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Abstract Convergence criteria for direct numerical

simulations of turbulent channel and duct flows are

proposed. The convergence indicator for channels is

defined as the deviation of the nondimensional total

shear-stress profile with respect to a linear profile,

whereas the one for the duct is based on a nondimen-

sional streamwise momentum balance at the duct

centerplane.We identify the starting (TS) and averaging

times (TA) necessary to obtain sufficiently converged

statistics, and also find that optimum convergence

rates are achieved when the spacing in time between

individual realizations is below Dtþ ¼ 17. The in-

plane structure of the flow in turbulent ducts is also

assessed by analyzing square ducts at Res;c ’ 180 and

360 and rectangular ducts with aspect ratios 3 and 10 at

Res;c ’ 180. Identification of coherent vortices shows

that near-wall streaks are located in all the duct cases

at a wall-normal distance of yþ ’ 40 as in Pinelli et al.

(J Fluid Mech 644:107–122, 2010). We also find that

large-scale motions play a crucial role in the stream-

line pattern of the secondary flow, whereas near-wall

structures highly influence the streamwise vorticity

pattern. These conclusions extend the findings by

Pinelli et al. to other kinds of large-scale motions in the

flow through the consideration of wider ducts. They

also highlight the complex and multiscale nature of the

secondary flow of second kind in turbulent duct flows.

Keywords Wall-bounded turbulence � Direct
numerical simulation � Convergence � Secondary
flow � Turbulent structures

1 Introduction

Numerical simulations have become, together with

new experimental techniques, the key to understand-

ing some of the most intriguing aspects of wall-

bounded turbulence. Since the well-known work on

channel flows by Kim et al. [1] in the late 1980s, the

increase of computational power and the development

of highly scalable numerical algorithms has allowed

the computation of increasingly higher Reynolds

numbers, as well as more complicated geometries.

Some of the most relevant direct numerical simula-

tions (DNSs) of wall-bounded turbulence are the

channel flows computed by del Álamo et al. [2],

Lozano-Durán and Jiménez [3] and Lee and Moser [4]

(up to friction Reynolds numbers of Res ’ 2000;

’ 4200 and ’ 5200 respectively), the ZPG boundary

layers by Schlatter and Örlü [5] and Sillero et al. [6]

(up to Res values of’ 1000 and’ 2000 respectively),
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as well as the pipe flows by Wu and Moin [7] and El

Khoury et al. [8] (with a maximum Res of ’ 1000 in

both cases). Note that the friction Reynolds number is

defined in terms of the length scale h (which is the

channel half-height, the pipe radius or the boundary-

layer thickness) and the friction velocity us ¼
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

(where sw is the wall-shear stress and q is the fluid

density). These numerical experiments have helped to

understand the buffer sublayer, and now start to shed

light on the dynamics of the log layer and the outer-

layer structures.

Most experimental studies of wall-bounded turbu-

lence provide detailed descriptions of the measure-

ment techniques and the experimental setup employed

during their research. For example, Österlund [9]

elaborates on the design of the wind tunnel used in his

work (the MTL wind tunnel at KTH), he provides

extensive descriptions of the instrumentation he used

(probe calibration, sampling time. . .) and he describes
the different trip designs considered for tripping the

flow under study. Despite the wealth of descriptions of

experimental setups available in the literature, phys-

ical experiments are thoroughly scrutinized before

they are employed to validate scaling laws or theories.

As discussed by Nagib et al. [10] and Chauhan et al.

[11], the tripping device employed to trigger transition

to turbulence may play an important role in the

development of a boundary layer, leading to underde-

veloped flows if not done properly. This was also

observed recently by Vinuesa et al. [12] after carefully

assessing the inflow conditions of numerical simula-

tions and comparing with experimental data. Other

factors that highly influence experimental studies of

wall-bounded turbulence are the necessity of adequate

corrections to the probe measurements, discussed in

detail in Ref. [13], or the relation between the probe

size and the smallest turbulent scales, which may lead

to a contamination of the near-wall measurements if

the probe is not small enough [14]. The latter aspect

has motivated the construction of the experimental

facility CICLoPE at the University of Bologna (Italy),

in which the size of the smallest turbulent scales is

increased by developing a larger experimental facility

[15]. The issue of the averaging time required to obtain

converged turbulence statistics in turbulent-boundary-

layer experiments was addressed by Klewicki and

Falco [16]. In their study, they obtained cumulative

estimates of statistics of a number of observables,

including velocity and vorticity components, double

products and time derivatives. They also assessed the

necessary averaging times in different parts of the

boundary layer, considering the effects of shear,

intermittency and near-wall dynamics. They con-

cluded that in order to obtain converged turbulence

statistics up to the fourth moment it is necessary to

average for at least 6000 convective time units

(defined as the ratio of the boundary-layer thickness

d and the freestream velocity U1). Antonia et al. [17]

provided a compilation of empirical relations to

estimate the required averaging time for a particular

level of convergence in turbulent jets. More recent

experimental studies [18] have reported longer aver-

aging periods of around 25,000 convective time units

used to obtain converged turbulence statistics.

On the other hand, and as discussed by Schlatter

and Örlü [5], the DNS data available in the literature

are hardly scrutinized. Interestingly, these data show

dispersions of up to 5 % in the shape factor H ¼ d�=h
(where d� and h are the displacement and momentum

thicknesses respectively), and up to 20 % in skin

friction. Aspects which are barely mentioned in most

numerical studies, such as the numerical mechanism

used to trigger transition to turbulence, can produce

important differences in the computed results. Schlat-

ter and Örlü [19] analyzed the downstream evolution

of several integral, mean and fluctuating properties of

simulated ZPG turbulent boundary layers, and showed

that different inflow conditions and tripping mecha-

nisms explain most of the discrepancies between the

various low-ReDNS databases. Another characteristic

that is not described in detail in the literature and

significantly influences the results of a numerical

simulation is convergence. Most numerical studies

devote, at most, one or two lines to explain how the

convergence of their statistics was assessed. A

notable exception is the work by Oliver et al. [20],

where the authors address the problem of statistical

convergence of DNS in a systematic way. The article

points out that the traditional mesh size sensitivity

study using Richardson extrapolation should not be

performed for the DNS analyses of turbulent flows,

because of the presence of sampling errors. This may

result in the discretization error not decreasing expo-

nentially with progressively finer mesh sizes. To

overcome this obstacle the authors propose a new

approach which takes into account the inaccuracies in

3026 Meccanica (2016) 51:3025–3042

123



both sampling and discretization: the so-called

Bayesian Richardson extrapolation. An auto-regres-

sive model is then fitted to the obtained results in order

to describe the sampling error (taking into account the

autocorrelation of sampled data), which is then used to

estimate the common influence of discretization and

statistical errors. Other studies addressing the issue of

statistical convergence in DNS data of turbulent

channel flows are the work by Hoyas and Jiménez

[21] and the recent work by Thompson et al. [22], in

this case considering the momentum-balance equa-

tion. However, due to the lack of consensus in the

community, we see the need of developing a system-

atic approach to assess convergence in order to

minimize discrepancies between simulations, and

ensure maximum accuracy of the results. One desir-

able feature of such a criterion would be a direct

relation with the physics of the flow instead of using a

purely statistical investigation. The characteristics of

the convergence criterion proposed here are discussed

in detail below.

