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Abstract Make and Model recognition of cars (MMR) has become an important
element of automatic vision based systems. Nowadays, MMR utility is commonly
added to traffic monitoring (e.g. Licence Plate Recognition) or law enforcement sur-
veillance systems. Facing the growing significance of Make and Model Recognition of
cars we have designed and implemented two different MMR approaches. According
to their disparate assumption data of these implementations one is obligated to
estimate different car models in milliseconds (with a bit less emphasis placed on its
accuracy) while the other is aimed first of all to reach higher classification accuracy.
Both the implemented MMR approaches, called Real-Time and Visual Content
Classification, respectively, are described in this paper in detail and with reference
to other MMR methods presented in the literature. Analyses of their performance
with respect to classification accuracy and, in case of the Real-Time approach, to its
response time are also presented, discussed and finally concluded.
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1 Introduction

Different automatic vision based vehicle detection and classification techniques
are widely practiced nowadays. They are widespread used in traffic management
and monitoring, automated parking garages, driver assistance and control access
systems, as well in public as in commercial applications. Another useful adaptation
of these techniques is surveillance for crime preventing and terrorism fighting. This
category of vision based automatic vehicle detection and classification applications is
important for public safety as well as for national security. The most common and
well known application from the category of traffic management and monitoring
is the Automatic Number Plate Recognition (ANPR). However, due to growing
demand which meets mayor advance of technical capabilities, also other categories of
vehicle classification have recently been added. Make and model recognition (MMR)
of cars [1] is the main and relatively newly added functionality, among such as color
and vehicle type distinguishing (between lorries and passenger cars for instance [22]).
Unlike vehicle type distinguishing, MMR is aimed at correct identification of car
make and model within a given type.

Although a number of scientific papers dedicated for MMR issue have been
published recently, the problem of finding an efficient real-time and robust solution is
still a challenge. To face this challenge we have prepared and examined two different
MMR approaches. Frameworks of both of them as well as their goals, assumptions
and obtained results are presented in this paper. For clarity of presentation we
divided this paper into six main sections. Later in this section the MMR state-of-the
art as well as our research motivation are presented. In Section 2, the training and
test image sets as well as the preprocessing steps to both approaches are described in
details. Section 3 presents the first of our methods which is a real-time solution com-
bining Speeded-Up Robust Features (SURF) [13] detector and the Support Vector
Machines (SVM) algorithm [20]. The second MMR scheme, which puts emphasis
on recognition accuracy (regardless to processing time) using visual descriptors
is presented in Section 4. In next two sections results of performed experiments
and subsequently conclusions with an insight to possible future improvements to
proposed solutions are discussed.

1.1 Literature review

Despite the fact that MMR frameworks have already been applied in selected
security systems [2], the amount of relevant scientific literature is relatively small.
Analysis of this literature allows to distinguish between two main categories of
different approaches to MMR issue, which are generally feature- and appearance-
based. As approaches proposed in this paper are feature-based, the appearance-
based methods will not be discussed in this paper. Some of them are described
in [31, 35, 44, 64]. In general, the feature-based approaches cover traditional clas-
sification methods (e.g. discriminant analysis [37], multivariate interpolation [25],
Bayesian methods [14], and Support Vector Machines [8, 58]), as well as tools from
the computational intelligence area (e.g. neural networks [19, 42, 54], and systems
based on various combinations of neural networks, fuzzy sets and genetic algorithms
[27, 28, 33], with a special emphasis on interpretability-oriented approaches [29, 30]).
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One of the first feature-based approaches to the MMR problem has been pre-
sented in [53]. The authors of this paper have used a combination of a number of
feature extraction algorithms to form vectors of feature descriptors of frontal views of
cars allowing to distinguish between different car models. The classification method
they have been applied was based on a simple k-Nearest Neighbor (kNN) algorithm
[21]. Some different feature extraction algorithms (e.g. Canny edge detector, square
mapped gradients) as well as different classifications methods (Naive Bayes) have
also been investigated in [52]. In contradistinction to work of Petrovic and Cootes,
selected feature extraction algorithms have not been investigated as their combina-
tion but separately. Similar idea, also based on edges extracted using Canny edge
detector but with investigation of other classification methods (C4.5 decision tree
and a feed-forward neural network), has been presented in [49].

A little more sophisticated approach, related to contours (not to edges) [11, 57]
has been introduced in [50]. Negri at al. have proposed contours, or more precisely
feature arrays containing contour information, as maps modelling different classes
of cars in their MMR scheme. These feature arrays, called oriented-contours points
matrices, are obtained as a results of complex process which starts from Sobel
filtering and ends with special iterative voting procedure. The goal of this voting
procedure is to find such contour points which are invariable for all the training
images of a given class. The classification procedure of the proposed method uses
three different measures (called votes) and the distance error evaluated between the
oriented-contour points of the class model and the test sample. In other work—[19],
the same authors, have proposed also a second classification stage in which above
scores, employed as vectors, are evaluated with a kNN algorithm. Another contour
based approach has been presented by Anthony in [10].

