
NOVEL COMPUTATIONAL APPROACHES TO OLD AND NEW PROBLEMS IN MECHANICS

Finite element simulation of pressure-loaded phase-field
fractures

N. Singh . C. V. Verhoosel . E. H. van Brummelen

Received: 1 May 2017 / Accepted: 15 November 2017 / Published online: 12 December 2017

� The Author(s) 2017. This article is an open access publication

Abstract A non-standard aspect of phase-field frac-

ture formulations for pressurized cracks is the appli-

cation of the pressure loading, due to the fact that a

direct notion of the fracture surfaces is absent. In this

work we study the possibility to apply the pressure

loading through a traction boundary condition on a

contour of the phase field. Computationally this

requires application of a surface-extraction algorithm

to obtain a parametrization of the loading boundary.

When the phase-field value of the loading contour is

chosen adequately, the recovered loading contour

resembles that of the sharp fracture problem. The

computational scheme used to construct the immersed

loading boundary is leveraged to propose a hybrid

model. In this hybrid model the solid domain (outside

the loading contour) is unaffected by the phase field,

while a standard phase-field formulation is used in the

fluid domain (inside the loading contour). We present

a detailed study and comparison of the C-convergence
behavior and mesh convergence behavior of both

models using a one-dimensional model problem. The

extension of these results to multiple dimensions is

also considered.

Keywords Brittle fracture � Phase-field modeling �
Pressurized cracks � Immersed finite element method �
Finite cell method

1 Introduction

Over the last decade phase-field models for fracture

[1–4]—which are closely related to traditional gradi-

ent-enhanced damage models [5]—have been suc-

cessfully applied to a wide range of problems, such as

dynamic fracturing [6–9], large deformation fractur-

ing [10, 11], fracturing of electromechanical materials

[12, 13], cohesive fracturing [14, 15], fracturing of

thermo-elastic solids [16, 17] and many more. The

primary advantage of these models is the flexibility

with which complex fractures can be simulated, which

is a result of the diffuse fracture representation and due

to the fact that propagation laws generally follow

naturally from energy minimization principles. How-

ever, compared to sharp fracture models, phase-field

models require high-resolution computational grids in

the vicinity of the fractures.

The flexibility of the phase-field framework with

respect to the representation of complex fracture

patterns is also exploited in the context of fluid-driven
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fracture propagations (see references below). These

models are highly relevant in applications concerning

flow in porous media such as hydraulic fracturing. A

particularly interesting aspect of the extension of

phase-field models to hydraulic fracturing is that the

phase-field model not only represents the fracture in a

diffuse sense, but also represents the fluid-flow

domain.

Various phase-field formulations for fluid-driven

fracture propagation have been developed over the last

couple of years. In Bourdin et al. [18] a variational

formulation for pressure-driven phase-field fracture

propagation is considered, in which the work exerted

by the pressure inside a crack on the fracture surface is

accounted for by a volumetric body force. Crack

growth is simulated by quasi-static incrementation of

the fracture volume. Alternative formulations for

fluid-driven fracture propagation have been developed

by enriching a poro-mechanical formulation with a

phase-field fracture representation, of which the works

by Miehe et al. [19, 20], Mikelić, Wheeler et al.

[21, 22], and Wilson et al. [23] are particularly

noteworthy. The primary difference between the

formulations in these works is the way in which the

phase-field influences the flow and action of the fluid

on the porous medium.

The above-mentioned models for pressure-loaded

phase-field fractures all rely on indirect application of

the fracture-surface loading, in the sense that the sharp

loading boundary is represented by a phase field. This

is a very natural approach in phase-field models, but it

also inherently limits the capabilities of the developed

models. The absence of a discrete fracture surface in

the formulation impedes direct incorporation of a

versatile fluid-flow model and fluid-solid interface

conditions, and requires a reconstruction of the

fracture opening for the fluid-flow model.

In this contribution we study the possibility to

directly incorporate the sharp fracture surface pres-

sure-loading in a phase-field fracture representation.

The key idea behind this approach is to extract a

contour from the phase field and to use it as a standard

pressure-loading boundary. We present a detailed

analysis for the solution behavior of this model, the

behavior of which is intuitively troublesome. In terms

of computational techniques, the essential novel

ingredient in our approach is the loading-surface

extraction routine, which is inspired by the segmen-

tation technique developed in the context of the finite

cell method for image-based analysis [24]. To ame-

liorate the complications associated with the imposi-

tion of the mechanical loads on the phase-field

fracture, we propose a hybrid diffuse-sharp fracture

model, which further exploits the computational

capabilities of the finite cell techniques used for the

loading-boundary reconstruction. Based on a model

problem we present a detailed analysis of both models,

which highlights the superior fracture opening approx-

imation behavior of the hybrid model.

In this manuscript, we restrict ourselves to pressure-

loaded pre-existing fractures. A detailed understand-

ing of the model—in terms of dependence on the

phase-field length scale parameter and discretization

parameters—for such stable fractures is relevant in

itself, but also a prerequisite for applying it to

propagating fractures. To assess the properties of the

models as a basis for fracture propagation, we study

the behavior of the thermodynamic driving-force field,

which is the essential model aspect in the context of

fracture propagation. The study presented herein

focuses on a constant pressure loading, but the

presented results are generally valid for heterogeneous

tractions along the fracture surface, thereby enabling

enrichment of the model with more sophisticated

fracture-loading models.

In Sect. 2 we introduce the sharp pressure-loaded

fracture problem, along with its phase-field and hybrid

model representations. In Sect. 3 we discuss the

employed finite element discretization technique and

interface-extraction technique. A detailed analysis of

both the phase-field model and the hybrid model is

presented for a one-dimensional model problem in

Sect. 4. This analysis pertains to the convergence of

the models to the sharp model for decreasing length

scales, and to the convergence of the finite element

solutions under mesh refinement. In Sect. 5 we

consider a two-dimensional benchmark problem, for

which we demonstrate how the observed behavior in

one dimension translates to multiple dimensions. A

three-dimensional problem is considered to demon-

strate applicability of the models in a volumetric

setting. Finally, conclusions are drawn in Sect. 6.

2 Pressure-loaded fracture model formulations

In this section we introduce the problem setup for a

pressure-loaded fracture, after which we consider the
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phase-field model corresponding to this sharp problem

representation. Moreover, we propose a hybrid model

that mimics the phase-field model only in the part

where it is relevant, i.e. in the vicinity of the fracture.

2.1 Sharp fracture formulation

We consider an ndim-dimensional deformable solid X
with external boundary C and an internal discontinuity

boundary, Cc, whose opposing sides are denoted by

Cþ
c and C�

c ; see Fig. 1. The deformation of the solid is

described by the displacement field u. The external

boundary is decomposed in a part, CD 6¼ ;, on which

Dirichlet conditions (prescribed displacements) are

imposed, and a complementary part, CN , which is

subject to Neumann conditions (prescribed traction).

The outward pointing normal vector on the external

boundary is denoted by n. The opposing sides of the

fracture surface Cc, with outward-pointing (into the

fluid domain) normal vectors nþ and n�, are loaded by
a pressurized fluid with pressure p. Assuming small

deformations and deformation gradients, the displace-

ment of the solid under the influence of internal

pressurization and in the absence of body forces is

governed by:

r � reðeÞ ¼ 0 in X ð1aÞ

ren ¼ �t on CN ð1bÞ

u ¼ �u on CD ð1cÞ

ren
� ¼ �pn� on Cc ð1dÞ

The Cauchy stress tensor reðeÞ is a function of the

infinitesimal strain tensor e ¼ rsu, and �t and �u are the

data for the Neumann and Dirichlet conditions,

respectively.

Multiplication of the momentum balance in (1) with

a test function and integration by parts yields the

corresponding weak form problem:

Find u 2 Vusuch that :Z
X
reðeÞ : rsv dV ¼

Z
Cc

p svnt dS

þ
Z
CN

�t � v dS 8v 2 Vu
0

ð2Þ

In this formulation the trial space is defined as

Vu ¼ fu 2 H1ðXnCcÞ j u ¼ �u on CDg; ð3Þ

which—modulo inhomogeneous boundary condi-

tions—is also used as the test space Vu
0. The jump

operator acting on the normal component of the test

function is defined as svnt ¼ ðvþ � v�Þ � n, where – in
correspondence with the small deformations assump-

tion—use is made of Cc ¼ C�
c and n ¼ n� ¼ �nþ. It

is important to note here that in sharp fracture

formulations a parametrization of the fracture bound-

aries is generally available. This parametrization is

essential for the evaluation of the fracture surface

integral in the weak form (2).

2.2 Phase-field fracture formulation

In the phase-field model for fracture the surface Cc is

described by a phase (or damage) field, d : X ! ½0; 1�,
which approaches 1 at the center of the crack and

vanishes far away from the fracture surface; see Fig. 2.

The surface area of the fracture is approximated by

the functional

SCc;l0
¼ dk k2S¼

1

2l0

Z
X
d2 þ l20 rdj j2 dV ð4Þ

where l0 is a length-scale parameter that dictates the

width of the smeared fracture, and where dk kS is

defined as the surface area measure. It has been proven

that in the limit of the length scale going to zero, the

diffuse fracture surface area converges to the sharp

fracture surface area when the phase field satisfies the

boundary value problem:

d � l20Dd ¼ 0 in X ð5aÞ

rd � n ¼ 0 on oX ð5bÞ

d ¼ 1 on Cc ð5cÞFig. 1 Schematic representation of the problem setup for a

pressure-loaded fracture
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The equivalent weak form problem is given by

Find d 2 Vd such that :Z
X
ðd eþ l20rd � re Þ dV ¼ 0 8e 2 Vd

ð6Þ

with the test and trial space being defined as

Vd ¼ H1ðXÞ, with a constraint on d at Cc.

