Multimed Tools Appl (2012) 60:203-231
DOI 10.1007/s11042-011-0818-x

Simulating the future of concept-based video retrieval
under improved detector performance

Robin Aly - Djoerd Hiemstra - Franciska de Jong -
Peter M. G. Apers

Published online: 31 May 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In this paper we address the following important questions for concept-
based video retrieval: (1) What is the impact of detector performance on the perfor-
mance of concept-based retrieval engines, and (2) will these engines be applicable to
real-life search tasks if detector performance improves in the future? We use Monte
Carlo simulations to answer these questions. To generate the simulation input, we
propose to use a probabilistic model of two Gaussians for the confidence scores
that concept detectors emit. Modifying the model’s parameters affects the detector
performance and the search performance. We study the relation between these two
performances on two video collections. For detectors with similar discriminative
power and a concept vocabulary of around 100 concepts, the simulation reveals that
in order to achieve a search performance of 0.20 mean average precision (MAP)—
which is considered sufficient performance for real-life applications—one needs
detectors with at least 0.60 MAP. We also find that, given our simulation model and
low detector performance, MAP is not always a good evaluation measure for concept
detectors since it is not strongly correlated with the search performance.

Keywords Concept-based retrieval - Simulation - Performance prediction -
Concept detection

1 Introduction

Content-based video retrieval currently mainly focuses on the improvement of
concept detectors [26]. On the other hand there is research on developing retrieval
models to combine the output of concept detectors to fulfill information needs of
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users. Although concept-based retrieval is generally a promising retrieval paradigm,
the search performance of currently available engines is often too low for large-scale
application in real-life. Clearly, the overall search performance heavily depends on
detector performance. Therefore, it is desirable to answer the following research
questions: (1) What is the impact of detector performance on the performance of
concept-based retrieval engines, and (2) will these engines be applicable to real-life
search tasks if detector performance improves in the future? This paper investigates
the use of Monte Carlo Simulations to answer this question.

Hauptmann et al. [12] were the first to use a simulation-based approach to predict
the achievable performance of concept-based video retrieval engines. In this work,
noise is introduced into the known occurrences and absences of concepts by ran-
domly flipping their states. Therefore, detectors are assumed to be binary classifiers
which only differentiate between concept occurrence and absence. We argue that
this approach can be improved upon since most retrieval engines today employ
confidence scores or a probability measure based on these scores as document
representations. The reason is that errors in binary classifications are frequent and
the information of “shot x contains concept y with a confidence of z” needs to be
exploited. For example, the concept US-Flag is often useful for answering the query
“President Obama”. However, the corresponding detector might classify no shots
as containing the concept US-Flag but may find few shots more likely to contain a
US-Flag than others, which could be exploited. Therefore, the simulation approach
in this paper generates confidence scores for each shot and concept in a concept
vocabulary which can then be transformed into probability measures as well as
classifications.

This paper follows the Monte Carlo Simulation approach by Metropolis and
Ulam [16] to predict the search performance of retrieval engines when the detector
performance increases. The simulation approach requires a function which calculates
a quantity of our interest based on a set of inputs. Here, this function will be the
mean average precision (MAP) achieved by a retrieval engine in a search task and
the inputs are the detector confidence scores in the collections. The application of
the Monte Carlo Simulation approach allows us to split the stated research question
into two sub-questions:

1. How to model concept detectors? In order to answer this question, we assume that
confidence scores of detectors are independent from each other. Furthermore,
we make the assumption that the confidence scores are normally distributed in
the set of shots where the concept occurs and likewise where they are absent
(the positive and negative class). This assumption is supported by studies of
actual detector outputs in this paper and by Hastie and Tibshirani [11] for the
output of general classifiers. Therefore, our probabilistic model consists of a set
of concept detectors where each detector is defined by the parameters of two
Gaussian distributions.

2. What search performance to expect from a retrieval engine for a given detector
model? In order to answer this question, we use the probabilistic model and
a collection with known concept occurrences to generate a set of randomized
confidence scores. On this output, we then execute a retrieval run using a given
retrieval engine and subsequently calculate the search performance in MAP.
This process is repeated multiple times to calculate the expected MAP of the
retrieval engine given the probabilistic model.
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With the answer to these two questions, we can gradually change the parameters
of the detector models to improve the detector performance and investigate the
effect on the expected search MAP. From the development of the expected search
performance compared to the detector performance we can predict the applicability
of a retrieval engine in the future, the answer to the investigated research question.
The remainder of this paper is structured as follows: In Section 2 we give an
overview of related work. Section 3 describes the probabilistic model which is used to
simulate the detectors. In Section 4, we describe the simulation setup. In Section 5, we
investigate the results of the simulation on a collection with concept annotations and
relevance judgments. Section 6 concludes this paper with a summary and a discussion.

2 Related work

In this section we present an overview of related work to the object domains:
prediction of multimedia search performance, concept detection and Monte Carlo
Simulations.

2.1 Multimedia search performance prediction

Simulations to analyze the effects of the performance of a content analysis process
on search performance have been used in various sub-fields of content-based mul-
timedia retrieval. Croft et al. [9] use simulations to determine the effects of word-
error-rates in optical character recognition systems on search performance. Witbrock
and Hauptmann [31] simulate a varying word-error-rate of an automatic speech
recognition system, to investigate its influence on the search performance of a spoken
document retrieval engine.

Hauptmann et al. [12] were the first to use a simulation-based approach to
investigate the feasibility of concept-based search performance. In their work, a
detector is assumed to be a binary classifier. As a retrieval function they use a
linear combination of concept occurrences: scoreq(d) = Y _; w; fi(d). Here, scoreq(d)
is the retrieval score of shot d, w; is a concept specific weight and fi(d) € {—1, 1}
is the label of concept i in shot d. The weights w; are independently set for each
query. The weight setting which optimizes the average precision is found by solving a
bounded constrained global optimization problem [33]. The search performance with
realistically set weights is assumed to achieve 50% of the performance with optimal
settings. For the simulation, concept labels of shots are randomly flipped until the
precision-recall break even point is reached. We argue that this approach can be
improved because current retrieval engines use confidence scores and a uniform
break even precision-recall point assumes the same performance among all detectors,
which is unrealistic.

Similar to the approach in this paper, Toharia et al. [30] simulate confidence scores
to study the usefulness of concept-based retrieval. A concept from an annotated
collection is assumed to have a score of —1 if it is absent and 1 if it occurs. For the
simulation, noise is introduced by adding or subtracting to a certain percentage of P
shots a value A, which lessens the confidence of the detector about the occurrence of
a concept. As a retrieval function a weighted sum of the confidence scores is assumed
where the weights are determined by users. The simulation is carried out by varying
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the percentage P from 0 to 0.5 and A from —0.5 to 0.5. While this approach also
simulates the influence of confidence scores on the search performance, it does not
take into account that the confidence scores for shots where a concept is absent could
be higher then some confidence scores for shots where the concept occurs. Therefore
the mean average precision of the produced detector output is always 1.00. Our
simulation can be considered an improvement as the confidence scores are set more
realistically.

There are also other aspects than the detector performance which influence the
search performance which are not covered in this paper: Christel and Hauptmann [§]
investigate the general helpfulness of single concepts to retrieval. Furthermore, the
effects of concept vocabulary size on the search performance by randomly including
or excluding a growing number of concepts has been widely studied [12, 25].