Methods described so far are based on edge detectors (e.g. Canny edge detector)
operating in spatial domain. In contradistinction, Kazemi et al. [40] have investigated
a three different transform domain feature extractors in their MMR scheme. The
classifier they have used is a standard kNN algorithm. They have shown that the best
recognition rate can be obtained using Curvelet Transform [17]. In [41] the same
authors have proposed to combine the Discrete Curvelet Transform (DCT) [16] with
multi-class SVM classifier [59]. They have shown this time that such a connection
is more efficient, especially when SVM one-agaist-one strategy [34] is used. Rahati
et al. [55] have repeated above research but with Contourlet Transform [24] instead
of DCT. Further extension to this work has been done in [63] where a localized
directional feature selection criterion, on the Contourlet Transform domain, has
been used.

Another sub-class of feature-based methods is related to Scale Invariant Feature
Transform (SIFT) [46]. Effectiveness of SIFT based MMR scheme has been inves-
tigated inter alia by Dlagnekov. In [23] he has proposed a simple SIFT matching
algorithm in which SIFT descriptors calculated for a given query image are matched
directly and separately to the descriptors calculated earlier for each of reference
images. Estimation in his solution is achieved according to the distance measure
defined in the SIFT scale space. He has also investigated other selected methods,
including Eigencars and Shape Context Matching. The comparison he performed has
shown that SIFT based methods are very promising. Similar investigations, related
also to SIFT based methods, have been described in [36] and [62].
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1.2 Research motivation

Our activity in the field of vehicle make and model recognition is originated from
the INSIGMA R&D project [3] in which we are currently involved. One of the
INSIGMA objectives is to develop a software which will be able to process video
sequences, registered by surveillance cameras, in order to detect [26] and extract
selected features of cars and, inter alia, to recognize their make and models. There
are however different requirements related to this software. First of all it should
be able to operate in controlled conditions as well in real-time (for rapid system
interactions) as out of time limits (for post event system procedures). In case of
the real-time part of this software it is expected to achieve a recommendation
(related to the queried sample) in no more than few dozen of milliseconds and with
classification accuracy not less than 90 %. On the other hand, the accuracy of the no
time-limited part should be significantly higher. The imposed accuracy limits seems
to be quite reasonable according to the results obtained by other researchers for
real-time constraints and realistic data sets. Petrovic and Cootes for instance have
reported the accuracy of 87,3 % [53]. Maximum performance of the oriented-contour
based MMR system described in [19] was approximately 93 %. This high accuracy
related performance has been achieved however using a fusion of different classifiers.
Adaptation of localized contourlet features presented by Zafar et al. in [63] allows
reaching the accuracy of even 94 %. It is necessary however to notice that a test
dataset used in this work has contained only one or two images per each class. In
case of four testing images, performance of Zafars approach has dropped to 85 %.
There are however also other works where even higher accuracies, up to 100 %,
have been reported. For instance a perfect MMR classifier has been proposed in
[40], but the number of estimated classes in this case was limited to five. On the
other hand, experiments performed by Dlagnekov from Belongie Research Group
[4] have shown that SIFT based approaches can be also efficient. The classification
accuracy he has reported in [23] for such a case was about 89 %. In our opinion
however, the main disadvantage of his method is a simple matching algorithm which
compares descriptors of query and reference images directly in one-to-one manner.

These as well as other requirements (more detailed explanation of all relevant
system constraints, including time related ones, will be given in Section 2) have
provoked us to develop two different MMR implementations.

As the base for the Real-Time approach we have chosen the SURF feature map
extractor. We have chosen this because one feature map in use will grant faster
performance than combination of two or more features. The SURF extractor we
have selected however taking into consideration the promising results of Dlagnekov.
Admittedly, Dlagnekov has performed his research using SIFT algorithm, but as
it have been shown in [12, 39] “SURF is indeed superior to SIFT and all its
different implementations”, especially in terms of runtime performance. Although
SIFT indicates slightly better feature quality than SURF, differences between these
two algorithms in this aspect are inessential. However, with regard to other aspects,
e.g. robustness and scale invariance, both algorithms are comparable.

On the other hand, we have assumed that combination of few selected feature
extractors will assure better recognition rate than in case of one selected extractor.
Therefore our second approach (called Visual Content Classification approach)
combines results from various visual and local features descriptors in one classifier.
It gives us multipurpose method which can be adapted to different recognition sce-
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narios. We have decided to use some well known descriptors such as SIFT and SURF
in addition to promising feature extraction techniques as MPEG-7 descriptors [56].

2 Training and test image datasets

We have assumed that surveillance cameras providing video data to be processed
by our approaches will be positioned over every traffic lane, including highways,
countryside roads, streets, parking lots, etc. We have also assumed that resolution of
MPEG-4 video sequences recorded by these cameras should not be less than 4CIF. In
other words the expected minimal resolution of processed images (video frames) is
704×576 pixels. Taking into account the standard image sensor type (1/3 for instance)
and the focal length of applied lens equal to e.g. 60 mm, size of the camera field of
view (FOV), from the distance of about 40 m (131 ft), is 2.35×1.76 m (7×5 feet).
FOV of the same size can be also obtained from the distance of about 5 m (16 ft), but
with the focal length equal to 8 mm. Above relationships are illustrated in Fig. 1.

