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Abstract  This study integrates two different computer vision approaches, namely the cir-
cular Hough transform (CHT) and the determinant of Hessian (DoH), to detect automati-
cally the largest number possible of craters of any size on the digital terrain model (DTM) 
generated by the Mars Global Surveyor mission. Specifically, application of the standard 
version of CHT to the DTM captured a great number of craters with diameter smaller 
than ~ 50 km only, failing to capture larger craters. On the other hand, DoH was success-
ful in detecting craters that were undetected by CHT, but its performance was deterred by 
the irregularity of the topographic surface encompassed: strongly undulated and inclined 
(trended) topographies hindered crater detection. When run on a de-trended DTM (and 
keeping the topology unaltered) DoH scored higher. Current results, although not optimal, 
encourage combined use of CHT and DoH for routine crater detection undertakings.

Keywords  Circular Hough transform · Derivative of hessian · Blobs · Computer vision · 
Digital terrain model

1  Introduction

Frequency counting of impact craters on terrestrial planets and moons of the Solar System 
can provide a framework for relative geochronology of the upper planetary crust (Hart-
mann and Neukum2001; Carr and Head 2010) and, within model-dependent conditions, 
absolute ages (Neukum and Hiller 1981). It also constitutes a means of probing into par-
oxysmal phases of meteor showers in the early Solar System (Gomes et al. 2005). Numer-
ous spaceborne surveying and remote sensing missions to Mars (Pyle 2012) over the last 
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decades have acquired digital elevation data for the entire planet at usable resolutions, ena-
bling planetary scientists to carry out analysis of the Martian impact craters (e.g. Brunetti 
et al. 2014). However, counting of myriads of impact craters is a tedious and time consum-
ing task.

Subjects of research in geology, and consequently in planetary science, involve the 
reconstruction of original landforms from their current remnants. Such problems can be 
dealt with if they are reduced to morphological, and eventually geometrical, problems 
(Bayer 1985). Many of these problems can be tackled by computer algorithms operating 
on digital terrain models (DTM). Hence, impact crater detection through computer vision 
methods may be extremely practical in planetary science as it can automate, and thus 
expedite, the crater-counting procedure. Computer vision (also known as ‘image under-
standing’) is a branch of computer science aiming at replicating biological (human) vision 
through appropriate algorithms so that certain image components (objects) can be detected/
recognized by computers (e.g. Haralick and Shapiro 1991).

However, planet surface processes (Berman et al. 2009) may induce random and persis-
tent disturbance (noise) to the original structure (signal) over the course of time, resulting 
in the gradual deformation of the original landform. This is particularly the case of the 
Martian impact craters whose edges have experienced some degree of erosion (Fig. 1) by 
the former Martian hydrological cycle (Andrews-Hanna et al. 2007).

Circular Hough transform (CHT) has been promoted as a method for the detection of 
impact craters (Kim et al. 2005; Stepinski et al. 2006; Bue and Stepinski 2007). CHT (Ill-
ingworth and Kittler 1987) is an adaptation of the Hough transform (e.g. Duda and Hart 
1972; Xiao and Weij 2006; Mingzhu and Huanrong 2008). It is a feature detection method 
that exploits the edges of circular objects in an image to reconstruct their perimeter out of 
their imperfect instances. This is achieved through a voting procedure from the 2D space of 
the imagery to a 2D or 3D parametric space.

Nevertheless the noisy nature of most DTMs inevitably introduces votes from irrele-
vant objects, frequently leading to the emergence of false craters (false positives) while 