2.2 Concept detection

The majority of current concept detectors are using Support Vector Machines
(SVM) [27, 35]. Therefore, we adapt our model to the characteristics of SVMs: a
SVM is trained on vectors of low-level features from positive and negative examples.
The training phase selects so-called support vectors which specify a hyper-plane
separating instances of the positive and negative class. During the prediction phase,
the confidence score of the new shot, represented by its low-level feature vector x, is
calculated as follows, see also [18]:

o(x) = Z)’i(xik(x’ x;) +b

Here, x is the feature vector of the new shot, y; the label and «; the weight for the
ith support vector x; and k(-, -) a kernel function between two feature vectors. b is
constant. The result of the function o(-) is the confidence score of the SVM for the
new shot. For simplicity, we drop the notation as a function and write o instead of o(-)
in the following. If the SVM is treated as a binary classifier, a decision criterion is used
to derive a classification from o. However, as mentioned above, in video retrieval it
is more common to use the confidence score which can be demonstrated by their use
in the influential works by [32] and [26]. Furthermore, confidence scores are used
in the evaluation of concept detectors in the TRECVid workshop [24]. The reason
is that classification errors are commonly too high, especially for rare concepts. The
confidence score can be seen as an indicator of the likelihood that the current shot
contains the concept in question.

For many applications it is useful to use a normalized probability for the class
membership of a shot instead of an uncalibrated confidence score. Hastie and
Tibshirani [11] propose that the confidence scores are normally distributed in the
positive and negative class. Together with a prior these parameters can be used
to calculate the posterior probability of encountering a concept after observing a
confidence score 0. However, the resulting posterior probability function P(C|o) is
not monotonically increasing with o. This is unrealistic, since some negative instances
with lower confidence scores than others would have a higher posterior probability.
Platt [18] proposes a method which instead fits a sigmoid function to the confidence
scores of training examples which can then be used as a posterior probability
function. The sigmoid function has the advantage of being always monotonic. In this
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paper we will use a modified version of Platt’s fitting algorithm suggested by Lin et al.
[15], which is also used in many SVM implementations, for example libSVM [7].

2.3 Monte Carlo simulation

This paper proposes a simulation approach based on Monte Carlo Simulation [16].
The term Monte Carlo Simulation is used for a variety of different methods. In
this paper, we use it for a general procedure to calculate the expected value of a
function given the probabilistic model of its inputs. A Monte Carlo Simulation can
be described as a procedure consisting of the following steps:

The definition of a probabilistic model of the inputs to the simulation.
Random generation of a concrete set of inputs using the model.
Execution of the function using the generated inputs.

Repetition of 2. and 3. to produce multiple results.

Average the results of the individual computations into the final result.

SNk W

The results of this simulation is guaranteed to converge with an increasing number
of repetitions to the expected function value (performance measure), based on the
probabilistic model.

In this paper, the objective function is the search performance of a retrieval model
in terms of MAP which depends on the confidence scores as inputs. The probabilistic
model defines the distribution of the confidence scores. The random generation of
inputs therefore randomly draws confidence scores from their distributions and the
search performance of the retrieval model is calculated.

3 Detector model and simulation process

In this section we describe the probabilistic model proposed in this paper and the
simulation process.

3.1 Detector model

In this section we describe the probabilistic model of confidence scores, which later
is used for the randomization of confidence scores. Figure 1 shows the confidence
score histograms of the two concepts Anchorman and Outdoor for the positive and
negative class from a base line detector set, described by Snoek et al. [27]. The
different score ranges and the resulting probability density magnitudes are caused
by the detector’s ability to discriminate between positive and negative examples. We
propose that the densities for the positive and negative class of both concepts have
roughly a Gaussian shape. This shape was also proposed by Hastie and Tibshirani
[11] for the distribution of decision scores for general classifiers. We conducted a x2
goodness-of-fit test, see [29] for a definition, to assess the fit of these distributions.
The test revealed that 31 of the 101 detectors in the vocabulary can be accepted as
being a Gaussian distribution at a significance level of 0.05. Out of the 31 concepts
which were accepted, 22 had more than 800 training examples, which suggests
that the Gaussian shape would also become evident for other concepts if we had
more training examples. Furthermore, Sangswang and Nwankpa [22] argue that
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Fig.1 Confidence score distributions of two concepts of the MediaMill detector set, see [27]

a non-perfect fitting shape of a model only increases the variance of the Monte
Carlo Simulation, but still allows a trustworthy estimation of the expected search
performance.

Given these observations, we define a probabilistic model of a detector set:
we assume that the confidence scores of different detectors for a single shot are
independent from each other and that they are normally distributed in the positive
and negative class. Each concept C has a different prior probability P(C). To keep
the probabilistic model simple, we assume that all concepts share the same mean pu,
and standard deviation o, for the positive class plus the mean p and the standard
deviation oy for the negative class. Note, that this assumption is strong and certainly
does not hold in reality, see for example Fig. 1. However, because we focus here
on the principle influence of the detectors on the search performance we leave the
exploration of a more realistic model, which investigates different parameter settings
for each detector, to future work. Also, while the investigation of different means
and deviations is important, we argue that the intersection of the areas under the
probability density curves has a much higher influence on the performance than the
absolute ranges of the confidence scores. The smaller the area of the intersection
the better the detector is. Our model can adequately simulate this effect by either
moving the means apart or by varying the standard deviation of the positive and
negative class.

Figure 2 shows the model of a single detector. We plot the posterior probability
of observing the concept given the confidence score using two different priors, one
of P(C) =0.01 and one for P(C) = 0.60. Considering a confidence score of o = 15
the posterior probability for a concept with the prior of 0.60 is close to certainty
(P(Clo) ~ 1) while for a concept with a prior of 0.01 it is undecided (50% )—with all
other parameters equal. Therefore, our model does not have the limitation that all
detectors have the same performance as assumed by Hauptmann et al. [12].

3.2 Posterior probability measure
As noted by Platt [18], the assumption of two Gaussians for the negative and positive

class can lead to unwanted effects for the posterior probability function, namely
that the function can be non-monotonic. Figure 3 shows the posterior probability
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We see that with a standard deviation of o) = 15, the posterior probability decreases
for increasing confidence scores with o < —3. Furthermore, the posterior probability
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function with oy = 2 assigns to shots with confidence scores higher than 20 a posterior
probability of practically 0. This contradicts our intuition and the definition of SVM
based detector (where the positive and negative classes should be linearly separable).
To prevent this effect we use an improved version of the algorithm from Platt [18],
suggested by Lin et al. [15], to fit the parameters of a sigmoid function which is used
as a model posterior probability function to the confidence scores of a set of training
examples. The sigmoid function is defined as follows:
1

Pl = Ao+ B) )

Here, A and B are the two parameters of the sigmoid function. Note, because the
algorithm from Lin et al. [15] depends on the number of training examples, retrieval
models which depend on the probabilistic output of (1) could suffer from a poorly
fitted posterior function. To investigate the influence of the quality of the fit on the
search performance, we use S hypothetic training examples for the fitting process

Algorithm 1 Algorithm for a simulation run. N R: number of repetitions, S: sample
size for sigmoid fitting. o, 09, i1, 01: model parameters

Data: Annotated Collection D, Vocabulary V¢
Input: NR, S, po, o0, 1,01
Result: Randomized collection