The smeared elasticity problem associated with the

phase-field description of the discrete fracture prob-

lem revolves around the idea of locally degrading the

stiffness of the material through the phase field, which

results—in its simplest form—in the redefinition of

the Cauchy stress tensor as

rðe; dÞ ¼ gðdÞreðeÞ; ð7Þ

where g(d) is a degradation function with properties

gð0Þ ¼ 1, gð1Þ ¼ g0ð1Þ ¼ 0, and re is the stress

associated with the undamaged, elastic, material.

The vanishing derivative of g at d ¼ 1 ensures that

the fracture driving force vanishes upon completion of

damage. The most common choice for the degradation

function is gðdÞ ¼ ð1� dÞ2, which will also be

considered in the remainder of this work. In order to

restrict fracture propagation to tensile loading states,

the stress degradation function is commonly merely

applied to the tensile part of the stress tensor; see e.g.

[2] for details.

Imposition of the pressure loading in the phase-field

model is a non-standard aspect of the formulation, in

the sense that it does not arise naturally as a volumetric

term in the smeared problem. Fundamentally, the

problem is that the phase-field formulation does

provide a smeared representation of the fracture

surface area, but that a direct notion of opposing sides

of the fracture surface is lost. For that matter there is

also no direct notion of a jump in the displacement

field.

The absence of a direct notion of fracture opening

can be resolved by approximating it in a smeared

sense. Following the derivations by Chambolle

[25, 26] in Bourdin et al. [18] the fracture volume

increase is approximated as
R
X u � rd dV (conceptu-

ally, the jump is obtained by integrating perpendicular

to the crack), whereas the fracture jump in Refer-

ences [19, 20, 23] is reconstructed using the stretch of

the deformed material. Differences exists between the

formulation of Miehe et al. [19, 20] and Wilson et al.

[23] in the way the fracture opening influences the

fluid flow.

The pivotal idea behind the phase-field formulation

proposed and analyzed herein is to represent the

internal discontinuity boundary by an a-contour of the
phase field

Ca ¼ fx 2 X j dðxÞ ¼ ag ð8Þ

with 0\a\1. This boundary separates the domain in

a part for which the phase field is larger than the

threshold,

X� ¼ fx 2 X j a� dðxÞ\0g; ð9Þ

to which we refer as the fluid domain, and a part for

which the phase is smaller than the threshold,

X� ¼ fx 2 X j a� dðxÞ[ 0g; ð10Þ

which we call the solid domain. The unit vector

normal to the surface Ca is denoted by n and points

into the fluid domain X�. The procedure to obtain a

Fig. 2 Schematic representation of a the phase field representation of a sharp fracture, and b reconstruction of a pressure-loaded surface
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parametrization of this a-contour and the correspond-

ing parts of the domain is addressed in Sect. 3.2.

Using the a-contour the strong form phase-field

problem follows as

r � rðe; dÞ ¼ 0 in X ð11aÞ

rn ¼ �t on CN ð11bÞ

u ¼ �u on CD ð11cÞ

srtn ¼ �pn on Ca ð11dÞ

where rðe; dÞ is the degraded stress tensor (7), and

srt ¼ r� � r� is the degraded stress jump over the a-
contour. The corresponding weak form problem is

Find u 2 Vu such that:Z
X
rðe; dÞ : rsv dV þ

Z
Ca

pvn

dS ¼
Z
CN

�t � v dS 8v 2 Vu
0

ð12Þ

where the function spaces are similar to those in (3),

but then equipped with the energy norm corresponding

to (12).

2.3 Hybrid fracture formulation

The construction of the internal discontinuity bound-

ary, Ca, and the fluid and solid domains, X� and X�,
provides a setup for a hybrid formulation that mimics

the sharp problem in the solid domain, while it mimics

the phase-field formulation in the fluid domain. The

strong form problem for this hybrid model is written

as:

r � reðeÞ ¼ 0 in X� ð13aÞ

r � rðe; dÞ ¼ 0 in X� ð13bÞ

rn ¼ �t on CN ð13cÞ

u ¼ �u on CD ð13dÞ

renj�¼ �pn on Ca ð13eÞ

sut ¼ 0 on Ca ð13fÞ

The essential idea of this hybrid model is that the solid

domain behaves elastically, i.e., the momentum bal-

ance (13a) pertains to the undamaged stress tensor, re,

while the model behaves as a phase-field model in the

fluid domain, which is reflected by the presence of the

damaged stress tensor rðe; dÞ in (13b). A Neumann

pressure boundary condition is supplied for the solid

domain as indicated by the subscript � in (13e), and

the jump in displacement over the interface between

the fluid and solid, Ca, is set to zero. It is important to

note that this hybrid model is only coupled in one

direction, in the sense that the solution in the solid

domain does not depend on the fluid domain, but that

the boundary conditions of the fluid domain follow

directly from the solution on the solid domain.

The weak solution of the hybrid formulation (13)

follows by a two-step procedure. First, the deforma-

tion of the solid domain is computed by

Find u 2 Vu
� such that:Z

X�

reðeÞ : rsv dV þ
Z
Ca

pvn dS

¼
Z
CN

�t � v dS 8v 2 Vu
�;0

ð14Þ

where the function space is defined as:

Vu
� ¼ fu 2 H1ðX�Þ j u ¼ �u on CDg ð15Þ

Subsequently, the fluid domain solution is computed

by

Find u 2 Vu
�such that :Z

X�

rðe; dÞ : rsv dV ¼ 0 8v 2 Vu
�;0

ð16Þ

where the solution to the solid problem (14), u�, is
used as a constraint:

Vu
� ¼ fu 2 H1ðX�nCcÞ j u ¼ u� on Cag ð17Þ

2.4 Quantities of interest

In the remainder of this work we will study the

performance of the models introduced above for the

simulation of pressure-loaded fractures. Although this

study is restricted to the approximation behavior for

steady fractures, the quantities of interest that we study

are selected keeping the extension to propagating
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fractures in mind. To assess the appropriateness of the

models in representing the solid deformation, we

consider the energy norm

uk kEðXnCcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
XnCc

rðe; dÞ : e dV
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
XnCc

gðdÞreðrsuÞ : rsu dV

s ð18Þ

where the strain tensor, eðuÞ, is a function of the

displacement field. The associated energy inner pro-

duct is denoted by u; vð ÞEðXnCcÞ. Moreover we study

the L2-norm

uk kL2ðXÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uð ÞL2ðXÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
u � u dV

s
ð19Þ

and H1-norm

uk kH1ðXnCcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uð ÞH1ðXÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
XnCc

u � uþru : ru dV

s ð20Þ

as quantities of interest. Note that the energy norm and

H1-norm exclude the discrete crack from the domain,

so that the norms of the various models remain

bounded. In analogy with the exclusion of the sharp

fracture we also consider the H1-norm with the fluid

domain excluded, i.e., on X� ¼ XnX�.
In relation to the envisioned usage of the fluid

domain for the modeling of a fluid flow, it is essential

to adequately approximate the fracture opening.

Herein we consider the integrated fracture surface

displacement, i.e., the fracture volume increase, as a

quantity of interest:

DVcðuÞ ¼ �
Z
Ca

u � n dS ¼
Z
X�

r � u dV ð21Þ

The thermodynamic driving force field

Fðu;dÞ¼�odwðe;dÞ¼�g0ðdÞweðeÞ¼ 2ð1�dÞweðeÞ;
ð22Þ

where we is the elastic energy density, is studied to

assess the capabilities of the hybrid model for driving

fracture propagation. We study the driving force by

consideration of the norm

uk kF¼ dðuÞk kS ð23Þ

with dðuÞ the solution to the phase-field problem:

Gc

l0
d � l20Dd
� �

¼ Fðu; dÞ in X ð24aÞ

rd � n ¼ 0 on oX ð24bÞ

The corresponding weak form problem is

Find d 2 Vdsuch that :

Gc

l0

Z
X
ðd eþ l20rd � re Þ dV

¼
Z
X
Fðu; dÞ e dV 8e 2 Vd

ð25Þ

with Vd ¼ H1ðXÞ.

3 Interface parametrization and Galerkin

discretization

The remainder of this work focuses on the finite

element approximation of the phase-field model and

hybrid model, where the sharp crack model will be

used as a reference model. In this section we introduce

the employed finite element discretization and the

parametrization of the pressure-loading surface and

the associated fluid and solid sub-domains.

3.1 Galerkin discretization

We consider a mesh T h that partitions the domain X,
where h is a characteristic mesh parameter. As

Fig. 3 Schematic representation of the employed finite element

mesh T h, showing the linear finite element nodes corresponding

to: blue circle basis functions with support only in the solid

domain X�; red circle basis functions with support only in the

fluid domain X�; green circle basis functions with support in

both the fluid and the solid domain. (Color figure online)
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illustrated in Fig. 3 this mesh does in general not

conform to the a-contour. This mesh is used to

construct a computational basis for both the phase field

and the displacement field:

dhðxÞ ¼
Xnd
I¼1

Nd
I ðxÞadI uhðxÞ ¼

Xnu
I¼1

Nu
I ðxÞauI ð26Þ

Note that the bold font for the displacement field basis

functions indicates that these are vector-valued. While

the mesh over which the bases are constructed is the

same, the discretization spaces can in principle be

different. In this workwewill consider various B-spline

bases, spanðfNIgnI¼1Þ ¼ Sk
r , where k and r denote the

order and regularity of the basis, respectively. The

multi-dimensional simulations discussed in Sect. 5 are

based on C0-continuous linear finite element meshes.