Fig. 1   Impact craters on Mars overlapping with relict drainage network in Osuga Valles, 170  km south 
of Eos Chaos, Valles Marineris. Image center at 15°S/322°E. Image from High Resolution Stereo Camera 
on Mars Express. Source: ESA/DLR/FU Berlin. (http://www.esa.int/space​inima​ges/Image​s/2014/04/Osuga​
_valle​s)

http://www.esa.int/spaceinimages/Images/2014/04/Osuga_valles
http://www.esa.int/spaceinimages/Images/2014/04/Osuga_valles
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failing to spot true craters (true positives). Investigators on the CHT detection of impact 
craters (Kim et  al. 2005; Bue and Stepinski 2007) address this deficiency of CHT. Bue 
and Stepinski (2007) promoted an adapted CHT approach which employs algorithms that 
fragment the DTM into numerous small images, each aimed at wrapping one crater exactly. 
Although the noisy influence of other objects lying in the neighborhood of a crater is in 
this way waned to a large extent, the method turned out to be a long-drawn-out and compu-
tationally costly one, rendering the adapted CHT less practical for routine crater detection.

Region-based detection (blob detection) may be an alternative way to go around the 
limitations posed to edge-detection methods (CHT) by imperfect crater instances. Blob 
detection (Kaspers 2011) utilizes operators (algorithms) capable of delineating regions that 
exhibit uniform properties. Therefore, blob detection is not affected by the imperfections of 
linear components, such as the eroded crater edges, and may be able to capture craters that 
CHT left out. Among various blob detection methods (Kaspers 2011), the determinant of 
Hessian (DoH) is well-known (Lindeberg 1993, 1998). Blob detection has been applied to 
numerous cases involving conventional images (e.g. Grauman and Leibe 2011) and satel-
lite imagery (Karantzalos and Argialas 2004).

This work promotes a utility for routine crater counting on the Mars Global Surveyor 
DTM by integrating open-source CHT and DoH algorithms. It is computationally less 
costly than other published approaches (e.g. Bue and Stepinski 2007) and yields similarly 
high scores. This is, to our knowledge, the first application of the Blob-detection method 
for impact crater detection on a digital terrain model. Next, the methods are contrasted 
against one another as to their performance and then they are integrated for optimal true-
positive detection results.

2 � Source Data and Methods

The Planetary GIS Web Server of the United States Geological Survey (USGS) makes 
available a GIS-ready digital terrain model (DTM) of the Martian surface, released by 
NASA Goddard Flight Center. The DTM used here was acquired by the Mars Orbiter 
Laser Altimeter (MOLA) of the Mars Global Surveyor (MGS) robotic spacecraft at a reso-
lution of 463 m/pixel (observed topography within a 0.00781 × 0.00781 degree window). 
The selection of the study window (shown in Fig. 2) on the DTM was more or less arbi-
trary. The study area captures a segment of the equatorial area of Mars. According to the 
USGS Astrogeology Research Program (http://astro​geolo​gy.usgs.gov/) this window mainly 
captures the northern parts of the Sinus Sabaeus quadrangle.

In a DTM, impact craters are perceived as negative topographic features in relation to 
their immediate neighborhood, enclosed by almost perfectly circular edges. Because the 
blurry DTM raster image (Fig. 2a) cannot be readily read as is, the fluctuations of the gra-
dient of the DTM can highlight crater ridges as embossed lines (edges) on a low intensity 
background (Fig.  2b). From the outside inwards, the profile of an impact crater is mor-
phologically expressed by a ridge that sharply goes over a low-lying flat area. The image-
processed excerption from the DTM (Fig. 2b) portrays the qualitative characteristics of the 
Martian impact craters in the study area. Crater morphology on Mars is diverse. Impact 
craters range in diameter from ~ 450  km to as less as 1 km or even lesser. Surface pro-
cesses may distort the original perimeter of the craters (Barlow 2016) from nearly circular 
to jigsaw-like edges, as in the case of the prominent crater in the bottom-right corner of 
Fig. 2 (1). In addition, ongoing bombardment may produce overlapping craters exhibiting 

http://astrogeology.usgs.gov/
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complex configurations: from matryoshka doll-like structures, where craters are completely 
nested in larger craters (2 in Fig. 2), to interlocked rings (3 in Fig. 2), or a combination of 
the two (4 in Fig. 2).