Another aspect widely discussed in the area of

turbulence research is the presence of coherent

structures and their role in turbulent momentum

transfer across different scales. For instance, del

Álamo et al. [23] assessed the role of vortex clusters

in wall-bounded turbulent flows, Lozano-Durán et al.

[24] the impact of three-dimensional sweeps and

ejections, and Lozano-Durán and Jiménez [3] tracked

both types of structures in time and developed a new

approach to the study of the dynamics of turbulent

flows based on them. In the present study the k2
method developed by Jeong and Hussain [25] is used

to identify vortex clusters in turbulent rectangular

ducts of different aspect ratios, at Res;c ’ 180 and 360

(note that Res;c is defined in terms of the centerplane

friction velocity us;c). A sequence of instantaneous

velocity fields is used to obtain probability density

functions of the locations of the vortex clusters, and

their connection with the mean secondary flow is

assessed in detail.

The present article is structured as follows: con-

vergence criteria for channels and ducts are proposed

and compared with other indicators available in the

literature in Sect. 2; numerical simulations performed

in the present study and convergence results for

channels and ducts are presented in Sect. 3; in Sect. 4

several criteria for vortex identification are described

and the cross-flow of turbulent ducts is characterized;

and the conclusions of this study are summarized in

Sect. 5.

2 Convergence in numerical simulations of wall-

bounded turbulence

The first step to study convergence is the identification

of initial transients, i.e., what is the time TS when

averaging should start. During the transient period, the

flow has to evolve from the initial conditions (whether

they are defined by a laminar field with superimposed

disturbances, or a turbulent field extracted from a

previous simulation) to a state which is representative

of turbulence. This period is usually shorter if the

initial conditions are already turbulent than if they are

laminar. Even in the first case the flow needs some

time to adjust from the initial field, so TS will not be

zero. In the second case, TS depends on the kind of

disturbance used to trigger transition to turbulence.

For instance, a duct flow with aspect ratio 3 (where the

aspect ratio AR is defined as the duct widthWd divided

by its total height 2h) and Res;c ’ 180 will relaminar-

ize if a laminar profile with superimposed high-

frequency Gaussian noise is used as starting field.

However, if a low-frequency tripping mechanism

similar to the one described by Schlatter and Örlü [19]

is used with the initial laminar profile, then the flow

transitions to turbulence as discussed by Vinuesa et al.

[26]. In any case, it is important to identify TS
properly, since the initial transient is not representa-

tive of the flow being simulated, and thus averaging

times required for convergence may increase if

included in the statistics.

After identifying and discarding the initial tran-

sients, we need to determine the averaging time TA
required to obtain sufficiently converged statistics. It is

important to note the difference between TS and TA,

and especially the relevance of TS: longer averaging

times TA may be required to ensure proper conver-

gence if the considered TS is too small, i.e., if part of

the initial transients are included in the statistics. All

the instantaneous fields computed at times t[ TS are

physical (represent a turbulent field at a given instant),

so in principle if these fields are averaged over

sufficiently high values of TA it will be possible to

achieve convergence.
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2.1 Literature review of convergence criteria

Existing convergence guidelines for turbulent channel

and duct-flowDNSs are summarized in Tables 1 and 2,

respectively. Note that in these tables Ub is the bulk

velocity integrated over the cross-sectional area. We

also classified those guidelines into two categories:

criteria to indetify TS and criteria to determine TA. The

initial transients are identified in all the channel cases

by assessing whether the resulting total shear stress

was linear or not. However, the only discussion about

TA, provided both by Moser et al. [27] and del Álamo

[28], is somewhat incomplete. In the case of ducts,

there is more variety of criteria for TS and TA, although

there is not any criterion based on what the converged

state of the flow should be from a physical perspective,

rather than seeking stationary behavior of statistics.

2.2 Definition of converged state

We propose to define a ‘‘converged state’’ for the

channel flow, and evaluate how far from this state

(how converged) the statistics are for all the possible

TS; TAð Þ combinations in the time history. A reason-

able definition of such a converged state can be

established from a momentum balance in the stream-

wise direction:

1

q
oP

ox
¼ m

o2U

oy2
� ouv

oy
; ð1Þ

where P is the pressure, m is the kinematic viscosity of

the fluid, x and y the streamwise and wall-normal

coordinates, U the streamwise mean velocity and uv

the Reynolds shear stress. To allow comparisons

between simulations, Eq. (1) can be expressed in wall

units (denoted by the superscript ‘‘þ’’), where the

velocity scale is the friction velocity us and the length

scale is the viscous length ‘� ¼ m=us. Doing so, and

integrating the RHS with respect to yþ, one realizes

that the total shear stress sþxy ¼ Re�1oUþ=oyþ � uvþ

has to be linear. It is important to note that this is a

direct consequence of the momentum balance (1),

valid only for fully-developed channel and pipe flows,

and therefore not true for low aspect ratio duct flows as

will be shown below. Then, the equation characteriz-

ing the converged state of the channel flow is:

sþxy ¼ Re�1 oU
þ

oyþ
� uvþ ¼ 1� g; ð2Þ

where g is the wall-normal coordinate scaled by the

channel half-height h (outer scaling). In the case of

duct flows, the converged state can be established from

a streamwise momentum balance at the duct

centerplane:

�oPþ

oxþ
þRe�1o

2Uþ

oyþ2
�ouvþ

oyþ
�VþoU

þ

oyþ
þRe�1o

2Uþ

ozþ2
¼0;

ð3Þ

where V is the mean wall-normal velocity and z the

spanwise coordinate. If the aspect ratio is low the side

walls impact the flow at the duct centerplane, and

therefore the convective term VþoUþ=oyþ and the

spanwise viscous diffusion Re�1o2Uþ=ozþ2 are not

Table 1 Summary of convergence guidelines available in the literature for channel flows

DNS database Scheme TS criterion TA criterion

Kim et al. [1] Spectral Linear profile of total shear stress and quasi-periodic total

kinetic energy

Not specified

Moser et al. [27] Spectral Linear profile of total shear stress and quasi-periodic total

kinetic energy

Stationary behavior of statistics. From

their experience: TA � 10Lx=Ub

Iwamoto et al. [29] Spectral Linear profile of total shear stress, stationary behavior of

mean velocity and second-order moments at some yref

Not specified

del Álamo [28] Spectral Linear profile of total shear stress and quasi-periodic total

kinetic energy

Stationary behavior of statistics. From

their experience: TA � 10Lx=Ub

Tuerke [30] Spectral Linear profile of total shear stress and deviatoric

Reynolds stress vw ¼ 0

Not specified
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zero at the centerplane. This means that we cannot

proceed with direct integration as in the channel, and

therefore the total shear sþxy is not linear. As a

consequence, the converged state for a duct is defined

through Eq. (3), and not through Eq. (2) which is only

valid for spanwise-periodic channels (or possibly

rectangular ducts of sufficiently high aspect ratio).

