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Abstract In this paper, a novel application of Active Appearance Models to detecting
knives in images is presented. In contrast to its popular applications in face segmentation
and medical image analysis, we not only use this computer vision algorithm to locate an
object that is known to exist in an analysed image, but–using an interest point typical of
knives–also try to identify whether or not a knife exists in the image in question. We propose
an entire detection scheme and examine its performance on a sample test set. The work
presented in this paper aims to create a robust visual knife-detector to be used in security
applications.

Keywords Active AppearanceModels . Knife-detection . Computerised video surveillance .

Harris interest-point detector

1 Introduction

One application of object detection in images is computer-aided video surveillance. It can be
used both in security applications [15] and as legal evidence [14]. A CCTVoperator usually
monitors multiple video feeds at the same time; this is a complex and challenging task in
terms of allocating attention effectively. One study suggests that detection rates for operators
monitoring four, nine and 16 screens oscillate around 83 %, 84 % and 64 % respectively, and
will drop significantly after an hour [23]. Therefore, the need to automate the process is
obvious. There have been attempts at detecting suspicious events in video material [11] and
recognising human activity in videos [13].

This study focuses on automatic detection of knives in images. Carrying knives in public
is either forbidden or restricted in many countries; due to the fact that knives are both widely
available and can be used as weapons, their detection is of high importance for security

Multimed Tools Appl (2015) 74:4253–4267
DOI 10.1007/s11042-013-1537-2

A. Glowacz :M. Kmieć (*) : A. Dziech
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: kmiec@agh.edu.pl

using Active Appearance Models



personnel. For instance, the idea of software-based knife-detection has a practical applica-
tion in surveillance of the public using CCTV. Should a knife be detected, an alarm is raised
and the human operator can immediately focus their attention on that very scene, and either
confirm or reject that detection. Although people will almost always outperform software
algorithms for object detection in images [21], in the long run the computer could be of
significant assistance to the human CCTV operator when it comes to dealing with tens of
simultaneous video feeds for many hours a day. Another application of automatic knife-
detection is computer-aided analysis of luggage x-ray scans. Visual detection in security
applications approach is a new research area. Visual detectors designed to work in video
surveillance or x-ray scanners are not widely available.

Knives are a very wide class of objects of immense diversity. Moreover, they easily
reflect light, which reduces their visibility in video sequences; automatic knife-detection in
images therefore represents a challenging task. In this paper, a novel application of the well-
established Active Appearance Models (AAMs) is presented. So far, these have been
extensively used for medical image interpretation [1] [25] [12], and for the matching and
tracking of faces [10] [7]. Among many existing shape-modelling algorithms, such as the
Active Contour Models (Snakes), we have focused on AAMs because they model not only
the shape but also the appearance (that is, pixel intensities within the image region bounded
by the shape). As the knife-blade typically possesses quite a uniform texture, modelling its
appearance should contribute to the general resistance of the model so that it does not
converge to objects that have a shape similar to that of the knife-blade.

The novelty of this work is twofold. Not only has there been (to the best knowledge of the
authors) no other research on knife-detection, but also AAMs have so far not been used to detect
objects belonging to a general class. They have been used in what is referred to as ‘detection’–as
in [12]–but that is not what is meant by ‘detection’ in computer vision, in the strict sense of the
word. By detecting, for example, a face in an image, we mean answering the question of
whether there is or there is not a face in the given image [22]. This process can be characterised
by two parameters: the positive and the negative detection rates. As in the case of [12], before
what is referred to as ‘detection’ is performed, an assumption exists that the object is somewhere
in the image, and the task is to precisely locate it. For instance, given an image of a face, finding
the nose is not a task of detection since we can assume that all faces have noses. It is, rather, the
task of location, and can be characterised by the level of localisation accuracy, but not by
positive and negative detection rates. In this case, the assumption is that there always is a face in
the analysed image. Should the AAM be performed on a non-face image, it would converge to
the parts of the image whose appearance is closest to its model. This is still theoretically correct,
but makes no sense from a practical point of view. Moreover, AAMs are sensitive to the initial
location of their landmark points in the analysed image. Even if there is a face somewhere in a
large image, for the algorithm to correctly segment it into elements, the initial location of its
landmark points needs to be roughly around the face region. A common technique for face
segmentation with AAMs is the use of Viola and Jones’s face detector [16] to initialise the
AAM as in [6].