Such FOV assures that the standard automobile (its front or back side) covers
approximately 75 % of the entire frame space. This, according to the predetermined
video resolution, means however that size of a the car object to be processed is about
600×480 pixels. Such a car object is quite sufficient as well for our MMR approaches
(as it will be indicated in relevant sections) as for other tasks related for instance to
automatic license plate [38, 43] or vehicle-logo recognition [3] (as it is illustrated in
Fig. 2).

With respect to above assumptions we have prepared two separate datasets where
one is for training and the other one for testing purposes. These datasets have been
used, in different ways however, for further evaluation of both of our approaches.
Datasets contain images that have been collected in various lighting conditions over
a period of twelve months. All of these images represent front sides of cars taken
“en face” or at a little angle (less than 30 degrees). The training dataset contains a
total number of 1360 images and corresponds to 17 different models of cars. In other
words each model in our training dataset is represented by 80 images taken outdoor
or downloaded from the Internet (fifty-fifty). The full list of car models as well as
some examples of training images are depicted in Fig. 3.

Fig. 1 The predetermined
field of view conditions
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Fig. 2 Proportions of car number plate and logo objects within the 600×480 FOV and their minimal
required resolutions—with respect to (a) [9] and (b) [15]

The test dataset is composed of 2499 images. These photos, like the training ones,
have been taken as well from outdoor as from the Internet. In case of test dataset
however, less attention has been paid to the quality and size of collected images.
Therefore, some of these images are soft focus or dark as well as resolution of some
of them is less than 600×480. In addition, number of images corresponding to a given
class is different. Their distribution over the full list of analyzed models is presented
in Fig. 4.

According to another assumption, minimal frame rate of used surveilance cameras
should be 25 fps.

2.1 Preprocessing the datasets

All images from the test dataset are initially processed using our implementation of
Haar-like features detector [48, 60]. We use this detector to detect and then to extract

Fig. 3 List of car models covered by the training dataset and their selected examples
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Fig. 4 Number of test images for each class

(by cropping an image) a Region of Interest (ROI) which is a rectangle containing
grill part of a car together with its head and indicator lights, like in an example
depicted in Fig. 5.

Our Haar-like detector implementation is based on the haartraining application
from the Open Computer Vision Library (OpenCV) [5]. Numbers of positive and
negative samples that we have collected for our classifier cascade training are 3838
and 8831, respectively. Collection of positive samples includes images that belong to
the training dataset as well as images that correspond to car models from beyond of
our analysis. The performance of our Haar-like features detector is given by Hits,
Missed and False indicators shown in Table 1, where ‘Hits’ indicates the number of
correct detections (equivalent to the true positive—TP), ‘Missed’ shows the number
of missed detections (equivalent to the false negative—FN) and ‘False’ specifies the
number of false detections (equivalent to the false positive—FP).

Values presented in Table 1 have been assigned during a test which have been
performed on the total number of 1000 positive images. According to the following
definition of the hit rate (HR)

HR = TP
TP + FN

, (1)

the hit rate for our ROI detector, with respect to performed test, is 97.2 %.

Fig. 5 A ROI example
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Table 1 Hit rate indicators for
ROI Haar-like detector

Hits Missed False

Total 972 28 17

ROIs of the same kind are also detected and extracted from all of the training
dataset images. These ROIs as reference images (RI) are then used to create a
pattern database where its feature vectors are stored.

As a real video stream is a sequence of frames, the MMR approaches presented in
our paper, especially the Real-Time approach, are ready to process each frame of the
input video sequence provided by the CCD devices. As it has been described at the
begining to this section, all images from the test dataset (as well as from the training
dataset), during our experiments, were initially processed by the aforementioned
ROI detector. In real-time conditions, this ROI detector is also applied at the
beginning of the whole process. Next steps of this process, described in details in
next sections, are performed only if the detector returns the Region of Interest.

3 Real-time approach

Our Real-Time (RT) MMR approach, as it was already mentioned, is based on
SURF detector. SURF is used at the beginning as well of training as of testing
phase of this approach. However, SURF descriptors of selected interest points,
representing the local, based on gradient distribution features of an image, stand for
primary feature vectors for our approach, they are not vectors directly used in our
classification task.

3.1 Training phase

SURF descriptors are computed independently for each of the reference images
(ROIs) at the beginning of the training phase. Collection of these descriptors, taken
as the whole, is then partitioned, using k-means method [47], into predetermined
number of clusters. Set of clusters obtained in this way, called the vocabulary, is then
saved as an XML file. Subsequently, SURF descriptors related to a given pattern
image (and in consequence to a given model name) are iteratively assigned to the
cluster centroids with the closest mean (in sense of Euclidean metric) with respect
to the Lloyd’s algorithm [45]. Above assignments create a so-called sparse vector of
occurrence counts (SVoOC), which is also saved prior to the final step. Diagrams
illustrating both phases of the RT approach are depicted in Fig. 6.

Procedure described up till now is a bit similar to the one presented in [6].
However, the final step in our approach is different. At the end of the training phase,
histograms are used in general by SVM algorithm to construct a multi-dimensional
hyperplane, that optimally separates the input data into predetermined number of
classes.