2.3 Convergence indicator and normalized eddy

turnover time

After defining the converged state for channel and duct

flows, we need to assess whether the available data are

close to this state or not. To this end, we need to define

a convergence indicator e, which should asymptoti-

cally decay to zero as statistical convergence is

approached. In the case of channels, echannel will be
the RMS norm of the deviation between the total shear

stress and a linear profile, i.e., the LHS and the RHS of

Eq. (2). On the other hand, educt will be evaluated as the
residual of Eq. (3) based on RMS norm. The RMS

norm is defined over the whole profile as follows:

jj � jj ¼ 1

h

Z h

0

ð�Þ2 dy

� �1=2

: ð4Þ

If wall-normal symmetry is not applied, then the

integration will be carried out in the complete domain.

In the next section we will use these criteria on three

flow cases to determine the appropriate TS and TA
values to achieve convergence. Here, let us consider

available data in the literature, and determine the

corresponding e values to evaluate their convergence.

In order to compare the different TS and TA values, we

first consider the eddy turnover time ETT ¼ tus=h.

Here, the characteristic period of the largest turbulent

scales, h=us, is used to normalize the time t. However,

although this definition accounts for the differences in

friction velocities among simulations, it does not take

into account the different computational box sizes. We

define the following ‘‘normalized eddy turnover

times’’:

ETT�
channel ¼ ETTchannel

LxLz

Lx;minLz;min

; ð5Þ

ETT�
duct ¼ ETTduct

Lx

Lx;min

; ð6Þ

where Lx; Lz are the streamwise and spanwise box

lengths, and Lx;min ¼ 6h; Lz;min ¼ 3h define the box

size containing the minimal flow unit in the logarith-

mic layer, as discussed by Flores and Jiménez [37].

For ducts, only the ratio Lx=Lx;min is considered since

x is the only homogeneous direction. With these

definitions, we consider the fact that boxes with longer

periodic dimensions effectively contain larger number

of turbulent structures, and thus require shorter

averaging times to reach the same level of conver-

gence as a smaller box (as also observed by del Álamo

[28]).

2.4 Summary of convergence results available

in the literature

Tables 3 and 4 summarize convergence results from a

wide range of DNS databases available in the litera-

ture. Note that the results presented in this section

were obtained from the databases publicly available in

Table 2 Summary of convergence guidelines available in the literature for duct flows

DNS database Scheme TS criterion TA criterion

Kim et al. [1] Spectral Linear profile of total shear stress and quasi-

periodic total kinetic energy

Not specified

Gavrilakis [31] 2nd order finite-

differences

Not specified (2 low-res. precursor runs) Variation of Ub\0:2% and of total

kinetic energy \5%

Huser and Biringen

[32]

4th order fin.-diff.

and spectral

Linear profile of total shear stress and

constant total kinetic energy

Not specified

Pinelli et al. [33]

Uhlmann et al. [34]

Spectral Not specified TA [ 2000h=Ub, based on critical

channel conditions [35]

Krasnov et al. [36] 2nd order finite-

differences

Steady Res and other integral quantities Not specified
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the websites from the various research groups, or

based on data available in the corresponding publica-

tions. We calculated the averaging and starting times

(when provided in the respective references) in ETT,

and then applied the correction for box size proposed

in Eqs. (5) and (6). In this sense, it is interesting to note

that the same averaging period normalized in eddy

turnover times can be very different in various cases

after applying this correction. For instance, in Table 3,

one can observe how the Res ¼ 396 case from

Iwamoto et al. [29] and the Res ¼ 2003 channel from

Hoyas and Jiménez [38] have similar averaging times

when expressed in ETT� units: 176.8 and 135.5

respectively. However, when normalized in regular

eddy turnover-time units, the lower Re case has an

averaging period of more than 10 times the one with

the larger Re. In addition, the second case exhibits a

lower e value, which means that it is more converged

according to the already discussed criterion. The idea

is that the higherRe case was computed in a larger box,

which despite the fact of being more computationally

expensive, allowed averaging a larger number of

turbulent structures than the smaller one. Therefore,

each ETT computed in the higher Re case contains

more information towards calculating statistics. This

example highlights the interest of using the normal-

ized ETT� definitions (5) and (6). This also helps to

compare, in a more objective way, statistics from

different databases performed in various computa-

tional boxes.

The results summarized in Table 3 are presented

graphically in Fig. 1. The first interesting conclusion

that can be drawn is the fact that, although Moser et al.

[27] and del Álamo [28] in principle used the same

criterion for convergence, they reach very different

convergence levels. The database from Jiménez’s

research group [2, 38, 39] shows a consistent level of

convergence throughout the whole Reynolds number

range, on the order of e ’ 10�3, which can be

considered to be sufficiently converged. However,

the runs by Moser et al. [27] exhibit convergence

indicators on the order of 4–10 times larger than the

ones by Jiménez. This indicates the need for an

objective convergence criterion that allows for com-

parisons between simulations. It is also interesting to

note that Kim et al. [1] actually reach a convergence

level very similar to the one from Jiménez, and the

database from Iwamoto et al. [29] exceeds their

convergence level by several orders of magnitude at

low Re.

With respect to the results shown in Fig. 1b, it is

important to see that Iwamoto et al. [29] achieved such

well converged results by running for much longer

periods than the other research groups. Also, Kim et al.

[1] reached similar levels of convergence to the ones

of Jiménez running for a much shorter period. A

possible explanation of this fact is discussed in Sect. 3,

where we assess the influence of the spacing in time

between individual samples used to compute statistics,

Dt. It is also important to note the fact that the

Table 3 Convergence

features of channel flows in

the literature

DNS database Res ETTS ETTA ETT�
S ETT�

A echannel

Kim et al. [1] 180 – 10 – 43.9 1:88� 10�3

Moser et al. [27] 392 – – – – 4:80� 10�3

587 – – – – 8:50� 10�3

Iwamoto et al. [29] 109 – 2559 – 14,031 1:03� 10�5

150 – 2061 – 11,300 2:91� 10�5

298 – 277 – 379.7 6:61� 10�5

396 – 129 – 176.8 9:38� 10�4

643 – 40 – 54.8 1:67� 10�3

del Álamo et al. [39] 186 – 52.8 – 922.4 1:27� 10�3

547 – 13.7 – 239.7 1:11� 10�3

del Álamo et al. [2] 934 – 11.7 – 153.5 1:08� 10�3

Hoyas and Jiménez [38] 2004 – 10.3 – 135.5 7:73� 10�4

Tuerke [30] 550 5 – 5.5 – –

950 5 – 5.5 – –
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averaging time required to obtain converged statistics

seems to exhibit a decreasing trend with Reynolds

number, showing a difference of a whole order of

magnitude between Res values of 180 and 2000.