In this paper, a method for detection of objects, in this case knives, usingAAMs is introduced.
It aims to answer the question of whether or not there a knife exists in the given image.

2 Active Appearance Models

AAMs were introduced [4] in 1998 as a generalisation of the popular Active Contour Model
(Snake) and Active Shape Model algorithms. They are a learning-based method, which was
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originally applied to interpret face images. Due to their generic nature and high effectiveness
in locating objects, numerous applications in medical image interpretation followed. The
typical medical application is finding an object, usually an organ in a medical image
of a specific body part, such as locating the bone in a magnetic resonance image
(MRI) of the knee [5], the left and right ventricles in a cardiac MRI [18], or the heart in a chest
radiograph [24].

In general, an AAM can be described as a statistical model of the shape and pixel
intensities (texture) across the object. The term ‘appearance’ means the combination
of shape and texture, while the word ‘active’ describes the use of an algorithm that
fits the shape and texture model in new images. In the training phase, objects of
interest are manually labelled in images from the training set with so-called landmark
points to define their shape. A set of three annotated knives has been depicted in
Fig. 1.

Objects are thus defined by the pixel intensities within their shape polygon and the
shape itself. Principle Component Analysis (PCA) is then employed to model vari-
ability between objects in images from the training set. Before that happens, all shape
polygons need to be aligned to the normalised common mean. This is achieved by the
means of Generalised Procrustes Analysis, a method widely used in statistical shape
analysis. The algorithm outline can be summarised in four steps [20]:

1. Choose an initial reference shape (e.g. the first object’s shape).
2. Align all other shapes to the reference shape.
3. Re-calculate the mean shape of the aligned shapes.
4. If the distance of the mean shape to the reference one is larger than a threshold,

set mean shape as the reference shape and go back to point 2. Otherwise, return
the mean shape.

The distance in point 4 is simply the square root of the sum of squared distances between
corresponding points in two considered shapes, and is known as the ‘Procrustes distance’.
Superimposing two shapes includes translating, rotating and uniformly scaling objects, and
is also a four step process:

1. Calculate the centres of gravity (COGs) both of the mean and the shape being
superimposed to the mean.

2. Rescale the shape being superimposed so that its size equals that of the mean.
3. Align the position of the two COGs.
4. Rotate the shape being superimposed so that the Procrustes distance is minimal.

Fig. 1 Images of knives with
landmark points annotated
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By the means of PCA performed on the shape data, we obtain the following formula, which
can approximate any shape example:

x ¼ xþ Psbs ð1Þ
where x is the mean shape, Ps are the eigenvectors of the shape dispersion, and bs is a shape
parameters set. For the statistical model of appearance to be built, we need to warp all images in
the training set so that their landmark points match themean shape. Texture warped tomatch the
mean shape is referred to as ‘appearance’ in the original paper [4]. Let us denote grey-level
information from the shape-normalised image within the mean shape as gm. To reduce lighting
variation, it is necessary to normalise pixel intensities with an offset Ψ and apply a scaling ξ:

g ¼ gim−ψð Þ
.
ξ ð2Þ

The values of the two parameters are obtained in the course of a recursive process, details
of which can be found in [4]. Once pixel intensities of samples in the training set have been
normalised, a statistical model of pixel intensities can be defined:

g ¼ g þ Pgbg ð3Þ
where g is the normalised mean pixel-intensity vector, Pg are the eigenvectors of the pixel-
intensity dispersion and bg is a parameter set. For each image in the training set, a
concatenated vector b is generated:

b ¼ Wsbs
bg

� �
¼

WsP
T
s x−x
� �

PT
g g−g
� �

2
4

3
5 ð4Þ

Now another PCA is applied on the concatenated vector, the result of which is as follows:

b ¼ Pcc; Pc ¼ Pc;s

Pc;g

� �
ð5Þ

c is a parameter set that controls both the shape and the appearance, and Pg are the
eigenvectors. New object instances can be generated by altering the c parameter, and shape
and pixel intensities for a given c can be calculated as follows:

x ¼ xþ PsWsPc;sc; g ¼ g þ PgPc;gc ð6Þ

Ws is a matrix of weights between pixel distances and their intensities.

