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Abstract
In the problem of asymptotic binary i.i.d. state discrimination, the optimal asymptotics
of the type I and the type II error probabilities is in general an exponential decrease
to zero as a function of the number of samples; the set of achievable exponent pairs is
characterized by the quantumHoeffding bound theorem.A super-exponential decrease
for both types of error probabilities is only possible in the trivial case when the two
states are orthogonal and hence can be perfectly distinguished using only a single copy
of the system. In this paper, we show that a qualitatively different behavior can occur
when there is correlation between the samples. Namely, we use gauge-invariant and
translation-invariant quasi-free states on the algebra of the canonical anti-commutation
relations to exhibit pairs of states on an infinite spin chain with the properties that (a)
all finite-size restrictions of the states have invertible density operators and (b) the
type I and the type II error probabilities both decrease to zero at least with the speed
e−nc log n with some positive constant c, i.e., with a super-exponential speed in the
sample size n. Particular examples of such states include the ground states of the
X X model corresponding to different transverse magnetic fields. In fact, we prove
our result in the setting of binary composite hypothesis testing, and hence, it can
be applied to prove super-exponential distinguishability of the hypotheses that the
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transverse magnetic field is above a certain threshold vs. that it is below a strictly
lower value.

Keywords State discrimination · Fermionic quasi-free states · XX model · Rényi
divergences

Mathematics Subject Classification 42A99 · 46N50 · 62F03

1 Introduction

In the problem of simple binary state discrimination, an experimenter is presented
with a quantum system that is either in some state ω(0) or in another state ω(1). The
experimenter’s task is to guess which one the true state of the system is, based on
measurements on the system. It is easy to see that even themost elaboratemeasurement
and classical post-processing scheme cannot outperform single 2-outcome (binary)
measurements when the goal is to minimize the probability of an erroneous decision.
More precisely, there are two types of error probabilities to consider: erroneously
identifying the state as ω(1) (type I error), or erroneously identifying the state as ω(0)

(type II error), and the goal is to minimize some combination of the two. It is easy
to see that (in the finite-dimensional case, at least), perfect discrimination (i.e., when
both error probabilities are zero) is possible if and only if the density operators of the
two states have orthogonal supports.

The error probabilities can be reduced if the experimenter has access to multi-
ple identical copies of the system, and in the asymptotic analysis of the problem
one is interested in the achievable asymptotic behaviors of the two error probabil-
ities along all possible sequences of binary measurements (tests) as the number of
copies tends to infinity. In general, the best achievable asymptotics is an exponen-
tial decrease to zero for both error probabilities; the set of the achievable exponent
pairs is described by the quantum Hoeffding bound theorem [4, 12, 26]. Faster (super-
exponential) decrease is possible if and only if the supports of the states are different.
For instance, if suppω(1) � suppω(0), then there exists a test sequence along which
the type I error is constant zero (hence its exponent is +∞), while the type II error
decreases exponentially fast (with the exponent being the Rényi zero-divergence of
ω(0) and ω(1)). A faster than exponential decrease for both error probabilities is pos-
sible if and only if the supports are orthogonal, in which case both errors can be made
zero trivially for any finite number of copies.

The above arewell-known in the i.i.d. (independent and identically distributed) case,
i.e., when all the samples are prepared in the same state, and there is no correlation
between the different samples. Correlated scenarios can be conveniently described
using the concept of the C∗-algebra of an infinite spin chain, CZ = ⊗k∈ZB(H), where
H is a finite-dimensional Hilbert space describing a single system. In this case, the
candidate statesω(0) andω(1) can be described by positive linear functionals on CZ that
take 1 on the identity; their restrictions to any subalgebra⊗k∈�B(H) corresponding to
a finite subset� of samples (equivalently, a finite part of the chain) can be described by
density operators in the usualway.A state on the infinite chain is translation-invariant if
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the density operator of any finite subsystem� is the same as that of any of its translates;
in particular, the single-site density operators are all the same (i.e., the outcomes of
the same measurement performed at different sites are identically distributed). In this
picture, a measurement on n consecutive samples is described by a measurement on a
length n part of the chain, and the asymptotics is studied in the settingwhere this length
is allowed to go to infinity.Obviously, error exponents aremore difficult to determine in
the correlated scenario, but rather general results are available in the setting of Stein’s
lemma, where one of the errors is not required to decrease exponentially [8], and in
the setting of the Hoeffding bound for thermal states of translation-invariant finite-
range Hamiltonians, and more generally, for states that satisfy a certain factorization
property [17]. In these cases, however, the entropic quantities (Umegaki- and quantum
Rényi relative entropies) characterizing the achievable exponent pairs are given by
regularized formulas and cannot be explicitly computed in general.

A particular class of correlated states where explicit formulas are available can be
obtained from translation-invariant and gauge-invariant quasi-free states on the algebra
of canonical anti-commutation relations (CAR algebra). Such a state is specified by a
measurable function on [0, 2π) with values in [0, 1], called the symbol of the state;
see Sect. 2 for details. The achievable exponent pairs were determined for a pair of
such states in [25], with explicit expressions for the relevant entropic quantities, in the
case where the symbols of the two states, denoted by q̂ and r̂ , are bounded away from
0 and 1 in the sense that for some η > 0, η ≤ q̂(x), r̂(x) ≤ 1− η for all x ∈ [0, 2π).
In this case, the regularized quantum Rényi α-divergences of the two states are finite
for every α > 0, and the best achievable asymptotics is an exponential decay for both
error probabilities.

Our main contribution in this paper is showing that for certain pairs of quasi-free
states, super-exponential discrimination is possible. More precisely, we show that if
the symbols q̂ and r̂ are such that there exists a non-degenerate interval on which q̂ is
constant 0 and r̂ is constant 1, then there exists a sequence of tests along which both
error probabilities decrease at least with the speed e−nc log n , where n is the sample
size. In the same time, unless q̂ is constant zero and r̂ is constant 1 (up to sets of
measure zero), then all the local densities of both states are invertible, and hence, it is
not only impossible to make both error probabilities vanish for a finite sample size,
but if one of the error probabilities is made zero, then the other is necessarily equal to
1. This is very different from what can be seen in the i.i.d. case, and to the best of our
knowledge, this is the first time that such a behavior is presented in the literature.

The structure of the paper is as follows: In Sect. 2.1, we review the necessary
basics about quasi-free states on the CAR algebra. In Sect. 2.2, we explain the notions
of error exponents and super-exponential distinguishability for translation-invariant
states on the spin chain and on the CAR algebra. In Sect. 3, we prove our main result
described above. In fact, we state and prove a more general result in the framework of
composite state discrimination, showing super-exponential distinguishability of two
sets of quasi-free states with invertible local density operators. In Sect. 4, we give
various characterizations of super-exponential distinguishability of states in terms of
regularized divergences.
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2 Preliminaries

2.1 Quasi-free states on the CAR algebra

Here we summarize the necessary basics about quasi-free states on the CAR algebra.
For more details and proofs, we refer to [1, 9, 10, 30, 33].