With respect to duct literature, a summary of the

convergence results obtained from available data is

given in Table 4. Most available computations corre-

spond to square ducts (except for the aspect ratio 3.33

duct preceding a three-dimensional diffuser computed

by Ohlson et al. [40]) at low Reynolds numbers. The

only exception is the very high Re case by Krasnov

et al. [36], which will be discussed later. The duct

cases require very long averaging times for conver-

gence due to the interaction between the secondary

motions produced at the duct corners and the mean

flow. This interaction has been extensively studied

experimentally by Gessner et al. [41] and Gessner and

Jones [42], and numerically by Vinuesa et al. [43].

Despite this, in Table 4 only Pinelli et al. [33] averaged

for long periods of time. This is in part due to the lack

of a consistent convergence criterion for ducts (the

linear total shear profile criterion is not valid as we

discussed above), and partly because duct cases are

much more expensive than the periodic channel. The

presence of two inhomogeneous directions does not

allow the use of periodic boundary conditions in the

spanwise direction, a fact that significantly increases

computational cost. Another detail must be high-

lighted when comparing Tables 3 and 4: the conver-

gence indicators echannel and educt are not defined in

terms of the same physical magnitude (shear stress for

the former, and momentum in the latter), although

both are expressed in nondimensional form.

Figure 2 shows with open symbols the convergence

properties of available duct flows as a function of

Reynolds number. The threshold for convergence can

be established on an educt value of around 10�3, a level

which is not fully reached by any of the available

datasets. The very long runs by Pinelli et al. [33] show

the lowest e values, around 2� 10�3. On the next level

of convergence we would find the runs by Gavrilakis

[31] and Huser and Biringen [32], partly converged,

with convergence indicators around e ’ 3� 10�3. It is

interesting to see how they exhibit very similar ETT�
A

Table 4 Convergence

features of duct flows in the

literature

DNS database Res ETTS ETTA ETT�
S ETT�

A educt

Gavrilakis [31] 150 6 5 62.8 52.3 3:27� 10�3

Huser and Biringen [32] 300 120 30 256 64 2:97� 10�3

Uhlmann et al. [34] 78 – 60.8 – 127.4 1:30� 10�2

100 – 108.8 – 113.9 2:02� 10�2

Pinelli et al. [33] 150 – 544.2 – 1,139.8 2:02� 10�3

230 – 377.4 – 790.4 1:77� 10�3

Ohlsson et al. [40] 310 (AR ¼ 3:33) 12.1 17.5 – – –

Krasnov et al. [36] 4253 – 1.3 – 2.7 –

102 103

10−5

10−4

10−3

10−2

ε c
ha

nn
el

Reτ

(a)

102 103
101

102

103

104

105

E
T

T
∗ A

Reτ

(b)

Fig. 1 aConvergence indicator and b averaging time expressed

in ETT� with correction for box size, both as a function of

friction Reynolds number, for channel flow DNSs available in

the literature and run from the present study. Symbols

correspond to the following databases: open circle Kim et al.

[1], open squareMoser et al. [27], open Diamond Iwamoto et al.

[29], open triangle del Álamo et al. [2, 39], open right pointed

triangleHoyas and Jiménez [38], filled circle present (short TA),

filled square present (long TA)
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values, with also consistent convergence indicators,

although Gavrilakis’ runs were averaged for a very

short period of time (ETTA ¼ 5 vs. 30 from Huser and

Biringen) if the box size correction is not applied.

Gavrilakis used a very long computational box (Lx was

20p), which is why the correction brings the averaging
periods from both runs very close. This is in agreement

with our previous discussion, and highlights the

importance of the correction for box size. The case

of Uhlmann et al. [34] seems more surprising, since

their averaging time is longer than the ones from

Gavrilakis and Huser and Biringen, but they show

quite large values of educt. This is because they

computed very low Reynolds numbers, which lie in

what they call ‘‘marginally turbulent state’’, and

therefore require even longer averaging times than a

fully-turbulent square duct flow. The last case, the

very high-Re computation by Krasnov et al. [36],

presents a very short averaging time (around 30 times

shorter than Pinelli’s values extrapolated to such a

high Reynolds number). We did not have access to

their database, so we were unable to calculate their

convergence indicator, although they mention in their

study [36] some problems in their statistics which they

attribute to short averaging periods. In addition, their

second-order finite-difference code may not provide as

much accuracy as the spectral or fourth order finite-

difference codes proposed by other research groups,

especially at such high Re.

3 Direct numerical simulations of turbulent

channel and ducts flows

After carefully reviewing previously proposed con-

vergence criteria, and assessing the level of conver-

gence from available DNSs, we performed our own

direct numerical simulations of one channel flow, and

analyzed existing duct flow data with aspect ratios 1, 3

and 5 [26]. All the cases were computed at Res values

around 180 (in the case of the ducts, the flow was

adapted as discussed below to maintain the same

conditions at the centerplane for the various aspect

ratios). The results of these computations are shown on

Figs. 1 and 2 using filled symbols. The characteristics

of the numerical codes and the computations are

presented next.

3.1 DNS of turbulent channel flow

Direct numerical simulations require computing all

the spatial and temporal scales of the flow, including

the largest energy-containing and the smallest dissi-

pative ones. To that end, the computational mesh

needs to be very fine close to the walls (in order to

properly capture the smallest scales, which reside in

the near-wall region), and it is coarsened as the core of

the flow is approached, where the larger scales reside.

For adequate simulation reliability, the numerical

discretization has to allow an accurate representation

of all the flow scales. Thus, high-order numerical

schemes are the preferred methods for turbulence.

The numerical computation of turbulent channel

flow was carried out using the numerical code

SIMSON [44], based on a pseudo-spectral discretiza-

tion to solve the three-dimensional, time-dependent,
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Fig. 2 aConvergence indicator and b averaging time expressed

in ETT� with correction for box size, both as a function of

friction Reynolds number, for duct flow DNSs available in the

literature and runs from the present study (represented by full

symbols). Symbols correspond to the following databases: open

circle Gavrilakis [31], open square Huser and Biringen [32],

open diamond Uhlmann et al. [34], open triangle Pinelli et al.

[33], open right pointed triangleKrasnov et al. [36], filled circle

present AR ¼ 1, filled square present AR ¼ 3 (long TA), filled

diamond Present AR ¼ 3 (short TA), filled triangle Present

AR ¼ 5 (long TA) and filled right pointed triangle Present AR ¼
5 (short TA)
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incompressible Navier–Stokes equations. Periodic

boundary conditions are used in the streamwise and

spanwise directions, where Fourier expansions with

dealiasing represent the velocity field, and Chebyshev

polynomials were used in the wall-normal direction.

The streamwise pressure gradient was recalculated

after each time-step to maintain a constant mass flux

through the channel cross-section. The kinematic

viscosity m was set so that a Reynolds number based

on channel half-height h and bulk veloctiyUb ofReb ’
2800 was obtained; this led to a friction Reynolds

number of Res ’ 180. In this code, time is advanced

by means of a standard mixed four-step Crank–

Nicolson/Runge–Kutta scheme.

The computational box was the same as in Kim

et al. [1], i.e., streamwise and spanwise lengths of Lx ¼
4p and Lz ¼ 2p, with wall-normal length Ly ¼ 2.