// Randomize Prior Estimate
foreach Concept C in Vocabulary Vo do

Calculate P(C') from annotations in D
generate [S P(C')] positive training examples from N (pu1,01)
generate S — [S P(C)] negative training examples from N (u0,00)
determine A and B¢ according to Lin et al. [15], given the training examples
end
// Randomize Detection Output
for Repetition i € [1..NR| do
foreach Shot s in Collection D do
foreach Concept C in Vocabulary Vo do

if C occurs in s then

| draw o from N(u1,01)
else

| draw o from N (uo,00)
end

// Calculate Posterior according to Platt [18]

P(C|o) = ﬁ

p(Aco+Bc)

// Transform to Binary Value

if P(C|o) > 0.5 then

I C=1
else

end

end

Calculate Detector Performance DMAP;
Search Run with Retrieval Model
Calculate Search Performance SMAP;
end

Report Detector and Search MAP

3, DMAP; >, SMAP;
DMAP = 2122200 SMAP = &i5020
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and randomly generate [§ P(C)] confidence scores from the positive class and S —
[S P(C)] from the negative class of concept C. The results of this investigation can
be found in the Experiment in Section 5.5.

3.3 Simulation process

In this section we describe the actual simulation process which is described in pseudo-
code in Algorithm 1. The algorithm uses an annotated collection (which carries 0/1
labels for each concept in each shot). The input parameters of the algorithm are the
means o, 1 and standard deviations oy, o, of the positive and negative class and the
number of training examples S to fit the posterior function. A Gaussian distribution
with mean p and standard deviation o is denoted as N(u, o).

From the annotated collection we calculate the prior probability P(C) of a concept
occurring in the collection. We then generate confidence scores for the positive and
negative class using the prior probability and a total of S training examples. Now, we
use the algorithm described by Lin et al. [15] to fit the sigmoid posterior probability
function to the generated training examples. After the determination of the sigmoid
parameters we iterate over all shots in the annotated collection. For each shot we
determine for each concept C in the vocabulary V¢ whether it occurs and draw a
random confidence score o from the corresponding normal distribution. Afterwards,
we calculate the posterior probability of this concept in the shot using the sigmoid
function with the previously determined parameters A¢ and B¢. For retrieval models
which use binary classifications we assume a positive occurrence if the posterior
probability is above 0.5. This is justified by decision theory, see for example [6].

After the randomization, we determine the detector MAP of the detector output
(DM A P;). We then execute a search run for each retrieval model using the random-
ized collection. We then evaluate the resulting ranking using relevance judgments to
obtain the search MAP (SM A P;) for this run. This process is repeated N R times to
rule out random effects and the expected detector performance (DMAP) and search
performance (SMAP) are calculated.

4 Simulation setup

This section describes the setup of the simulation, describes their results and ends
with a discussion.

4.1 Collections and concept vocabularies

We use the TRECVid 2005 (tv05d) and the TRECVid 2007 (tv07d) development
collections plus the corresponding query sets [23] for our simulations. The relevance

Table 1 The collections

g g g Identifier Videos Shots
used in the simulations
tv05d 141-277 43,907
tv05dd 141-238 30,630
tv05dt 239-277 13,277
tv07d 001-110 18,120
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Table 2 'I_’he concept Identifier Collection Concepts Reference

vocabularies used

in the simulations mm101 tv05d 101 [27]
vireo374 tv05d 374 [14]
tv070809bw tv07d 65 [5, 28]

judgments on the TRECVid 2005 development collection were kindly provided by
Rong Yan formerly at Carnegie Mellon University [34]. The relevance judgments
on the TRECVid 2007 development collection were provided by us [1]. To prevent
over-fitting when performing realistic concept selections (see below) we divide the
tv05d collection according to the MediaMill Challenge setting [27] into the sub-
collections tv05dd (development) and tv05dt (test). Due to its limited size, we do not
split the tv07d collection and hence do not run simulations with realistic weights on
this collection. Table 1 shows statistics over the used collections. Table 2 summarizes
the concept vocabularies which were used for the simulations. (1) the mm10lc
vocabulary [27] which comprises 101 concepts; (2) the vireo374 vocabulary [14] which
comprises 374 concepts;' and (3) the tv070809bw vocabulary consists of the concepts
annotated during the collaborative annotation efforts of the TRECVid participants
during the years 2007-2009 which was coordinated by Ayache and Quénot [5] plus
an additional black and white concept [28].

We use a Java-based (pseudo) random number generator? following a standard
algorithm described by [19]. In order to make the simulations reproducible we use
the open source software® described in [1] with a random seed of 994158012. For each
parameter setting we generate N R = 25 sets of confidence scores. The simulations
showed that the simulation results did not change anymore after this number of
repetitions. We use in the following the common term MAP, instead of emphasizing
every time that the number is actually obtained as an average over 25 runs.

To give an indication of the quality of the detectors we report the achieved
detector MAP on the provided annotations. We used the same standard cut-off
level of 2,000 as done for the High Level Feature task in TRECVid [23] to maintain
comparable to other results. However, this cut-off level sometimes leads to counter
intuitive results because some frequent concepts occur more than 2,000 times and
consequently even a perfect detector would have an average precision of less than
1.0. Therefore, in such cases we assumed a maximum of 2,000 shots in which the
concept occurred.

4.2 Investigated retrieval models

Concept-based retrieval models usually consist of two parts. First, a ranking function
which uses a set of selected concepts to calculate a ranking score value for each
document in a collection. Second, a method to select this set of concepts and their
weights for a query (referred to as concept selection and weighting). In the following,

IWe use the vireo374 vocabulary because it excluded seldom occurring concepts from the well-
known LSCOM [17] vocabulary, of which it is a subset; we however do not use the published detector
output.

Zhttp://www.ee.ucl.ac.uk/~mflanaga/java/PsRandom.html

3http://detectsim.sourceforge.net/
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we describe the considered retrieval functions for two considered retrieval tasks
followed by the investigated concept selection and weighting methods.

The following retrieval functions for video shot retrieval are considered in this
paper (Table 3 shows their mathematical definition). First, the pointwise mutual
information weighting scheme (PMIWS) by Zheng et al. [36], which calculates a
sum of the concept occurrence probabilities, weighted by the pointwise mutual
information that a concept occurs. Second, the Borda—Count model which originates
from election theory and considers the ranks of the confidence scores, see Donald
and Smeaton [10] for the application to information retrieval. Third, the binary
independence model (BIM) by Robertson et al. [20] which uses the parallel of a
concept occurring in a shot and a book being indexed with an index term. Finally,
our probabilistic ranking framework for unobservable binary events (PRFUBE), see
[2], which calculates the expected probability of relevance score given the uncertain
knowledge about the concept occurrence.

We now define the weights used for the above retrieval models. The PMIWS, BIM
and PRFUBE model require the occurrence probability P(C|R) of a concept C given
relevance R as a weight, which is the number of relevant shots which contain the
concept C divided by the number of relevant shots. The probability of a concept given
irrelevance, used by the BIM model, is defined accordingly. The prior probability of
concept occurrence P(C) is the number of shots containing the concept C divided
by the collection size. The prior probability of relevance P(R) is the number of
relevant shots divided by the collection size. The reader can think of P(C|R) as
steering the importance of a concept in a query and P(C) or P(C|R) as determining
the general importance of a concept. For the Borda—Count model, we assume the
Mutual Information between a concept C; and relevance as an ideal weight w; for
this concept. The Mutual Information can be defined using the three parameters
P(C), P(R) and P(C|R), see [3].