For a complex Hilbert space H, we will denote the set of bounded operators on H
by B(H) and use the notation T (H) := {T ∈ B(H) : 0 ≤ T ≤ I } for the set of tests
onH.

For vectors ϕ1, . . . , ϕk in a complex Hilbert space H, let

ϕ1 ∧ . . . ∧ ϕk := 1√
k!
∑

σ∈Sk

ε(σ )ϕσ(1) ⊗ . . . ⊗ ϕσ(k)

denote their anti-symmetrized tensor product, where Sk stands for the set of permu-
tations of k elements and ε(σ ) for the sign of the permutation σ . For any k ∈ N \ {0},
the k-th anti-symmetric tensor power of H is

H∧k := span{ϕ1 ∧ . . . ∧ ϕk : ϕi ∈ H, i = 1, . . . , k},

where the overline denotes the closure, and we define H∧0 := C. The Hilbert space
of a fermionic system with single-particle Hilbert spaceH is the anti-symmetric Fock
space


(H) := ⊕
k∈N

H∧k,

whereH∧k = {0} for every k > dimH. For an operator A ∈ B (H1,H2), let A∧k :=
A⊗k
∣∣H∧k

1
as an operator in B(H∧k

1 ,H∧k
2 ), and

AF := ⊕
k∈N

A∧k,

with A∧0 := A⊗0 := 1 ∈ B(C). Clearly, AF is bounded if and only if
min{dimH1, dimH2} < +∞ or ‖A‖ ≤ 1. If V : H1 → H2 is an isome-
try/unitary, then VF is an isometry/unitary from 
(H1) into/onto 
(H2) with the
property VFH∧k

1 ⊆ H∧k
2 .

For each ϕ ∈ H, the corresponding creation operator c(ϕ) is the unique bounded
linear extension of the map

ϕ1 ∧ . . . ∧ ϕk 
→ ϕ ∧ ϕ1 ∧ . . . ∧ ϕk, ϕ1, . . . , ϕk ∈ H,

and the corresponding annihilation operator is its adjoint, a(ϕ) := c(ϕ)∗. These
operators satisfy the canonical anti-commutation relations (CARs),

{a(ϕ), a(ψ)} = 0,
{
a(ϕ), a∗(ψ)

} = 〈ϕ,ψ〉 I , ϕ, ψ ∈ H. (2.1)
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The C*-algebra generated by {a(ϕ) : ϕ ∈ H} is called the algebra of the canoni-
cal anti-commutation relations (or CAR-algebra) corresponding to the single-particle
Hilbert space H and is denoted by CAR (H). Note that ϕ 
→ c(ϕ) is complex lin-
ear and ϕ 
→ a(ϕ) is complex anti-linear. Thus, if H is separable and (ei )

dimH
i=1 is

an orthonormal basis (ONB) in it, then CAR (H) is the closure of the linear span of
the identity and all the multinomials of the form a(ei1)

∗ . . . a(ein )
∗a(e jm ) . . . a(e j1),

i1 < . . . < in , j1 < . . . < jm . For any isometry/unitary V : H1 → H2, VF (·)V ∗
F

is a homomorphism/isomorphism from CAR (H1) to CAR (H2) with the property
VF a(ϕ)V ∗

F = a(V ϕ), ϕ ∈ H1. The even part CAR (H)+ of CAR (H) is the subalge-
bra left invariant by the parity automorphism π(·) := (−I )F (·)(−I )F . This is exactly
the closure of the linear span of all multinomials with an even number of terms (see
Appendix 1 for more details).

IfH is finite-dimensional and e1, . . . , ed is an orthonormal basis inH, then {ei1 ∧
. . . ∧ eik : 1 ≤ i1 < . . . < ik ≤ d} is an ONB in H∧k ; in particular, dimH∧k = (dk

)

and dimF(H) = 2dimH. Let |0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
be the canonical ONB of C2.

Then,

Ue : ei1 ∧ . . . ∧ eik 
→ ⊗d
j=1|x j 〉, x j :=

{
1, j ∈ {i1, . . . , ik},
0, otherwise,

(2.2)

is a unitary from 
(H) to (C2)⊗d , and it is easy to verify that

Uea(e j )
∗U∗

e = σ3 ⊗ . . . ⊗ σ3︸ ︷︷ ︸
j−1 times

⊗
[
0 0
1 0

]
⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸

d− j times

, (2.3)

where σ3 := σz :=
[
1 0
0 −1

]
is the Pauli z operator. The map Ue(·)U∗

e : B(F(H)) =
CAR (H) → B((C2)⊗d) = B(C2)⊗d is called the Jordan–Wigner isomorphism cor-
responding to the given ONB. The particle number operator is

NH : =
d⊕

k=0
k IH∧k =

d∑

i=1

a(ei )
∗a(ei )

= U∗
e

⎛

⎝
d∑

i=1

I ⊗ . . . ⊗ I︸ ︷︷ ︸
i−1 times

⊗
[
0 0
0 1

]
⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸

d−i times

⎞

⎠Ue.

The eigen-values of NH are 0, . . . , d, with spectral projections

P NH
k = 0⊕ . . . ⊕ 0︸ ︷︷ ︸

k times

⊕IH∧k ⊕ 0⊕ . . . ⊕ 0︸ ︷︷ ︸
d−k times
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= U∗
e

⎛

⎝
∑

�⊆[d], |�|=k

(
⊗
i∈�

[
0 0
0 1

])
⊗
(

⊗
i∈[d]\�

[
1 0
0 0

])⎞

⎠Ue, (2.4)

where [d] := {1, . . . , d}. Note that NH is defined in a basis-independent way, and the
equalities above are valid for any ONB.

A state on CAR (H) is a positive linear functional that takes the value 1 on I .
For any positive semi-definite (PSD) operator Q ∈ B(H) with Q ≤ I , there exists a
unique state ωQ on CAR (H) (called the gauge-invariant quasi-free state with symbol
Q) with the property

ωQ
(
a(ϕ1)

∗ . . . a(ϕn)∗a(ψm) . . . a(ψ1)
) = δmn det

{〈ψi |Qϕ j 〉
}n

i, j=1 . (2.5)

It is easy to verify that when H is finite-dimensional, the density operator ω̂Q of ωQ

can be explicitly given as:

ω̂Q =
d∏

j=1

(
q j a(e j )

∗a(e j ) + (1− q j )a(e j )a(e j )
∗) = U∗

e

(
d⊗

j=1

[
1− q j 0

0 q j

])
Ue,

(2.6)

where Q =∑d
j=1 q j

∣∣e j
〉〈

e j
∣∣ is any eigen-decomposition of Q, and Ue is the unitary

corresponding to the ONB (e j )
d
j=1 as in (2.2). Note that for all 1 ≤ i1 < . . . <

ik ≤ d, ei1 ∧ . . . ∧ eik is an eigen-vector of ω̂Q with eigen-value
(∏

j∈{i1,...,ik } q j

)
·

(∏
j∈[d]\{i1,...,ik }(1− q j )

)
. This implies immediately that if 1 is not an eigen-value of

Q then ω̂Q can be written as

ω̂Q = det(I − Q)

(
Q

I − Q

)

F
.