Uniform grid spacings ofDxþ ¼ 12 andDzþ ¼ 7 were

kept in the homogeneous directions, whereas the

Chebyshev distribution in the wall-normal direction

led to a minimum grid spacing of Dyþmin ¼ 0:05 at the

wall, and a maximumDyþmax ¼ 4:4 at the channel core.

A total of 192� 129� 160 grid-points in the x, y and

z directions were considered to discretize the compu-

tational domain. The simulation is initiated with

random noise at t ¼ 0.

In order to identify adequate values of TS and TA,

we generate a contour map with a wide range of

(TS; TA) combinations obtained from the channel

simulation, and plot the value of echannel, which should
ideally decay to zero as statistical convergence is

approached. However, only few of the runs by

Iwamoto et al. [29] exhibit converge indicators below

10�3, and most of the runs from Jiménez’s group are

close to this value. Since for practical purposes,

statistics obtained with echannel ¼ 10�3 can be consid-

ered to be sufficiently converged, we will take this as

our convergence criterion for channel flows. The

contour plot of echannel versus the starting and averag-

ing times TS and TA in convective time units (nondi-

mensionalized using Ub and h) is shown in Fig. 3 for

our channel flow simulation. This figure shows how,

for starting times lower than approximately 200

convective time units, the value of e decays very

slowly, even for increasingly longer averaging times.

This is due to the fact that, for TS\200, the

instantaneous flow is not representative of a physical

turbulent field, and therefore should not be accounted

for in the flow statistics. Interestingly, for starting

times larger than 200 convective time units (equiva-

lent to ETT�
S ¼ 50), the value of the convergence

indicator starts to decay more quickly with averaging

time.

Figure 4 shows, for TS ¼ 200 convective time units,

the value of echannel as a function of the averaging time

TA. Note that the effect of the separation in time Dt
between individual realizations used to compute the

statistics is also explored in Fig. 4, where the lowest

value Dt ¼ 0:2 was precisely the one used to generate

the contour plot in Fig. 3. The first conclusion obtained

from this figure is the fact that the value of Dt plays a
role in the necessary averaging time TA for conver-

gence. Whereas values of Dt ¼ 5 or 10 lead to slower

decays of echannel, the value Dt ¼ 2 (corresponding to

Dtþ ¼ 17 in this simulation) essentially yields the

same decay rate as the value of 0.2 considered in

Fig. 3, and therefore suggests that convergence not

only depends on the combination of TA and TS, but also

on Dt. This figure indicates that, assuming Dt ¼ 2,

convergence indicators below 10�3 are obtained with

a minimum averaging time of around 1000 convective

time units, which in eddy turnover times leads to

ETTA ¼ 57, and after box size correction results in

ETT�
A ¼ 250. e values of 2� 10�4 can be achieved

with TA ’ 2200;ETTA ¼ 125:4 and ETT�
A ¼ 550.

These results are compared with the rest of data in

Fig. 1, where the e cases of 10�3 and 2� 10�4 are

denoted by ‘‘short TA’’ and ‘‘long TA’’ respectively.

Fig. 3 Contour plot of channel convergence indicator in

logarithmic scale, log10ðechannelÞ, versus starting and averaging

times in convective time units, i.e., nondimensionalized using

bulk velocity Ub and channel half-height h. Data extracted from

DNS carried out in the present study
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The short TA run exhibits levels of convergence

similar to the ones of del Álamo et al. and Kim et al.

although the averaging time (corrected for box size)

lies in between. With respect to the long TA run, lower

echannel levels than the ones from del Álamo et al. are

obtained, with shorter averaging times. A plausible

explanation for this discrepancy could be the different

values of Dt (for which there is no information in the

respective references), which as discussed below

directly impact the rate at which convergence is

reached. Given the results shown in Fig. 4, Dtþ values

equal to or below 17 should be considered in order to

obtain proper convergence rates.

3.2 DNSs of turbulent duct flows

Like in the channel flow case, a direct numerical

simulation technique was used to compute turbulent

duct flows at three different aspect ratios. These

simulations were carried out using the code Nek5000,

developed by Fischer et al. [45] at Argonne National

Laboratory (nek5000.mcs.anl.gov), and based on the

spectral element method (SEM), originally proposed

by Patera [46]. In this code, the incompressible

Navier–Stokes equations are cast in weak form, so

they are multiplied by a test function and integrated

over the domain. The Galerkin approximation is

considered for spatial discretization following the

PN � PN�2 formulation by Maday and Patera [47],

that associates the pressure with polynomials two

degrees lower than the velocity. The three-dimen-

sional velocity vector is expressed in terms of tensor-

products of Lagrange polynomials of order N within a

spectral element, and the solution is represented at the

Gauss-Lobatto-Legendre (GLL) quadrature points.

The nonlinear terms are treated explicitly by third

order extrapolation (EXT3), whereas the viscous

terms are treated implicitly by a third-order backward

differentiation scheme (BDF3) leading to a linear

symmetric Stokes system to be solved at every time

step.

These computations were carried out on a Cray

XE6machine at the PDC Center of KTH in Stockholm

(Sweden). They required from 2048 to 4096 cores, and

the MPI (message-passing interface) was employed

for parallelization. In all the cases, the computational

box was 25 duct half-heights long (Lx ¼ 25h). This is

large enough to capture the longest turbulent struc-

tures in the streamwise direction according to exper-

imental measurements in pipe flow (Guala et al. [48])

and DNSs of turbulent channel (Jiménez and Hoyas

[49]) and pipe flows (Chin et al. [50]). The box length

in the wall-normal direction is Ly ¼ 2h for all cases,

and the spanwise length is adjusted depending on the

aspect ratio, so for AR ¼ 5 we have Lz ¼ 10h. The

mesh is designed so that Dxþ\10;Dyþmax\5, and we

have at least 4 points below yþ ¼ 1 (the guidelines for

y also apply to z). Although the nodes within spectral

elements are the GLL quadrature points, one has

freedom to choose the element distribution, so we

blended Chebyshev (close to the wall) with uniform

(at the duct core) distributions, satisfying the various

mesh quality requirements. Also, in an approach

similar the one considered for the channel, here we

adjust the input Reynolds number Reb through an

iterative process, in order to keep the centerplane bulk

Reynolds number Reb;c ¼ Ub;ch=m (where Ub;c is the

bulk velocity at the centerplane of the duct) constant

for the different aspect ratios. This allows easier

comparisons among aspect ratio cases and with

available channel data. Therefore, the nominal Res
values are just a reference, since the actual Res;c will

change with AR. Note that the flow is allowed to

approach fully-developed turbulence via consecu-

tively more refined runs, and the initial profile was a

laminar duct flow expansion [51] with a wall-normal

volume force tripping (which is activated only during
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Fig. 4 Channel convergence indicator echannel versus averaging
time with starting time TS ¼ 200. Several values for the

separation in time Dt between realizations used to compute

the statistics are shown, with Dt ¼ 0:2 being the one used to

generate Fig. 3. Times expressed in convective time units, and

data extracted from DNS carried out in the present study
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the initial low-resolution runs) similar to the one used

by Schlatter and Örlü [19].