In this paper, we focus on the investigation of the detector performance influence
on retrieval functions. Therefore, we limit ourselves to alternatives to supply the
P(C|R) weight and select concepts. First, we perform one simulation using oracle
weight settings, where we use the concept annotations and relevance judgments and
determine the optimal weights by counting. Second, we perform another experiment
of a realistic scenario where we use the Annotation-Driven Concept Selection
method, proposed in [3], which is based on an annotated development collection. To
use this concept selection method without introducing over fitting effects we use the

Table 3 Overview of the video shot retrieval models used in the simulations

Video shot retrieval models

Identifier Description Definition
PMIWS Pointwise mutual information > log (%) P(Cjlo;)
weighting scheme, see [36]
Borda—Count Rank based, see [10] Y7 w; rank(P(Cjlo))
i i " P(CIR)(1-P(C|R)
BIM Binary independence model, see [20] > icilog (P(C|R)(1—P(C|R))>

PRFUBE Probabilistic ranking framework nk 1(3%11)0 ) P(Cilo) + %)P(Gloz‘)
for uncertain binary events, see [2] '

(n: number of selected concepts, ¢;: most probable concept occurrence)
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collection tv05dt for weight estimation and later execute the search only on tv05dd.
We also have to set the number of concepts which should be used for the search.
As this is not the focus of this paper we tried multiple numbers of concepts with a
maximum of 20 together with the results of using all concepts in the vocabulary.

4.3 Performed simulations

As our goal is to study the influence of the detector performance over the different
model parameters we vary them piecewise to see the effect of each parameter on the
overall search performance. In the following we describe each performed simulation
and the characteristics of the set of detectors resulting from it:

— Model Coherence: here, we set the mean and variance individually according to
the values from a real detector set. We then investigate, whether the simulated
performances are comparable with the results of the real detectors.

— Changing the mean of the positive class: detectors with a higher difference
between their means have better performance, which can for example originate
from the use of more discriminative low-level features for which the detector is
built.

— Changing the standard deviation of the positive class: detectors with a higher
standard deviation have more extreme results in the positive class. For increas-
ingly many shots in which the concept occurs is the detector nearly certain of the
occurrence (has a high confidence score) while at the same time for many other
shots in which the concept occurs the detector has low confidence scores.

— Changing the standard deviation of the negative class: detectors with a higher
standard deviation of the negative class has more extreme results in shots where
the concept does not occur. For many shots the detector is increasing certain that
the concept (rightfully) does not occur. At the same time, for many other shots
he has an increasing confidence that the concept does occur.

— Changing the number of training examples: we increase the number of training
examples for fitting the sigmoid posterior probability function, which investigates
the influence of the fit quality, caused by a small number of training examples,
on the search performance.

— Predictive power of detector MAP: the change of the standard deviation of
the detectors causes the search performance to over proportionally decrease
compared to the detector MAP. Therefore, we investigate the predictive power
of the detector MAP for the search MAP in a separate simulation.

5 Simulation results

In this section, we describe the results of the simulations carried out in this paper.
5.1 Model coherence

In this section, we investigate the coherence of the proposed probabilistic model with
the MediaMill Challenge detector set by Snoek et al. [27]. In this experiment, we first

fit the model parameters to the confidence scores of the detector set. We expect that
the average detector performance is close to the performance of the real detectors.
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Table 4 Simulation results

! Y Measure Expected Simulation Real
for investigating the model result max detectors
coherence (collection tv05dt)
Detector MAP 0.13 0.16 0.15
Search MAP 0.06 0.11 0.10

However, the search performance of the simulation is not necessarily equal to the
real search performance, because of the random distribution of confidence scores in
relevant shots. On the other hand, the real search performance should also not be
too far off from the search performance produced by the model.

First, we train detectors for the mm101 vocabulary using the features provided by
the Challenge Experiment 1 [27] using the tv05dd collection and then perform the
evaluation on the tv05dt collection. Because we are only interested in the influence
of the detector performance on the search performance we only use PRFUBE with
oracle weights for 10 concepts per query. We estimate the model parameters from the
confidence scores of the real detectors and set the mean and standard deviation of
the positive and negative class individually. We calculate the mean and the deviation
for the class x € {0, 1} and concept ¢ by maximum likelihood estimation [21]:

Zl;f Ojc Zi:XIL (oic - ch)z

, VArye = » Oxe = A/ VAFxc
Ny

MUxe = Nxc 1

Here, N, is the number of samples of the class x and o, is the observed confidence
score of shot i and concept c. We perform 30 simulation runs. The results of the
coherence study are shown in Table 4. We see that the average simulated detector
performance of 0.13 MAP is lower than the one of the real detectors with 0.15
MAP. However, the maximal performance achieved by the simulation—among the
30 repetitions—exceeds the performance of the real detector, achieving 0.16 MAP.
A possible explanation of the lower simulation performance is the correlation of
confidence scores among many shots (*2,000) in the tv05dt collection, which suggests
that they are near duplicates or are highly similar. Because the proposed probabilistic
detector model generates the confidence scores independently, the simulation is not
able to capture these dependencies. However, we argue that the inclusion of the
correlation of confidence scores in the probabilistic model is also not necessarily
desirable because near duplicates or highly similar shots can be handled outside the
search procedure. The search performance of our model is also lower compared to
the real detectors, which means that the confidence scores of used concepts where
higher in the real detector set. However, three simulation runs achieve an equal or
higher search performance to the real detectors. We conclude that the proposed
probabilistic detector model is sufficiently realistic to explain a current, realistic
retrieval setting, except the handling of near duplicates and collections with many
similar shots.

5.2 Changing the mean of the positive class
Oracle weights Figure 4a shows the results of the simulation which increases the

mean of the positive class using the mm101 vocabulary. The y-axis shows in all
following figures the achieved search MAP of the depicted retrieval models. The
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Fig. 4 Oracle weights:
changing the mean of the
positive class 111 (o = 0.0,
op = 1.0,01 = 1.0)
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x-axis shows the mean pu; together with the detector MAP which resulted from this
setting, the remaining parameters are kept constant, see Fig. 4. An increasing u; leads
to an increase of the detector performance. The performance of all concept-based
retrieval models increases with a growing detector performance. From a positive
mean of p; = 8.5 onwards the detectors can be considered perfect classifiers. The
PMIWS model reaches with ten concepts its best search performance of 0.15 MAP.
Borda-Count also performs best when limited to the ten most influential concepts
and achieves an optimal performance of 0.27 MAP. The BIM model has a slow start
and only reaches a search performance of 0.05 MAP at u; = 2 which corresponds to
a detector performance of 0.29 MAP. Afterwards, its performance increases faster
than the two previously mentioned models and reaches at ;1; = 8.5 a performance of
0.36 MAP. PRFUBE consistently shows a better search performance than all other
retrieval models and achieves at p; = 8.5 a search performance of 0.35 MAP. The
BIM and PRFUBE retrieval models performed best with the usage of all concepts in
the vocabulary.