Quasi-free states emerge as equilibrium states of non-interacting fermionic systems.
For instance, if the single-particle Hamiltonian H of a system of non-interacting
fermions is such that e−βH is trace-class then the Gibbs state of the system at inverse

temperature β is the quasi-free state with symbol Q = e−βH

I+e−βH (see, e.g., [30, Propo-
sition 5.2.23]).

Consider now a fermionic chain with a single mode at each site. The single-particle
Hilbert space of this system is H = �2(Z), the standard basis of which we denote by
{1{k} : k ∈ Z}. The translation operator is the unitary U trans = ∑k∈Z

∣∣1{k+1}
〉〈
1{k}
∣∣,

and τ(·) := U trans
F (·)(U trans)∗F gives an automorphism of CAR

(
�2(Z)
)
with the

property τ(a(ϕ)) = a(U transϕ), ϕ ∈ H. A quasi-free state ωQ is called translation-
invariant if ωQ ◦τ = ωQ , which is easily seen to be equivalent toU transQ = QU trans,
i.e., the translation-invariance of the symbol Q. For instance, in the above exam-
ple a translation-invariant single-particle Hamiltonian H yields a translation-invariant
quasi-free state as the equilibrium state of the system. Translation-invariant operators
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on �2(Z) commute with each other, and they are simultaneously diagonalized by the
Fourier transformation:

F : �2(Z) → L2([0, 2π)), F 1{k} := χk, χk(x) := eikx

√
2π

, x ∈ [0, 2π), k ∈ Z.

That is, every translation-invariant operator A arises in the form A = F∗ Mâ F ,
where Mâ denotes the multiplication operator by a bounded measurable function â
on [0, 2π). As a consequence, the matrix entries of translation-invariant operators in
the canonical ONB are constants along diagonals; more explicitly, for any translation-
invariant operator A ∈ B(�2(Z)),

Ak, j :=
〈
1{k}, A1{ j}

〉 = 1

2π

∫

[0,2π)

e−i(k− j)x â(x) dx, k, j ∈ Z. (2.7)

A measurement on a subsystem corresponding to modes at the sites 〈n〉 :=
{0, . . . , n − 1} has measurement operators in the C∗-subalgebra An ⊆ CAR

(
�2(Z)
)

generated by {a(ϕ) : ϕ ∈ Hn},

Hn := span{1{k} : k ∈ 〈n〉} ⊆ �2(Z).

This subalgebra is naturally isomorphic to CAR
(
C〈n〉). It is easy to see that if the state

of the infinite chain is given by a quasi-free state with symbol Q, then the statistics of
any such local measurement is given by the quasi-free state ωQn on CAR

(
C〈n〉) with

symbol Qn := V ∗
n QVn , where Vn is the natural embedding of C〈n〉 into �2(Z).

Lemma 2.1 Let â : [0, 2π) → [0,+∞) be a nonnegative bounded measurable func-
tion, and let A = F∗ Mâ F be the corresponding translation-invariant operator on
�2(Z). The following are equivalent:

(i) 0 is an eigen-value of V ∗
n AVn for some n ∈ N;

(ii) 0 is an eigen-value of V ∗
n AVn for every n ∈ N;

(iii) A = 0;
(iv) â is equal to 0 almost everywhere.

Proof The equivalence (iv) ⇐⇒ (iii) is obvious, as are the implications (iii) �⇒
(ii) �⇒ (i), and hence, we only need to prove (i) �⇒ (iv). Assume therefore that
V ∗

n AVnψ = 0 for some ψ ∈ C〈n〉 \ {0}. Then

0 = 〈ψ, V ∗
n AVnψ

〉 = ‖A1/2Vnψ‖2 = ‖F A1/2 F∗ F Vnψ‖2 = ‖Mâ1/2 F Vnψ‖2
= ‖â1/2 F Vnψ‖2,

whence â1/2 F Vnψ = 0 almost everywhere. SinceF Vnψ is a nonzero trigonometric
polynomial that can only have finitely many zeros, this implies that â is 0 almost
everywhere. ��
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Corollary 2.2 Let Q = F∗ Mq̂ F ∈ B(�2(Z)) be the symbol of a translation-invariant
quasi-free state. If q̂ is neither almost everywhere zero nor almost everywhere 1, then
for every n ∈ N, ω̂Qn is an invertible density operator on 
(C〈n〉).

Proof Applying Lemma 2.1 to â := q̂ yields that 0 is not an eigen-value of Qn for
any n ∈ N. Applying Lemma 2.1 to â := 1− q̂ yields that 1 is not an eigen-value of
Qn , either, for any n ∈ N. Thus, the assertion follows from (2.6). ��

Finally, a symbol Q on C〈n〉 is translation-invariant (or rotation-invariant), if it
commutes with the n-dimensional translation unitary U trans

n = ∑n−1
k=0

∣∣1{k+1}
〉〈
1{k}
∣∣,

where the addition is modulo n. Such operators are also called circular, and are
simultaneously diagonalized by the n-dimensional discrete Fourier transformation

Fn : C〈n〉 → C〈n〉, Fn 1{k} := 1√
n

n−1∑

j=0

ei 2πn k j1{ j}, k ∈ 〈n〉. (2.8)

That is, U trans
n Q = QU trans

n , 0 ≤ Q ≤ I , if and only if Q = F∗
n Mq̂ Fn for some

q̂ ∈ [0, 1]〈n〉.

2.2 Asymptotic binary state discrimination

For a finite-dimensional Hilbert spaceH and every� ⊆ Z, let C�(H) := ⊗i∈�B(H).
Every A ∈ C�(H) is naturally identified with A⊗ (⊗i∈�′\� I

) ∈ C�′(H) for �′ ⊇ �,
which gives an equivalence relation∼ on∪�⊆Zfinite C�(H). Then, the operator norms
on the individual C�(H) naturally define a norm on

( ⋃

�⊆Zfinite

C�(H)

)/

∼
(2.9)

which satisfies the C∗-identity ‖X∗X‖ = ‖X‖2. The completion of (2.9) with respect
to this norm gives a C∗-algebra called the infinite spin chain algebra with single-site
finite-dimensional Hilbert space H, which we denote by

CZ(H) := ⊗k∈ZB(H).

A translation-invariant state ω on the infinite spin chain is specified by density
operators ω� in C�(H) such that Tr�′\� ω�′ = ω� and ω�+k = ω� for any finite
� ⊆ Z and k ∈ Z. Equivalently, ω is a positive linear functional on the C∗-algebra
CZ(H),withω(I ) = 1, such that for the translation automorphism τ wehaveω◦τ = ω,
and the ω� are the density operators of its restrictions onto C�(H).