3.2.1 Results from the square duct case

A contour plot of log10ðeductÞ in terms of TA and TS
(both in convective time units) is shown in Fig. 5 for

the xy centerplane (note that the xz plot looks

qualitatively very similar). In this figure we represent

data up to 1680 convective time units only, which is

enough to identify the initial transients: in the xy

centerplane the region of lowest e can be found for

TS ’ 100, and averaging times of around 1580. This

would not be the lowest possible e value, and it is

necessary to look at the complete time history (starting

from TS ¼ 100) to identify the minimum TA to ensure

convergence. This is done in Fig. 6, where exy and exz
are shown as a function of averaging time. Note that in

the present turbulent duct simulations Dt was kept

below 0.2 in all cases. It can be observed how after an

initial averaging period of 1000 convective time units,

the decay in e is very slow. This is related to the

interaction between the secondary flow with the mean

flow, and it can be argued that stationary behavior will

require really long averaging times in this flow.

However, reasonable levels of convergence should be

sufficient for reliable conclusions. The minimum e is
around 10�3 in both centerplanes. From Fig. 6, this

value is not reached by the average e curve until

around TA ¼ 5400 convective time units. As a conse-

quence, we can argue that, in order to reach sufficient

statistical convergence (educt ’ 10�3), we need to

discard 100 convective time units of initial transients

(equivalent to ETTS ¼ 7:12 and ETT�
S ¼ 30 in our

simulation), and then average for at least 5400

convective time units (equal to ETTA ¼ 385 and

ETT�
A ¼ 1602).

3.2.2 Results from the AR ¼ 3 duct case

Figure 7 shows the contour of log10ðeductÞ evaluated at
the xy centerplane, as a function of starting and

averaging times. This figure shows that transient

effects are present until TS ¼ 200, which is equivalent

to ETTS ¼ 13:8, or ETT�
S ¼ 57:5) if the box size

correction is considered. The minimum e value is

obtained at approximately TA ¼ 1600, which corre-

sponds to ETTA ¼ 110 and ETT�
A ¼ 460. Although

the minimum educt is 2:95� 10�4, a more moderate

convergence value of educt ¼ 10�3 can be obtained

with TA ¼ 1000 or ETT�
A ¼ 287:5. It is also interesting

to note that the convergence indicator on the xz

centerplane reaches a value of e ¼ 1:5� 10�3 rather

quickly (TA of around 200), but then this indicator does

Fig. 5 Contour plot of duct convergence indicator in logarith-

mic scale calculated in the xy centerplane, log10ðeduct;xyÞ, versus
starting and averaging times in convective time units, i.e.,

nondimensionalized using bulk velocityUb and duct half-height

h. Data extracted from DNS simulation of AR ¼ 1 duct flow

carried out in the present study

0 1000 2000 3000 4000 5000 6000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

TA

ε d
u
ct

Starting time TS = 100

εduct,xy

εduct,xz

Present
Gavrilakis
Pinelli et al.

Fig. 6 Duct convergence indicator educt from xy and xz

centerplanes, versus averaging time with starting time

TS ¼ 100. Times expressed in convective time units, and data

extracted from DNS simulation carried out in the present study.

Comparison with convergence data extracted from the simula-

tions by Gavrilakis [31] and Pinelli et al. [33] are also shown
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not get significantly smaller. This is associated with

the fact that the most significant physical mechanisms

take place on the xy centerplane instead of the

spanwise direction.

3.2.3 Results from the AR ¼ 5 duct case

Figure 8 shows the educt contours for all the TA and TS
combinations, and a starting time TS ¼ 100 (similar to

what one observed when analyzing the time evolution

of Reb;c), equal to 6.75 eddy turnover times, and 28

after box-size correction appears suitable. With

respect to averaging periods, the best convergence is

reached with TA ¼ 1000 (ETTA ¼ 67:5 and

ETT�
A ¼ 280), which leads to educt ¼ 3:46� 10�4,

although a more moderate level of convergence of

10�3 can be obtained with TA ¼ 500 (or ETT�
A ¼ 140).

The convergence and averaging time results from

the previous sections are also summarized in Fig. 2,

where a comparison with the available data in the

literature is also shown. Note that for the aspect ratio 3

and 5 cases we present two scenarios: the short TA
(which should be considered as a minimum require-

ment for convergence) and the long TA (corresponding

to our longest runs, with the lowest possible conver-

gence indicators).

4 Characterization of the mean cross-flow

structure in turbulent rectangular ducts

4.1 Vortex identification methods

A number of methods are available in the literature to

determine the location of coherent structures in

turbulent flows, among which some of the most

popular are the Q criterion by Hunt et al. [52], the D
criterion proposed by Chong et al. [53], the swirling

strength condition by Zhou et al. [54], the approach by

Kida and Miura [55] and the k2 method by Jeong and

Hussain [25]. We have extensively tested all these

methodologies and found that all of them yield very

similar results. The analysis presented in Sect. 4.2 was

performed by considering the k2 method [25], which

as most vortex identification methods, is based on the

analysis of the properties of the velocity gradient

tensor:

ru ¼
ux uy uz

vx vy vz

wx wy wz

2

6

4

3

7

5

; ð7Þ

where all the velocities in (7) are instantaneous and

ux ¼ ou=ox, etc. Note that this tensor can be decom-

posed into the symmetric and antisymmetric parts S ¼

Fig. 7 Contour plot of duct convergence indicator in logarith-

mic scale calculated at the xy centerplane, log10ðeduct;xyÞ, versus
starting and averaging times in convective time units, i.e.,

nondimensionalized using bulk velocityUb and duct half-height

h. Data extracted from DNS simulation of aspect ratio 3 duct

flow carried out in the present study. Note that the white region

in upper right half of the figure is associated with the fact the

database analyzed to produce this figure contained data up to

t = 2100, and therefore TS values larger than 0 lead to TA values

smaller than 2100

Fig. 8 Contour plot of duct convergence indicator in logarith-

mic scale calculated in the xy centerplane, log10ðeduct;xyÞ, versus
starting and averaging times in convective time units, i.e.,

nondimensionalized using bulk velocityUb and duct half-height

h. Data extracted from DNS of aspect ratio 5 duct flow carried

out in the present study. Note that thewhite region in upper right

half of the figure is associated with the fact the database

analyzed to produce this figure contained data up to t ¼ 1140,

and therefore TS values larger than 0 lead to TA values smaller

than 1140
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1=2ðruþruTÞ and X ¼ 1=2ðru�ruTÞ, respec-

tively. The k2 criterion [25] is based on the observation
that if one neglects the viscous and unsteady effects,

the following equation can be derived by taking the

gradient of the incompressible Navier–Stokes

equation:

S2 þ X2 ¼ � 1

q
rðrpÞ; ð8Þ

which implies that based on velocity gradient tensor

properties (S and X) one can find the regions of local

pressure minimum associated with vortex centers.

Jeong and Hussain [25] define a vortex core as a region

where S2 þ X2 has two negative eigenvalues. There-

fore, it is sufficient to sort the eigenvalues in increas-

ing order and check the sign of the second one (which

gives the k2 name to the method).

