software we gener-
ated the hierarchical kinematic model of human body that is visualized in Fig. 1. This model
is very similar to one used typically in popular Biovision Hierarchy (BVH) file format.

In hierarchical model we used rotations of body joints are described relatively to their
parent joints in tree-like fashion. The in our case (see Fig. 1) the root joint is a hips joint.
The lower body hierarchy goes as follows:

Hips → Thigh (left or right) → Leg (left or right) → Foot (left or right).
The upper part of the body is:
Hips (left or right) → SpineLow (left or right) → SpineMid (left or right) → Chest (left or
right) → Neck (left or right) → Head;
and:
Chest (left or right) → Shoulder (left or right) → Arm (left or right) → Forearm (left or
right) → Hand (left or right).
The hierarchy description is symmetrical for left and right leg and hand.
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Finally we did not use data from hands and feet sensors. These signals were omitted because
our athlete performed actions bare-handed and barefoot and we had no possibility to attach
sensors to those body parts and to keep them in place during kicks and punches done in full
speed. The MoCap system we used for data acquisition is based on internal sensors. In this
technology it is crucial for tracking sensors to remains in fixed position on human body. It
has appeared that our MoCap costume construction does not prevent hands and foot sensors
falling off from bare limbs. After falling off, hands and foots sensors were freely dangling,
making acquired signals useless. This is of course limitation of our MoCap acquisition
hardware. The valid hands and feet tracking data could be processed with our method. The
measurements from points named SpineLow, SpineMid and Neck are interpolated from
neighbors’ sensors by Shadow software. In Fig. 1 we have presented the local coordinates
systems of each sensor (all of them are right-handed). In the right-bottom part of the figure
we have also presented orientations of rotations in right-handed coordinate system. The
tracking frequency was 100 Hz with 0.5 degrees static accuracy and 2 degrees dynamic
accuracy. All further angles measurements in this paper will be presented in degrees. The
signals counter domain is [−180, 180).

2.2 Dataset

The dataset we used in our experiment are MoCap recordings of elite Karate athlete, multiple
champion of Oyama karate knockdown kumite. She performed several karate techniques:
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Fig. 1 This figure presents hierarchical kinematic model that we used in our method. The local coordi-
nates systems of sensors are right-handed. In the right-bottom part of the figure we have also presented the
orientation of rotation in right-handed coordinate system
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– Karate stands: kiba-dachi, zenkutsu-dachi, kokutsu-dachi. The stands were preceded by fudo-
dachi. The stands were done in left and right side, so there were 6 types of recordings.

– Defense techniques: gedan-barai, jodan-uke, soto-uke and uchi-uke. Those techniques
were done with left and right hand, so there were 8 types of recordings.

– Kicks: hiza-geri, mae-geri, mawashi-geri and yoko-geri. Those techniques were done
with left and right leg, so there were 8 types of recordings.

– Punches: furi-uchi, shita-uchi and tsuki. Those techniques were done with left and right
hand, so there were 6 types of recordings. In all punches the rear hand was used.

Athlete performed ten repetition of each action. Between each recording the MoCap
system was calibrated to maintain the adequate motion tracking. Then the acquired
data was segmented into separate recordings in which each sample contains only single
repetition of an action.

2.3 Data preprocessing

An algorithm that we will propose in this paper allows to perform Euler angles averaging.
Euler angles are commonly used in biomechanics and kinematic analysis [27, 42, 58, 65, 66],
because they are very intuitive and easy to interpret rotation description method. In case
we are working on time varying signals averaging we have to deal with two factors: signals
might vary in length and periodicity. The MoCap signal is commonly saved with counter
domain limited to 360 degrees. It is enough for rotation description; however it might be
insufficient for instant distance – based comparison of Euler angles. Without this compari-
son it is impossible to perform signal averaging. We will explain this with the help of images
from our dataset.

In Fig. 2 we present plots of hips rotation about a Z axis while performing mawashi-
geri kick with right leg. The motion capture frequency was 100 Hz, so of course we have
to remember that plots do not represent continuous functions. We decided to represent the
acquired data with line plot to increase the visibility and show the trends. The rapid transi-
tion from minimal to maximal values are caused by periodicity of angle function which has
counter domain [−180, 180), however all plots represents nearly identical rotation. As can
be seen, without preprocessing that considers periodicity those signals cannot be aligned
with a distance – based method. Our MoCap signals preprocessing is consisted of following
steps:

1. signal resampling,
2. angle correction,
3. angle rescaling.

In signal resampling step angles measurements of all recordings in data set are resam-
pled to have the same length. The length equals the number of samples of the longest
signal. We use the nearest neighbor interpolation. We have chosen this method because
it does not introduce new values to signals. The introduction of a new value (especially
by averaging two samples that values are on the border sites of signal counter domain)
might eliminate the information that is necessary for the next algorithm that is angle
correction.