Given two sets of translation-invariant states �(0) = {ω(0,i)}i∈I and �(1) =
{ω(1, j)} j∈J , a state discrimination protocol of sample size n to decide if the true state
of the system belongs to �(0) (null-hypothesis H0) or to �(1) (alternative hypothesis
H1), is specified by a test Tn ∈ C[1,n](H) with 0 ≤ Tn ≤ I , representing a mea-
surement with outcomes 0 and 1, with corresponding measurement operators Tn and
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I −Tn , respectively. If the outcome of the measurement is k, the experimenter accepts
hypothesis Hk to be true. The (worst-case) type I error probability of incorrectly reject-
ing H0, and the type II error probability of incorrectly accepting H0, respectively, are
given by:

αn(Tn) := sup
i∈I

Tr ω(0,i)
[1,n](I − Tn), βn(Tn) := sup

j∈J
Tr ω(1, j)

[1,n]Tn .

A test Tn is projective, if T 2
n = Tn . Given a sequence of tests �T = (Tn)n∈N, with

Tn ∈ C[1,n](H), n ∈ N, the corresponding type I and type II error exponents are
defined, respectively, as

αexp( �T ) := lim inf
n→+∞−1

n
logαn(Tn), βexp( �T ) := lim inf

n→+∞−1

n
logβn(Tn). (2.10)

We say that �(0) and �(1) can be super-exponentially distinguished, if there exists a
test sequence �T along which αexp( �T ) = +∞ = βexp( �T ).

As it was shown in [2] (see also [23, Section 5.3] for a detailed exposition),
every translation-invariant gauge-invariant quasi-free state ω on CAR

(
�2(Z)
)
can

be mapped into a translation-invariant state ω̃ on the spin chain CZ(C2) with the
preservation of the locality structure. We give a brief exposition of this in Appendix 1.
In particular, given two sets �(0) = {ω(0,i)}i∈I and �(1) = {ω(1, j)} j∈J of such
states on CAR

(
�2(Z)
)
, and numbers α, β ∈ [0, 1], there exists a (projective) test Tn ∈

C[1,n](C2) such that supi∈I Tr ω̃(0,i)
[1,n](I−Tn) = α, sup j∈J Tr ω̃(1, j)

[1,n]Tn = β, if and only

if there exists a (projective) test Sn ∈ CAR (Hn) such that supi∈I ω(0,i)(I − Sn) = α,
sup j∈J ω(1, j)(Sn) = β. Hence, in order to explore the achievable error exponent pairs

for the pair �̃(0) = {ω̃(0,i)}i∈I , �̃(1) = {ω(1, j)} j∈J , one can work directly on the CAR
algebra with �(0) and �(1). Thus, we introduce the following:

Definition 2.3 Let {q̂i }i∈I and {r̂ j } j∈J be measurable functions from [0, 2π) to
[0, 1], defining the translation-invariant quasi-free states �Q := {ωQ(i)}i∈I , �R :=
{ωR( j)} j∈J on CAR

(
�2(Z)
)
. We say that �Q and �R can be super-exponentially

distinguished, if there exists a sequence Tn ∈ CAR (Hn), n ∈ N, such that

lim inf
n→+∞−1

n
log sup

i∈I
ωQ(i) (I − Tn) = +∞ = lim inf

n→+∞−1

n
log sup

j∈J
ωR( j) (Tn).

By the above, the sets of states �Q and �R on the CAR algebra are super-
exponentially distinguishable if and only if so are the sets of states �̃Q and �̃R on the
spin chain.

3 Super-exponential distinguishability

In this section, we prove the main result of the paper:
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Theorem 3.1 Let {q̂i }i∈I and {r̂ j } j∈J be measurable functions from [0, 2π) to
[0, 1], defining the translation-invariant quasi-free states �Q := {ωQ(i)}i∈I , �R :=
{ωR( j)} j∈J on CAR

(
�2(Z)
)
. If there exists an interval [μ, ν] ⊆ [0, 2π) of positive

length such that q̂i is constant 0 and r̂ j is constant 1 on it for every i ∈ I and j ∈ J ,
then �Q and �R are super-exponentially distinguishable.

If, moreover, q̂i is not almost everywhere 0 and r̂ j is not almost everywhere 1 on
[0, 2π) for every i ∈ I and j ∈ J , then their local densities ω̂

Q(i)
n

and ω̂
R( j)

n
, n ∈ N,

are all invertible.

In fact, the above theorem follows immediately from a more detailed statement
given in Theorem 3.8, which we prove in several steps.

The main intuition behind the proof is the following. (For simplicity, we take |I| =
|J | = 1, Q(1) =: Q, R(1) =: R.) Although the symbols Q, R ∈ B(�2(Z)) commute
with each other, this is not true anymore for their restrictions Qn and Rn onto C〈n〉,
unless Q or R is a constant multiple of the identity. On the other hand, if instead
of restrictions of translation-invariant symbols onto finite-dimensional subspaces we
considered translation-invariant symbols Qn, Rn on the single-particle Hilbert space
C〈n〉 of a length n finite chain (with periodic boundary conditions, or equivalently,
rotation-invariant symbols on a finite ring), then any two such symbolswould commute
with each other and would be simultaneously diagonalized by the discrete Fourier
transformation; see the end of Sect. 2.1. Now, the analogous condition to the one
in Theorem 3.1 in the finite-dimensional case would be that the functions q̂n, r̂n ∈
C〈n〉 satisfy q̂n(k) = 0 = 1 − r̂n(k), k = l + 1, . . . , l + m for some l, m ∈ C〈n〉
(modulo n). Hence, for the projection En := F∗

n
∑l+m

k=l+1

∣∣1{k}
〉〈
1{k}
∣∣Fn , we would

have Tr En Qn = 0 = Tr En(I − Rn). A key technical ingredient of our proof, given
in Lemma 3.2 and Corollary 3.3, is that for any such projection, one can construct a
test, using the spectral decomposition of the particle number operator on the subspace
ran En , such that the type I and type II error probabilities are upper bounded by a
simple expression involving only Tr En , Tr En Qn and Tr En(I − Rn); in particular, if
the latter two are 0 then so are the error probabilities. When Qn and Rn are the non-
commuting restrictions of Q, R ∈ B(�2(Z)), we can still follow the above strategy,
where instead of making the upper bounds exactly zero, we canmake them sufficiently
small, as shown in Lemmas 3.5, 3.6 and 3.7.