Figure 4b shows the results of the simulation using the vireo374 vocabulary and
oracle weights. The results are similar to the usage of the mm101 vocabulary. Notable
is that this time the PMIWS model achieves a better search performance than
Borda-Count. The reason is probably the existence of more only positive influential
concepts—which can be exploited by the PMIWS model. The higher number of
concepts allows PRFUBE to increase its search performance to 0.39 MAP.

Figure 4c shows the search performance when changing the mean of the positive
class in the tv07d collection using the tv070809bw vocabulary and oracle weights. The
results are similar to the ones of Fig. 4a and b. The PRFUBE model shows the best
performance and reaches at a mean yu; of 3.00 a search performance of 0.185 MAP.

The expected search performance is the mean search performance of the possible
search performances resulting from different parameter settings. Therefore, we
also investigate how far the search performances are apart for a given parameter
setting. Figure 5 shows the same performance graph as Fig. 4a with the minimum
and maximum performance of the models in the NR =25 simulation runs, see
Algorithm 1. We used minima and maxima instead the standard deviation which is
usually employed in similar graphs, because the standard deviations were too small
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to be displayed in the graph. Note however that minima and maxima only give a
general impression of the distribution of search performances, which we belief is
sufficient given the results. The PMIWS model and the Borda—Count model have
similar search performance distributions. Especially for detector performances in the
interval [0.29 — 0.95] MAP, the ranges of search performances for the BIM model
and the PRFUBE model are bigger. We repeated the study of performance minima
and maxima for the other simulations of increasing the mean of the positive class
presented in this paper which did not yield qualitative differences.

Realistic weights Figure 6a and b show the search performance on the tv05dd
collection when the weights are realistically estimated from the tv05dt collection
using the Annotation-Driven Concept Selection method, proposed in Aly et al. [3].
Figure 6a shows the simulation results of the search performance using the mm101
vocabulary. Because the weights are now estimated by a realistic concept selection

Fig. 6 Realistic weights: 030 —
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method, the search performance is lower for all retrieval models. The performance
of the retrieval models relative to each other stays approximately the same.

Figure 6b shows the simulation results of the retrieval models using the vireo374
vocabulary. All models perform worse compared to the alternative of using the
mm101 vocabulary. A likely explanation is that with a growing concept vocabulary
the chance of selecting poor concepts—or setting wrong weights—increases.

5.3 Changing the standard deviation of the positive class

Figure 7a shows the results of changing the standard deviation of the positive
class using oracle weight settings. We fix all other model parameters as follows:
o =0,00 =1, u; = 3. An increase of the standard deviation of the positive class
increases the uncertainty and therefore the difficulty of the search. Consequently, all
retrieval models show a lower performance with an increasing standard deviation.
The PMIWS model stabilizes at 0.05 MAP. The other three retrieval models Borda—
Count, PRFUBE and BIM show a continuous performance loss. The retrieval model
PRFBUE has the highest performance decrease but continues to show the best
overall performance.

Figure 7b shows the increase of the standard deviation with weights from the
realistic concept selection method. Here, PRFUBE stays around 0.03 MAP above all
other retrieval models. The PMIWS model shows a worse performance than Borda—
Count and BIM.

Figure 7c shows the result of changing the standard deviation of the positive class
in the tv07d collection using oracle weights. The result is similar to the ones from the
tv05d collection, see Fig. 7a and b. The PRFUBE performs best over the whole range
of standard deviations, only this time the performance improvement compared to the
next best model BIM is more distinct. The two confidence score dependent ranking
functions PMIWS and Borda-Count show a similar performance over the changes of
the standard deviation.

5.4 Changing the standard deviation of the negative class

Figure 8 shows the results of changing the standard deviation of the negative class
using oracle weight settings. We fix all other model parameters as follows: uo =
0, u; = 3, 01 = 1. Similar to the change of the standard deviation of the positive class,
an increase of the standard deviation of the negative class increases uncertainty.
The detector performance quickly decreases with an increasing standard deviation
of the negative class. For example, a modest change of the standard deviation from
0o = 1 to op = 1.5 results in an absolute detector performance decrease of 0.43 (65%
relative). Similarly, the search performance of all retrieval models drops. All retrieval
models except the PRFUBE model show a search performance of below 0.02 MAP
for a standard deviation of oy > 2. The search performance of the PRFUBE model
decreases slower and reaches a search performance of 0.02 MAP at oy = 3.5.

5.5 Sigmoid fitting

Figure 9 shows the results of an increasing number of training examples S used
in the fitting procedure for the posterior probability function. Here, we used the
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mm101 vocabulary together with oracle concept weight settings. The x-axis shows
the number of training examples S on a log-scale because smaller training sizes are
of higher interest. Except of small random effects, the Borda—Count model shows
constant performance because it does not depend on the probabilistic output.

For the BIM and PMIWS retrieval models the search performance decreases
until a number of training example of S = 100. The reason is that for a small
amount training examples of § =5 the minimum number of one positive training
example over represents the positive class. Therefore, the posterior probabilities
are strongly biased towards higher values and the posterior probabilities and the
positive classifications rise. Because the false negatives are the biggest problem for
the BIM model its performance decreases. The same holds for the PMIWS model
because the ranking formula only considers the probability of concept occurrence
in relevant shots, see [2]. With an increasing number of S > 100 training examples
this effect diminishes. The performance of the BIM and PMIWS models stabilizes
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after § = 5,000 because of increasingly accurate estimates of the parameters for the
sigmoid function.

The PRFUBE improves its search performance linearly from 0.15 MAP using
5 training examples to 0.24 MAP with 5,000 examples. Beyond 5,000 samples it
stays approximately constant. It is the positively affected by over-estimated posterior
probabilities of a small training example size.

5.6 Predictive power of detector MAP

Figure 10 shows the scatter plot resulting from 200 random combinations of mean
and standard deviation o; of the positive class, with 0.5 < u; < 8 and 0.5 < oy < 5.
We show the search performance of the PRFUBE model, since it performed best by
the previous tests. The x-axis depicts the detector MAP and the y-axis depicts the
search MAP. With a detector MAP of above 0.75 the detector MAP and the search
MAP are strongly correlated. However, with a lower detector MAP the correlation
decreases. For a detector performance between 0 and 0.40 MAP is the Pearson
correlation of the search and detector performance only 0.50. The influence of this
low correlation can be demonstrated with an example: at a detector performance
of 0.16 MAP (which is the performance of best performing detectors at TRECVid),
we measured a search performance of 0.07 MAP for detectors with u; = 1.46 and
o1 = 1.06. However, we also measured a search performance of only 0.02 MAP
for the same detector performance with u = 0.74 and oy = 1.76. This indicates
that detector MAP, as currently used to measure the performance of detectors in
TRECVid is not a good evaluation measure. A good detector does not only need
sufficient MAP, it also needs a low standard deviation for the scores of the positive
class.

5.7 Discussion
In Fig. 4 we investigate the effects of concept detectors which get on average more

confident about the correct occurrence of concepts. The PRFUBE combination
model consistently performs best while the BIM model achieves approximately the
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same performance after a slow start. The Borda—Count is often better than the BIM
model in lower performance regions but stabilizes at a lower performance level
when the detectors approach certainty. The PMIWS model can not gain as much
performance from the increased detector performance. However, with a detector
performance close to certainty it sometimes performs better than Borda—Count.

Using realistically estimated weights instead of oracle weights, see difference
between Figs. 4 and 6, shows that the concept selection and weighting method has a
strong influence on the search performance. The relative performance difference of
the retrieval models compared to oracle weights is in general stable, only the PMIWS
model performs now worse than the Borda—Count model.