Fig. 2   a: digital terrain model (DTM) of the study area (source: USGS Planetary GIS Web Server). b: gra-
dient image of the DTM. (1) Crater whose circular edge is eroded acquiring a jigsaw-like shape. (2) Crater 
nesting in crater, (3) overlapping craters, (4) combination of (1), (2) and (3)
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Hough Transform involves switching back and forth from the 2D image space (x, y) 
to a multi-dimensional space (depending on the number of the curve parameters), known 
as the parametric space, from which object candidates are detected as local maxima of 
votes cast into the so-called accumulator matrix. Such a parametric space is known as 
the “Hough” space (Duda and Hart 1972; Argialas and Krishnamoorthy1992). The CHT 
algorithm employed in this study is the ‘Phase Coding’ (Atheron and Kerbyson 1999) 
variation of the CHT algorithm. This implementation can be found in Matlab’s imfind-
circles function.

Contrary to CHT, blob detection extracts information from regions of an image that can-
not be obtained from edge detectors (i.e. CHT). Lindeberg (1993, 1998) defines a blob as 
a region of the image corresponding to a local extremum, be it a maximum or a minimum 
(i.e. a bright blob in a darker background or a dark blob in a brighter background). This 
definition satisfies the appearance of impact craters on the DTM of Mars which appear as 
concave basins (lower height—dark areas) exhumed in the ground surface (higher height—
brighter areas). Blobs can be automatically detected by employing operators that calculate 
the gradient fluctuations on an image.

There are two common approaches to blob detection, namely the Laplacian of Gaussian 
(Mikolajczyk and Schmid 2004) and the Determinant of Hessian (Lindeberg 1998). Both 
aim at detecting either convex or concave structures in an image. Because of the apparent 
resemblance between the graphical representation of the Determinant of Hessian (DoH) 
and the crater geometry (impact craters resemble 3D, inverted, Gaussian-like depressions) 
it is the DoH operator that is here tested on the DTM from the Mars Global Surveyor. The 
Determinant of Hessian searches the image for locations that display intense derivatives in 
orthogonal directions (Grauman and Leibe 2011).

For the detection of impact craters as blobs, this study takes advantage of the blob_doh 
algorithm available from the scikit-image library for image processing in the Python pro-
gramming language. The algorithm defines the center of a blob where the determinant of 
the Hessian matrix is maximized, and then delivers their (x, y) coordinates and the standard 
deviation of the Gaussian kernels convolved with the Hessian matrix. The radii of the blobs 
are approximately equal to the standard deviation of the Gaussian kernel. One shortcoming 
of blob_doh is that it cannot detect radii smaller than 3 pixels wide due to the box filters 
(Bay et al. 2008) employed in the approximation of the Hessian Determinant.

Figure 3 illustrates two topographic profiles corresponding to the dashed lines in sec-
tions A and B respectively (drawn in Fig. 2) and reveal that impact craters may crop up 
at diverse landscapes from tilted sinusoid-like (Fig. 3a) to remarkably flat areas (Fig. 3b). 
Therefore, the apparent complexity of crater shapes encountered on Mars poses a challenge 
to the CHT and DOH methodologies employed here. Thus, CHT and DoH were tested 
against two distinctive landscape settings designated as A and B in Fig. 2 in order to com-
pare their performance on both trended (A) and plane (B) topographies. Before applying 
the CHT and DoH algorithms, excerpts from the DTM of the two selected areas (Fig. 2) 
underwent some image pre-processing in order to optimize the operator’s performance. 
The “median” edge-preserving, noise-reduction filter (MF) was employed for both CHT 
and DoH. Nevertheless, CHT requires some additional amount of image pre-processing so 
that the circle edges emerge. Therefore, a standard deviation filter was applied to the DTM 
in order to emboss areas of high variance, such as the crater edges, which are the features 
to be recognized by the CHT algorithm. Moreover, the Canny and Sobel edge detection 
operators were applied separately. Finally, the profile curvature was calculated to reveal 
the edges and a threshold was set to the gradient magnitude so as to convert the grey-scale 
image into black and white (binary image). A step including morphological opening and 
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skeletonization of the image is usually interposed. In that way only foreground pixels with 
high gradient are designated for casting votes.