Lemma 3.2 Let H be a finite-dimensional Hilbert space, and

SH :=
�dimH/2�∑

k=0

P NH
k . (3.1)

For any A ∈ B(H) with 0 ≤ A ≤ I ,

ωA(I − SH) ≤
(
8Tr A

dimH

) dimH
2

, ωA(SH) ≤
(
8Tr(I − A)

dimH

) dimH
2

.
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Proof Let d := dimH, S := SH, and

A =
d∑

i=1

ai |ei 〉〈ei | ,

be an eigen-decomposition of A. By (2.4),

S =
�d/2�∑

k=0

U∗
e

⎛

⎝
∑

�⊆[d], |�|=k

(

⊗
j∈�

[
0 0
0 1

])

⊗
(

⊗
j∈[d]\�

[
1 0
0 0

])⎞

⎠Ue. (3.2)

By (2.6),

ω̂A = U∗
e

(
d⊗

j=1

[
1− a j 0

0 a j

])
Ue ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U∗
e

(

⊗d
j=1

[
1 0

0 a j

])
Ue,

U∗
e

(

⊗d
j=1

[
1− a j 0

0 1

])
Ue.

(3.3)

Using (3.2) and the first bound in (3.3), we get

ωA(I − S) = Tr ω̂A(I − S)

≤ Tr
d∑

k=�d/2�+1

∑

�⊆[d], |�|=k

(

⊗
j∈�

[
0 0
0 a j

])

⊗
(

⊗
j∈[d]\�

[
1 0
0 0

])

=
d∑

k=�d/2�+1

∑

�⊆[d], |�|=k

∏

j∈�

a j ≤
d∑

�d/2�+1

∑

�⊆[d], |�|=k

(∑
j∈� a j

k

)k

,

where the second inequality follows from the geometric–arithmetic mean inequality.
Using that

(∑
j∈� a j

k

)k

≤
(∑

j∈� a j

k

)d/2

≤
(∑

j∈� a j

d/2

)d/2

≤
(
Tr A

d/2

)d/2

for every k ≥ �d/2� + 1, we get

ωA(I − S) ≤
(
Tr A

d/2

)d/2 d∑

k=�d/2�+1

∑

�⊆[d], |�|=k

1

︸ ︷︷ ︸
=(d

k)

≤ 2d
(
Tr A

d/2

)d/2

=
(
8Tr A

d

)d/2

.
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Similarly, using (3.2) and the second bound in (3.3) yields

ωA(S) = Tr ω̂A S

≤ Tr
�d/2�∑

k=0

∑

�⊆[d], |�|=k

(

⊗
j∈�

[
0 0
0 1

])

⊗
(

⊗
j∈[d]\�

[
1− a j 0

0 0

])

=
�d/2�∑

k=0

∑

�⊆[d], |�|=k

∏

j∈[d]\�
(1− a j ) ≤

�d/2�∑

k=0

∑

�⊆[d], |�|=k

(∑
j∈[d]\�(1− a j )

d − k

)d−k

.

Using that

(∑
j∈[d]\�(1− a j )

d − k

)d−k

≤
(∑

j∈[d]\�(1− a j )

d − k

)d−d/2

≤
(∑

j∈[d]\�(1− a j )

d − d/2

)d/2

≤
(
Tr(I − A)

d − d/2

)d/2

for all k ≤ �d/2�, we get

ωA(S) ≤
(
Tr(I − A)

d/2

)d/2 �d/2�∑

k=0

∑

�⊆[d], |�|=k

1

︸ ︷︷ ︸
=(d

k)

≤ 2d
(
Tr(I − A)

d/2

)d/2

=
(
8 Tr(I − A)

d

)d/2

.

��
Corollary 3.3 Let H be a Hilbert space. For every nonzero finite-rank projection E on
H, there exists an even projection T ∈ span{a(ϕ) : ϕ ∈ ran E} such that for every
A ∈ B(H), 0 ≤ A ≤ I ,

ωA(I − T ) ≤
(
8Tr E A

Tr E

) Tr E
2

, ωA(T ) ≤
(
8Tr E(I − A)

Tr E

) Tr E
2

. (3.4)

Proof Let VE be the identical embedding of ran E into H. For any even projection
S ∈ CAR (ran E), T := (VE )F S(VE )∗F is an even projection in span{a(ϕ) : ϕ ∈
ran E}, and ωA(I − T ) = ωAE (I − S), ωA(T ) = ωAE (S), where AE := V ∗

E AVE .
Noting that Tr AE = Tr AE , Tr(Iran E − AE ) = Tr E(I − A), the assertion follows
from Lemma 3.2 by choosing S := Sran E as in (3.1). ��
Corollary 3.4 Let {Q(i)}i∈I , {R( j)} j∈J ⊆ B

(
�2(Z)
)

be symbols of quasi-free states
on CAR

(
�2(Z)
)
. Assume that there exists a sequence of nonzero projections En on

C〈n〉, n ∈ N, such that

lim inf
n→+∞

Tr En

n
log

Tr En

supi∈I Tr En Q(i)
n

= +∞,
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Super-exponential distinguishability... Page 13 of 25 7

lim inf
n→+∞

Tr En

n
log

Tr En

sup j∈J Tr En(I − R( j)
n )

= +∞.

Then �Q and �R can be super-exponentially distinguished by even projective tests.

Proof Let Tn be the projection corresponding to Vn En V ∗
n as in Corollary 3.3, where

Vn is the canonical embedding of C〈n〉 into �2(Z). Since Tr En = Tr Vn En V ∗
n ,

Tr En Q(i)
n = Tr Vn En V ∗

n Q(i), Tr En(I − R( j)
n ) = Tr Vn En V ∗

n (I − R( j)), (3.4) yields

−1

n
logωQ(i) (I − Tn) ≥ Tr En

2n
log

Tr En

8Tr En Q(i)
n

, (3.5)

−1

n
logωR( j) (Tn) ≥ Tr En

2n
log

Tr En

8Tr En(I − R( j)
n )

. (3.6)

The statement follows by taking the infima over the respective index sets, and then,
the liminf in n in the above inequalities, and noting that 0 ≤ Tr En

2n log 8 ≤ 1
2 log 8. ��

Hence, in order to complete the proof of Theorem 3.1, it is sufficient to show that if
�Q and �R are as in Theorem 3.1, then a sequence of projections as in Corollary 3.4
exists. For this, we will need some simple facts about Fourier transforms, see, e.g.,
[32] for details.

In particular, recall that the n-th partial sum of the Fourier series of an integrable
function on [0, 2π) is given by

(Sn f )(x) :=
n∑

k=−n

eikx 1

2π

∫

[0,2π)

e−ikt f (t) dt = ( f �Dn)(x),

where Dn(x) := 1
2π

∑n
k=−n eikx = 1

2π
sin((n+1/2)x)

sin(x/2) is the Dirichlet kernel, and �

stands for the convolution. The n-th Césaro mean of the partial sums is

(Ŝn f )(x) := 1

n

n−1∑

k=0

Sn f (x) =
n−1∑

k=−n+1

n − |k|
n

eikx 1

2π

∫

[0,2π)

e−ikt f (t) dt = ( f �Fn)(x),

where Fn(x) := 1
n

∑n−1
k=0 Dn(x) = 1

2πn
sin2(nx/2)
sin2(x/2)

is the Fejér kernel.