In case of two class SVM, the problem of optimal separating the dataset (of size
N) of training vectors xi (i = 1, 2, . . . , N),

D = {(x1, y1), . . . , (xl, yl)}, xi ∈ R
n, yi ∈ {−1, 1}, (2)
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Fig. 6 Workflow of the RT approach

with a hyperplane,

〈w, x〉 + b = 0, (3)

where: w ∈ R
n and b is a scalar, comes down to introducing no error while the

maximal distance between the closest vector and the hyperplane is determined [32].
When a canonical form of hyperplane is considered [58], w and b are con-

strained by,

min
i

|〈w, xi〉 + b | = 1. (4)

Hence, it can be finally formulated that the optimal hyperplane is the one that
minimises function �(w), given by the following equation,

�(w) = 1
2
‖w‖2. (5)

In more general form, without restriction to the case where the training data
is only linearly separated, optimal separating hyperplane must minimize the func-
tion [20],

�(w, ξ) = 1
2
‖w‖2 + C

∑

i

ξi, (6)

where: C is a given value and ξi are a measure of misclassification errors.
There are many methods of constructing the multidimensional hyperplane that

optimally separates the training data into predetermined number of classes. Our
implementation of multi-class SVM classifier is based on LIBSVM library [18] where
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the “one-against-one” algorithm is used. In such an approach a number of binary
classifications is performed according to a voting strategy. These classifications
generate a set of support vectors, called the SVM model, that are the closest to the
optimal hyperplane. The SVM model is also saved in XML form during the training
phase.

3.2 Testing phase

The vocabulary as well as the SVM model are read from relevant XML files in the
first steps of the testing phase. Subsequently, a query (test) image (QI) is loaded
and its SURF descriptors are computed. SURF descriptors are then assigned to
vocabulary’s clusters with respect to the same iterative procedure as in the training
phase. As a result, a new SVoOC vector is created. Finally, the SVM classifier
estimates a class to which a query image belongs according to its SVoOC vector and
the SVM model.

4 Visual content classification approach

The second mentioned method bases on information from visual content descriptors
and local features. Our motivation was to create a highly efficient classification
method which can be adapted with various classification scenarios. The main require-
ment for classification was to develop a method with great accuracy irrespective of
database kinds. In opposite to the previously mentioned method, algorithm speed
was not the main issue. In this article we use Visual Content Classification (VCC)
method in MMR scenario. The VCC algorithm consists of two phases: training and
testing (Fig. 7).

4.1 Training phase

All tasks used for preparation of reference database for further classification belong
to this step. During the training phase calculations are done over the images from
reference database (RD). The visual content descriptors belongs to MPEG-7 de-
scription standard. In current MMR scenario we use Edge Histogram descriptor [51].
However there is possible to use any other descriptor from MPEG-7 standard which
can be useful in different (from MMR) scenarios. As the local features descriptors we
use SIFT and SURF. Descriptors for RD are computing once for current database.
Calculated feature vectors are used to specify a set of descriptors which provide the
best results. Decreasing number of descriptors allows achieving good results with
relatively lower computational cost. Numerical representations of descriptors are
stored as binary vectors for shorter access time and easier processing.

4.2 Testing phase

The testing phase begins with query image (QI) which we would like to classify to one
of reference database category. First step is to calculate descriptors for QI (the same
descriptors as for RD). Having feature vectors for RD and QI distances between QI
and images from RD are computing. As a result we gain complete list of distances
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Fig. 7 Workflow of VCC framework

between query and reference images. To decide which category from RD is the most
probable for each QI we apply distance metrics over the list of distances. We can use
optionally one from three metrics.

M1 = avg(dist((QI|A)), (7)

where: dist() is a distance between QI and images from each class of RD, A is a one
of image classes from RD and avg() is an average function.

M2 = sum
( ∑

‖dist(A)‖ · An

)
, (8)

where: ‖dist‖ is a normalized distance between QI and each image from RD, An is a
quantity of images in each class and

∑
is a quantity of the whole RD,

M3 = f req(A) · ∑

An
, (9)

where: f req(A) is a occurrence frequency of a particular class image in first N the
most similar images from RD.

The M1 represents an average distance between QI and the set of the most similar
images from RD. It states that the smaller average distance in global means more
probable similarity. The M2 is the sum of inverse normalized distances to the RD
images in respect to not equal image classes in RD. It shows which class from RD
is the closest to QI. The M3 counts frequency of appearance image from particular
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RD class in the most similar to QI images. To reduce computations, distances from
one hundred most similar images are taking into account in metrics counting process
(N=100). The metrics are counted for each descriptor independently.

At this point, as a result a list of most similar classes to the QI is created according
to particular descriptor. The last step is to merge results from various descriptors. For
each RD type various weights can be established in order to achieve better results
than with constant values.

5 Experimental results

Because the expected effectivity levels as well as assumed application areas are
quite different for both presented MMR methods, we have decided to divide this
section into two main subsections where performed tests and the obtained results
are presented individually according to both proposed approaches.