By default, DoH searches for local topographic extrema without distinguishing minima 
(craters) from maxima (bright blobs corresponding to concave or hilly areas). Because of 
this, DoH will inevitably return ‘phantom’ craters (false positives) which skew the results 
dataset. One way to prevent blob_doh from extracting bright blobs is to insert an intensity 
cut-off in Python in order to exclude concave or hilly areas, which correspond to groups 
of high-intensity pixel values. However, insertion of an intensity cut-off inevitably leads to 
the rejection of a large portion of the image area and exclusion of craters resting at higher 
elevations.

With the intention of improving the performance of DoH on a trended topography, 
such as area B, without losing information, we de-trended the relevant DTM in ArcGIS. 
De-trending involved fitting a plane to the DTM, and then subtracting it from the original 
DTM. The result was a leveled DTM which maintained the initial topological associations 
of the geomorphic features. This has the advantage that any intensity cut-off value will 
prevent DoH from extracting concave features without discarding portions of the image 
resting above the intensity cut-off value.

As some overlap between the two methods may occur with regard to the crater detection 
results, it is essential that duplicate true positives be detected and counted as singles in the 
output. For this reason an algorithm was designed to identify those craters extracted by 
both methods. Specifically, a crater is defined by three parameters: the x and y coordinates 
of its center, and its radius. These parameters will probably vary slightly, even for the same 
crater, when extracted by different methods. Therefore, searching for exactly the same val-
ues will fail in duplicate crater recognition. For this reason, a tolerance-based method for 
the elimination of duplicates was implemented.
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Fig. 3   a Topography profile of test area A in a NW–SE direction. Topography is characterized by sinusoi-
dal-like fluctuations while trending towards higher elevations to the SE. b Topography profile of test area B 
in a W–E direction, drawn across the middle of area B
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Let x1, y1, r1 be the x, y coordinates and radius of a crater of the CHT method respec-
tively and x2, y2, r2 be the x, y coordinates and radius of a crater of the DoH method. Arbi-
trary tolerance values (in pixels) can be set for each element, i.e. xtol, ytol and rtol. Then, the 
above three conditions (1–3) must be fulfilled in order to consider a crater as duplicate. 
Specifically, the absolute difference of the radii must be smaller than a certain value (toler-
ance), to be considered as duplicates. All tolerance values were set to 15 pixels.

3 � Results

The performance of CHT and DoH was evaluated on the basis of well-established indices 
(Wiedemann et al. 1998; Mariano et al. 2002) which address three queries: (1) how com-
plete (completeness) and (2) how accurate (correctness) the results are, and (3) what their 
quality is. Completeness is the ratio of objects identified by the algorithm over the ground-
truth ones ([true positives] ÷ [true positives + false negatives]), whereas correctness is the 
ratio of objects identified by the algorithm over all objects detected—both true and phan-
tom ([true positives] ÷ [true positives + false positives]). The final index that character-
izes the performance of the operator is quality (e.g. Wiedemann et al. 1998; Mariano et al. 
2002; Shan and Lee 2005) defined as the ratio of the objects identified by the algorithm 
over both the ground-truth objects and the phantom objects ([true positives] ÷ [ground-
truth + false positives]).

Table  1 lists the results of CHT algorithm applied to both DTMs excerpts after they 
underwent image pre-processing with various filters. The above indices were calculated 
both by counting craters (ComN, CorN, QuaN) and measuring the relevant surface (ComA, 
CorA, QuaA). The S2 and S3 preprocessing algorithms involved applying the standard 
deviation filter two and three times respectively. The window sizes of the standard devia-
tion filters were 11 × 11, 3 × 3 and 3 × 3 from the first to the last pass. Search radius range 
was set to 10–70 pixels in all cases. For the CHT method, the best results were achieved 
using the S2 filtering for area A, while the S3 filtering provided better results for area 
B (Table 1, Fig. 4). DTM de-trending seems to have a negligible influence on the CHT 
results. After removing the trend the number of craters was found to be quite similar to the 
number of craters identified in the DTM prior to detrending. 