Angle correction step eliminates the signals discontinuities caused by periodicity of
angles functions. The algorithm eliminates large signal’s values jump and changes counter
domain from [−180, 180) to R. The pseudo code on Algorithm 1 and Algorithm 2
describes our approach. Algorithm iterates through sampled values of an input signal
signalT oCorrect and checks if changes between two neighboring samples are greater than
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a threshold value tolerance. If it is so, we have detected case when due the periodicity there
is a large difference in angle value and we have to correct it by adding or subtracting by
360 degrees. However; even if MoCap sampling is high (like 100Hz in our case) there is a
possibility, that there would be large changes in signals values that happens for example dur-
ing very fast movements like punches. In this case we cannot apply the correction, because
the original signal is already correct. Without visualization of the whole body activity we
cannot simply guess (by looking only on rotation data) with which of these two situations
we are dealing with. Because of this automatic (black-box) optimization of threshold value
is virtually impossible. Due to this tolerance parameter in Algorithms 2 was chosen after
basic trial and error evaluation. The results of application this algorithm on signals from
Fig. 2 is presented in Fig. 3. As can be seen we have eliminated all discontinuities; however
the first signal is in the different period than all the other and we cannot yet apply distance
– based signal comparison.

Algorithm 1 This is a helper function, that rescale angle to 180 180 domain.

Data: angle an angle to be rescalled

a : angle;

if a 180 then

while a 180 do
a : a - 360;

else

if a -180 then
while a -180 do

a : a + 360;

return a;

s r to

e

+

Algorithm 2 This algorithm eliminates the signals discontinuities caused by periodic-

ity of angles functions.

Data: signalToCorrect – an array with input signal

Result: outS – the output value of the algorithm

outS := signalToCorrect;

tolerance := 120; // when absolute value of signal’s value jump
is greater than tolerance the correction is introduced
correction := 0;

for a in 2:length(signalToCorrect) do
prev := rescaleAngle(outS[a-1]);

actual := rescaleAngle(outS[a]);

if prev tolerance and actual -tolerance then
correction := correction + 360;

else

if prev -tolerance and actual tolerance then
correction := correction - 360;

outS[a] := outS[a] + correction;

return outS;



30360 Multimed Tools Appl (2018) 77:30353–30380

Algorithm 3 This algorithm performs angle rescaling, which recalculate the angles to

the same period.

Data: signal1, signal2 – signal1 is a reference signal while signal2 is a signal to

rescale. They has to be the same length.

Result: after angle rescaling signal2 should be in the same period as signal1

tolerance := 300;

for a in 1:length(signal1) do
if signal1[a] - signal2[a] tolerance then

signal2[a] := signal2[a] + 360;

else

if signal1[a] - signal2[a] - tolerance then
signal2[a] := signal2[a] - 360;

return signal2;

The last preprocessing step, angle rescaling, recalculates the angles to the same period.
The pseudo code of Algorithm 3 describes our approach. As the reference signal (signal1)
for rescaling we have arbitrary chosen the first measurement from the group. Algorithm
iterates through reference and the second signal (after resampling they have same length)
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Fig. 2 This figure presents plots of hips rotation about a Z axis while performing mawashi-geri kick with
right leg. Each of ten plots came from different MoCap recording. Variables X1, X2 etc. are recordings
numbers (there are ten of them). Signals were resampled to have the same length
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Fig. 3 This figure presents angles correction which should eliminate discontinuities in signal measurements
by reducing large signal’s values jumps and changing counter domain from [−180, 180) to R. The presented
signals are processed data from Fig. 2

and checks, if the difference between values of corresponding samples is greater than toler-
ance. If it is so we have to correct second signal by adding or subtracting by 360 degrees.
From the same reasons as we explained before we have chosen this parameter after basic
trial and error evaluation. Figure 4 presents example results of angle rescaling algorithm on
data from Fig. 3. After this step data can be averaged with distance – based methods.

2.4 Linear averaging algorithm

Let us assume that measured MoCap signals from various sensors can be wrapped optimally
linearly. In practice, in each group of signals that describes rotation function in time domain
of the same action, functions values might deviate between recordings. There might be var-
ious natural causes of those deviations – it is nearly impossible that a person repeated the
same whole body action identically. Of course the more natural (more trained) the action
is, the differences between separate measurements become smaller. There can also be devi-
ations that are caused by inaccuracies of MoCap hardware. In our experiment we assume
that the only error that might appear is a random error. Because we are observing the natural
phenomena, we will use the state space modeling with the observation from an exponen-
tial family, namely Gaussian distribution (dynamic linear models). Let xt denote the angle
values at time t and zt the set of measured angle positions. Our goal is to estimate xt using
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Fig. 4 This figure presents angle rescaling after which angles values should be present in the same period.
The presented signals are processed data from Fig. 3