5.1 RT approach accuracy and runtime performance

Analysis of the classification accuracy of the Real-Time approach have been per-
formed according to the Overall Success Rate measure (OSR) defined as follows
([61]):

OSR = 1
n

k∑

i=1

ni,i, (10)

where: n is a number of test images, k is a number of estimated classes and ni,i—
entries of the main diagonal of the confusion matrix.

The total number of test images selected for our experiments is 2499. We have
decided however to check first how the OSR of our RT approach depends on various
sizes of a test set (n). We have performed above analysis with respect to different

Table 2 OSR of RT aproach according to various number of reference images (RI) and different
number of clusters, for some selected different sizes of a test dataset (n)

RI n Number of clusters

100 200 500 1000 2000 3000 4000 5000 6000

20 1500 0.50 0.54 0.57 0.577 0.571 0.578 0.591 0.611 0.589
2000 0.50 0.53 0.56 0.575 0.565 0.572 0.586 0.600 0.580
2499 0.50 0.53 0.56 0.578 0.572 0.573 0.584 0.598 0.581

40 1500 0.59 0.62 0.66 0.673 0.659 0.662 0.669 0.660 0.656
2000 0.59 0.63 0.66 0.673 0.659 0.659 0.659 0.655 0.651
2499 0.59 0.63 0.66 0.676 0.663 0.657 0.663 0.655 0.654

60 1500 0.72 0.78 0.84 0.858 0.875 0.885 0.879 0.897 0.886
2000 0.71 0.78 0.83 0.857 0.878 0.883 0.876 0.896 0.884
2499 0.71 0.77 0.83 0.855 0.873 0.883 0.876 0.892 0.885

80 1500 0.72 0.80 0.85 0.885 0.909 0.917 0.915 0.913 0.915
2000 0.72 0.80 0.85 0.883 0.913 0.915 0.915 0.914 0.919
2499 0.72 0.79 0.85 0.882 0.910 0.916 0.917 0.918 0.918
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Fig. 8 OSR versus various
number of clusters, for
different RI values (n = 2499)

amounts of reference images RI (where a given RI value represents the number of
reference images per each car model) as well as various numbers of clusters creating
the vocabulary.

The results of this analysis are depicted in Table 2.
Above analysis let us to notice that classification accuracy of our RT approach

does not depend in general on a number of classified instances (n). There are very
little dissimilarities in OSR distribution over different sizes of a test dataset for fixed
RI value. This feature promises well, because it raises our hope to keep a steady
accuracy level also after utilization of the RT approach. Table 2 shows however, that
the classification accuracy depends on a number of reference images (RI) given per
each car model as well as on a number of predefined clusters. Sample illustration of
these dependences is depicted in Fig. 8.

Both, Fig. 8 and Table 2, show that the highest OSR values are obtained for RI
equal to 80 and for a number of clusters which range from 3000 to 6000.

The bigger the number of clusters, the longer the durations of both the training
and the testing phase. An illustration of this trend, in case of the testing phase, is
depicted in Fig. 9.

In addition, Fig. 9 shows that runtime performance of the testing phase of the RT
approach does not depend on the number of reference images. A similar relation is
also obligatory for the training phase. Average durations of the whole testing phase
for RI = 80 and for number of clusters bigger than 1000, are given in Table 3. Taking
into account that the frame rate of the surveillance cameras have been assumed to
25 fps, we have decided finally to recommend 3000 as the most proper number of
clusters for the RT approach.

Durations of the two main parts of the testing phase which are the SVoOC
vector calculation (including previous operations of loading a query image and its

Fig. 9 Duration of the training
phase (in ms) vs. various
number of clusters (n = 2499)
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Table 3 Average durations of the testing phase for RI = 80 (n = 2499)

Number of clusters 2000 3000 4000 5000 6000

Duration [ms] 34.19 37.93 40.51 42.58 45.64

descriptors generation) and class prediction (see Fig. 6), for the above recommended
RT approach configuration, are 33.69 ms and 4.24 ms, respectively. Above runtime
performance outcomes have been achieved using the computer of parameters as fol-
lows: CPU—DualCore Intel Core i5 650, 3200 MHz (24×133), RAM—2x Kingston
2GB DDR3-1333 DDR3, system—Windows Server 2008 R2 Enterprise (64-bit).

The confusion matrix constructed for the recommended RT classifier is presented
in Table 4. The true classes and the estimated classes, as defined by the RT classifier
(see Fig. 3), are noted Ci and Ĉi, respectively. Index i, according to the number of
analyzed models, varies form 1 to 17.

Confusion matrix gives an aditional information about classes which are com-
monly mislabeled one as another. As it is ilustrated in Table 4, the RT MMR
approach confuses, however very slightly, some similar models of cars. It is especially
noticeable for cars which come from the same automaker. Car models confused
mainly in the RT approach are as follows:

– Opel Astra II with Opel Astra I (in 13 in 237 cases),
– Opel Zafira A with Opel Astra II (in 10 in 143 cases),
– Ford Mondeo Mk III with Ford Focus C-MAX (in 12 in 191 cases),
– Ford Mondeo Mk III with Ford Focus Mk1 (in 10 in 191 cases),
– Opel Astra II with Opel Vectra B (in 15 in 237 cases).