Using the basis for the phase field in combination

with the weak form (6) yields the system of equations

Kddad ¼ fd with

Kdd
IJ ¼

Z
X
Nd
I N

d
J þ l20rNd

I � rNd
J dVf

d
I ¼ 0 ð27Þ

where the constraints on the space, i.e. d ¼ 1 on Cc,

are either imposed through the space by means of a

standard lift approach in the case of a conforming grid,

or are resolved through a Lagrange multiplier (field)

for non-conforming cases.

The displacement field problem for the phase-field

model follows from the system of equations

Kuuau ¼ fu, where

Kuu
IJ ¼

Z
X
rsNu

I : r rsNu
J ; d

h
� �

dV

f uI ¼
Z
CN

Nu
I � �t dS�

Z
Ca

pNu
I � n dS;

ð28Þ

for which the Dirichlet data on the external boundary

CD is applied through the imposition of constraints on

the associated coefficients in the discretization in

accordance with a standard lift approach.

The solution of the hybrid model is determined in a

two step procedure. In the first step the elasticity

problem is solved over the solid domain by

Ku�u�au� ¼ fu� , with

K
u�u�
IJ ¼

Z
X�

rsNu�
I : re rsNu�

Jð Þ dV

f
u�
I ¼

Z
CN

N
u�
I � �t dS�

Z
Ca

pN
u�
I � n dS;

ð29Þ

in which only the basis functions with support overX�
are taken into account (the blue and green nodes in

Fig. 3). In the second step the degraded elasticity

problem is solved over the domain X�,
Ku�u�au� ¼ fu� , with

K
u�u�
IJ ¼

Z
X�

rsN
u�
I : r rsN

u�
J ; dh

� �
dV f

u�
I ¼ 0

ð30Þ

where all coefficients of basis functions that are also

supported in the solid domain (the green nodes in

Fig. 3) are constrained to their values as computed in

the first step. Effectively this constraining operation

lifts the solid solution into the fluid domain, thereby

guaranteeing the continuity of the displacement field

over the internal boundary Ca.

3.2 Interface parametrization

In order to evaluate the integrals over the fracture

surface boundaries in the weak form problems (12)

and (14), a parametrization for the a-contour is

constructed. To obtain this parametrization we employ

the bi-sectioning-based segmentation scheme pro-

posed in [24] in the context of the isogeometric finite

cell analysis of image-based geometric models, and

enrich it with functionality to extract the interface

between the segmented regions. The merits of this

scheme are that it automatically extracts an interface

parametrization from a level set function, i.e. the

phase field, for ndim ¼ 1; 2; 3, while having the

capability of resolving the smoothness of the a-
contour in the case of higher-order continuous phase-

field discretizations.

For completeness, the bisection-based tessellation

scheme proposed in Ref. [24] is schematically shown

in Fig. 4. The element-by-element segmentation and

interface extraction routine commences with the

evaluation of the phase field, dðxÞ, in the vertices

associated with a .max-times uniform refinement of the

element. Subsequently the levels of uniform refine-

ment are traversed, where for each element in that

level it is determined whether the interface passes

through it. If all vertices of an element exceed the a-
threshold, or if all values are lower than the threshold,

the cell is kept as an integration cell. Otherwise a

further subdivision of the cell is considered, and the
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same check is performed on the next refinement level.

On the lowest level of refinement, i.e. a .max-times

uniform element refinement, this recursive bi-section-

ing scheme is closed with a tessellation (a triangula-

tion in 2-D and a tetrahedralization in 3-D) based on a

point set in which the edge intersections are based on a

linear interpolation of the level set function on this

lowest level of refinement.

On one hand this bisection-based tessellation

scheme provides a piecewise parametrization of the

regions X� and X�, which enables the construction of
integration schemes with controllable precision. On

the other hand, the tessellation scheme enables the

construction of a piecewise parametrization of the

interface between these two domains, Ca. The inter-

face is constructed by collecting all boundary faces

(edges in 2-D) in one of the regions that match a

boundary face in the other region. For robustness it is

crucial that the boundaries of the two regions are

tessellated in a consistent way. As for the volumetric

regions, this piecewise parametrization of the interface

provides us with the possibility to evaluate integrals

over this internal boundary. We note that the cells

resulting from this bisection-based tessellation

scheme may be distorted, but that this is not a

fundamental problem from the perspective of

integration.

4 Analysis of a one-dimensional model problem

To gain detailed understanding of the formulations

presented in Sect. 2 and the behavior of the discretiza-

tion schemes introduced in Sect. 3, in this section we

study the one-dimensional model problem shown in

Fig. 5. The problem consists of a one-dimensional

domain of size 2L, X ¼ ½�L; L�, which is clamped on

its outer boundaries and with a fully developed

fracture centered at the origin, i.e. Cc ¼ f0g. Defor-
mation of the solid in directions other than the x-

direction are confined, and the Hookean stress-strain

relation re ¼ Ee is considered. For the results pre-

sented below dimensionless values of parameters are

chosen. A length of L ¼ 5 is used, the modulus of

elasticity is taken as E ¼ 100, and the pressure is set to

p ¼ 1.

Under these conditions, the sharp fracture model

yields the following solution:

usharpðxÞ ¼
� p

E
ðxþ LÞ x\0

� p

E
ðx� LÞ x[ 0

8><
>: ð31Þ

Figure 6a shows the exact solution to the phase-field

problem for L=l0 ¼ 8, where the phase field is taken as

d ¼ exp ð�jxj=l0Þ:

uphaseðxÞ ¼
�uHðxÞ x� � xa

sgnðxÞuHðxaÞ � xa\x\xa

uHðxÞ xa � x

8><
>: ð32Þ

where

uHðxÞ ¼ pl0

E

1

f ðLÞ �
1

f ðxÞ þ ln
f ðLÞ
f ðxÞ

� �� �
ð33Þ

with f ðxÞ ¼ 1� exp ðjxj=l0Þ. The phase field d ¼
exp ð�jxj=l0Þ is evidently only a solution to the strong

Fig. 4 A schematic overview of the tessellation-based interface

parametrization technique. The nodal colors match the defini-

tions of Fig. 3. For the coarse mesh shown here there are no

nodes whose associated basis function is supported completely

inside the fluid domain

Fig. 5 Setup of the one-dimensional model problem
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form problem (5) in the limit that l0=L goes to zero.

However, for the parameter ranges considered in the

remainder the ratio l0=L remains small enough to

neglect errors associated with the mismatch in the

phase-field boundary conditions at the clamped

boundaries.

The solution to the hybrid model (13) shown in

Fig. 6b follows as:

uhybridðxÞ ¼

� p

E
ðxþ LÞ x� � xa

�sgnðxÞ p
E
ðxa � LÞ � xa\x\xa

� p

E
ðx� LÞ xa � x

8>>>><
>>>>:

ð34Þ

In the remainder of this section we study the C-
convergence behavior [1] of the phase-field model and

the hybrid model, i.e. the convergence behavior of

these models toward the sharp model for decreasing

length-scale parameter l0. Moreover, we study the

approximation behavior of the finite element dis-

cretizations of the models.

4.1 C-convergence

Prior to studying the finite element approximation

behavior we study the dependence of the phase-field

solution (32) and hybrid solution (34) on the length-

scale parameter l0. Note that all errors reported below

pertain to the difference between the exact solutions

presented above and the sharp crack solution (31). The

various error norms introduced in Sect. 2.4 have been

computed by numerical integration over the domain

XnCc on a high-resolution uniform mesh, where one

element edge coincides with the sharp crack at x ¼ 0.

By virtue of the fact that Gauss points are used, this

integration procedure automatically removes the sin-

gular point Cc ¼ f0g from the integration domain.

4.1.1 Phase-field model

In Fig. 7 the phase field and displacement field have

been plotted for a range of length-scale parameters,

L=l0 ¼ 8; 16; 32. This figure conveys that visually the

phase-field solution converges to the sharp solution,

for both the phase field and the displacement field. The

phase-field solution clearly differs from the sharp

solution in the vicinity of the pressure loading points at

�xa. In the fluid domain, i.e. for jxj\xa, the solution is

constant, with a jump at x ¼ 0. In the solid, the slope of

the displacement field in the vicinity of the crack is

observed to be steeper than that of the sharp solution.

The steepness at the loading point is visually inde-

pendent of the internal length scale. This slope

Fig. 6 Exact solutions of a the phase-field model and b the

hybrid model, both with L=l0 ¼ 8 and threshold a ¼ 0:8. The
sharp solution of the one-dimensional model problem is shown

for comparison. Note that for this particular choice of l0 and a,

the difference between the sharp and hybrid solution is hardly

visible. A detailed inspection of the differences between these

two models follows in Sect. 4.1.2
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increase is explained by the fact that the internal stress

in the solid domain is uniform and equal to the applied

pressure load �p, from which the displacement

gradient mismatch follows as

u0phaseðxÞ � u0sharpðxÞ
u0sharpðxÞ

�����
����� ¼

1 jxj\xa

1� gðdÞ
gðdÞ jxj[ xa

8<
:

ð35Þ

Hence, for a ¼ 0:8 as used in Fig. 7b, the ratio of the

slope of the phase-field model to the slope of the sharp

crack model at the pressure boundary is

1� gð0:8Þ
gð0:8Þ ¼ 1� ð1� 0:8Þ2

ð1� 0:8Þ2
¼ 24: ð36Þ

As a matter of fact, this gradient diverges with ð1�
aÞ�2

when the damage threshold, a, goes to one.