In Fig. 7 we show that the increase of the standard deviation of the positive class
decreases performance in all retrieval models. The effect of such an increase is that
the distribution of confidence scores in the positive class is more extreme. In other
words, the detectors emit for more shots either extremely high or low confidence
score. As a result, the probability that a relevant shot in which a concept occurs is
assigned a very low confidence score increases. This effect is also visualized in Fig. 11
which shows the expected detector precision and recall for the mm101 vocabulary
with three different standard deviations. We see that the precision with a higher
standard deviation is initially higher at lower recall levels. However, for higher
recall levels this effect is reversed and an increasing number of shots with concept
occurrences are not found among the first 2,000 shots.

The influence of an increasing standard deviation in the negative class causes
higher detector performance and search performance decreases than for the change
of the standard deviation of the positive class, see Fig. 8. With an increasing standard
deviation of the negative class, a detector is increasingly confident about the absence
of concepts in many shots. On the other hand, for other shots the detector has a high
confidence about the occurrence of a concept where the concept actually does not
occur. Figure 12 shows the effect of changing the standard deviation of the negative
class on the precision recall curve. Similar to the increase of the standard deviation
in the positive class, the precision decreases with an increasing standard deviation
of the negative class for low recall levels. However, additionally the precision at low
recall levels also decreases quickly. The reason is that there are usually many more
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shots in the negative class than in the positive class. Figure 13 shows the effect of
this scenario for a single concept. Let us assume 1,000 shots in the positive class
and 100,000 in the negative class. For the positive class in Fig. 13, we expect 50%
of the shots to have a confidence score of o > 3, which are 5,000 shots, because of the
cumulative distribution function of a Gaussian. For the negative class with standard
deviation oy = 1.5 we expect 2.2% of the shots, which are roughly 2,200 shots, to have
a confidence score o > 3. If we increase the standard deviation of the negative class
to op = 2.0, the expected percentage of shots with o > 3 increases to roughly 6.6%
or 6,600 shots. Now, this triplication of negative shots with high confidence scores
(0 > 3) causes the precision to drop at lower recall levels. This effect is strengthened
by an increasing ration of shots in the negative class to shots in the positive class.

Fig. 13 The effect of changing
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For the retrieval models which rely on a posterior probability measure (or a
classification derived thereof), the number of training examples to fit the sigmoid
function is of importance. From Fig. 9 we see that with less than 5,000 samples
fitting errors lead to performance decreases. However, beyond 5,000 samples the
performance is stable.

Figure 10 shows that the detector MAP is not always strongly correlated with the
search performance and the correlation further decreases for a low detector MAP. A
likely explanation is that the MAP measure for concept detectors does not capture
the extremeness of the confidence scores. A detector with a high standard deviation
emits for many shots in the positive class extremely high and low confidence scores.
The shots with extremely high confidence scores cause the detector MAP to be high,
since the MAP measure favors correctly highly ranked shots. On the other hand,
many shots from the negative class will have higher confidence scores than those
shots in the positive class with extremely low confidence scores and will therefore be
ranked higher in the search rankings. This effect is also shown in Fig. 11.

6 Conclusions and future work

This paper proposed a Monte Carlo Simulation approach to answer the following re-
search questions: (1) What is the impact of detector performance on the performance
of concept-based retrieval engines, and (2) will these engines be applicable to real-
life search tasks if detector performance improves in the future? For the prediction
we considered the mean average precision (MAP) of the search as a performance
measure. We assume that a search performance of 0.20 MAP for a concept-based
retrieval engine is sufficient for real-life applications, which is a performance often
achieved by retrieval engines of participants of the TREC conference [13].

Detector model The proposed probabilistic model for the Monte Carlo Simulation
consists of the parameters of two Gaussian distributions, a mean and a standard devi-
ation for the positive and the negative class. This model was supported by empirical
evidence of real detectors and related work [11] of general classifiers. We used equal
parameter settings for all detectors, assuming detectors of similar discriminative
power. While this is clearly not realistic, it allowed us to focus on the influence of the
general detector performance. We step-wise modified the parameters of the model
which allowed us to predict the expected search performance of retrieval engines for
improving detector performance.

Simulation setup The experiments were carried out on the TRECVid 2005 and
TRECVid 2007 development collections, where relevance and concept occurrences
were known. We used three concept vocabularies: (1) the MediaMill vocabulary con-
sisting of 101 concepts; (2) the Vireo vocabulary consisting of 374 concepts and (3)
the concept vocabulary which resulted from a joint annotation effort during TREC-
Vid 2007-2009 which consisted of 61 concepts. Furthermore, we investigated the
influence of a concept selection and weighting method by comparing the following
alternatives. First, we used an oracle concept selection and weighting method, which
selected the concepts and their weights in hindsight, assuming the knowledge of the
documents’ relevance. Second, we used our previously proposed Annotation-Driven
Concept Selection method [3] which realistically selected concepts. The detector
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scores were produced by our open source software detectsim* which simplifies the
generation of reproducible detector simulations.

Video shot retrieval We investigated the change in search performance of four
retrieval models when varying three different parameters of the detector model. The
influence of each change is concluded in the following.

When increasing the mean of the positive class, we found that the two retrieval
models based on concept-based document representations, the Binary Indepen-
dence Model (BIM) [20] and Probabilistic Framework for Unobservable Events
(PRFUBE) [2]. However, the search performance of BIM increases more slowly
due to a high misclassification rate with low detector performance. The Borda—
Count model [10], which is based on the ranks of confidence scores, first showed
similar performance as BIM but reaches a lower search MAP. The Pointwise
Mutual Information Weighting Scheme model [36] has a lower performance than
the other models. PRFUBE is the first to achieve real-life sufficient performance
under realistic weight settings with an approximate detector performance of 0.60
MAP, which is still far from perfect classification. The BIM model achieved the
search performance of 0.20 MAP at a much higher detector performance of 0.88
MAP. Given our assumptions, we therefore conclude that retrieval models using
concept-based document representations will be applicable to real-life applications
once concept detectors reached a high performance level of 0.60 MAP.

The increase of the standard deviation of the positive class distinctly reduced the
search performance of all retrieval models while detector performance was only
affected slightly. From this we conclude that current retrieval models are sensitive
to a higher variability of confidence scores in the positive class. An increase of
the standard deviation of the negative class, resulted in a more distinct search
performance reduction. The detector performance was also distinctly reduced. This
effect was attributed to the fact that there are usually many more shots in the negative
class and a higher standard deviation of this class resulted in many highly ranked false
positives. We conclude that both, search and detector performance, are sensitive to
changes in the standard deviation of the positive and the negative class.

Furthermore, we investigated the influence of fitting errors of the posterior
probability function because of limited training examples. The Borda—Count model
was unaffected because it only depends on the ranks of confidence scores. All
other retrieval models showed decreased performance with less than 5,000 training
examples.

Predictive power of detector MAP We also found that the MAP performance mea-
sure for concept detectors is not always a good indicator of the search performance.
The increase of the standard deviation of the positive class caused a severe search
performance decrease while the detector performance reduced only slightly.