4.2 Characterization of the secondary flow

In this section we analyze the in-plane structure of the

flow in turbulent square ducts at Res;c ’ 180 and 360,

and of rectangular ducts with aspect ratios 3 and 10 at

Res;c ’ 180. The databases considered for these

analyses are described in detail in Refs. [26, 43]. In

Fig. 9 we assess the Reynolds-number effects on the

flow by analyzing streamwise velocity U, streamlines

of the mean secondary flow w, probability density

function (pdf) of coherent vortex locations obtained

with the k2 method [25] andmean streamwise vorticity

Xx. The first interesting feature of the flow at the two

Reynolds numbers is the fact that the typical sec-

ondary flow pattern with one pair of counter-rotating

vortex on each corner can be observed. This type of

cross-flow is denoted as secondary flow of second kind

[56], and it is formed by the cross-stream Reynolds

stress difference v2 � w2 and the deviatoric Reynolds

shear stress vw. It is clear from both parts of the

figure that the secondary flow basically convects

momentum from the duct centerplane towards the duct

bisector, and the iso-contours of the streamwise

velocity reflect this effect: the flow is lifted at z=h ’
0 (with the corresponding local reduction of wall shear

stress), and pushed towards the corner along the duct

bisector. It is also interesting to note that the pdf of

vortex locations follows the distribution of iso-
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Fig. 9 In-plane flow in square ducts at (top) Res;c ’ 180 and

(bottom) Res;c ’ 360. The lower half shows the streamwise

velocity U; the lower-left quadrant shows streamlines of

secondary mean flow w, where the grey lines correspond to

clockwise sense of rotation, and black lines to anticlockwise (10

contours with increments of 3:9� 10�4); the lower-right

quadrant shows the pdf of vortex location obtained with the k2
criterion [25], where grey lines indicated probability less than

60 % of the maximum probability of occurrence, and black lines

higher probability (10 contours with increments of 10 %); the

upper-left quadrant shows mean streamwise vorticity Xx, where

the grey lines indicate negative vorticity and the black lines

positive one (20 contours, with increments of 0.07); and upper-

right corner shows in grey the Xx field, and in black the

difference between the pdf of vortex locations with positive and

negative streamwise vorticity (6 contours, with increments of

16.67 %). Note that these fields were averaged in time,

streamwise direction, and over the four quadrants of the duct,

and that Ub and h were considered as velocity and length scales,

respectively
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contours of the mean flow as well, which further

supports the connection between the individual vor-

tical structures and the averaged flow features. The

two thick black lines indicate the separation between

regions with probability above and below 60 % of the

maximum probability of occurrence, and as expected

the probability decreases as the core of the flow and the

wall are approached. The corner region also exhibits a

very low probability of vortex occurrence due to the

inhibiting effect of the side wall on the turbulent cycle

taking place on the horizontal wall (and viceversa),

which leads locally to very low Re conditions. With

respect to the regions of high probability of finding

vortices, in both cases the maximum probability is

obtained at a wall-normal distance of around 40þ,
which is in agreement with the square duct simulations

by Pinelli et al. [33] up to Res ’ 300 (based on friction

velocity averaged over the four walls). Note that in the

study by Pinelli et al. [33] the pdf of streak locations

was evaluated by means of the wall shear stress time

history, whereas here we reach the same conclusion

based on the analysis of individual vortical structures.

Although the location of maximum pdf is fixed in

inner units, in outer units this location is y=h ’ 0:22

and ’ 0:11 in the low and high-Re cases respectively,

which shows the effect of a wider scale separation as

consequence of the increasing Reynolds number. This

is also manifested in the vortex distributions, where

the region of low pdf remains bounded to a narrower

region close to the wall in the higher Re case. Another

interesting effect of the Reynolds number is the fact

that the inner-scaled duct widths are ’ 360 and 720

respectively, which limits the number of streaks

present in each case since the spanwise separation

between two adjacent streaks is approximately 50þ.
With respect to the streamlines of the secondary

flow shown in Fig. 9, both Re cases exhibit similar

features although the pattern in the Res;c ’ 360 case

appears to be more stretched towards the core, as also

observed by Pinelli et al. [33]. Interestingly, the

centers of the vortices also move farther away from the

wall as Re increases, which suggests that large-scale

structures in the flow play an important role in the

formation of the secondary flow. The opposite effect is

observed in the streamwise vorticity pattern: although

qualitatively theXx fields share some features with the

w one (namely the sense of rotation from the duct

centerplane towards the bisectors). On the other hand

as Re increases, in the case of the wall vorticity

component of opposite sign, the vorticity field con-

tracts and becomes limited to a progressively smaller

region closer to the wall. The centers of the Xx regions

also move towards the wall for increasing Reynolds

numbers, which indicates that the near-wall structures

are more relevant to the streamwise vorticity field than

the large-scale motions. This is further corroborated

when analyzing the difference between the pdf of

occurrence of vortices with positive and negative

streamwise vorticity, which was also analyzed by

Pinelli et al. [33], and strongly resembles the Xx field.

Note that a total of 100 instantaneous fields of

streamwise length Lx ¼ 25h were analyzed to obtain

these results, and a larger number of fields would allow

one to detect more individual structures, which would

likely lead to better agreement with theXx field. These

results demonstrate that there is a strong connection

between the individual vortical structures preferen-

tially located close to the corner and the streamwise

vorticity field, which explains why Xx contracts for

increasing Re. It can therefore be argued that the

streamline field scales in outer units whereas the

streamwise vorticity one does it in inner units, hence

highlighting the complex and multiscale nature of the

secondary flow of second kind.

The assessment of Reynolds-number effects pre-

sented above is complemented with an analysis of the

impact of aspect ratio at Res;c ’ 180, where Fig. 10

shows the same quantities as before for AR ¼ 3 and

10. Note that in the rectangular ducts the streamwise

velocity field reflects the effect of the secondary flow

through the deformation of the iso-contours, espe-

cially at the corners. Since the Reynolds number is the

same, the region of highest probability of vortex

occurrence is y=h ’ 0:22 in both cases, corresponding

to yþ ’ 40 as in the square duct. Also note how the

much wider inner-scaled widths of these ducts

(’ 1; 080þ and ’ 3; 600þ) lead to a larger number

of streaks on the horizontal walls. Although the

geometry determines the behavior of the near-wall

streaks close to the corner, as the core of the duct is

approached the distribution is progressively more

homogeneous. The streamline pattern also exhibits an

interesting behavior with increasing aspect ratio: when

transitioning from the square duct to the AR ¼ 3 case,

the vortex closer to the corner gets slightly con-

strained, whereas the vortex positioned on the
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horizontal wall significantly expands in z, all the way