measurements zt [8, 29]. The Kalman filter is frequently used to solve problems like these,
as it provides an optimal solution to tracking problems when states are governed by linear
Gaussian motion and observation models. Let us assume that a state xt evolves as:

xt = Ftxt−1 + wt ; (3)

with process noise wt drawn from a zero-mean Gaussian distribution with process covari-
ance Q and a linear transition matrix Ft .
Let us also assume that we can obtain measurements zt , which are related to the state at
time t by the equation:

zt = Htxt−1 + vt ; (4)

with measurement of observation noise vt drawn from a zero- mean Gaussian distribution
with measurement covariance R and a linear measurement matrix Ht that maps measure-
ments to states. In our approach we use the smoothing ability of KF to average the signals
that came from multiple measurements of the same angle (there are common states for
all time series). The unknown parameters of model are calculated with Broyden-Fletcher-
Goldfarb-Shanno optimization algorithm in package KFAS [28].
We apply KF to each MoCap signal preprocessed by Algorithms 1–3, and the whole pro-
cedure is named linear algorithm (LA). In the situation when signals cannot be wrapped
optimally linearly, the nonlinearity between signals will be smoothed by the KF. This
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smoothing might visually damage the recording content, because it might treat nonlinearity
as noise.

2.5 Nonlinear averaging algorithm

In case when signals can be wrapped optimally nonlinearly, the averaged sequence can
be generated by some heuristic method for example DBA [53]. This is a global averaging
technique that does not use pairwise averaging. In each iteration DBA performs two steps.

1. Computes DTW between each individual sequence and the temporary average sequence
to be refined in order to find associations between coordinates of the average sequence
and coordinates of the set of sequences.

2. Updates each coordinate of the average sequence as the barycenter of coordinates
associated to it during the first step.

Similarly like in previous linear algorithm in our nonlinear approach DBA is used to cal-
culate each group of signals that describes rotation function in time domain. This time the
nonlinear wrapping is not a limitation, however DBA algorithm is a heuristic and we do
not have guarantee on quality of the final solution. We will use abbreviation NA (nonlinear
algorithm) to this procedure. We have used DBA implementation from R package dtwclust.

2.6 ”Last-chance” nonlinear averaging algorithm

Our choice of tolerance parameters in Algorithms 2 and 3 might not fit all possible signal
measurements that appear in the dataset. From 28 (techniques count) x 48 (channels count)
= 1344 (there are 10 signals among averaging group), seven (about 0.5%) of them were
wrongly corrected and due to this wrongly rescaled. An example visualization of this is
showed in Fig. 5 where both linear and nonlinear averaging algorithms fail due to failure
of angles’ correction algorithm. The discontinuity in sample X9 disturbed both algorithms
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Fig. 5 This figure presents plots of hips rotation about a Z – axis while performing tsuki punch with
right hand. Both LA and NA averaging algorithms failed due to failure of angles correction algorithm. The
discontinuity in sample X9 disturbed both algorithms based on Kalman and DBA
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based on KF and DBA. To deal with this problem without necessity of manual correction of
tolerance, we have proposed the ”last-chance” angle correction (LCAC, see Algorithm 4)
algorithm that base on different principles than Algorithms 2–3.
The LCAC uses information from two channels: one that we want to recalculate and the
second one that represents different channel of rotation but of the same joint (sensor). At
first sinus and cosines values for both channels are calculated – this step should eliminate
the nonlinearity. After this DTW between the first, arbitrary chosen signal from the dataset
and the rest of signals from dataset is performed in order to wrap rest of the signals accord-
ing to DTW results. The DTW is performed for sinus and cosines separately but data is
two-dimensional: one dimension is for channel to be corrected and the second channel we
mentioned before. This approach increases the stability of final solution by reducing sensi-
tivity of DTW to some local variations of signals to be aligned.

After signal wrapping, KF smoothing is performed on the obtained data. The smoothed
data is then filtered with median filter and signal is recalculated from sin/cos counter domain
to angle counter domain with inverse trigonometric functions. The example results of the
LCAC and its correcting abilities are presented in Fig. 6. It is of course possible that also
LCAC fails and we will have to manipulate tolerance parameters of Algorithms 2 and 3,
however this situation never happened in our large dataset. We have used DTW implemented
[17] with Euclidean distance [15].