Figure 8 shows the convergence behavior of the

various error measures for a decreasing length-scale

parameter l0. The energy error and the error in the H
1-

norm are both observed to converge with a rate of 1
2
as

l0 passes to zero, i.e.,

uphase � usharp
�� ��

EðXnCcÞ¼ O l
1
2

0

	 


and uphase � usharp
�� ��

H1ðXnCcÞ¼ O l
1
2

0

	 

;

ð37Þ

which follows directly from integration of (35). These

rates are dictated by both the gradient mismatch in the

fluid domain and in the solid domain, which is

confirmed by the observed convergence in the solid

domain uphase � usharp
�� ��

H1ðXnXaÞ¼ Oðl
1
2

0Þ. Note that

since the phase field on the solid domain is bound

from above by a, the energy norm over the solid

domain is equivalent to this H1-norm. The C-conver-
gence rate in the L2-norm is equal to uphase�

��
usharpkL2ðXnCcÞ ¼ Oðl

3
2

0Þ, which follows from

Fig. 7 Dependence of the phase-field model on the length-scale parameter l0 for the one dimensional model problem. a Phase field.

b Displacement field

Fig. 8 C-convergence behavior of the displacement field error

for the phase-field model, uphase � usharp, in the energy norm, the

H1-norm, the jump, the H1ðX�Þ-norm and the L2-norm
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integration of the difference between the phase-field

solution (32) and sharp solution (31). The displace-

ment jump converges with

suphaset� susharpt
�� �� ¼ Oðl0Þ, which follows by eval-

uation of (32) at x ¼ �xa, since in the one-dimensional

case the crack opening suphaset is identical to the

fracture volume increase (21).

4.1.2 Hybrid model

In Fig. 9 the dependence of the solution of the hybrid

model on the length-scale parameter l0 is shown. By

construction, the hybrid model resembles the sharp

model in the solid domain, while it resembles the

phase field model in the fluid domain. More specif-

ically, the increase in the gradient near the loading

points as observed for the phase-field model is not

present. The C-convergence behavior of the hybrid

model reflects this difference in behavior (see Fig. 10).

The error in the gradient equals

u0hybridðxÞ � u0sharpðxÞ
u0sharpðxÞ

�����
����� ¼

1 jxj\xa

0 jxj[ xa

�
ð38Þ

from which it follows in combination with xa ¼
�l0 ln ðaÞ that the energy error and H1-error converge

withOð
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
Þ � Oð

ffiffiffiffi
l0

p
Þ as l0 goes to zero and a goes

to one. The L2-error and jump error converge with

order Oðð1� aÞ
3
2Þ � Oðl

3
2

0Þ and Oð1� aÞ � Oðl0Þ,

respectively. Note that the C-convergence behavior

of theH1-error over the solid domain is not included in

Fig. 10 because it vanishes identically independent of

l0 and a.

4.1.3 Model comparison

The fundamental difference between the phase-field

model and hybrid model pertains to the displacement

gradients near the loading points. For the phase-field

model the displacement gradient is magnified by a

factor of ð1� aÞ�2
at the exterior of the loading point.

Fig. 9 Dependence of the hybrid model on the length-scale parameter l0 for the one dimensional model problem. a Phase field.

b Displacement field

Fig. 10 C-convergence behavior of the displacement field error

for the hybrid model, uhybrid � usharp, in the energy norm, theH1-

norm, the jump, the H1ðX�Þ-norm and the L2-norm
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This gradient amplification leads to diverging solution

behavior in the limit of a going to one. In contrast, the
hybrid model does not suffer from the gradient

increase near the loading points, as a consequence of

which the solution of the hybrid model converges to

the sharp model when the damage threshold goes to

one.

The fundamentally different behavior of the two

models is reflected in Table 1, which shows that all

considered norms of the hybrid model converge with

both a going to one and l0 going to zero. The phase-

field errors for all norms except the H1-norm over the

solid domain do converge for decreasing l0 with the

same rates as the hybrid model, but they diverge with a
going to one. In Figs. 8 and 10 this difference in

behavior is reflected by the error magnitudes, more

than by the rates. The energy error and error in theH1-

norm are observed to be an order of magnitude larger

for the phase-field model than for the hybrid model,

and a difference of almost two orders of magnitude is

observed for the error in the jump.

4.2 h-convergence

In the remainder of this section we study the conver-

gence behavior of the finite element approximations

under uniform mesh refinement for both the phase-

field model and the hybrid model. All presented

simulations pertain to meshes with an odd number of

elements, such that both the loading points, and the

center of the fracture are not coinciding with element

boundaries. Let us note that in terms of observed

solution behavior these results do not essentially differ

from results with an even number of uniform elements

(i.e., with the fracture coinciding with an element

boundary).

The error analysis reported below focuses on the

non-standard approximation of the displacement field

in the phase-field model and hybrid model. The phase-

field is in all cases computed using the finite element

system (27), supplemented with a Lagrange multiplier

constraint to satisfy the dð0Þ ¼ 1 condition. The

influence of the error in the phase field on the error

in the energy norm and driving force field is observed

to be negligible, as the phase field converges at a faster

rate under mesh refinement than the displacement

field.

4.2.1 Phase-field model

The finite element approximation of the phase-field

model is studied by comparing the discrete solution,

uhphase, to the phase-field solution, uphase (32). For all

presented results the error associated with the Neu-

mann boundary condition violation of the phase-field

solution (32) was found to be insignificant in com-

parison to the finite element approximation error.

Hence, to examine the effect of the order and

smoothness of the approximation space, we consider

the solution uphase as a reference solution for the finite

element approximation uhphase. The phase-field dis-

cretization error is denoted by ehphase ¼ uphase � uhphase.

The energy norm The convergence behavior of the

error in the energy norm, kehphasekEðXnCcÞ, is shown in

Fig. 11a for spline bases of order k and regularity r.

The observed rate of convergence of 1
2
, independent of

the order and regularity of the approximation, can be

explained by considering the best approximation

property of the Galerkin approximation,

uhphase 2 Vu;h 	 Vu. This property bounds the energy

error from above by

ehphase

���
���
EðXnCcÞ

¼ uphase � uhphase

���
���
EðXnCcÞ

� uphase � Uh
phase

���
���
EðXnCcÞ

ð39Þ

Table 1 Comparison of the

C-convergence behavior of

the phase-field model and

hybrid model

Phase-field model (uphase) Hybrid model (uhybrid)

h� usharp
�� ��

EðXnCcÞ O l
1
2

0

	 

O ð1� aÞ

1
2

	 

� O l

1
2

0

	 


h� usharp
�� ��

H1ðXnCcÞ O l
1
2

0

	 

O ð1� aÞ

1
2

	 

� O l

1
2

0

	 


h� usharp
�� ��

L2ðXnCcÞ O l
3
2

0

	 

O ð1� aÞ

3
2

	 

� O l

3
2

0

	 


jsht� susharptj Oðl0Þ Oð1� aÞ � Oðl0Þ
h� usharp
�� ��

H1ðX�Þ O l
1
2

0

	 

0
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for any interpolant Uh
phase 2 Vu;h. Considering the

nodal interpolation

Uh
phaseðxÞ ¼

X
i

Lki ðxÞuphaseðxiÞ ð40Þ

with Lki ðxÞ the C0-continuous Lagrange basis func-

tions of order k (with property Lki ðxjÞ ¼ dij) con-

structed over the considered uniform grid with spacing

h, yields that on those parts of the domain where the

solution is smooth:

uphase � Uh
phase

���
���
H1

�Chk: ð41Þ

This standard interpolation rate is impeded by both the

kinks in the exact solution at x ¼ �xa and by the

displacement jump at x ¼ 0. Using the standard

interpolation estimate (41) the error in the best

approximation can be bounded as

ehphase

���
���2
EðXnCcÞ

�Ch2k þ uphase � Uh
phase

���
���2
E �h

2
;h
2½ �nCcð Þ

þ uphase � Uh
phase

���
���2
E ��xa�h

2
;��xaþh

2½ �ð Þ
ð42Þ

where ��xa are the centers of the elements that contain

the kinks at �xa, and where use is made of the

continuity of the bilinear operator, i.e.

ehphase

���
���
EðXnCcÞ

�C ehphase

���
���
H1ðXnCcÞ

. Note that the

continuity of the bilinear operator follows directly

from the fact that 0� gðdÞ� 1. For the elements

covering the kinks, one can construct a linear inter-

polant such that juphase � Uh
phasej ¼ OðhÞ and its

derivative ju0phase � ðUh
phaseÞ

0j ¼ Oð1Þ. Since gðdhÞ ¼
Oð1Þ in the vicinity of the kinks, the energy error

contribution of the elements covering the kinks

converges with

uphase � Uh
phase

���
���2
E ��xa�h

2
;��xaþh

2½ �ð Þ

¼ E

2

Z��xaþh
2

��xa�h
2

gðdhÞðu0phase � ðUh
phaseÞ

0Þ2 dx ¼ OðhÞ

ð43Þ

Following the analysis in Ref. [27], from the linear

interpolation Uh
phase ¼

suphaset

h
x around the crack it

follows that

uphase � Uh
phase

���
���2
E �h

2
;h
2½ �ð Þ

¼ E

2

Z h
2

�h
2

x2

l20

suphaset

h

� �2

dx ¼ suphaset
2

24l20
Eh ¼ OðhÞ

ð44Þ

Fig. 11 Convergence behavior of the displacement field for the

phase-field model in the energy norm. The solid lines and

dashed lines represent Lagrange and B-spline basis functions

respectively. The order is represented by k. a Basis dependence.
b a-threshold dependence
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where use is made of the fact that in the limit of h going

to zero it holds that dh ¼ 1� jxj=l0. From the

integrand in (44) it is observed that the divergence of

the gradient suphaset=h under h-refinement is compen-

sated for by the vanishing degradation function

gðdhÞ 
 ðx=l0Þ2. It is important to note that although

the energy error converges under mesh refinement, it

diverges with the length-scale parameter l0. Decreas-

ing the length scale (to attain C-convergence) there-
fore increases the energy error in the case that the

mesh size is not appropriately refined along with it.