3 Corner detection

It is a characteristic of all knives that the tip of the knife is distinct, lies at the intersection of
two edges, and can be regarded as a corner that is a point that has two different, dominant-
edge directions in its neighbourhood [3]. Multiple corner detectors are used in computer
vision; for the purpose of tip-of-the-knife detection, we have used the Harris corner-
detection algorithm [9]. Such local features have been shown to be well suited to matching
and recognition [17] [19]. This popular interest-point detector is invariant to geometric
transformation and, to a large extent, to illumination changes–as well as being resistant to
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image noise. It is based on the simple principle that edges and corners change noticeably
more than other elements of the image, with a window shifted a little in all directions. The
difference in pixel intensities caused by a window shift (Δx,Δy) is measured by the means of
the local auto-correlation function [9]:

c x; yð Þ ¼
X
W

I xi; yið Þ−I xi þΔx; yi þΔy

� �� 	2 ð7Þ

where I(xi,yi) denotes greyscale pixel-intensity at the given location in the Gaussian window
W centred on (x, y). By approximating the shifted image with a Taylor series, it can be
proved [9] that expression (7) is equal to:

c x; yð Þ ¼ Δx Δy

� 	
C x; yð Þ Δx

Δy

� �
ð8Þ

where is C a matrix that summarises the predominant directions of the gradient in the
specified neighbourhood of the point (x, y). The eigenvalues of the matrix C form a
description of the pixel in question; if they are both high, they indicate a corner.

In Fig. 2, three knife images with corners detected are shown. The number of detected
corners depends on the threshold value used. What we are interested in is detection of the tip
of the knife. Therefore, the threshold needs to be set reasonably low to ensure that the tip of
the knife is detected as a corner, even at the expense of more corners being detected. The
Harris corner detector implemented in OpenCV 2.4 [2], which we used for corner detection,
has a threshold for detected corners in the range 0 to 255. The higher the threshold, the fewer
corners are detected. In order to determine the threshold at a level that, on one hand, will
guarantee that no knife-tip will be left undesignated as a corner and that, on the other, will
not generate too many false positives (in the sense of knife-tip detections), experiments were
performed on a test set of 40 images containing one knife each. Three of these images are
shown in Fig. 2. The test set is described in depth in the next section. The lowest threshold at
which all knife tips were detected was 204, and the average border value of the threshold at
which the knife-tip is designated as a corner for all images was 217. The border value for a
given image generated on average 2.1 corners, which is in line with the assumption that the
tip is a strong corner. The lowest threshold of 204 generated on average 7.8 additional
corners for each image. Due to the fact that each unnecessary corner, i.e. a corner that is not a
knife-tip, leads to unnecessary computational effort and therefore wastes time in the detec-
tion scheme described in the next section, it is crucial to limit the number of detected
corners. The threshold value for the Harris corner detector that is employed in our approach
is set so that only three corners are detected. Since the knife-tip is likely to be a strong corner,
this approach reduces calculation time for the whole detection scheme.

Fig. 2 Interest points in knife
images detected by the
Harris corner detector
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4 Overcoming the AAM’s variance to rotation and scale change for detection purposes

AAMs are not invariant to rotation. An AAM will converge only to objects that are
oriented at the same angle as the objects in the images it was trained for. If we want it
to converge to an object of the class it was trained for, but placed at an arbitrary angle
in an image, one obvious workaround is to rotate that image until the object considered
is placed at a right angle. This is a plausible solution, but a drawback to this approach
is the computational effort needed to rotate the input image. For example, rotating a
640×480 pixel image by 15° takes some 10 ms on a modern PC (Intel(R) Core(TM)
i5-3450 CPU @ 3.10GHz, 8GB RAM), so a whole rotation by 360° with a 15-° angle
step will take some 240 ms.

Instead of rotating the input image by 360° at a fixed angle step, different AAMs could be
trained for different knife orientations. From a computational point of view, this approach
has a significant computational advantage over the former, as it requires just as many AAM
single searches, while it does not require rotation of the input image. Hence, this approach of
using multiple AAM trained to locate objects in different orientations, i.e. at different angles,
has been chosen.