Algorithm 4 The ”Last-chance” nonlinear averaging algorithm

Data: signal1[] and signal2[] – arrays of signals

Result: Alternative to Algorithms 2 – 3.

referenceId := 1;

signal1Sin[] := sin(signal1[]);

signal1Cos[] := cos(signal1[]);

signal2Sin[] := sin(signal2[]);

referenceSignal := [signal1Sin[referenceId], signal2Sin[referenceId]];

for a in 1:length(signal[1]) do
if a refrenceId then

querySignal := [signal1Sin[a], signal2Sin[a]];

aligment := DTW(referenceSignal, querySignal); // Dynamic Time
Warping
signal1Sin[a] := warp(aligment, signal1Sin[a]); // Signal wrapping
according to DTW result
signal2Cos[a] := warp(aligment, signal2Cos[a]);

outSin := MedianFilter(KFSmoothing(signal1Sin[])); // Kalman Filter
smoothing
outCos := MedianFilter(KFSmoothing(signal1Cos[]));

out := asin(outSin);

for a in 1:length(out) do
if outCos[a] 0 then

if out[a] 0 then
out[a] := 180 - out[a];

else

out[a] := -180 - out[a];

return (out);
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Fig. 6 This figure presents angles’ correction which eliminates discontinuities in signal measurements with
LCAC. The presented signals is corrected data from Fig. 5

3 Results

We have performed averaging of our dataset described by hierarchical model from
Section 2.1 with algorithms described in Sections 2.3, 2.4, 2.5 and 2.6. Example results of
this procedure are presented in Fig. 7. The result CSV (comma-separated values) files where
then exported to BVH format which can be visualized in many popular rendering programs
(for example Blender). The visualizations can be rotated and translated with 6 degrees of
freedom which is very helpful in expert evaluation of the results [7, 54].

The proposed approach has been implemented in R language. We have used ’dtw’ pack-
age [17] that implements DTW and ’dtwclust’ for DBA implementation. We have utilized
Kalman filter implementation from package ’KFAS’ [29]. In DTW we have used Euclidean
distance and well-known symmetric2 step pattern. Those are most typical parameters that
also in our experiment returned very good results.

The example three-dimensional rendering is presented in Fig. 8 and in supplemen-
tary video file ESM 1. That video file presents three-dimensional rendering of averaged
mawashi-geri kick with LA and NA. Averaged data is situated in the front of the visual-
ization. In the background of the video there are ten original MoCap recordings that have
been averaged. Visualization is playback with 0.25 of the original speed to make movements
easier to observe.

3.1 Expert evaluation

The averaged results of our algorithms were evaluated by an expert – a martial artist who
indicated errors that she noticed in three-dimensional visualizations. It is possible that an
error that has small numerical value might be clearly visible on output rendering. If the
expert spotted an error, the LCAC algorithm was used on the particular signal to eliminate
the problem. An expert had the following remarks.

– Furi-uchi with the right hand – right hand is positioned over left hand in LA and NA. It
has appeared that it is caused by MoCap error so we do not consider it as an error.
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Fig. 7 This figure presents the averaging results with linear LA and NA of signals from Fig. 4

– Gedan-barai with the right hand – the right arm movement is jerky in LA. This is caused
by similar situation as described in Fig. 5. The LCAC has corrected this error leaving
only small angle’s value jumps at the end.

– Hiza-geri with the left leg – the left arm movement is jerky in LA. This is caused by
similar situation as indicated in Fig. 5. The LCAC has corrected this.

– Hiza-geri with the right leg – the left arm movement is jerky in LA and there is a
minimal value jump in NA. The whole body posture is shifted to one side however it is
caused by MoCap error so we do not consider it as an error.

– Jodan-uke with the left hand – the left arm movement is jerky in LA. This is caused by
similar situation as indicated in Fig. 5. The LCAC has corrected this error leaving only
small angle’s value jump at the end.

– Tsuki with the right hand – the left arm movement is jerky in LA. There is also error
in hips rotation that is depicted in Fig. 5 in LA and NA. The LCAC has corrected this
error leaving only small angle’s value jump in left hand LA at the end.

– Yoko-geri with left and right hands – the left and right arms movement is jerky in LA.
The LCAC has corrected those errors.

Summarizing, the NA method better overcomes the problems with jerky movements and
there are no small signal’s values jumps (discontinuities of trajectories) that appears during

Fig. 8 This figure presents three-dimensional rendering of averaged mawashi-geri kick with LA algorithm
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performing averaging of some techniques. The LA algorithm seems to deal with this prob-
lem worse, however LCAC eliminates most of the problems sometimes leaving only small
signal’s values jumps in movement trajectories. Both techniques in expert’s evaluation gave
good results, but they were not 100% perfect. It seems, however, that NA is more precise in
visual reconstruction of original data than LA and expert’s recommendation goes in favor
to nonlinear solution.
In further numerical evaluation we used the same data as in visual evaluation. When LCAC
correction occured, we have evaluated the improved results.