The syntax of blob_doh for Python requires 3 input parameters, namely the minimum 
and maximum standard deviations of the Gaussian kernel for detecting both small and 
large blobs as well as a threshold known as the scale parameter which defines the smallest 
maxima to be detected. We experimented with several combinations of these parameters. 
However, important omission or commission errors are introduced (Fig. 5a) because the 
algorithm extracts both convex and concave blobs indiscriminately. Yet, the most crucial 
parameter in DoH, turned out to be the cut-off value which we introduced to the blob_doh 
code. By progressively lowering the cut-off value we managed to free the output from false 
craters (Table  2). This can be straightforwardly explained by recalling the shape of the 
topographic profile (Fig. 3a). 

In DoH, it seems that de-trending plays a more important role. Indeed, when DoH 
ran on the de-trended DTM of areas A and B it scored a higher number of true positives 
(Table 2). The most satisfactory results for DoH (Table 2, Fig. 5) have been achieved using 
a cut-off value of 150 for the original DEM and 110 for the de-trended DEM (area A). For 
area B, cut-off values of 140 and 110 produced the best results for the original and the de-
trended DEM (Fig. 6), respectively.
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Neither CHT nor DoH is capable of capturing the overwhelming majority of the craters 
independently. A way to go around the problem of phantom craters, as well as to increase 
the overall number of detected craters by combining both computer vision approaches is 
discussed hereafter.

4 � Discussion

A careful examination of Fig.  4a, b shows the tendency of CHT to capture craters with 
diameter smaller than ~ 50 km while missing the larger ones systematically. Investigators 
on the CHT detection of impact craters (Kim et al. 2005; Bue and Stepinski 2007) address 
the partial deficiency of CHT to detect impact craters. The imperfect instantiation of the 
craters in the pre-processed image, due to natural erosion of the crater edges, and the con-
tribution from edges of irrelevant objects (i.e. relict drainage network and other types of 
topographic discontinuities) that cast false votes in the accumulation matrix will result into 
low signal-to-noise ratios. Bue and Stepinski (2007) managed to enhance the detection 
capacities of CHT by employing a long-drawn-out process (which lies beyond the purposes 
of this work) deploying algorithms which fragment the DTM into numerous small images, 

Table 1   Results of the CHT algorithm performed on areas A and B

R raw dataset, D detrended dataset, MF median filter, GT ground-truth, POS positives-total craters found 
by the method, TP true positives, ComN completeness based on number, CorN correctness based on crater 
counting, QuaN quality based on crater counting, ComA completeness based on area measurement, CorA 
correctness based on area measurement, QuaA quality based on area measurement, S Sobel filter, C Canny 
filter

Data type Filter Area GT POS TP ComN CorN QuaN ComA CorA QuaA

R S2 A 85 62 59 69 91 65 46 94 44
R MF, S2 A 85 63 55 66 83 57 47 90 45
R S3 A 85 56 45 53 78 46 19 87 19
R MF, S3 A 85 43 45 53 100 53 31 100 31
R S3 B 147 113 91 62 81 54 37 87 35
R MF, S2 B 147 114 89 61 78 52 45 88 42
R S3 B 147 100 99 67 98 66 21 99 21
R MF, S3 B 147 83 81 55 98 54 28 99 27
D S2 A 85 63 57 68 86 61 43 91 41
D MF, S2 A 85 64 56 66 84 58 47 90 45
D S3 A 85 57 47 55 80 49 22 90 22
D MF, S3 A 85 49 51 60 98 59 39 99 39
D S2 B 147 113 92 63 81 55 36 87 34
D MF, S2 B 147 112 87 59 78 51 41 87 39
D S3 B 147 101 99 67 97 66 21 98 21
D MF, S3 B 147 81 79 54 98 53 27 98 27
D C B 147 146 72 49 50 33 24 62 21
D S B 147 48 44 30 92 29 13 95 13
D S B 147 42 41 28 98 28 11 98 11
D C of S B 147 143 68 46 48 31 27 64 24
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each aimed at wrapping one crater exactly. In this way the noisy influence of other objects 
lying in the neighborhood of a crater is eliminated. Nevertheless, the higher computational 
cost involved in that approach (Bue and Stepinski 2007) renders the adapted CHT less 
practical for routine crater detection. Contrary to CHT, DoH seems to miss smaller craters, 
while performing better on the larger ones (Fig. 5a, b).