Substitution of of (43) and (44) in the best

approximation inequality (42) yields the error estimate

ehphase

���
���
EðXnCcÞ

¼ uphase � uhphase

���
���
EðXnCcÞ

�Ch
1
2:

ð45Þ

From Fig. 11b it is observed that the convergence rate

is independent of the value of the a-threshold, but that
an increase in error is observed as a increases. This

increase in energy is caused by the fact that the error

contributions from the steep gradients around the

loading point (see Sect. 4.1.1) become larger as the

value of a increases. Since the exact solution (32)

diverges as a goes to one, so does the error in the finite
element approximation.

The L2-norm and H1-norm The convergence plots

for the displacement field in the L2ðXÞ-norm, H1ðXÞ-
norm and H1ðX�Þ-norm over the solid domain are

shown in Fig. 12 for polynomial degrees k ¼ 1; 2; 3

and regularities r ¼ k � 1 and r ¼ 0. The discretiza-

tion independent observed convergence rate of Oðh1
2Þ

for the L2ðXÞ-norm as observed in Fig. 12a can be

deduced from

ehphase

���
���2
L2ðXÞ

¼
�
ehphase; e

h
phase

�
L2ðXÞ

¼
�
zeh

phase
; ehphase

�
EðXnCcÞ

� ehphase

���
���
EðXnCcÞ

zeh
phase

���
���
EðXnCcÞ

;

ð46Þ

where zeh
phase

is the solution to the dual problem:

Find zeh
phase

2 Vusuch that :Z
X
gðdÞEv0z0eh

phase
dx ¼

Z
X
vehphase dx 8v 2 Vu

0

ð47Þ

Since it follows from the Lax-Milgram lemma that the

energy norm of the dual solution is bounded from

above by

zeh
phase

���
���
EðXnCcÞ

�C sup
v2Vu

�
ehphase; v

�
L2ðXÞ��v��

EðXnCcÞ

�C ehphase

���
���
L2ðXÞ

sup
v2Vu

vk kL2ðXÞ��v��
EðXnCcÞ

�CCsup ehphase

���
���
L2ðXÞ

;

ð48Þ

where the positive constant Csup corresponds to the

largest eigenvalue k of the generalized eigenvalue

problem v; ~uð ÞL2ðXÞ¼ k v; ~uð ÞEðXnCcÞ 8v 2 Vu (see

Fig. 13), the L2-norm is bounded from above by

ehphase

���
���
L2ðXÞ

�C ehphase

���
���
EðXnCcÞ

: ð49Þ

Hence the L2-norm converges at least with the same

rate as the energy error. For sufficiently smooth

functions the bound (49) is generally pessimistic, since

no use is made of Galerkin orthogonality in (46).

However, the observed rate of convergence for the L2-

norm in Fig. 12a indicates that for the phase-field

problem under consideration the bound (49) is sharp

for the convergence rate.

Following the same arguments as in [28], the H1-

norm is expected to diverge with Oðh�1
2Þ independent

of the order and regularity of the discretization, which

is in agreement with the results reported in Fig. 12b.

When the fluid domain is excluded, the H1ðX�Þ norm
converges with the same rate as the energy error, i.e.

Oðh1
2Þ, by virtue of the fact that on the solid domain the

energy error and H1-norm are equivalent. The minor

fluctuations in Fig. 12c are a consequence of the fact

that by virtue of the continuity of the bases across the

loading contour, the errors associated with the kink in

the solution at the loading points behaves irregularly

depending on the near coincidence of the loading

contour with an element boundary.

Displacement jump and fracture surface area norm

The mesh convergence behavior of the displacement

jump is shown in Fig. 14a, where a convergence rate of

1 is observed independent of the order and regularity

of the basis. This rate is expected from the fact that the

jump can be expressed as
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suhphaset ¼
Z xa

�xa

uhphase

	 
0
dx ð50Þ

so that the dual problem for the jump is equivalent to

the primal problem (6) with pressure p ¼ �1:

Find zh 2Vu;hsuchthat :Z
X
g dh
� �

E uh
� �0

zh
� �0

dx¼
Z xa

�xa

uh
� �0

dx 8uh 2Vu;h
0

ð51Þ

As a consequence the dual solution zh converges with

the same rates as the primal solution. In particular the

energy error of the dual solution converges with

z� zh
�� ��

EðXnCcÞ¼Oðh1
2Þ, corresponding to the derived

rate of the primal solution (45). The Babuška–Miller

theorem (e.g. [29]) then yields

suphaset� suhphaset
���

����C uphase � uhphase

���
���
EðXnCcÞ

z� zh
�� ��

EðXnCcÞ¼ OðhÞ

ð52Þ

as h ! 0.

Figure 14b displays the behavior of the error in the

fracture surface area norm (23). This figure shows a

rate of convergence of Oðh1
2Þ. This is explained by the

fact that for small element sizes the strain field

Fig. 12 h-convergence behavior of the displacement field error

for the phase-field model in a the L2ðXÞ-norm, b The H1ðXÞ-
norm, and c the H1ðX�Þ-norm. The solid lines and dashed lines

represent Lagrange and B-spline basis functions respectively.

The order is represented by k. a L2-error. b H1-error. c Exterior

H1-error
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approaches a function which is equal to suphaset=h for

jxj\ h
2
and zero everywhere else. The exact solution to

(24) with the phase field vanishing at the domain

boundaries can in that case be approximated by

dðuhphaseÞ ¼ d̂/h with

/h ¼
1 jxj\ h

2

exp
h� 2jxj

2l0

� �
jxj � h

2

8>><
>>:

ð53Þ

such that d̂ is equal to the phase field value at the sharp

crack boundary. Substitution of /h as the single test

function in the weak form problem corresponding to

(24) then yields

Fig. 13 Computation of the constant Chref
sup as the maximum

eigenvalue of the generalized eigenvalue problem

vhref ; ~uhref
� �

L2ðXÞ¼ k vhref ; ~uhref
� �

EðXnCcÞ 8v 2 Vu;href on a uniform

linear finite element mesh with element size href . a The two

eigenfunctions corresponding to the maximum eigenvalue with

a multiplicity of two. b Convergence under mesh refinement of

Ch
sup relative to the reference solution Chref

sup with href � h.

a Eigenfunction. b Relative error

Fig. 14 h-convergence behavior of a the displacement jump

and b the fracture surface area norm for the phase-field model.

The solid lines and dashed lines represent Lagrange and

B-spline basis functions respectively. The order is represented

by k. a Jump error. b Surface area error
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d̂Gc

l0

Z L

�L

ð/hÞ2 þ l20 /h
� �0	 
2

dx

¼
Z h

2

�h
2

1� d̂/h
� �

E
suphaset

2

h2
/h dx

ð54Þ

Upon substitution of (53) in (54) and evaluating the

integrals, one obtains

2Gcd̂ 
 ð1� d̂ÞEsuphaset
2

h
; ð55Þ

from which the coefficient of the approximation

dðuhphaseÞ ¼ d̂/h follows as

d̂ 
 Esuphaset
2

2Gchþ Esuphaset
2
: ð56Þ

In the limit of h going to zero, the phase field evidently

converges to dðuphaseÞ with a rate of OðhÞ in its point

value at the sharp crack. It then follows that the

corresponding error in the surface area norm con-

verges as

uphase � uhphase

���
���2
F
¼ d uphase

� �
� d uhphase

	 
���
���2
S

¼ 1

2l0

Z L

�L

d uhphase

	 

� d uphase
� �	 
2

þ l20 d uhphase

	 
0
�d uphase
� �0	 
2

dx


 ð1� d̂Þ2 þ h

2l0

¼ 2Gch

Esuphaset
2

 !2

þ h

2l0
¼ OðhÞ

ð57Þ

as h ! 0. One may note that the dominant error is

proportional to h=l0, which indicates the necessity to

resolve the length scale l0 by the mesh to control this

error.

4.2.2 Hybrid model

The finite element solution of the hybrid model, uhhybrid,

is compared with the exact solution, uhybrid (34) for the

various error norms introduced in Sect. 2.4. The

discretization error of the hybrid model is denoted

by ehhybrid ¼ uhhybrid � uhybrid. As the hybrid solution

follows a standard elasticity problem on the solid

domain, and a standard phase-field model on the fluid

domain, its convergence behavior evidently derives

from the properties of these twomodels. It is noted that

the linear displacement field on the solid domain is

represented exactly by the computational basis, as a

consequence of which various of the error measures

vanish. For generalities sake, belowwewill also report

the standard convergence rates of the solid problem.