The following may be known; however, as we have not found a reference in the
literature, we provide a detailed proof. Recall that Vn is the canonical embedding of
C〈n〉 into �2(Z).

Lemma 3.5 Let â be a bounded measurable complex-valued function on [0, 2π) and
A = F∗ Mâ F . Then, the diagonal matrix entries of Fn V ∗

n AVn F∗
n are given by:

(Fn V ∗
n AVn F∗

n)k,k = (Ŝnâ)

(
2πk

n

)
, k ∈ 〈n〉.
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Proof Let An := V ∗
n AVn . By (2.7) and (2.8),

(Fn V ∗
n AVn F∗

n)k,k =
n−1∑

j,l=0

(Fn)k, j (V ∗
n AVn) j,l(F∗

n)l,k

= 1

n

n−1∑

j,l=0

ei 2πn k j e−i 2πn kl 1

2π

∫

[0,2π)

e−i( j−l)x â(x) dx

=
n−1∑

m=−n+1

n − |m|
n

ei 2πn km 1

2π

∫

[0,2π)

e−imx â(x) dx

= (Ŝnâ)

(
2πk

n

)
,

where in the third equality above we replaced the summation over j, l with a single
summation over m = j − l. ��

Lemma 3.6 Let â : [0, 2π) → [0, 1] be a measurable function. Assume that â is
constant c on some interval [μ, ν] ⊆ [0, 2π). Then for every 0 < δ < (ν −μ)/2, and
every x ∈ [μ + δ, ν − δ],

∣∣(Ŝnâ)(x) − c
∣∣ ≤ γδ

n
,

where γδ := 1
sin2 δ

2
.

Proof We may extend â periodically to R. Then

(Ŝnâ)(x) − c = (â�Fn)(x) − c =
π∫

−π

Fn(y)
[
â(x − y) − c

]
dy

for every x . If x ∈ [μ + δ, ν − δ], then
∣∣(â�Fn)(x) − c

∣∣ ≤
∫

|y|<δ

Fn(y) |â(x − y) − c|︸ ︷︷ ︸
=0

dy +
∫

δ≤|y|≤π

Fn(y) |â(x − y) − c|︸ ︷︷ ︸
≤1

dy

≤ 1

2πn

∫

δ≤|y|≤π

sin2 ny
2

sin2 y
2

dy ≤ 1

2πn

∫

δ≤|y|≤π

1

sin2 δ
2

dy

= π − δ

πn sin2 δ
2

≤ 1

n sin2 δ
2

.

��
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Lemma 3.7 Let [μ, ν] ⊆ [0, 2π) be an interval, let 0 < δ < (ν −μ)/2, and for every
n ∈ N, let

En,δ :=
∑

k: 2πk
n ∈[μ+δ,ν−δ]

∣∣F∗
n 1{k}
〉〈
F∗

n 1{k}
∣∣ .

Then En,δ is a projection on C〈n〉 such that

Tr En,δ ≥
⌊

ν − μ − 2δ

2π
n

⌋
, (3.7)

and for every measurable function â : [0, 2π) → [0, 1] that is constant 0 on [μ, ν],

Tr En,δ An ≤ (Tr En,δ)
γδ

n
, n ∈ N. (3.8)

Proof Since Fn is a unitary, En,δ is indeed a projection, and the lower bound in (3.7)
is obvious. For any k such that 2πk

n ∈ [μ + δ, ν − δ],

Tr
∣∣F∗

n 1{k}
〉〈
F∗

n 1{k}
∣∣ An = 〈1{k},Fn V ∗

n AVn F∗
n 1{k}
〉 = (Ŝnâ)

(
2πk

n

)
≤ γδ

n
,

where the second equality is due to Lemma 3.5, and the inequality follows from
Lemma 3.6. This immediately yields (3.8). ��

Theorem 3.8 Let �Q and �R be as in Theorem 3.1. Then, there exists a positive
constant c and a sequence of even projections Tn ∈ span{a(ϕ) : ϕ ∈ Hn} such that

−1

n
log sup

i∈I
ωQ(i) (I − Tn) ≥ c log n, − 1

n
log sup

j∈J
ωR( j) (Tn) ≥ c log n, n ∈ N.

(3.9)

In particular, �Q and �R can be super-exponentially distinguished by even projective
tests.

If, moreover, q̂i is not almost everywhere 0 and r̂ j is not almost everywhere 1 on
[0, 2π) for every i ∈ I and j ∈ J , then their local densities ω̂

Q(i)
n

and ω̂
R( j)

n
, n ∈ N,

are all invertible.

Proof Let Tn be as in the proof of Corollary 3.4 with En := En,δ , n ∈ N, for some δ

as in Lemma 3.7. The inequalities in (3.5)–(3.6) combined with (3.7) and (3.8) yield
(3.9).

The assertion about the invertibility of the density operators follows immediately
from Corollary 2.2. ��
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Example 3.9 Consider the X X model with local Hamiltonian on B(C2)[1,n] given by

Hn := 1

2

n−1∑

k=−n

(
σx,kσx,k+1 + σy,kσy,k+1

)+ h
n∑

k=−n

σz,k,

where σx,k is the Pauli x operator

[
0 1
1 0

]
at site k, etc. It is well known that the ground

state of this model in the thermodynamic limit is ω̃Q(h) , where ωQ(h) is the translation-
invariant quasi-free state corresponding to q̂h := r̂h := 1[arccos f (h),2π−arccos f (h)),
where f (h) := max{−1,min{h, 1}}. (Here 1B stands for the indicator function of the
set B.) See, e.g., [23, Appendix C] for a detailed exposition.

Let h0 < h1 be such that h1 > −1 or h0 < 1, and consider �Q := {q̂h :
h ≤ h0}, �R := {r̂h : h1 ≤ h}. That is, the experimenter’s task is to test whether
the transverse magnetic field is below h0 or above h1, by making measurements on
a finite part of the chain. It is straightforward to verify that q̂h is constant zero on
[μ := arccos f (h1), ν := arccos f (h0)] for every h ≤ h0, while r̂h is constant one
on [μ, ν] for every h ≥ h1, and hence, by Theorem 3.1, the two hypotheses can be
tested with super-exponentially decreasing error probabilities. By Corollary 2.2, the
local densities ω̂

Q(h)
n

are invertible for every h1 ≤ h < 1, and the local densities ω̂
R(h)

n
are invertible for every −1 < h ≤ h0.

A variant of the above problem is when the experimenter’s task is to test whether
the transverse magnetic field is between h0 and h′0 or between h1 and h′1, where−1 < h0 < h′0 < h1 < h′1 < 1. In this case, �Q := {q̂h : h0 ≤ h ≤ h′0},
�R := {r̂h : h1 ≤ h ≤ h′1}. It is straightforward to verify that this problem satisfies
the conditions in Theorem 3.1 with μ = arccos h1, ν = arccos h′0, and therefore, the
two hypotheses can be tested with super-exponentially decreasing error probabilities,
and moreover, all local densities are invertible for every size n.