Future work In this paper, we focused on modeling the influence of the independent
distribution of confidence scores of concept detectors which is arguably their most
important characteristic. Therefore, in the future we plan to further improve the

4http://detectsim.sourceforge.net/
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model’s fit with reality by including dependencies among the confidence scores.
Furthermore, we will investigate other measures for the detector performance which
consider the overlaps of the distribution of confidence scores in the positive and
negative class, such as the Kullback Leibner Divergence [4].

Concluding remark The simulation approach proposed in this paper can be used
to evaluate retrieval models without the (immediate) need of real detector outputs.
Since building concept detectors is a challenging task, this lowers the entry costs for
new researchers interested in concept-based retrieval. Furthermore, the simulation
allows predicting the development of the search performance of existing retrieval
models under varying detector performance.

Acknowledgements This research was funded by the CTIT strategic research orientation Natural
Interaction in Computer-mediated Environments (SRO-NICE).> We want to thank the anonymous
reviewers for their valuable feedback.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Aly R, Hiemstra D (2009) A simulator for concept detector output. Technical Report TR-CTIT-
09-40, University Twente, Enschede. http://eprints.eemcs.utwente.nl/16544/

2. Aly R, Hiemstra D, de Vries AP, de Jong F (2008) A probabilistic ranking framework using
unobservable binary events for video search. In: CIVR ’08: proceedings of the international
conference on content-based image and video retrieval. ACM, pp 349-358. ISBN 978-1-60558-
070-8. doi:10.1145/1386352.1386398

3. Aly R, Hiemstra D, de Vries AP (2009) Reusing annotation labor for concept selection. In CIVR
’09: proceedings of the international conference on content-based image and video retrieval,
ACM. ISBN 978-1-60558-070-8

4. Arndt C (2001) Information measures: information and its description in science and engineer-
ing, Springer

5. Ayache S, Quénot G (2007) Evaluation of active learning strategies for video indexing. Signal
Process Image Commun 22(7-8):692-704

6. Bather J (2000) Decision theory. An introduction to dynamic programming and sequential
decisions. Wiley-interscience series in systems and optimisation. Wiley, West Sussex, England

7. Chang C-C, Lin C-J (2001) LIBSVM: a library for support vector machines. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm

8. Christel MG, Hauptmann AG (2005) The use and utility of high-level semantic features in video
retrieval. In: Image and video retrieval, vol 3568/2005. Springer, Berlin / Heidelberg, pp 134-
144. ISBN 978-3-540-27858-0. doi:10.1007/1152634617. http://www.springerlink.com/content/
1mf31v38vgltkglr/

Shttp://www.ctit.utwente.nl/research/sro/nice/

@ Springer


http://eprints.eemcs.utwente.nl/16544/
http://dx.doi.org/http://doi.acm.org/10.1145/1386352.1386398
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1007/11526346
http://www.springerlink.com/content/1mf31v38vgltkg1r/
http://www.springerlink.com/content/1mf31v38vgltkg1r/
http://www.ctit.utwente.nl/research/sro/nice/

228 Multimed Tools Appl (2012) 60:203-231

9. Croft WB, Harding S, Taghva K, Borsack J (1992) An evaluation of information retrieval accu-
racy with simulated ocr output. In: In proceedings of the third annual symposium on document
analysis and information retrieval, pp 115-126

10. Donald KM, Smeaton AF (2005) A comparison of score, rank and probability-based fu-
sion methods for video shot retrieval. In: Image and video retrieval, vol 3568/2005. Springer,
Berlin / Heidelberg, pp 61-70. ISBN 978-3-540-27858-0. d0i:10.1007/1152634610. http://www.
springerlink.com/content/9jwatefm7p00dmkm/

11. Hastie T, Tibshirani R (1996) Classification by pairwise coupling. Technical report, Standford
University and University of Torronto

12. Hauptmann AG, Yan R, Lin W-H, Christe] M, Wactlar H (2007) Can high-level concepts fill
the semantic gap in video retrieval? A case study with broadcast news. IEEE Trans Multimedia
9-5:958-966. doi:10.1109/TMM.2007.900150

13. Hawking D (2000) Overview of the trec-9 web track. In: Voorhees EM, Harman DK (eds) NIST
special publication 500-249: the ninth text retrieval conference (TREC9), p 87

14. Jiang Y-G, Yang J, Ngo C-W, Hauptmann A (2010) Representations of keypoint-based semantic
concept detection: a comprehensive study. IEEE Trans Multimedia 12(1):42-53. ISSN 1520-9210.
doi:10.1109/TMM.2009.2036235

15. Lin H-T, Lin C-J, Weng R C (2007) A note on platt’s probabilistic outputs for support
vector machines. Mach Learn 68(3):267-276. ISSN 0885-6125 (Print) 1573-0565 (Online).
doi:10.1007/s10994-007-5018-6. http://www.springerlink.com/content/8417v9235m561471/

16. Metropolis N, Ulam S (1949) The monte carlo method. J Am Stat Assoc 44(247):335-341.
ISSN 01621459. http://www.jstor.org/stable/2280232

17. Naphade M, Smith J, Tesic J, Chang S-F, Hsu W, Kennedy L, Hauptmann AG, Curtis J (2006)
Large-scale concept ontology for multimedia. IEEE Multimedia 13(3):86-91. ISSN 1070-986X.
doi:10.1109/MMUL.2006.63

18. Platt J (2000) Advances in large margin classifiers, chapter probabilistic outputs for support
vector machines and comparison to regularized likelihood methods. MIT Press, Cambridge, MA,
pp 61-74

19. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C, the art of
scientific computing, 2nd edn. Cambridge University Press

20. Robertson SE, van Rijsbergen CJ, Porter MF (1981) Probabilistic models of indexing and search-
ing. In: SIGIR ’80: proceedings of the 3rd annual ACM conference on research and development
in information retrieval. Butterworth & Co, Kent, UK, pp 35-56. ISBN 0-408-10775-8

21. Ross SM (2006) Introduction to probability models. Academic Press. ISBN 0125980620.

22. Sangswang A, Nwankpa C (2003) Justification of a stochastic model for a dc-dc boost converter.
In: Industrial electronics society, 2003. IECON ’03. The 29th annual conference of the IEEE,
vol 2, pp 1870-1875. doi:10.1109/IECON.2003.1280345

23. Smeaton AF, Over P, Kraaij W (2006) Evaluation campaigns and trecvid. In: MIR *06: proceed-
ings of the 8th ACM international workshop on multimedia information retrieval. ACM Press,
New York, NY, USA, pp 321-330. ISBN 1-59593-495-2. doi:10.1145/1178677.1178722

24. Smeaton AF, Over P, Kraaij W (2008) High level feature detection from video in TRECVid: a
S-year retrospective of achievements. In: Divakaran A (ed) Multimedia content analysis, theory
and applications, Springer

25. Snoek CGM, Worring M (2007) Are concept detector lexicons effective for video
search? In: 2007 IEEE international conference on multimedia and expo, pp 1966-1969.
doi:10.1109/ICME.2007.4285063

26. Snoek CGM, Worring M (2009) Concept-based video retrieval. Found Trends Inf Retr 4(2):215-
322

27. Snoek CGM, Worring M, van Gemert JC, Geusebroek J-M, Smeulders AWM (2006) The chal-
lenge problem for automated detection of 101 semantic concepts in multimedia. In: Multimedia
’06: proceedings of the 14th annual ACM international conference on multimedia. ACM Press,
New York, NY, USA, pp 421-430. ISBN 1-59593-447-2. doi:10.1145/1180639.1180727