Remaining cases of misclassifications are insignificant.

Table 4 Confusion matrix for RI = 80 and number of clusters equal to 3000 (n = 2499)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

Ĉ1 90 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Ĉ2 1 144 13 0 0 0 0 0 0 0 0 0 0 0 6 0 0
Ĉ3 0 1 193 0 0 0 0 0 0 0 1 1 0 2 2 10 1
Ĉ4 0 0 1 164 1 0 0 0 1 0 0 0 0 0 0 0 6
Ĉ5 0 3 2 1 119 3 0 1 3 2 2 0 1 0 2 3 0
Ĉ6 0 3 5 1 5 164 0 0 0 0 5 1 0 2 1 3 0
Ĉ7 0 1 1 0 0 0 78 0 2 0 1 12 0 3 0 0 0
Ĉ8 0 0 1 0 0 0 0 54 5 0 0 10 0 0 0 0 0
Ĉ9 0 0 0 0 0 0 0 7 51 0 0 5 0 0 0 0 0
Ĉ10 0 0 0 0 0 0 0 0 0 140 0 0 3 5 0 0 0
Ĉ11 0 1 1 0 0 0 0 0 0 0 138 0 0 0 0 0 0
Ĉ12 1 0 2 0 0 0 1 2 6 0 0 160 0 3 0 1 0
Ĉ13 0 0 0 0 0 0 0 0 0 0 0 0 155 2 0 0 0
Ĉ14 0 0 0 0 0 0 0 0 0 0 0 0 1 168 0 0 0
Ĉ15 0 3 15 0 0 0 0 1 0 0 1 2 0 4 204 1 0
Ĉ16 0 0 3 0 1 0 0 0 0 0 1 0 0 0 0 125 0
Ĉ17 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 142
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Table 5 The VCC accuracy
analysis according to different
metrics and descriptors

Descriptors M1 M2 M3

Edge histogram 0.814 0.825 0.692
SIFT 0.804 0.812 0.706
SURF 0.802 0.779 0.683

5.2 VCC approach performance and accuracy

The Visual Content Classification approach uses the same database as RT one.
Therefore accuracy and performance analyses have been performed with similar
methods. For accuracy analysis previously defined OSR measure has been used.
Because detecting cars with color features is not the point only three VCC descriptors
are useful in MMR scenario. The following analysis is done with Edge Histogram
(EH), SIFT and SURF.

Results of accuracy tests of VCC approach were presented in Table 5. The best
results with single descriptor were achieved with M2 . However in some cases dif-
ferences between metrics are small, the changes have linear nature. The comparison
shows advantage of M2 but because of strict statistical differences all metrics are
taken into further consideration.

With merging information from different descriptors more unique set of features
are created. The obtained descriptor takes into account more heterogeneous object
features which result in higher accuracy.

The descriptors can be merged with various weights. For specific RD different
weights can provide better and worse results. In MMR scenario, local discrete grid
is used to get optimal weights for each descriptor. The results presented in Table 6
prove that variant weights improves accuracy rate. These values should be computed
for various RD independently.

In the same way as for RT approach, we present confusion matrix for VCC
method—in Table 7.

The confusion matrix shows some similarity but also differences between ap-
proaches. The best result was achieved in c6 model class (Opel Corsa B) in which
accuracy is 100 %. The worst result (accuracy below 90 %) is recorded with C3 class
(Opel Astra II). The most common mislabels are:

– Opel Astra II with Opel Corsa B (in 3 in 237 cases),
– Opel Astra II with Opel Vectra B (in 4 in 237 cases),
– Opel Astra II with Opel Zafira A (in 3 in 237 cases),
– VW Touran with VW Passat B5 FL (in 3 in 190 cases).

The VCC is not dedicated for real-time analysis. The average time needed to process
one frame is approximately 1.93 sec (in the same machine as for RT approach).

Table 6 The VCC accuracy
analysis with weighted
descriptors merging

Edge histogram SIFT SURF M1 M2 M3

1 1 1 0.913 0.939 0.840
0.6 0.7 0.5 0.946 0.951 0.832
0.7 0.8 0.5 0.937 0.972 0.822
0.6 0.6 0.8 0.918 0.945 0.881
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Table 7 Confusion matrix for M2 with weights: 0.7, 0.8, 0.5 for EH, SIFT, SURF, respectively
(n = 2499)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