Of course, AAMs are not invariant to scale change. Experiments [10] [7] suggest
that AAMs will correctly converge to objects of varying size, as parts of the face may
differ in size between different people, but that this requires proper AAM initialisation,
for instance with a face detector of a different kind [16], as mentioned in the intro-
duction. In the case of knives, the effects of scale change can, however, be neglected,
due to the specific shape of the knife-blade. The actual shape does not change
dramatically with scale. This has been illustrated in Fig. 3. In the picture, we can see
two knife-blade outlines; the second is twice as big dimension-wise as the first. The
depicted situation illustrates applying the same AAM to the two objects. In the case of
the smaller outline, the AAM roughly encompasses half of the contour’s length,
whereas in the case of the larger outline, the same AAM encompasses less than a third
of the blade’s length, yet theoretically still converges to it. The main advantage of this
approach is the lack of need of subsampling the input image, which basically eradicates
all the inconvenience associated with it. First, it reduces the overall computational cost
and, second, there is no need to interpret positive results from slightly varying scales. It
may well happen that the same object in slightly different scales will yield positive-
detection results and these will need to be interpreted, because it may be unclear
whether there is just one actual object in the analysed image, or in fact more. A
sophisticated solution to interpreting such results utilising an adaptive mean-shift
algorithm with kernel density estimation has been proposed in [8], and could well be
adopted in the case of AAMs applied to object detection, if image subsampling was
used. But since that is not the case, it illustrates only how much computational effort
has been spared.

Fig. 3 Blade-shape similarity
in different scales
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5 Detection scheme and results

As stated in the introduction, AAMs have been used to locate objects in images and–in our
application–to detect objects. In this section, the procedure of object detection utilising
AAM is described. It is based on the assumption that if a knife exists in the analysed image,
its tip will be designated as a corner by the Harris corner detector. All the designated points
will be used to initialise AAMs trained to locate knives. The results of running the Harris
corner detector on knife images have been presented in Fig. 2. We can see that the tip of the
knife is highly likely to be designated as a corner.

The general principle of multiscale image search is that at each corner, AAMs trained for
all knife orientations are run, and if at least one of them converges to the knife orientation it
was trained for, from the initial location designated by the corner and from slightly varying
locations, the detection result is positive. We have trained 24 AAMs for objects rotated by a
15-degree angle step to cover a full 360-degree rotation. Each AAM is composed of 25
landmark points defining the shape polygon.

Each AAM was trained using the same six images of knives rotated by a respective angle.
Adding additional images to the training set brought little (if any) improvement to the AAM
performance. We believe that this is due to the rather simple shape we are dealing with, in
contrast to, for example, the shape of the human face.

A general outline of our knife-detection scheme is presented below:

1. Put the points designated by the Harris corner detector in the knife-tip candidate set.
Choose the first point and remove it from the set. Choose the first AAM of the 24 AAMs
trained for different object orientations.

2. Set the AAM’s landmark corresponding to the knife-tip at the chosen point.
3. Run the chosen AAM, calculate the minimum-area bounding box of the landmark

points that have now converged to a new location. The box’s longer symmetry axis is
considered as the knife-candidate’s pseudo symmetry axis.

4. Calculate the percentage of landmark points that lie on the edges found in the image
undergoing detection by the Canny edge detector.

5. Set the AAM’s landmark point corresponding to the knife-tip to the following three
locations: three pixels to the left of, above and to the right of the initial knife-tip, and
perform steps 3 and 4 on them.

6. The result of detection is positive if the following conditions have been met:

I. In all four cases (the original corner and the three points in its neighbourhood),
landmark points of the model converge to the same location.

II. In all four cases, the knife-candidate’s pseudo symmetry axes have a similar
skew-angle.

III. Most of the landmark points lie on edges detected by the Canny edge detector.
If the result is positive, stop the detection procedure. If at least one of the above

conditions is not met, the result of detection is negative. In this case, continue to the
next point.

7. Choose the next AAM, i.e. the AAM trained for the orientation increased by 15° in
relation to the current AAM, and go to point 3. If all orientations have been covered, go
to the next point. Theoretically multiple AAM searches could be performed in parallel
in order to speed up the detection process.