3.2 Data preprocessing evaluation

Each of 28 karate actions was recorder 10 times and we measured 16 three-dimensional
signals (see Section 2.1). Totally we had 4480 signals grouped by 10. We have applied signal
preprocessing algorithms from Section 2.3. As we mention in Section 2.6 seven signals
among 4480 has failed the angle rescaling step, that means they had different period than
others from the same group. The LCAC has corrected those errors. Wrongly calculated
signals were the same signals that have been initially spotted by an expert.

3.3 Linear evaluation

This numerical evaluation of our methods is based on comparison of averaged results with
original dataset. For each karate technique and for each time sequence we have calculated
mean value of root-mean-square deviation (RMSD) between algorithm results and data that
was averaged. Thanks to this we could judge how similar averaged signal is to original data.
The low value of RMSD also indicates that the optimal signal warping was probably nearly
linear.
The root-mean-square deviation formula is:

RMSD(X, Y ) =
√∑n

i=1 diff (xi, yi)2

n
; (5)

diff (xi, yi) =

⎧⎪⎪⎨
⎪⎪⎩

abs(xi − yi)

if abs(xi − yi) < 180
360 − abs(xi − yi)

if abs(xi − yi) > 180

(6)

The diff formula is the result of the fact, that distance between two angles in degrees is
not greater than 180.

3.4 Nonlinear evaluation

For the nonlinear evaluation of averaging we used normalized dynamic time warping dis-
tance [48]. Let cp(X, Y ) be a total cost of a warping path p between X and Y with respect
to the local measure E (Euclidean distance) defined as:

cp(X, Y ) =
L∑

l=1

E(xnl, yml) (7)
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The optimal warping path between X and Y is a warping path p∗ having minimal total cost
among all possible warping paths. The DTW distance DT W(X, Y ) between X and Y is
defined as the total cost of p∗:

DT W(X, Y ) = cp∗(X, Y )

= min
{
cp(X, Y )|p is an (N,M) − warping path

} (8)

Normalized DTW is:

DT Wn(X, Y ) = DT W(X, Y )

N + M
(9)

Figures 9 and 10 present an example DTW and timeseries alignment from our dataset.

3.5 Application for human actions recognition

Our approach generates an averaged full body motion template that can be practically used
for example for human actions recognition. The goal of this type of classification is to assign
one predefined class label to recording that contains a person performing particular activity.
The proper selection of features that are calculated from motion capture data have a great
importance on the final result of classification. There are many papers that propose various
possible features sets and compare their performance in pattern recognition tasks. The state
- of - the art discussion on human actions pattern recognition is covered in survey papers
for example in [5, 36, 71] or in our previous papers on human actions recognition [25, 26].
In this section we will present overview concerning most popular features sets and pattern
recognition algorithms for human motion classification. When the standard video or depth
camera data is used for data acquisition, authors often use Gabor filter for features extraction
[21], Haar-like features [4] or histogram of oriented gradients and Histograms of Optical
Flow [62]. In cases when hardware returns directly spatial coordinates of the body joints
authors prefer to use feature that are derived from those coordinates. Among those features
are various configurations of angle-based [6, 10, 46] and coordinate-based features [2, 12].
Basing on our previous researches [26] the angle based-features gives better recognition

Dynamic time warping, right leg, Z−axis
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Fig. 9 This figure presents plots of right leg rotation about a Z – axis while performing mawashi – geri kick
with right leg. We can see DTW of signal averaged by linear algorithm (red – reference plot) and one of the
singles from MoCap recording (query – black plot)
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Fig. 10 This figure presents timeseries alignment of data from Fig. 9

results than coordinate - based. The choice of pattern recognition algorithm is often deter-
mined by the choice of features set and vice-versa. In case of motion representation with the
constant length, in which each action has same number of representation features, no mat-
ter how many samples original recording has, authors reports using popular classifiers like
for example support vector machines [44], neural networks [32] or even nearest-neighbor
[63, 70]. When the continues data stream of MoCap signal classified (like it is in our case)
the HMM [26, 45] and DTW [3, 63] are most common approaches. In this paper we have
chosen DTW because its application is more straightforward then HMM classifier. That is
because DTW does not have additional statistical assumptions, like HMM has, on number
of hidden states and distribution (like for example Gaussian) of observable values generated
by those states (Table 1).