Ĉ1 91 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ĉ2 1 152 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0
Ĉ3 0 1 211 0 0 0 0 0 0 0 0 1 0 0 0 2 0
Ĉ4 0 0 1 166 0 0 0 0 1 0 0 0 0 0 0 0 0
Ĉ5 0 0 2 0 124 0 0 1 0 2 0 0 0 1 0 2 0
Ĉ6 0 1 3 1 2 167 0 0 0 0 0 1 0 0 1 0 0
Ĉ7 0 1 1 0 0 0 78 0 0 0 1 0 0 0 0 0 1
Ĉ8 0 0 2 0 0 0 0 61 1 0 0 0 0 1 0 0 0
Ĉ9 0 0 0 0 0 0 1 1 65 0 0 1 0 0 0 0 1
Ĉ10 0 0 2 0 0 0 0 1 1 142 0 1 0 0 0 0 0
Ĉ11 0 1 0 0 0 0 0 0 1 0 148 0 0 0 0 0 0
Ĉ12 0 0 2 0 0 0 0 0 0 0 0 186 0 0 0 0 0
Ĉ13 0 0 0 0 0 0 0 0 0 0 0 0 160 3 0 1 2
Ĉ14 0 0 1 0 0 0 0 0 0 0 0 0 1 185 0 0 0
Ĉ15 0 1 4 0 0 0 0 1 1 0 0 0 0 0 212 1 0
Ĉ16 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 137 0
Ĉ17 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 145

6 Conclusions and further work

The paper presents detailed description of two approaches for MMR scenario.
The developed methods have been trained and experimentally tested on datasets
prepared for training and testing (datasets can be downloaded from [7]). Datasets
contain great number of cars front views grouped into 17 classes (one for each
car model). The tests prove that RT approach and VCC one gives good results,
91.7 % and 97.2 % of correctly recognized classes, respectively. Taking into account
database size and processing time (for RT approach) presented algorithms are
an important contribution in car make and models recognition techniques. The
results can be combined with the grill part of a car detector and use in surveillance
applications.

The further work will put emphasis on increasing number of classes in RD. We are
currently working on preparing new version with 54 different car models. Creating
methods for larger database will be the next challenge.
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30. Gorzałczany MB, Rudziński F (2012) Accuracy vs. interpretability of fuzzy rule-based classifiers:
an evolutionary approach. In: Lecture notes in computer science, vol 7269. Springer-Verlag,
Berlin, Heidelberg, pp 222–230

31. Gu H-Z, Lee S-Y (2012) A view-invariant and anti-reflection algorithm for car body extraction
and color classification. Multimed Tools Appl 65(3):387–418

32. Gunn SR (1998) Support vector machines for classification and regression. Technical report,
image speech and intelligent systems research group. University of Southampton

33. Gupta MM, Gorzałczany MB (1992) Fuzzy neuro-computational technique and its application
to modeling and control. In: Proc. of IEEE int. conf. on fuzzy systems, pp 1271–1274

34. Hsu C, Lin C (2002) A comparison of methods for multi-class support vector machines. IEEE
Trans Neural Netw 13(2):415–425

35. Huang H, Zhao Q, Jia Y, Tang S (2008) A 2dlda based algorithm for real time vehicle type
recognition. In: Proc of the 11th int. IEEE conf. on intelligent transportation systems, pp 298–
303

36. Iqbal U, Zamir SW, Shahid MH, Parwaiz K, Yasin M, Sarfraz MS (2010) Image based vehicle
type identification. In: Proc. of the int. conf. on information and emerging technologies, pp 1–5

37. McLachlan GJ (2004) Discriminant analysis and statistical pattern recognition. John Wiley &
Sons, Canada

38. Janowski L, Kozłowski P, Baran R, Romaniak P, Glowacz A, Rusc T (2012) Quality assess-
ment for a visual and automatic license plate recognition. Multimed Tools Appl. doi:10.1007/
s11042–012–1199–5

39. Juan L, Gwun O (2009) A comparison of sift, pca-sift and surf. IJIP 3(4):143–152
40. Kazemi FM, Samadi S, Poorreza HR, Akbarzadeh-T M-R (2007) Vehicle recognition based

on fourier, wavelet and curvelet transforms—a comparative study. Int J Comput Sci Net Sec
7(2):130–135

41. Kazemi FM, Samadi S, Poorreza HR, Akbarzadeh-T MR (2007) Vehicle recognition using
curvelet transform and svm. In: Proc. of the 4th int. conf. on information technology, pp 516–
521

42. Lee HJ (2006) Neural network approach to identify model of vehicles. In: Proc. of the 3rd int.
conf. on advances in neural networks, vol 3, pp 66–72

43. Leszczuk M, Janowski L, Romaniak P, Glowacz A, Mirek R (2011) Quality assessment for a
licence plate recognition task based on a video streamed in limited networking conditions. In:
Multimedia communications, services and security, communications in computer and informa-
tion science, vol 149. Springer, Berlin Heidelberg, pp 10–18

44. Li M, Yuan B (2005) 2d-lda: a statistical linear discriminant analysis for image matrix. Pattern
Recogn Lett 26(5):527–532

45. Lloyd SP (1982) Least squares quantization in pcm. IEEE Trans Inform Theory 28(2):
129–137

46. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proc. of the ICCV
’99, vol 2. IEEE Computer Society, pp 1150–1157

47. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In:
Proc. of the 5th berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297

48. Matiolanski A, Guzik P (2011) Automated optimization of object detection classifier using
genetic algorithm. In: Dziech A, Czyzewski A (eds) Multimedia communications, services
and security, communications in computer and information science, vol 149. Springer, Berlin
Heidelberg, pp 158–164

49. Munroe DT, Madden MG (2005) Multi-class and single-class classification approaches to vehicle
model recognition from images. In: AICS-05, pp 93–102