8. If the knife-tip candidate set is not empty, choose the next point, remove it from the set
and go back to point 2.
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The idea behind this detection scheme is that if the appearance (and so the shape) that the
AAM has been trained to locate exists in the image, the model will converge to it if
reasonably initialised, even from slightly varying locations (see point 5). In other words,
the AAM will converge to the same location, which is evaluated with the minimum-area
bounding box and skew-angle. If the appearance that the AAM is searching for does not
exist, the model will converge to some random locations. Moreover, to make the positive-
detection condition even stronger, we assume that most of the landmark points lie on an
edge, to eliminate cases where there are no edges visible (and therefore no knife exists). The
exact number of landmarks that actually lie on an edge can be chosen only by a heuristic
rule. We have chosen this threshold to be 70 % of the points on each of the two edges of the
knife-blade.

Fig. 5 Forty knife images used for evaluation of the detector

a) Detection results for positive images b) Detection results for negative images

Fig. 4 Sample detection results
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The positive test set consisted of 40 images in normalised 64×128-pixel format that
depicted knives vertically centred with the tip facing up. These images are presented in
Fig. 5. Three correctly classified images, along with AAM landmarks that have correctly
converged to the blade, are presented in Fig. 4a. Of those 40 images, 37 have been correctly
labelled as containing a knife, whereas in three cases the result of detection was negative.
These are the last three images in Fig. 5. The negative test set consisted of 40 images
randomly cropped from images that did not contain knives; samples from this set are shown
in Fig. 4b. None of the images has been falsely labelled as containing a knife.

It is worth taking a closer look at the three positive images that have been wrongly
classified as not containing knives. The proposed approach failed to detect the knife in the
first of these images because the AAM converged to the contour to the right of the actual
knife. The knife in the second image has a non-uniform texture with distinct contours.
Initialised from slightly varying locations, the model converged to different locations. In the
case of the third false negative, due to the uncommon shape of the blade, the AAM
converged only to the very top part of the blade. These three cases are presented in Fig. 6.
They demonstrate the limitations of the proposed detection scheme, but in our view the
detection results are nonetheless satisfactory.

The results of the tests show reasonable classification accuracy for knife/non-knife
classification of the proposed detection approach. The AAM failed to correctly converge
in the case of a very strong edge in the neighbourhood of the blade. Moreover, blades of an
unusual shape or texture also pose a challenge for the detector. The detection accuracy and
the false-positive rates are summarised in Table 1.

6 Application in baggage-scanning systems

The proposed knife-detection scheme can be applied to interpreting images produced by
baggage-scanning x-ray systems. Modern baggage-scanners produce images of excellent

Table 1 Characteristics of the proposed AAM-based detection scheme

Number of
images in
positive test set

Number of
correctly classified
positive images

Classification
accuracy

Number of
images in
negative test set

Number of
wrongly classified
negative images

False-positive
rate

40 37 92.5 % 40 0 0 %

Fig. 6 Wrongly classified images
from the positive test set
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quality and are deployed at numerous locations, including airports, courts of law, government
offices and other venues where the danger of bringing in a dangerous tool or explosive exists.

The state-of the art technology utilised in these devices allows for a relatively quick
interpretation of the content of the analysed piece of luggage by specially trained staff.
Typically, a baggage scanner consists of a screening tunnel, a heavy-duty conveyor belt and
an operator interface. The sophisticated x-ray scanners not only produce high-quality x-ray
images of luggage contents but also distinguish between substances based on their atomic z-
number, as materials are displayed in different colours according to a specific range of
atomic z-numbers. This technique is based on dual-energy x-ray absorptiometry (DXA), and
has been originally used in medical applications. In addition to determining atomic z-
numbers, modern baggage-scanners can distinguish between materials of different densities.
For the purposes of our study, we have compiled a set of nine images from baggage x-ray
scanning systems, found through a popular image search engine. Three of these are depicted
in Fig. 7. Although they come from various scanners where apparently different colours
were assigned to similar materials, it is possible to see the clear distinction between objects,
even against complicated backgrounds.