4 Comments on orthogonality

In this section, we discuss some relations between three concepts: a) the orthogonality
of a pair of states, b) their super-exponential distinguishability, and c) certain distin-
guishability measures taking infinite value on the given pair.We start with an overview
of thewell-known relations between these for density operators on a finite-dimensional
Hilbert space and then discuss a possible extension to pairs of translation-invariant
states on an infinite spin chain.

Let T(H) := {T ∈ B(H) : 0 ≤ T ≤ I } denote the set of tests on a finite-
dimensional Hilbert space H. It is well known [13, 18] and easy to see that for any
two density operators �, σ ∈ S(H),

min
T∈T(H)

{Tr �(I − T )︸ ︷︷ ︸
=:α(T )

+Tr σ T︸ ︷︷ ︸
=:β(T )

} = 1− 1

2
‖� − σ‖1 , (4.1)
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where ‖X‖1 := Tr |X |, X ∈ B(H), is the trace-norm. In particular, we have

∃ T ∈ T(H) : α(T ) = 0 = β(T )

⇐⇒ χ(�‖σ) := − log

(
1− 1

2
‖� − σ‖1

)
= +∞

⇐⇒ � ⊥ σ, (4.2)

where the first condition means perfect distinguishability of � and σ , in the second
condition we use the convention log 0 := −∞, and the orthogonality in the last
condition might be formulated in a number of different ways, e.g., as the orthogonality
of the supports.

Orthogonalitymaybe equivalently captured by various quantumRényi divergences.
For instance, for any α ∈ (0, 1) and z ∈ (0,+∞), let

Dα,z(�‖σ) := 1

α − 1
log Tr

(
�

α
z σ

1−α
z �

α
z

)z

be the Rényi (α, z)-divergence of � and σ [7, 20]. Then,

� ⊥ σ ⇐⇒ Dα,z(�‖σ) = +∞ for some/all (α, z) pairs as above. (4.3)

Note that the case α = 1/2, z = 1, expresses the orthogonality of the unit vectors
�1/2, σ 1/2 in the Hilbert–Schmidt inner product. Furthermore, for a test T ∈ T(H),
let

T (X) := (Tr XT ) |0〉〈0| + (Tr X(I − T )) |1〉〈1| , (4.4)

where {|0〉, |1〉} is any orthonormal system in some Hilbert space, and let

Dtest
α (�‖σ) := max

T∈T(H)
Dα(T (�)‖T (σ ))

be the test-measured Rényi α-divergence of � and σ [24]. In the above, for any z ∈
(0,+∞).

Dα(T (�)‖T (σ ))

= Dα,z(T (�)‖T (σ ))

= 1

α − 1
log
(
(Tr �T )α(Tr σ T )1−α + (Tr �(I − T ))α(Tr σ(I − T ))1−α

)
,

is the classical Rényi divergence [29] of the commuting pair T (�), T (σ ). Then,

� ⊥ σ ⇐⇒ Dtest
α (�‖σ) = +∞ for some/all α ∈ (0, 1), (4.5)

which is just a reformulation of the equivalence of the first and the last conditions in
(4.2).
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Consider now translation-invariant statesω(0), ω(1) on the infinite spin chain algebra
B(H)Z; see Sect. 2.2. One might define many of the above quantities directly for
the states ω(0), ω(1). This is obvious for χ(ω(0)‖ω(1)) and Dtest

α (ω(0)‖ω(1)); for the
Petz-type Rényi divergences Dα,1

(
ω(0)‖ω(1)

)
and the sandwiched Rényi divergences

Dα,α

(
ω(0)‖ω(1)

)
with α ∈ [1/2, 1), see, e.g., [15, 16, 27]. Most of these quantities,

however, behave in a singular way for translation-invariant product states. Indeed, let
ωk denote the single-site density operator of ω(k). Additivity and monotonicity under
restriction to subalgebras then give

Dα,z

(
ω(0)‖ω(1)

)
≥ Dα,z

(
ω⊗n
0 ‖ω⊗n

1

) = nDα,z (ω0‖ω1) −−−−→
n→+∞ +∞

for every α ∈ (0, 1) and z = 1, or z = α ∈ [1/2, 1), whenever ω0 #= ω1. Using
the Fuchs–van de Graaf inequality [11] in the form χ(�‖σ) ≥ 1

2 D1/2,1/2(�‖σ) then
yields

χ(ω(0)‖ω(1)) ≥ χ(ω⊗n
0 ‖ω⊗n

1 ) ≥ 1

2
D1/2,1/2(ω

⊗n
0 ‖ω⊗n

1 ) −−−−→
n→+∞ +∞.

In fact, it is also known that χ(ω(0)‖ω(1)) = +∞whenever ω(0) and ω(1) are different
ergodic states [19, Corollary IV.4.2], and it is not too difficult to see that translation-
invariant quasi-free states are ergodic (for a hint, see, e.g., [1, Example 7.6]).

In view of the above, the above considered distinguishability measures defined
directly for the infinite spin chain states reveal very little about the relation of ω(0)

and ω(1) from the point of view of state discrimination. One might consider instead
the regularized versions of the above quantities, defined for two translation-invariant
states ω(0) and ω(1) as

�(ω(0)‖ω(1)) := lim inf
n→+∞

1

n
�
(
ω

(0)
[1,n]
∥∥ω(1)

[1,n]
)

, (4.6)

where � may stand for any distinguishability measure on pairs of states, like χ , Dα,z ,
Dtest

α , etc.

Theorem 4.1 Letω(0) andω(1) be translation-invariant states on the infinite spin-chain
algebra B(H)Z. The following are equivalent:

(i) ω(0) and ω(1) can be super-exponentially distinguished.
(ii) χ

(
ω(0)
∥∥ω(1)
) = +∞.

(iii) D
test
α

(
ω(0)
∥∥ω(1)
) = +∞ for every α ∈ (0, 1).

(iv) D
test
α

(
ω(0)
∥∥ω(1)
) = +∞ for some α ∈ (0, 1).

(v) Dα,z
(
ω(0)
∥∥ω(1)
) = +∞ for every α ∈ (0, 1) and every z ≥ max{α, 1− α}.

(vi) Dα,z
(
ω(0)
∥∥ω(1)
) = +∞ for some α ∈ (0, 1) and some z ≥ max{α, 1− α}.