50. Negri P, Clady X, Milgram M, Poulenard R (2006) An oriented-contour point based voting
algorithm for vehicle type classification. In: Proc. of the 18th int. conf. on pattern recognition,
ICPR’06, pp 574–577

51. Park DK, Jeon YS, Won CS (2000) Efficient use of local edge histogram descriptor. In: Pro-
ceedings of the 2000 ACM workshops on multimedia, MULTIMEDIA’00. ACM, New York,
pp 51–54

4286 Multimed Tools Appl (2015) 74: –4269 4288

http://dx.doi.org/10.1007/s11042--012--1199--5
http://dx.doi.org/10.1007/s11042--012--1199--5


52. Pearce G, Pears N (2011) Automatic make and model recognition from frontal images of cars.
In: Proc of the 8th IEEE int. conf. on advanced video and signal-based surveillance (AVSS),
pp 373–378

53. Petrovic VS, Cootes TF (2004) Analysis of features for rigid structure vehicle type recognition.
In: British machine vision conference, pp 587–596

54. Psyllos A, Anagnostopoulos CN, Kayafas E, Loumos V (2008) Image processing & artificial
neural networks for vehicle make and model recognition. In: Proc. of the 10th int. conf. on
applications of advanced technologies in transportation, vol 5, pp 4229–4243

55. Rahati S, Moravejian R, Mohamad E, Mohamad F (2008) Vehicle recognition using contourlet
transform and svm. In: Proc. of the 5th int. conf. on information technology: new generations,
pp 894–898

56. Salembier P, Sikora T (2002) Introduction to MPEG-7: multimedia content description interface.
John Wiley & Sons, Inc., New York

57. Ukasha A, Dziech A, Elsherif E, Baran R (2009) An efficient method of contour compression.
In: Proc. of the int. conf. on visualization, imaging and image processing, pp 213–218

58. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York
59. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw

10(5):988–999
60. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In:

Proc. of the 2001 IEEE computer society conference on computer vision and pattern recognition,
vol 1, pp I–511–I–518

61. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd
edn. Morgan Kaufmann, San Francisco

62. Zafar I, Acar BS, Edirisinghe EA (2007) Vehicle make & model identification using scale
invariant transforms. In: Proc. of the 7th IASTED international conference on visualization,
imaging and image processing, pp 271–276

63. Zafar I, Edirisinghe EA, Acar BS (2009) Localized contourlet features in vehicle make and
model recognition. In: Proc. of SPIE-IS&T electronic imaging, image processing: machine vision
applications II, vol 7251, pp 725105–725105–9

64. Zafar I, Edirisinghe EA, Acar S, Bez HE (2007) Two-dimensional statistical linear discriminant
analysis for real-time robust vehicle-type recognition. In: Proc. of SPIE-IS&T electronic imaging,
real-time image processing 2007, vol 6496, pp 649602–649602–8

Remigiusz Baran received the M. Sc. degree in Electrical Engineering from the Faculty of
Electrical and Control Engineering, Kielce University of Technology in 1993 and the PhD degree in
Telecommunications from the Faculty of Electrical, Control, Electronic and Computer Engineering,
AGH University of Science and Technology in Krakow in 2004. He actively participates (or has
participated) in EU and national projects, e.g. in INDECT, INSIGMA, CALIBRATE, INTOM,
OASIS Archive, InWAS. His fields of scientific and professional interest are related to embedded
DSP systems as well as digital image processing with image compression, feature extraction and
object recognition emphasis.

4287Multimed Tools Appl (2015) 74: –4269 4288



Andrzej Glowacz received PhD in Telecommunications from the AGH University of Science and
Technology, in 2007. Currently he is Assistant Professor in AGH University. Andrzej Glowacz has
been working in numerous industrial works, and the EU research projects including: INSIGMA,
INTOM (in both as Deputy Project Coordinator), INDECT, Future Internet Engineering, GAMA,
OASIS Archive, CARMEN, DAIDALOS, DAIDALOS 2, EuroNGI and EuroFGI. His main
professional areas are: intelligent information systems, multimedia systems, pattern recognition,
wireless QoS, modern transport protocols and advanced systems programming. He is author of over
seventy scientific papers and technical reports, he also serves as a reviewer of international journals
and conferences.

Andrzej Matiolanski He is a PhD student at the Department of Telecommunications of AGH
University of Science and Technology. He has received his M.Sc. degree from the Faculty of Physics
and Applied Computer Science of AGH University of Science and Technology in 2010. His research
interests include computer vision, image processing and super-resolution algorithms. He has actively
participated in both national and international research projects like INDECT, INSIGMA and
MAYDAY EURO 2012.

4288 Multimed Tools Appl (2015) 74: –4269 4288


	The efficient real- and non-real-time make and model recognition of cars
	Abstract
	Introduction
	Literature review
	Research motivation

	Training and test image datasets
	Preprocessing the datasets

	Real-time approach
	Training phase
	Testing phase

	Visual content classification approach
	Training phase
	Testing phase

	Experimental results
	RT approach accuracy and runtime performance
	VCC approach performance and accuracy

	Conclusions and further work
	References