Table 1 This table summarizes results from proposed algorithms evaluation

jnn RMSD linear RMSD nonlinear DTW linear DTW nonlinear

MAX 61.76 65.89 26.49 23.40

MIN 0.23 0.26 0.05 0.04

Mean±SD 4.04 ± 5.03 5.57 ± 6.27 0.90 ± 1.58 0.93 ± 1.23

Median 2.60 3.70 0.59 0.66
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In our case data is a set of time varying signal acquired with several inertial measure-
ment units (IMU). Each recording of activity of the same class might differ in number of
discrete samples, because same activity might be performed with different speed. While
using as precise hardware as ours (see Section 2.2 for details) it is virtually impossible for
the person to perform some action twice and get the identical recording in temporal and
spatial sense. Due to this the most intuitive approach (as we already mention) to solve this
pattern recognition task is to use DTW classifier [30]. This pattern recognition method com-
putes similarities between several signal patterns that represents available classes. The input
signal is assigned to the class for which there is the smallest dynamic time warping normal-
ized distance (9) between analyzed signal and a template signal that represents this class. We
have chosen the similar features set as we successfully used in our previous researches on
human actions recognition [23]. In that paper we showed that it is very important to choose
the features set that have enough number of dimension with witch it is possible to distin-
guish between similar actions. From the other hand the number of dimensions cannot be
too high because the classifier will be too constrained and the description will lose its gen-
erality. It is good to choose the features set that match exactly the most important joints that
take direct part in the movement. It is very difficult to prepare the single features set that can
be successfully used to classify various human actions that incorporate full body. In the fol-
lowing part of this paper we will use a feature set designed for recognition of karate kicks.
This features set is a group of angles calculated between three vectors x, y and y defined
relatively to actual body position and vectors representing directions of limbs taking part in
the action (thighs and legs). The names of the joints that are used for features definition are
present in Fig. 1. At first we will define the non-normalized x, y and y vectors:⎧⎨

⎩
x = RightT high − Lef tT high

y = Hips − Chest

z = x
⊗

y

(10)

Where
⊗

is a vector cross product operator.
The legs and thighs vectors are defined as follow:⎧⎪⎪⎨

⎪⎪⎩
T highL = Lef tT high − Lef Leg

ShinL = Lef tFoot − Lef tLeg

T highR = RightT high − −RightLeg

ShinR = RightFoot − RightLeg

(11)

Than we calculate angles on plains designed by vectors form (bb1) and (bb2) using
following formulas: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = �(T highL,X)

A2 = �(T highL, Y )

A3 = �(T highL,Z)

A4 = �(T highR, X)

A5 = �(T highR, Y )

A6 = �(T highR, Z)

A7 = �(ShinL,X)

A8 = �(ShinL, Y )

A9 = �(ShinL,Z)

A10 = �(ShinR,X)

A11 = �(ShinR, Y )

A12 = �(ShinR,Z)

(12)
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12 angles we have chosen to classify karate kicks from our dataset nicely covers major
possible leg movements of thigh and shin (in our MoCap hardware setup we cannot track
the position of feet). As has been shown later in this section, those description are sufficient
to make successful classification of lower body motions.

Our DTW classifier works on MoCap data recalculated according to (12). Each sam-
ple of recording is 12 – dimensional vector with angle values. As the distance metric we
used Euclidean distance. We have performed two experiments: in first we used mae geri,
mawashi geri, hiza geri and yoko geri kicks with left and right leg from dataset described
in Section 2.2. We have made leave – one – out cross – validation of the classifier. That
means that 9 from 10 available recordings of each class were used to generate the template
using averaging algorithm proposed in this paper and 1 from 10 was classified with DTW
classifier. This procedure was repeated for each one of ten recordings of each class. In this
experiment finally all recordings was successfully assigned to correct class.
In second experiment we investigated if it is possible to use averaged recordings of one per-
son to classify recordings of actions performed by another person. In order to do so we have
used another dataset containing karate MoCap. We have used additional dataset of Shorin –
Ryu karate master that was acquired with the same hardware as we described in Section 2.2.
This dataset can be downloaded from the same location as our primary dataset [68]. Shorin –
Ryu dataset contains 10 recordings of a person performing mae geri, mawashi geri and hiza
geri kick with left and right leg. We have generated templates of those kicks and use them to
classify corresponding six type of recordings form Oyama dataset. Than we used six tem-
plates from Oyama dataset to classify recordings from Shorin – Ryu dataset. Results of this
evaluation are present in Table 2. The recognition rate of DTW classifier using templates
generated by our method was 94.2% what is high value for the complexity level and high
similarity of those actions. Six hiza geri kick (knee strike) were misclassified as mae geri
(forward kick) actions because the initial knee trajectory of both actions are nearly identical.