Energy norm On the solid domain the energy error

converges with the standard rate of k, whereas a rate of
1
2
was derived above for the fluid domain phase-field

model. As a consequence, the rate of convergence of

the energy norm is dictated by the phase-field solution,

i.e.,

ehhybrid

���
���
EðXnCcÞ

¼ uhybrid � uhhybrid

���
���
EðXnCcÞ

¼ O h
1
2

	 

;

ð58Þ

which is corroborated by the results in Fig. 15a. In

Fig. 15b the dependence of the error on the threshold a
is shown. Note that by virtue of the fact that the

gradient increase near the loading points is not present

in the hybrid model, the a-dependence of the dis-

cretization is virtually absent. In particular, the hybrid

model does not exhibit the singular behavior of the

phase-field model in the limit of a ! 1.

The L2-norm and H1-norm In general, the H1-norm

on the solid domain converges with a rate of k, and the

L2-norm with a rate of k þ 1. As derived above for the

phase-field model, on the fluid domain the H1-norm

diverges with a rate of 1
2
, whereas the L2-norm

converges with a rate of 1
2
. As shown in Fig. 16a, b

the fluid domain solution behavior dictates the

convergence rates of the hybrid model for both the

L2-norm and H1-norm, i.e., kehhybridkL2ðXÞ ¼ Oðh1
2Þ and

kehhybridkH1ðXnCcÞ ¼ Oðh�1
2Þ

Displacement jump and fracture surface area norm

Due to the one-way coupling of the hybrid model, the

displacement jump merely depends on the solid

solution. Since the energy error for both the primal

and the dual problem generally converges withOðhkÞ,
the Babuška–Miller theorem yields

suhybridt� suhhybridt
���

����C uhybrid � uhhybrid

���
���
EðX�Þ

zhybrid � zhhybrid

���
���
EðX�Þ

¼ Oðh2kÞ

ð59Þ
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for h ! 0. By virtue of the fact that the energy error

and H1-error on the solid domain are identical to zero,

so is the error in the displacement jump.

As discussed for the phase-field model, the fracture

surface area norm is dictated by the continuous

approximation of the jump across the sharp crack.

Since this approximation in the hybrid model is

identical to that of the phase-field model, the error in

the surface area norm behaves very similarly for both

models (Fig. 16c).

4.2.3 Model comparison

In terms of approximation behavior, the errors are

generally dictated by the continuous approximation of

the jump over the sharp fracture. Since this approx-

imation in the fluid domain is identical for the phase-

field model and hybrid model, in terms of rates of

convergence there is no different asymptotic behavior

for all error norms that involve the fluid domain. This

is reflected in Table 2, where identical rates are

observed for the energy error, H1-error, L2-error, and

surface area error. Aminor difference between the two

models is observed from the a-threshold dependence.

While the phase-field model shows error increases (for

example in the energy norm) for increasing values of a
due to the approximation of the steep gradients near

the loading points, this dependence is absent for the

hybrid model.

For error norms that do not involve the fluid

domain, the two models do behave fundamentally

different. As seen from Table 2 the jump error andH1-

error over the solid domain converge respectively with

rates of 1 and 1
2
for the phase-field model. For the

hybrid model, these errors are, however, zero up to

machine precision by virtue of the fact that on the solid

domain the displacement field is linear. In practice in

particular the approximation of the displacement jump

using the phase-field model is troublesome, as it

depends on resolving the gradient increase near the

loading points. The hybrid model does not suffer from

this complication, as there is no gradient increase on

the solid domain.

5 Multi-dimensional simulations

To demonstrate how the results attained above for the

one-dimensional case extend to multiple dimensions,

in this section we consider a two-dimensional bench-

mark problem and perform a detailed study of the

mesh convergence and C-convergence behavior of the
phase-field model and hybrid model. Subsequently we

demonstrate the applicability of the models and

methods in three dimensions.

Fig. 15 Convergence behavior of the displacement field for the

hybrid model in the energy norm. The solid lines and dashed

lines represent Lagrange and B-spline basis functions

respectively. The order is represented by k. a Basis dependence.
b a-threshold dependence
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Fig. 16 h-convergence behavior of the displacement field error

for the hybrid model in a the L2ðXÞ-norm, b the H1ðXÞ-norm
and c the fracture surface area norm. The solid lines and dashed

lines represent Lagrange and B-spline basis functions respec-

tively. The order is represented by k. a L2-error. b H1-error.

c Surface area error

Table 2 Comparison of the

h-convergence behavior of

the phase-field model and

hybrid model

Phase-field model (uphase) Hybrid model (uhybrid)

h�hh
�� ��

EðXnCcÞ O h
1
2

	 

O h

1
2

	 


h�hh
�� ��

H1ðXnCcÞ O h�
1
2

	 

O h�

1
2

	 


h�hh
�� ��

L2ðXnCcÞ O h
1
2

	 

O h

1
2

	 


jsht� shhtj OðhÞ 0

h�hh
�� ��

H1ðX�Þ O h
1
2

	 

0

h�hh
�� ��

S O h
1
2

	 

O h

1
2
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5.1 A two-dimensional planar crack

We consider the two-dimensional model problem

shown in Fig. 17a. The problem consists of a square

solid domain X ¼ ½�L=2; L=2� 
 ½�L=2; L=2�, which
is clamped on its outer boundaries and with a fully

developed horizontal fracture of length 2c centered at

the origin, i.e. Cc ¼ ½�c; c� 
 f0g. The dimensions

and parameters are taken from Ref. [18]. The dimen-

sion of the domain is taken as L ¼ 8 m and the semi-

length of the fracture is c ¼ 0:2 m. A plane stress

Hookean linear elastic law is used with modulus of

elasticity E ¼ 10 GPa and Poisson ratio m ¼ 0:3. The

pressure loading is taken as p ¼ 1 Mpa.

The sharp solution to this problem closely resem-

bles the classical solution provided by Sneddon [30]

by virtue of the fact that since L � c the far field

conditions are well represented by the homogeneous

Dirichlet conditions on the solid boundary. However,

in contrast to the one-dimensional test case studied in

the previous section, an analytical reference solution

for the phase-field model and hybrid model is not

available. To study theC-convergence of these models

we therefore rely on the finite element approximations

of the phase-field model and hybrid model. For that

reason we first study the h-convergence behavior in

Sect. 5.1.1, before considering the C-convergence
behavior in Sect. 5.1.2.

5.1.1 Mesh convergence

To study the mesh convergence behavior for the two-

dimensional problem we take the length-scale param-

eter as l0 ¼ c=4. All results presented in this section

are based on linear finite elements on locally refined

triangular meshes as illustrated in Fig. 17b. In a box

with a height and width of l0 
 ð2cþ l0Þ centered at

the sharp crack a uniform mesh with mesh parameter

h is created, where h corresponds to the edge lengths of

the element edges that coincide with the sharp crack

boundary and refinement box. Outside the refinement

box the mesh is gradually coarsened as illustrated in

Fig. 17b.

The phase-field, dh, is computed by solving the

finite element system (27) where the d ¼ 1 constraint

is imposed by prescribing the degrees of freedom

associated with the nodes on the sharp crack boundary.

The approximate phase-field for h ¼ l0=128 is shown

in Fig. 18a. Figure 18b shows part of the correspond-

ing trimmed domain, i.e. the solid domainX� and fluid

domain X�, corresponding to a threshold value of

a ¼ 0:8. Note that Fig. 18b shows the integration sub-

cells corresponding to a refinement depth of zero (no

bi-sectioning), where the integration scheme discussed

in Sect. 3.2 is applied to triangular elements. Due to

the fact that the phase field is interpolated linearly, this

zero refinement depth yields the exact a-contour.
Figure 19 displays the Von Mises stress computed

using the phase-field model (top) and hybrid model

(bottom) for h ¼ l0
8
; l0
32
; l0
64
. For both models it is

observed that along the straight fracture surfaces the

Fig. 17 Setup of the two-

dimensional model problem

and mesh definition. a

Setup. b Mesh: h ¼ l0
16
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Von Mises stress matches the applied pressure load in

the solid domain, while it is practically equal to zero in

the fluid domain. For the coarsest mesh both models

show inaccuracies in the representation of the zero

stress behavior in the fluid domain. On this mesh the

stress field for the hybrid model is observed to be of

better accuracy than that of the phase-field model, in

the sense that along the crack surfaces the Von Mises

stress shows a better match with the pressure loading.

The tip behavior of the two models is distinctly

different, in that the tip stresses of the hybrid model are

significantly higher than those of the phase-field

model for l0 ¼ c=4. This is explained by the fact that

for the hybrid model the undamaged material in the

Fig. 18 Zooms of the phase-field solution and parametrization of the a contour for h ¼ l0=128. a Phase-field profile: h ¼ l0=128. b
Interface parametrization: a ¼ 0:8

Fig. 19 Mesh dependence of the Von Mises stress for the

phase-field model and hybrid model. The contour plots show a

zoom of the domain centered around the fracture. a Phase-field

model, h ¼ l0
8
. b Phase-field model, h ¼ l0

32
. c Phase-field model,

h ¼ l0
64
. dHybrid model, h ¼ l0

8
. eHybrid model, h ¼ l0

32
. fHybrid

model, h ¼ l0
64
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solid domain has more load-carrying capacity than the

degraded material in the phase-field model. This is

evidently consistent with the hybrid model more

closely resembling the sharp problem in the solid

domain.