to the centerplane. Its center also moves slightly away

from the corner, from a distance of around 0.5h in the

square duct to around 0.8h. Further increase of the

aspect ratio produces a progressive development of the

vortex on the horizontal wall, up to a spanwise

distance of around 5h from the corner, although its

center appears to remain at a distance of 0.8h from the

corner. This is another manifestation of the relevance

of large-scale motions in the flow on the streamline

pattern: in this case larger scales are allowed by the

physical increase of the spanwise dimension, instead

of the larger scale disparity produced by a higher Re. A

very interesting observation can be drawn from the Xx

fields: the region closer to the corner does not get

constrained as the aspect ratio is increased, and the

region next to it expands to a much lower extent than

the streamline pattern in the AR ¼ 3 and 10 cases. In

this regard, the vorticity component along the hori-

zontal wall shows more development in z, but still not

as much as the streamlines. Note that the center of the

vorticity region closer to the corer remains constant at

a distance of around 0.1h as AR increases, and it is

quite remarkable that the region next to it, unlike the

streamline pattern, also has a fixed center located at a

distance of around 0.3h. Therefore, the larger scales

resulting from a physically wider duct do not signif-

icantly affect the fundamental behavior of the stream-

wise vorticity field, since its relevant physics are

associated with the near-wall structures. The

difference between the pdf of occurrence of vortices

with positive and negative streamwise vorticity, which

also in these cases shows strong resemblance with the

Xx field, further reinforces this conclusion. The

analysis of coherent structures was based on 334

instantaneous fields in the AR ¼ 3 case and 536 in the

AR ¼ 10 one.

5 Conclusions and discussion

Despite the impact of convergence level on the final

statistics of direct numerical simulations of wall-

bounded turbulence, there is not a consistent criterion

in the literature to allow appropriate convergence

assessments. In this study a wide range of databases of

turbulent channel and duct flows is analyzed, com-

paring numerical algorithms, starting and averaging

times and achieved level of convergence. To this end,

a convergence indicator for channel flows echannel
based on the deviation of the total shear stress from a

linear profile is defined. An extension of this criterion

for duct flows (educt) is also proposed, and since the

total shear stress does not have to be linear in ducts, we

measure the deviation with respect to the streamwise

momentum balance at the duct centerplane. Note that

this criterion applies to convergence of the duct at the

centerplane section, and not to other cross-flow effects

taking place in the spanwise direction. In order to

allow appropriate comparisons of starting and
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averaging times among simulations, we express both

in eddy turnover times and then apply a correction

based on the box size. The motivation of this

correction is to acknowledge the fact that simulations

run on larger boxes effectively contain more turbulent

structures (in the homogeneous directions), thus are

approximately equivalent to longer runs in smaller

boxes. Comparisons of the indicator and corrected

averaging time for available data in the literature lead

to consistent trends in the results, thus proving the

validity of the proposed approach.

We also present results from DNSs of a turbulent

channel flow, and three duct flows with aspect ratios 1,

3 and 5, all of them at Res;c ’ 180. The aim of these

simulations was to find optimum values of starting and

averaging times (TS and TA respectively, when

expressed in convective time units) for various flow

cases. We also find a maximum value of the spacing in

time between individual realizations, which in inner

scaling takes the value Dtþ ¼ 17. For both channel

and duct we identified the converged state as that

where the corresponding convergence indicator e took
a value of 10�3 or lower. Under this criterion, most of

the available channel-flow data in the literature can be

considered as converged, except the database by

Moser et al. [27] which is however close to conver-

gence. With respect to the duct data, none of the

literature data can be considered to be sufficiently

converged. This is in part due to the lack of an

appropriate definition of convergence for the duct, and

also due to the extremely long averaging times

required for square ducts at low Reynolds numbers.

The methodology proposed here can serve as a

baseline to design new simulations, assess the quality

of already existing ones, and more importantly can

help to interpret and scrutinize available DNS data in

the literature, in the same way as experimentalists take

into account details of the experimental setup when

interpreting a particular dataset.

It is important to note that the proposed criteria are

meant to provide a baseline comparison between

databases, and an idea of the convergence level

achieved in channel and duct-flow simulations. How-

ever, these criteria are focused on the mean momen-

tum balance, and therefore do not provide a

comprehensive assessment of convergence. For

instance, convergence in terms of e does not guarantee
convergence in other quantities of interest such as

spectra, two-point correlations or Reynolds-stress

transport equations. Therefore, the present work

should be considered as an initial effort towards

definingmore general convergence criteria. Moreover,

we also acknowledge that many research groups assess

statistical convergence in a number of ways that are

not necessarily reported in their publications: for

instance, they assess the evolution of quantities that

should be statistically zero when convergence has

been achieved (such as the mean spanwise velocity in

turbulent channel flows), or they confirm that statistics

computed from the second half of the averaging time

are consistent with those calculated in terms of the first

half (which prevents from statistics polluted by

inadequately stationary data). Other remarkable

efforts toward establishing good practices in statistical

convergence are the statistical error analyses by Oliver

et al. [20] and Hoyas and Jiménez [21], or the

documentation of residuals in the mean momentum

balance and the Reynolds-stress transport equations in

the simulations by Lee and Moser [4].

In a second part of the study, the in-plane structure

of the flow in turbulent ducts is assessed by analyzing

square ducts at Res;c ’ 180 and 360 and rectangular

ducts with aspect ratios 3 and 10 at Res;c ’ 180

[26, 43]. The effect of the secondary flow of second

kind on the mean flow, i.e., convection of momentum

from the duct centerplane to the bisectors, is observed

in the iso-contours of streamwise velocity. Identifica-

tion of coherent vortices using the k2 criterion [25]

shows that near-wall streaks are located in all the duct

cases at a wall-normal distance of yþ ’ 40 as in Pinelli

et al. [33], and the probability of occurrence of a

vortex at the corner is very low due to the inhibiting

effect of the side wall. Moreover, we find that the

streamline pattern becomes stretched towards the duct

core at higher Re and towards the duct centerplane at

higher AR; the centers of the vortices also move away

from the wall in both cases, which highlights the

relevant role of large-scale motions on the streamline

pattern of the secondary flow. On the other hand, the

streamwise vorticity field becomes compressed

towards the duct corners as Re increases, and its

changes are comparatively small for increasing AR.

The connection between the Xx field and the near-wall

structures is further illustrated by comparing vorticity

contours with the difference between the pdf of

occurrence of vortices with positive and negative
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streamwise vorticity. These conclusions, i.e., outer-

scale scaling ofw and inner-scale scaling ofXx, extend

the findings by Pinelli et al. [33] to higher Reynolds

numbers, and more importantly to another kind of

large-scale motions in the flow through the consider-

ation of wider ducts. They also highlight the complex

and multiscale nature of the secondary flow of second

kind in turbulent duct flows.
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6. Sillero JA, Jiménez J, Moser RD (2013) One-point statistics

for turbulent wall-bounded flows at reynolds numbers up to

dþ ’ 2000. Phys Fluids 25:105102

7. Wu X, Moin P (2008) A direct numerical simulation study

on the mean velocity characteristics in turbulent pipe flow.

J Fluid Mech 608:81

8. El Khoury GK, Schlatter P, Noorani A, Fischer PF, Breth-

ouwer G, Johansson AV (2013) Direct numerical simulation

of turbulent pipe flow at moderately high reynolds numbers.

Flow Turbul Combust 91:475
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37. Flores O, Jiménez J (2010) Hierarchy of minimal flow units

in the logarithmic layer. Phys Fluids 22:071704
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