4 Discussion

We have to remember that, although recordings that were averaged represented same body
actions, it is virtually impossible that they were aligned ideally (we have discussed it in
Section 2.4). That means we cannot expect that (5) and (9) will be zero. As can be seen
in Table 1 mean value is comparable to standard deviation. This relatively large variance
among the kinematic parameter among recordings in our dataset is not a surprise. It is of

Table 2 This table presents the classification results of karate kicks set with DTW classifier. Rows stand for
true conditions while columns for actual class assignment. All together there are 20 exemplars of each class
(10 for Oyama and 10 for Shorin – Ryu master)

Mae geri
right

Mae geri
left

Mawashi
geri right

Mawashi
geri left

Hiza geri
right

Hiza geri
left

Mae geri right 20

Mae geri left 19 1

Mawashi geri right 20

Mawashi geri left 20

Hiza geri right 3 17

Hiza geri right 3 17
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Fig. 11 This figure presents the color- coded plot of mean values of root-mean-square deviation values
between signals averaged by LA and all signals from MoCap recordings. In rows there are values’ names and
in columns we have techniques’ names

course few times smaller than deviation of kinematic variables in karate group that performs
the same activity [65] but it is noticeable even when data come from single, experienced
athlete. This is however inevitable attribute of precise MoCap measurement that makes
signal processing of full body motion capture data a challenging task. Due to it is hardly
possible to mutually align source recordings in averaging process with (5) and (9) below
certain thresholds.

The distribution of RMSD and DT Wn can be clearly observed as color coded regions in
Figs. 11, 12, 13 and 14. We decided to present results this way because it is much easier to
find body actions and body joints that are source of the highest and lowest deviations from
average than if the data was tabularized. Each row in those figures represents appropriate
measurements of mean value of difference between averaged and input data. Annotations in
rows are joints’ names (see Fig. 1). Because rotations are represented by three-dimensional
vectors, annotations are grouped by the axis around which rotation is performed. Annota-
tions in columns are names of 28 karate techniques we have in our dataset (see Section 2.2).
A result from Table 1 assures us that most of techniques were accurately averaged. Most of
the considered cases have relatively low values RMSD and DT Wn. As the result of it we
obtained satisfying averaging results and smooth visualizations like one in ESM 1. Now we
will discuss the worst case which is gedan-barai defense technique with right hand. In this
case in all Figs. 11–14 the highest value is present in right arm joint. Movement of each
joint is a result of averaging ten source signals. It is difficult to create an easy to interpreted
single plot that incorporate warping results of all time series (similar to one on Fig. 9). Due
to this we will discuss this case with the help of supplementary video file ESM 2. This
visualization is composed in the same way as ESM 1. The source of high values of (5) and



Multimed Tools Appl (2018) 77:30353–30380 30373

Root−mean−square deviation

kiba_dachi_r

kiba_dachi_l

zenkutsu_dachi_l

zenkutsu_dachi_r

kokutsu_dachi_r

kokutsu_dachi_l

gedan_barai_l

gedan_barai_r

jodan_uke_r

jodan_uke_l

soto_uke_l

soto_uke_r

uchi_uke_r

uchi_uke_l

hiza_geri_l

hiza_geri_r

m
ae_geri_l

m
ae_geri_r

m
aw

ashi_geri_l

m
aw

ashi_geri_r

yoko_geri_l

yoko_geri_r

furi_uchi_l

furi_uchi_r

shita_uchi_l

shita_uchi_r

tsuki_r

tsuki_l

Hips.Rx

LeftThigh.Rx

LeftLeg.Rx

RightThigh.Rx

RightLeg.Rx

SpineLow.Rx

SpineMid.Rx

Chest.Rx

LeftShoulder.Rx

LeftArm.Rx

LeftForearm.Rx

RightShoulder.Rx

RightArm.Rx

RightForearm.Rx

Neck.Rx

Head.Rx

Hips.Ry

LeftThigh.Ry

LeftLeg.Ry

RightThigh.Ry

RightLeg.Ry

SpineLow.Ry

SpineMid.Ry

Chest.Ry

LeftShoulder.Ry

LeftArm.Ry

LeftForearm.Ry

RightShoulder.Ry

RightArm.Ry

RightForearm.Ry

Neck.Ry

Head.Ry

Hips.Rz

LeftThigh.Rz

LeftLeg.Rz

RightThigh.Rz

RightLeg.Rz

SpineLow.Rz

SpineMid.Rz

Chest.Rz

LeftShoulder.Rz

LeftArm.Rz

LeftForearm.Rz

RightShoulder.Rz

RightArm.Rz

RightForearm.Rz

Neck.Rz

Head.Rz

0

10

20

30

40

50

60

70

Fig. 12 This figure presents the color- coded plot of mean values of root-mean-square deviation values
between signals averaged by NA and all signals from MoCap recordings. In rows there are values names’
and in columns we have techniques’ names

(9) in case of the LA averaging is clearly visible in the beginning of the second second of
the recording, when right arm joint expands to the final position very rapidly. In the same
time right arm in NA averaged MoCap changes its position smoothly. The cause of this