In Fig. 20a the convergence under mesh refinement

of the elastic energy for the phase-field model and

hybrid model is shown for a mesh range of

h ¼ l0=8; . . .; l0=128. While the hybrid model gradu-

ally converges to a value close to that of the sharp

model, W ¼ pp2c2ð1� m2Þ=E 
 11:4 J, the phase-

field model converges to a value which is considerably

higher. The difference in the asymptotic values as h !
0 is explained by the fact that the phase-field model

significantly overestimates the fracture opening for

this particular choice of the length-scale parameter,

l0 ¼ c=4, as is evidenced by the convergence of the

fracture volume increase in Fig. 20b. While the

volume increase for the hybrid model closely resem-

bles that of the sharp model, DVc ¼ 2ppc2ð1� m2Þ=
E 
 2:3 � 10�5 m2, the phase-field model significantly

over-predicts the volume increase. Note that the close

correspondence of the internal elastic energy and the

fracture volume increase is due to the internal elastic

energy being directly related to the externally applied

work. For the hybrid model the discretization error in

the elastic energy is dominated by the behavior in the

fluid domain, which is corroborated by the observation

that the energy over the solid domain is virtually

constant.

The significantly higher internal energy and volume

increase of the phase-field model is a consequence of

the gradient increase near the loading boundary, as

was also observed in the one-dimensional problem of

the previous section. A similar increase in the strain

field near the loading contour is observed in Fig. 21a,

which shows the displacement along the vertical

center line (x ¼ 0) of the domain. Note that the

maximum displacement in Fig. 21a for the phase-field

model (resp. Fig. 21c for the hybrid model) is equal to

the maximum fracture opening as shown in Fig. 21b

(resp. Fig. 21c). It is important to note here that the

phase-field model does not only need smaller elements

to attain essential mesh independence, but that it also

converges to a solution which for this particular choice

of l0 and a differs significantly from the sharp solution

as opposed to the hybrid model. As we will discuss in

more detail in the next section, the mesh parameter h

and length scale l0 cannot be selected independently.

As a consequence, for decreasing l0, the mesh

insensitivity of the hybrid model compared to the

phase-field model is an essential advantage of the

former. Another difference in the approximation

behavior of the displacement field is seen from the

fracture opening evaluated at the loading contour, i.e.

Fig. 21b, c. While the hybrid model yields a smooth

solution that closely approximates the sharp solution

Fig. 20 Mesh convergence behavior of a the elastic energy, and b the fracture volume increase. a Elastic energy. b Fracture volume

increase
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for the considered range of element sizes, the phase-

field model shows considerable mesh-dependent fluc-

tuations. These fluctuations are a consequence of the

fact that the loading boundary is immersed inside a

mesh that continuously interpolates the displacement

field, while in the hybrid approach the splitting of the

domain effectively makes the loading boundary con-

forming to the fluid and solid domains.

In Fig. 22 the dependence of the mesh convergence

behavior on the a-contour is studied. Note that, as

discussed above, there is a direct scaling between the

elastic energy over the solid domain and the fracture

volume increase. As a consequence, for the phase-field

model the Figs. 22a, b are scaled versions of one

another. Since the elastic energy over the complete

domain is considered in Fig. 22c, for the hybrid model

the scaling with the fracture volume increase in

Fig. 22d is perturbed by the elastic energy in the fluid

domain. The most important difference observed

between the two models is that the solution of the

phase-field model diverges with a approaching 1,

while the hybrid model converges toward the sharp

problem solution. This observation is in complete

agreement with our analysis of the one-dimensional

Fig. 21 Mesh convergence behavior of the vertical component

of the displacement field for the phase-field model (top) and

hybrid model (bottom) along the vertical center line of the

domain (left) and along the sharp fracture (right). a Phase-field

model, center line displacement. b Phase-field model, fracture

opening c Hybrid model, center line displacement. d Hybrid

model, fracture opening
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model problem; see Sect. 4.1.3. In terms of h-conver-

gence behavior the most notable difference between

the two models is observed from the fracture opening

increase, a quantity of interest that only depends on the

solution in the solid domain. The quality of the

approximation depends significantly on the mesh size

for the phase-field model, since the gradient near the

loading boundary must be resolved by the mesh. For

this reason, the mesh dependence increases when the

a-threshold approaches 1. In contrast, the volume

increase for the hybrid model is virtually independent

of the mesh size, since the coarsest meshes considered

are already capable of representing the displacement

field adequately. These observations are in excellent

agreement with our analysis for the one-dimensional

model problem; see Sect. 4.2.3.

Figure 23 shows the convergence of the fracture

surface area norm for both the phase-field model and

hybrid model. Note that the result of both models

closely resemble the initial phase-field surface area

SCc;l0 
 0:4517 m. The observed minor difference in

the results of the hybrid model and the phase-field

model is caused by the fact that on the fluid domain

both models generate a similar solution for the

Fig. 22 Mesh convergence behavior of the elastic energy (left)

and fracture volume increase (right) for the phase-field model

(top) and hybrid model (bottom) for various values of the

threshold parameter a. a Phase-field model, elastic energy.

b Phase-field model, fracture volume increase. c Hybrid model,

elastic energy. d Hybrid model, fracture volume increase
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displacement field, in the sense that both models result

in a jump in the displacement field over the fluid

domain (see Fig. 21). Accordingly, the computed

fracture surface areas are also very similar.

5.1.2 C-convergence

In this section we study the dependence of the solution

on the length-scale parameter l0. For all presented

results the meshes are defined in accordance with

Fig. 17b, with the mesh size parameter equal to

h ¼ l0=64. We consider a range of length-scale

parameters l0 ¼ c=4; . . .; c=16, for which the associ-

ated phase field and fracture surface areas are shown in

Fig. 24. Note that the surface area converges to the

sharp fracture result of 2c ¼ 0:4 m from above, with

the well-known linear dependence of the error on l0
[1].

Figure 25 shows the VonMises stress for the phase-

field model and hybrid model. Since both models

converge to the sharp model, which has a stress

singularity at the tip, significant stress concentrations

are observed for both models. Evidently, the phase-

field model smears out the stresses ahead of the

fracture tip, as a consequence of which the stress

concentration only becomes visible for a sufficiently

small length-scale parameter l0. The hybrid model on

the other hand represents the elastic problem on the

solid domain, and hence the stress concentration is

already visible for relatively large l0. The intensity of

the stress concentration increases also in this case as

the length-scale parameter decreases, but the depen-

dence is much weaker than for the phase-field model.

Similar observations are made for the dependence of

the Von Mises stress on the threshold parameter, a, as
shown in Fig. 26. Most notably, the stress concentra-

tion shows a stronger dependence on the a parameter

for the phase-field model than for the hybrid model.

The elastic energy dependence on l0 for both

models is shown in Fig. 27a. For the phase-field model

we observe a gradual decrease in the internal energy,

which is in one-to-one correspondence with the

decrease in fracture volume. This decrease is

explained by the fact that the gradient increase near

the loading boundary decreases with l0, as can be seen

directly from Fig. 28a. From Fig. 29b it is observed

that the fracture opening in the phase-field model

gradually converges toward the sharp solution [30]

svsharptðxÞ ¼
4pcð1� m2Þ

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

c

	 
2r
; ð60Þ

Fig. 23 Mesh convergence behavior of the fracture surface area

Fig. 24 Length scale parameter, l0, dependence of the phase field. The contour plots show a zoom of the domain centered around the

fracture. a l0 ¼ c
4
, SCc ;l0 ¼ 0:4517. b l0 ¼ c

8
, SCc ;l0 ¼ 0:4266. c l0 ¼ c

16
, SCc ;l0 ¼ 0:4140
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Fig. 25 Length scale parameter, l0, dependence of the Von

Mises stress for the phase-field model and hybrid model. The

contour plots show a zoom of the domain centered around the

fracture. a Phase-field model, l0 ¼ c
4
. b Phase-field model,

l0 ¼ c
8
. c Phase-field model, l0 ¼ c

16
. d Hybrid model, l0 ¼ c

4
. e

Hybrid model, l0 ¼ c
8
. f Hybrid model, l0 ¼ c

16

Fig. 26 Loading contour parameter, a, dependence of the Von
Mises stress for the phase-field model and hybrid model. The

contour plots show a zoom of the domain centered around the

fracture. a Phase-field model, a ¼ 0:4. b Phase-field model,

a ¼ 0:6. c Phase-field model, a ¼ 0:8. dHybrid model, a ¼ 0:4.
e Hybrid model, a ¼ 0:6. f Hybrid model, a ¼ 0:8
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although differences remain apparent in the tip region

even for l0 ¼ c=16. The volume increase and internal

energy corresponding to this sharp solution are plotted

in Fig. 27 for reference. In contrast to the phase-field

model, the energy and the volume increase for the

hybrid model are virtually independent of the length-

scale parameter. The observed increase in the internal

energy over the internal domain can be explained by

Eq. (44), which demonstrated that the energy error for

an element overlapping the sharp fracture is propor-

tional to the square root of the mesh size, but inversely

proportional to the length scale l0. Since for all

simulations presented here the mesh size is taken equal

to l0=64, a decrease in l0 by a factor of two results in affiffiffi
2

p
times increase in the error of the internal elastic

energy. This error increase is also present for the

phase-field model, but is not visible in that case

because other error contributions are dominant. The

center line displacement field and fracture opening

profile for the hybrid model are shown in Fig. 28c, d.

In correspondence with the one-dimensional problem

studied in the previous section it is observed that the

sharp opening profile is resolved for large values of l0.