However, we were able to find only three x-ray scans containing a knife that were of
reasonable quality. Therefore, we have composed an additional set of nine sample images by
pasting knives into the non-knife x-ray scans. Due to the fact that metal objects can be displayed
in different colours according to the scanner’s configuration and make, all images were
converted to greyscale. Figure 8 illustrates the searching procedure on three sample images,
shown in separate columns. First, corners are found using the Harris corner detector, as in a).
Then, at each corner, multiple AAMs are initialised, and trained to model knives at orientations
varying by 15°; in total, 24 different AAMs cover a whole rotation. In b), we see AAMs that
match the actual orientation of the blade initialised at the tip designated by a corner. In c), we can
see the same AAMs that have fully converged to the blade. AAMs initialised not at a knife-tip or
with a wrong orientation are demonstrated in d), and e) shows how such AAMs diverge.

The proposed knife-detection scheme has been evaluated on a test set composed of three
luggage x-ray scans found through a popular internet search engine, as well as nine artificially
composed images with knives manually pasted into different x-ray scans of luggage. The
resulting images were of high quality and in all nine cases knives were therefore correctly
detected. Figure 9 illustrates the results of running our searching procedure on three
genuine images containing knives. Two of these images, designated as a) and b), were
correctly classified as containing knives. The result of detection in the case of image

a) b) c)

Fig. 7 Modern x-ray baggage-scans (a) Source: http://science.howstuffworks.com/transport/flight/modern/
airport-security4.htm (b) Source: http://www.smithsdetection.com/1025_6460.php (c) Source: http://
www.smithsdetection.com/x-ray_inspection_baggage_freight.php
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c) was incorrect, because the shape of the blade was different than the shape our
AAMs were trained on. More precisely, the blade becomes significantly wider at one

Fig. 8 The results of running AAMs on three sample x-ray images of luggage shown in separate columns: a)
detected corners, b) AAM at initial location designated by a corner, c) AAM converged to the blade, d) AAM
at a corner, and e) AAM diverged
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point along its length. An AAM initialised exactly at the tip converged to the blade,
while AAMs initialised from slightly varying locations converged to other locations
and their bounding boxes did not match.

An undoubted advantage of utilising the AAM in knife-detection is its observed
zero false-positive detection rate. If there is no knife in an image, AAMs initialised
from slightly varying locations will either diverge or converge to different locations.
Theoretically it could be the case that an object of a similar shape to the knife-blade
will be falsely recognised as a knife. When it comes to application in x-ray baggage-
scan analysis, a low non-zero false-positive rate should present little problem in a
practical setting, since such images need always to be assessed by a human operator.
On the other hand, the condition that the knife-tip is clearly visible in order to
properly initialise AAMs may limit the number of possible applications, but most
often should be met in baggage x-ray scans. Moreover, due to the technical capabil-
ities of x-ray scanners, objects made from different materials are clearly distinct in
images, which in addition to the fact that the size of a knife is relatively large in
relation to the size of the suitcase makes our approach of utilising AAMs especially
well suited to application in baggage x-ray scan analysis.

7 Summary and conclusions

Applying AAMs to the problem of object detection is a novel approach. So far, they have
been used to locate an object in images that were known to contain it, such as medical
images containing a body organ–or images of faces, where the task was to locate particular
facial elements. In our work, we have used the fact that the knife-blade has a very specific
interest point, which can be easily detected as a corner, i.e. its tip. This point can be used to
initialise the AAM. The rule that an AAM trained for the orientation close to that of the knife
in the image initialised from similar locations should converge to the same location allows us
to decide whether the object in question is in fact a knife. The presented approach is well
suited to applications where the knife-tip is clearly visible, such as in baggage-scanning
systems. If it is not the case, then combining the AAM with a detector of a different kind,
due to the AAM’s theoretical zero false-positive detection rate, will surely create a robust
knife-detector; this is the subject of ongoing research.

a) b) c)

Fig. 9 The results of runningAAMs on genuine x-ray scans of luggage (a) Source: http://www.deceptology.com/
2010/05/could-airport-screeners-find-water.html (b) Source: http://aks.rutgers.edu/eyetrack/Real/world.html (c)
Source: http://www.dpl-surveillance-equipment.com/2500023125.html
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