Having optimized the output from both CHT and DoH, we combined the results 
(Fig.  7a, b). This was accomplished by merging the results of the two methods and by 
applying the tolerance-based algorithm for the elimination of duplicates explained earlier. 
Once the duplicate craters were found, it was the CHT-duplicates that were discarded from 
the data set with the merged craters. Consequently, a more accurate crater count (and a vis-
ually better vector) was obtained, using a combination of CHT and DoH methods. The suc-
cess of the duplicate crater finder algorithm was 100%. All the craters that were discarded 
by this algorithm were indeed duplicates. There were no false positives or false negatives. 
The results of this matching algorithm are illustrated in Fig. 7a, b.

Aside from the challenges posed by the irregularity of the topography, presence of com-
plex structures resulting from interlocking craters, such as those described in Sect. 2 and 

Fig. 4   a Red circles correspond 
to craters extracted by CHT in 
area A after the DTM underwent 
the S2 filtering (see Table 1). b 
Red circles correspond to craters 
extracted by CHT in area B after 
the DTM underwent the S3 filter-
ing (see Table 1)
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Fig. 2, additionally challenge the detection capabilities of the integrated methodology put 
forward here. Figure 7a, b shows that the integrated algorithms can isolate individual cra-
ters in similarly complex contexts, and this is an advantage of the proposed methodology.

5 � Conclusions

Application of conventional CHT to the DTM of Mars achieved to capture small-sized 
(< ~ 50 km) craters. On the contrary, DoH succeeded in capturing the remainder (larger) 
craters leaving amiss those captured by CHT, with some degree of overlap on medium-
sized craters. DoH necessitated the introduction of an intensity cut-off value in order to 
prevent the algorithm from encircling true negative features (hillocks). The performance 
of DoH was challenged further by irregular surfaces; introduction of a cut-off value led to 
the rejection of much of the image area, as well as of craters lying in high-elevated areas. 
We circumvented the problem by de-trending the DTM, without affecting the topological 

Fig. 5   a Results of DoH in area 
A for a cut-off value of 150. b 
Results of DoH in area B for a 
cut-off value of 150. Along with 
the concave features (craters) 
the algorithm still extracts some 
convex ones (hills)
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Table 2   Results of the DoH algorithm performed on areas A and B