The fracture surface area norm for both the phase-

field model and hybrid model is plotted in Fig. 29,

fromwhich it is observed that both models converge to

the sharp model result of 2c ¼ 0:4 m. As already

observed for the h-convergence behavior, the surface

area norm reflects the solution behavior in the fluid

domain. Although the fundamental behavior of the

displacement field in the fluid domain is the same for

the twomodels, the displacement jump is larger for the

phase-field model. As a consequence, also the pre-

dicted surface area is larger for the phase-field model.

5.2 Three-dimensional interacting penny-shaped

cracks

We consider the three-dimensional problem shown in

Fig. 30. Two penny-shaped cracks of radius

R1 ¼ R2 ¼ 2 m are immersed in the domain X ¼
½�L=2; L=2�3 with L ¼ 4 m. The circular pennies are

centered at c1 ¼ ð0; 0; 0Þ m and c2 ¼ ð1
2
;� 1

2
1
2
Þ m,

respectively, with the first penny in the xy-plane, and

the second penny in a plane that is rotated � 30�

around the y-axis. The two pennies together constitute

the sharp crack boundary Cc. A Hookean linear elastic

law with E ¼ 10 GPa and m ¼ 0:3 is considered, and

the internal pressure in the penny-shaped fractures is

taken as p ¼ 1 Mpa. The displacements on the outer

boundaries of the domain are constrained to zero.

We discretize the phase field, dh, and displacement

field, uh, using a hierarchically refined mesh (see

e.g. [31]) with trilinear basis functions. The base mesh

consists of 16
 16
 16 elements, and 3 levels of

local element refinement are considered in the vicinity

of the sharp cracks (see Fig. 31). The locally refined

mesh consists of 84134 elements and 299600 scalar

Fig. 27 C-convergence behavior of a the elastic energy, and b the fracture volume increase. a Elastic energy. b Fracture volume

increase
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basis functions. Since the sharp cracks do not conform

to the computational mesh, the phase field cannot be

imposed through nodal constraints. Instead we con-

struct the phase field by Eq. (24) with the driving force

taken as Fðu; dÞ ¼ 2ð1� dÞH, where H ¼ 105 
 Gc

on all elements that are intersected by the sharp

pennies, and zero everywhere else. The phase field

with length-scale parameter l0 ¼ 0:5 m is shown in

Fig. 31a. The a ¼ 0:8 loading contour shown in

Fig. 31b is extracted using the algorithm discussed

in Sect. 3.2 with a bisectioning depth of 1.

In Fig. 32 the computed vertical (z-direction)

displacement field of the problem is shown for both

the phase-field model (Fig. 32a) and hybrid model

(Fig. 32b). In agreement with the observations made

for the one-dimensional model problem and two-

dimensional test case discussed above, the displace-

ment jumps in the phase-field model are magnified due

to the large displacement gradients in the phase-field

model near the loading boundary. For the particular

setting considered here, with a ¼ 0:8, an amplification

of almost a factor of two is observed in comparison to

the hybrid model. As for the other examples, the

hybrid model closely resembles the sharp fracture

problem. Figure 33 compares the two models in the

xy-plane for three choices of the threshold parameter

Fig. 28 C-convergence behavior of the vertical component of

the displacement field for the phase-field model and hybrid

model along the vertical center line of the domain and along the

sharp fracture. a Phase-field model, center line displacement.

b Phase-field model, fracture opening. c Hybrid model, center

line displacement. d Hybrid model, fracture opening
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a. The increased fracture opening for the phase-field

model in comparison to the hybrid model is clearly

observed in this figure, where the same color scale is

used for both models. In agreement with the results

discussed above, the mismatch between the two

models decreases as a decreases. As can be seen from

the plotted damage contours, regardless of the selec-

tion of a, the discrepancy between the two models

vanishes away from the crack, which illustrates that

the deviations between the models are essentially

localized near the fracture.

6 Conclusions

We have studied the possibility of incorporating the

loading of pressurized fractures in phase-field fracture

formulations as a non-homogeneous Neumann condi-

tion over a phase field contour. Computationally, this

approach to modeling the fracture loading is enabled

by a bisection-based surface tessellation

scheme which was originally developed in the context

of immersed finite element simulations. The applica-

bility of this tessellation procedure has been demon-

strated for two and three dimensional test cases.

In its simplest form the standard phase-field model

for fracture is supplemented with an a-contour integral
to incorporate the pressure loading. The behavior of

this model is characterized by the presence of an

artificial sharp gradient in the solid displacement field

near the loading boundary. This gradient—which

results in an overestimation of the fracture open-

ing—is a result of the lowered stiffness near the

loading boundary when a is chosen close to 1.

Choosing a sufficiently close to 1 is required,

however, as otherwise the geometric information of

the sharp fracture boundaries that is encoded in the

phase field is not recovered by the extraction opera-

tion. For a fixed value of 0 � a\1 the sharp problem

solution is recovered when the phase field length-scale

parameter, l0, goes to zero.

In terms of mesh dependence, the h-convergence

rates of various norms is impeded by the discretization

effects associated with the non-conforming pressure

loading and by the approximation of the displacement

jump through a continuous displacement field. Evi-

dently, the mesh size h cannot be selected indepen-

dently of the phase field parameter l0, since the

approximation space should have sufficient resolution

in the non-homogeneous part of the phase-field (i.e.

near the smeared fractures). For a fixed value of the

length-scale parameter, the most notable effect in the

phase-field model is the presence of the sharp gradient

layer surrounding the fluid domain. This effect does

not only result in an l0-dependent error of the solid

domain deformation, but also creates a significant h-

dependent error contribution requiring small elements

in the solid domain near the pressure loading

boundary.

The shortcomings observed for the phase-field

model have led us to the development of a hybrid

fracture formulation. The idea of this hybrid

Fig. 29 C-convergence behavior of the fracture surface area

Fig. 30 Schematic representation of the three-dimensional

penny-shaped cracks problem
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formulation is to leverage the computational function-

ality of the tessellation procedure used for the loading

boundary extraction to also provide separate sub-

domains for the fluid and the solid. On the solid

domain the standard (without phase-field degradation)

elasticity problem is then solved, thereby avoiding the

occurrence of the gradient increases near the loading

boundaries. The solution in the solid is then lifted back

into the fluid domain by solving the phase-field

problem (in the fluid domain). Effectively the result

is a two-step solution procedure that mimics the sharp

fracture problem in the solid, and the phase-field

model in the fluid domain. More specifically, the

hybrid model is capable of accurately representing the

sharp problem fracture boundary deformation for

length-scale parameters, l0, and mesh sizes, h, con-

siderably larger than those needed for the phase-field

model to obtain the same accuracy.

In terms of the selection of the a-threshold param-

eter, the phase-field model and the hybrid model

behave differently. For both models, one, in principle,

wants to select a very close to 1, since doing so would
yield a loading condition very similar to that of the

sharp model. As indicated above, letting the threshold

Fig. 31 a The interacting

penny-shaped cracks are

approximated by the phase

field, and b the pressure

loading boundary is

extracted as the a ¼ 0:8
phase-field contour

Fig. 32 Vertical (z-direction) displacement (in meters) of the pressure-loaded penny-shaped crack problem using a the phase-field

model, and b the hybrid model. Note the difference in color scale ranges. a Phase-field model. b Hybrid model
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approach 1 in the phase-field model would result in the

creation of an artificial, highly compliant, boundary

layer, which, practically, leads to e.g. overestimation

of the fracture opening. This erroneous behavior is

rigorously resolved by the hybrid formulation, as a

result of which the compromising conditions to select

a close to 1 as induced by the phase-field model are

significantly relaxed. What remains, however, is that

the loading zone (i.e., the fluid domain) must be

resolved by the computational grid. More specifically,

at least a few elements need to be present across the

thickness of the fracture to represent the jump in the

displacement over the fracture. Hence, bringing a
closer to 1 while keeping the internal length scale

constant means that the minimum mesh size must be

reduced accordingly. With respect to the selection of a

we finally note that the considerations herein are based

on the stationary setting, and that additional selection

aspects might need consideration in a propagating

fracture setting.

In our future work we aim at extending the hybrid

approach to propagating fractures. The conceptual

idea of the envisaged extension is to apply the hybrid

model in a staggered solution strategy. Given an initial

phase field (a preexisting fracture) and loading con-

dition, the domain is segmented (using the a-thresh-
old) and the hybrid model is used to compute the

displacement field, both in the solid domain and in the

fluid domain. From the displacement field the ther-

modynamic driving force is then computed, which

serves as the input to the phase-field problem defined

over the entire domain. The updated phase-field, along

Fig. 33 Comparison of the

vertical (z-direction)

displacement (in meters) of

the pressure-loaded penny-

shaped crack problem using

(left) the phase-field model,

and (right) the hybrid model.

The deformed configuration,

with the displacements

magnified by a factor of 500,

are depicted in the xz-plane

(y ¼ 0) for three choices of

the threshold parameter a. a
a ¼ 0:4. b a ¼ 0:6. c
a ¼ 0:8
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with an update of the loading condition, then again

serves as input to the segmentation process and hybrid

model. A necessary condition for this staggered

approach to work is that the thermodynamic driving

force is approximated correctly by the hybrid model.

Therefore, we have already studied the behavior of the

thermodynamic driving force in this manuscript. The

main conclusion of this study is that the hybrid model

is capable of mimicking the driving force similar to

that of the phase-field model, while significantly

improving the accuracy with which the fracture

opening is modeled. A detailed investigation of this

propagating setting is a topic of further study, which

includes a study of how to select the a parameter, how

to treat nucleation from sharply represented initial

fractures, and how to deal with non-monotonous

pressure loading.
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