Dynamic time warping normalized distance
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Fig. 13 This figure presents the color- coded plot of mean values of normalized dynamic time warping
distance between signals averaged by LA and all signals from MoCap recordings. In rows there are values’
names and in columns we have techniques’ names
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Fig. 14 This figure presents the color- coded plot of mean values of normalized dynamic time warping
distance between signal averaged by NA and all signals from MoCap recordings. In rows there are values’
names and in columns we have techniques’ names

situation is explained when we observe the source MoCap data, that is presented in rear
row. The arm movement in most left MoCap visualization ends much later than all others;
however this is not a longest MoCap recording that was present in the dataset. This is a sit-
uation we mentioned in Section 2.4 – those signals could not be wrapped optimally linearly
and KF smoothing damages the recording content, because it treats nonlinearity as noise.
In the same time NA have generated similar value for both (5) and (9), however the arm
movement is smooth. That is because there is a relatively large variability of data within the
source dataset and signal averaging cannot overcome the highest differences. However NA
can wrap signal nonlinearly which effect in results that are correct from the perspective of
observer (our expert). The very similar situations happen in other cases, when the deviations
between averaged data and input MoCaps were relatively high.

As can be seen in Table 1 and Figs. 11–14 both averaging methods resulted in very
satisfying numerical results. The mean value of RMSD between averaging results and orig-
inal MoCap data was 4.04 ± 5.03 degrees for LA and 5.57 ± 6.27 degrees for NA. The
median values of those parameters were lower: 2.60 and 3.70 degrees appropriately. It
can be explained by the fact that larger mean value together with high standard deviation
(larger than mean value) is caused by limited group of techniques that had high movements
dynamic in arms (rotation about X and Z axis) and legs (rotation about X and Z axis). Those
were gedan-barai, jodan-uke, hiza-geri and yoko-geri. The highest values of deviations in
those features can be easily explained. The shoulder and hip joints have anatomical ball and
socket construction which allows them to have wide range of rotation about all three axis.
In punches and blocks arm position changes rapidly, which in combination with angles’
periodicity makes that joints averaging most difficult.

The similar conclusions can be drawn from analysis of DTW normalized distance. The
mean value was 0.90 ± 1.58 degrees for LA and for 0.93 ± 1.23 degrees for NA. This
time also LA had smaller mean value, however higher standard deviation than NA. It seems
that in our case, when the elite karate athlete is analyzed, there are not many nonlinear
translocations of actions components in analyzed techniques. Summing up as there are not
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much differences in numerical evaluation between LA and NA. Finally we can recommend
using the second one, which has better results in expert evaluation.

5 Conclusion

Basing on evaluation in previous sections we can conclude that the proposed methods of
MoCap data averaging are reliable and give satisfying results both in visual and numerical
evaluation. The proposed methods have many important applications:

– It can be used for template creation for pattern recognition purposes, especially for
distance-based methods and clustering [18, 19, 22, 24, 35, 52]. Classification can be
done for example with DTW with features set designed in similar way as we presented
in Section 3.5 of this paper.

– The averaging ability confirmed by numerical evaluation together with possibility of
creating correct visual output make our methodologies usable for coaching purposes.
With them a trainer can visualize averaged performance of an athlete and evaluate his
or her kinematic parameters [9, 38].

– Many up-to-date researches evaluate only statistical kinematic parameters of actions
like mean displacement, velocity or acceleration and their angular analogs. With our
approach it is possible to compare and display kinematic differences between various
participants of experiments using well established DTW framework (see Figs. 8 and 9).

– With the proposed methodology it is possible to compare the kinematic parameters of
actions that were generated in some period of time for example to examine the growth
of flexibility during performing dynamic actions. The proposed averaging approach
might be a component of evaluation procedure of athlete progress during training.

– The method we proposed is a universal approach which can be applied directly to
any MoCap dataset (not only karate) that can be represented with hierarchical model.
Methods from Sections 2.3–2.6 can be used without any further generalization to any
hierarchical kinematic.

There are also a number of potential applications that have to be examined in further
researches. One of the most interesting is application of our methods to compare averaged
movements of different athletes in order to compare kinematic parameters of their actions.
It might be usable especially in master-student relation, when an adept learns for example
karate techniques from a sensei. In that approach athlete tries to make his or her techniques
as much similar as it is possible to master’s templates movements. After applying computer
– aided training we have to evaluate the RMSD and DTW differences between techniques
performed by the same person and between various elite martial artists to see what has to
be improved. That type of research will give us a knowledge what ranges of parameters one
should expect in such evaluation. It might also be useful to generate multi-person templates
of popular karate (and other sports) techniques and evaluate numerically and visually those
averaged recordings. That research will supply us with interesting and valuable information
about kinematic of elite athletes and can be a reference for trainers and scientist. We believe
that both proposed method, but especially NA will be an excellent approach to achieve all
of those goals.
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