Data type Filter Area Cutoff GT POS TP ComN CorN QuaN ComA CorA QuaA

R B 120 147 27 29 20 10 20 34 100 34
R B 140 147 53 49 33 89 32 50 73 42
R B 150 147 59 50 34 82 32 51 61 38
R B 180 147 74 51 35 67 30 52 35 26
R MF B 120 147 27 29 20 10 20 34 100 34
R MF B 140 147 50 48 33 92 32 50 75 43
R MF B 150 147 55 49 33 86 37 51 65 40
R MF B 180 147 71 50 34 69 29 52 35 27
R A 120 85 25 24 28 92 28 63 89 58
R A 140 85 33 29 34 85 32 70 83 62
R A 150 85 34 30 35 86 33 70 83 62
R A 180 85 44 31 37 69 31 73 48 41
R MF A 120 85 23 21 25 91 24 62 89 57
R MF A 140 85 30 26 31 87 29 70 84 62
R MF A 150 85 31 27 32 87 30 70 85 62
R MF A 180 85 41 28 33 68 29 72 49 41
D B 120 147 49 45 31 88 29 47 78 41
D B 140 147 64 52 35 79 32 54 54 37
D B 150 147 69 52 35 73 31 54 46 33
D B 180 147 81 52 35 63 29 54 33 26
D MF B 120 147 43 42 29 93 28 47 90 44
D MF B 140 147 59 49 33 80 31 54 54 37
D MF B 150 147 64 49 33 74 30 54 47 34
D MF B 180 147 76 49 33 63 28 54 33 26
D A 120 85 34 32 38 91 36 78 86 69
D A 140 85 42 34 40 79 36 79 65 55
D A 150 85 47 34 40 71 34 79 57 49
D A 180 85 56 35 41 61 33 81 37 34
D MF A 120 85 34 32 38 91 36 78 86 69
D MF A 140 85 42 34 40 79 36 79 65 55
D MF A 150 85 46 34 40 72 35 79 57 50
D MF A 180 85 55 35 41 63 33 81 38 34
D B 80 147 9 9 6 10 6 16 100 16
D B 90 147 18 19 13 10 13 23 100 22
D B 100 147 24 26 18 10 18 33 100 33
D B 110 147 35 37 25 10 25 40 100 40
D MF B 80 147 8 8 5 10 5 16 100 16
D MF B 90 147 16 16 11 10 11 19 100 19
D MF B 100 147 24 26 18 10 18 34 100 34
D MF B 110 147 32 34 23 10 23 40 100 40
D A 80 85 14 15 18 10 18 45 100 45
D A 90 85 19 20 24 10 24 57 100 57
D A 100 85 21 22 26 10 26 64 100 64
D A 110 85 30 29 34 94 33 74 86 66
D MF A 80 85 14 15 18 10 18 45 100 45
D MF A 90 85 18 19 22 10 22 57 100 57
D MF A 100 85 21 22 26 10 26 64 100 64
D MF A 110 85 27 27 32 96 31 74 98 73

For explanation of the notation see Table 1
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Fig. 6   Results of DoH in de-
trended area A. Having used 
an appropriate cut-off value the 
performance of DoH improved 
significantly on the detrened 
DTM

Fig. 7   a Craters detected in area 
A by combining CHT and DOH 
on the de-trended DTM. Blue: 
craters found by either CHT or 
DoH (for craters found by both 
methods the duplicates of the 
CHT method were removed). 
Green: ground-truth craters 
(manually drawn) that match a 
blue crater. Red: ground-truth 
craters not found by either 
method (omission error). Yellow: 
craters found by either method 
but do not belong to ground-truth 
(false positives—commission 
error). Cases of complex struc-
tures resulting from interlocking 
craters are denoted by numbers: 
(1) crater with eroded rim, (2) 
craters nesting in craters, (3) 
overlapping craters, (4) combina-
tion of (1), (2) and (3). b Craters 
detected in area B by combining 
CHT and DOH on the de-trended 
DTM. See a for description
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relationships of the features appearing in it. De-trended DTMs allowed DoH to score 
higher.

Combined use of CHT and DoH ensures higher scores in crater detection than CHT 
alone. As of now, adaptations of CHT that make use of meticulously pre-processed images 
including fragmentation of the image into small icons (Bue and Stepinski 2007) have been 
characterized by a higher rate of success. Nevertheless, the higher computational cost 
involved in such an approach (Bue and Stepinski 2007) renders the adapted CHT less prac-
tical for routine crater detection as long as the processed image cannot be substantially 
released from noise introduced by the presence of surrounding features (e.g. relict drainage 
network, rims of irregular basins etc). DoH can cope with the image noise better than CHT 
and image preprocessing requirements are least. The methodological progress presented 
here would expedite impact crater detection on the rocky planets.

Acknowledgements  The authors thank an anonymous reviewer for providing constructive comments.
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