28. Snoek CGM, van de Sande K, de Rooij O, Huurnink B, van Gemert J, Uijlings J, He J, Li X,
Everts I, Nedovic V, van Liempt M, van Balen R, de Rijke M, Geusebroek J, Gevers T, Worring
M, Smeulders A, Koelma D, Yan F, Tahir M, Mikolajczyk K, Kittler J (2009) The mediamill
TRECVid 2009 semantic video search engine. In: Proceedings of the 9th TRECVid workshop,
Gaithersburg, USA

29. Taylor JR (1996) An introduction to error analysis, 2 edn. University Science Books.
ISBN 093570275X

@ Springer


http://dx.doi.org/10.1007/11526346
http://www.springerlink.com/content/9jwatefm7p00dmkm/
http://www.springerlink.com/content/9jwatefm7p00dmkm/
http://dx.doi.org/10.1109/TMM.2007.900150
http://dx.doi.org/10.1109/TMM.2009.2036235
http://dx.doi.org/10.1007/s10994-007-5018-6.
http://www.springerlink.com/content/8417v9235m561471/
http://www.jstor.org/stable/2280232
http://dx.doi.org/10.1109/MMUL.2006.63
http://dx.doi.org/10.1109/IECON.2003.1280345
http://dx.doi.org/http://doi.acm.org/10.1145/1178677.1178722
http://dx.doi.org/10.1109/ICME.2007.4285063
http://dx.doi.org/http://doi.acm.org/10.1145/1180639.1180727

Multimed Tools Appl (2012) 60:203-231 229

30. Toharia P, Robles OD, Smeaton AF, Rodriguez A (2009) Measuring the influence of concept

31

32.

33.

34.

35.

36.

detection on video retrieval. In: CAIP 2009 - 13th international conference on computer analysis
of images and patterns, Springer

Witbrock M, Hauptmann AG (1997) Speech recognition and information retrieval: experiments
in retrieving spoken documents. In: In proceedings of the the DARAP speech recognition
workshop 1997, pp 2-5

Yan R (2006) Probabilistic models for combining diverse knowledge sources in multimedia
retrieval. PhD thesis, Canegie Mellon University

Yan R, Hauptmann AG (2003) The combination limit in multimedia retrieval. In: Multimedia
’03: proceedings of the eleventh ACM international conference on multimedia. ACM, New York,
NY, USA, pp 339-342. ISBN 1-58113-722-2. doi:10.1145/957013.957086

Yan R, Hauptmann AG (2007) A review of text and image retrieval approaches for broad-
cast news video. Inf Retr 10(4-5):445-484. ISSN 1386-4564 (Print) 1573-7659 (Online).
doi:10.1007/s10791-007-9031-y. http://www.springerlink.com/content/r742245481q23631/

Yang J, Hauptmann AG (2008) (Un)reliability of video concept detection. In: CIVR *08: pro-
ceedings of the 2008 international conference on content-based image and video retrieval. ACM,
New York, NY, USA, pp 85-94. ISBN 978-1-60558-070-8. doi:10.1145/1386352.1386367

Zheng W, Li J, S, Z, Lin F, Zhang B (2006) Using high-level semantic features in video re-
trieval. In: Image and video retrieval, vol 4071/2006. Springer, Berlin / Heidelberg, pp 370-379.
ISBN 978-3-540-36018-6. doi:10.1007/11788034_38

Robin Aly recently received his PhD from the University of Twente in the Netherlands. His
thesis is entitled Modeling Representation Uncertainty in Concept-based Multimedia Retrieval. He
contributed to over 15 research papers. His research interests include formal models of information
retrieval, modeling uncertainty in information retrieval, and multimedia retrieval. He was involved
in the organization of the Dutch Belgium Information Retrieval workshop 2009 and in the program
committee of several international conferences.

@ Springer


http://dx.doi.org/http://doi.acm.org/10.1145/957013.957086
http://dx.doi.org/10.1007/s10791-007-9031-y.
http://www.springerlink.com/content/r742245481q23631/
http://dx.doi.org/http://doi.acm.org/10.1145/1386352.1386367
http://dx.doi.org/10.1007/11788034_38

230 Multimed Tools Appl (2012) 60:203-231

®

Djoerd Hiemstra is associate professor at the database group of the University of Twente in the
Netherlands. He wrote an often cited PhD thesis on language models for information retrieval
and contributed to over 140 research papers in the field of information retrieval. His research
interests include formal models of information retrieval, multimedia retrieval, federated retrieval,
and XML retrieval. He was involved in the local organization of the ACM SIGIR 2007 conference in
Amsterdam, and in the organization of several workshops including editions of the Dutch-Belgian
Information Retrieval workshop series. Djoerd has been involved in various national and inter-
national research projects, and was awarded a prestigious Netherlands Organization for Scientific
Research (NWO) Vidi grant. For more information, see: http://www.cs.utwente.nl/~hiemstra/

Franciska de Jong is full professor of language technology at the University of Twente since 1992.
She is also affiliated to the Erasmus University in Rotterdam, where she is managing director of
the Erasmus Studio. She studied Dutch language and literature at the university of Utrecht, did a
PhD track in theoretical linguistics and started to work on language technology in 1985 at Philips
Research where she worked on machine translation. Currently, her main research interest is in the
field of multimedia indexing, text mining, semantic access, cross-language retrieval and the disclosure
of cultural heritage collections (in particular spoken audio archives), and she coordinates a research
programme in this area within the Human Media Interaction group. She is frequently involved in
international programme committees, expert groups and review panels, and has initiated a number
of EU-projects. In 2001-2003 she was a member of the EU/NSF ’spoken word archives’ working
group. She is project leader of the MultimediaN-project on semantic multimedia access (2004-2009),
principal investigator of the NWO-CATCH project CHoral (2006-2010) and coordinator of IST
project PuppyIR (2009-2012). Since 2008 she is a member of the Governing Board of the Netherlands
Organization for Scientific Research (NWO).

@ Springer


http://www.cs.utwente.nl/~hiemstra/

Multimed Tools Appl (2012) 60:203-231 231

Peter M. G. Apers received his MSc and PhD from the Free University of Amsterdam. After
receiving his MSc he spent one year at UC Santa Cruz and after his PhD half a year at Stanford
University. He is currently a faculty member of the Computer Science Department of the University
of Twente. He is also scientific director of CTIT, the ICT institute of the University of Twente, and of
NIRICT, the ICT institute of the three Dutch universities of technology. He served as (vice) program
chair of major conferences such as VLDB, ICDE, and EDBT. Furthermore, he has been Editor-in-
Chief of the VLDB Journal. His research interest are database querying and multimedia information
retrieval.

@ Springer



	Simulating the future of concept-based video retrieval under improved detector performance
	Abstract
	Introduction
	Related work
	Multimedia search performance prediction
	Concept detection
	Monte Carlo simulation

	Detector model and simulation process
	Detector model
	Posterior probability measure
	Simulation process

	Simulation setup
	Collections and concept vocabularies
	Investigated retrieval models
	Performed simulations

	Simulation results
	Model coherence
	Changing the mean of the positive class
	Changing the standard deviation of the positive class
	Changing the standard deviation of the negative class
	Sigmoid fitting
	Predictive power of detector MAP
	Discussion

	Conclusions and future work
	References