Proof The equivalence (i) ⇐⇒(ii) is clear from (4.1). It is straightforward to verify
that (i) yields D

test
α

(
ω(0)
∥∥ω(1)
) = +∞ for every α ∈ (0, 1), proving (i) �⇒(iii). The

implication (iii)�⇒(iv) is obvious.
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Assume (iv), i.e., that D
test
α

(
ω(0)
∥∥ω(1)
) = +∞ for some α ∈ (0, 1). Then, there

exists a test sequence Tn ∈ B(H)[1,n], n ∈ N, and a sequence cn ∈ [0,+∞), n ∈ N,
with limn cn = +∞, such that

e−(1−α)ncn = (Tr ω(0)
n Tn)α(Tr ω(1)

n Tn)
1−α + (Tr ω(0)

n (I − Tn))α(Tr ω(1)
n (I − Tn))1−α

≥ min
{
(Tr ω(1)

n Tn)1−α, (Tr ω(1)
n (I − Tn))1−α

}

(
(Tr ω(0)

n Tn)α + (Tr ω(0)
n (I − Tn))

α
)

︸ ︷︷ ︸
≥1

,

where ω
(k)
n := ω

(k)
[1,n]. Let us define a new test sequence T̃n := Tn if Tr ω(1)

n Tn ≤ 1/2,

and T̃n := I − Tn otherwise. Then, the above yields Tr ω(1)
n T̃n ≤ e−ncn , which goes

to zero super-exponentially, and

e−(1−α)ncn ≥ (Tr ω(0)
n (I − T̃n))

α(Tr ω(1)
n (I − T̃n))

1−α

≥ (1− e−ncn )1−α Tr ω(0)
n (I − T̃n))

α,

whence Tr ω(0)
n (I − T̃n) also goes to zero super-exponentially in n. Thus, we obtain (i).

According to [14, Theorem 1.1] and a standard argument deriving monotonicity
under CPTP maps from joint convexity, the Rényi (α, z)-divergences are monotone
non-increasing under the joint action of a CPTP map on both of their arguments when
α ∈ (0, 1) and max{α, 1 − α} ≤ z. This immediately implies Dα,z

(
ω(0)
∥∥ω(1)
) ≥

D
test
α

(
ω(0)
∥∥ω(1)
)
for any such α, z, and thus, the implication (iii)�⇒(v) follows, and

(v)�⇒(vi) is trivial.
Finally, (vi)�⇒(ii) follows immediately from Corollary A.2. ��

Remark 4.2 It is clear from the proof of Theorem 4.1 that the following also holds. If
n1 < n2 < . . ., and � = χ , � = Dα,z with α ∈ (0, 1) and z ≥ max{α, 1 − α}, or
� = Dtest

α with α ∈ (0, 1), then the following are equivalent:

(i) There exists a sequence of tests Tnk ∈ B(H)[1,nk ], k ∈ N, such that

lim
k→+∞− 1

nk
log Tr ω(0)

[1,nk ](I − Tnk ) = +∞ = lim
k→+∞− 1

nk
log Tr ω(1)

[1,nk ]Tnk .

(ii) lim
k→+∞

1

nk
�
(
ω

(0)
[1,nk ]
∥∥ω(1)

[1,nk ]
)
= +∞.

Indeed, (i) is equivalent to (ii) with � = χ due to (4.1), which implies (ii) with
� = Dtest

α for any given α ∈ (0, 1); this implies (ii) with � = Dα,z for the same α

and any z ≥ max{α, 1− α}, due to monotonicity under CPTP maps, and finally, this
implies (ii) with � = χ due to Corollary A.2.

In particular, Theorem 4.1 remains valid if we replace the lim inf with lim sup in
the definition of the error exponents in (2.10), and define super-exponential distin-
guishability accordingly, and we also replace the lim inf with lim sup in the definition
of the regularized distinguishability measures in (4.6).
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Remark 4.3 Two states (positive linear normalized functionals) ω(0) and ω(1) on a C∗-
algebra are defined to be orthogonal in [31, Definition 1.14.1] if

∥∥ω(0) − ω(1)
∥∥ = 2,

where the norm is the usual functional norm; this is equivalent to χ(ω(0)
∥∥ω(1)) = +∞

in our notation. The above arguments show that this notion of orthogonalitymay not be
the best suited for the study of asymptotic state discrimination on an infinite spin chain;
in particular, any two translation-invariant product states are orthogonal according to
this definition, irrespective of whether the density operators of their local restrictions
are orthogonal or not.

In contrast, if we define ω(0) and ω(1) on an infinite spin chain to be orthogonal if
χ(ω(0)

∥∥ω(1)) = +∞, then for translation-invariant product states this becomes equiv-

alent to the usual orthogonality of their single-site restrictions ω
(0)
[1] and ω

(1)
[1] . Another

appealing feature of this notion of orthogonality of states is that it is equivalent to var-
ious regularized distinguishability measures being +∞, according to Theorem 4.1,
which gives a nice generalization of the analogous single-site characterizations of
orthogonality given in (4.3) and (4.5). Of course, this notion of orthogonality is lim-
ited to pairs of translation-invariant states on an infinite spin chain and does not make
sense in general for pairs of states on an abstract C∗-algebra.

Remark 4.4 Clearly, if any (and hence all) of (i)–(vi) in Theorem 4.1 holds then we
have Dα(ω(0)

∥∥ω(1)) = +∞ for any quantum Rényi α-divergence with α ∈ (0, 1) that
is monotone non-increasing under 2-outcome measurements, i.e., under the type of
CPTP maps given in (4.4). Here, we say that Dα is a quantum Rényi α-divergence if it
is defined on all pairs of density operators on any finite-dimensional Hilbert space, and
for commuting states it reduces to the classical Rényi α-divergence of the diagonal
elements of the two density operators in a common eigen-basis. One such example is
Matsumoto’smaximal α-divergence [22] for every α ∈ (0, 1); however, at themoment
we do not know if the regularized maximal α-divergence being+∞ implies the other
properties listed in Theorem 4.1.

5 Conclusion

We have shown that translation-invariant quasi-free states with defining functions q̂
and r̂ are super-exponentially distinguishable if there is an interval [μ, ν] of nonzero
length such that one of the functions is constant 0 and the other one is constant 1 on
this interval. We have shown that in this case both errors decrease at least as fast as
e−nc log n in the sample size n; it is, however, an open question whether this is in fact
the optimal asymptotics, or a faster decrease, e.g., e−cn1+δ

with some δ > 0 can be
attained. This can be asked for the class of functions that we considered, but it is also
natural to ask if there is any upper bound on the speed of convergence to zero for
general pairs of translation-invariant states on a spin chain.

It is known that a translation-invariant quasi-free state ωQ is pure (i.e., an extremal
point of the convex set of states) if and only if the corresponding function q̂ is an
indicator function, i.e., q̂ = 1BQ for some measurable subset BQ of [0, 2π) (see, e.g.,
[10]). Two such pure states ωQ and ωR are different if and only if BQ and BR are
different in the measure-theoretic sense, i.e., the Lebesgue measure of (BQ \ BR) ∪
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(BR \ BQ) is positive. This motivates to ask whether the following extension of our
result is true: If q̂ and r̂ are measurable functions from [0, 2π) to [0, 1] such that
there exists a measurable set B ⊆ [0, 2π) of positive Lebesgue measure on which
q̂ is constant 0 and r̂ is constant 1, then ωQ and ωR can be super-exponentially
distinguished. In particular, this would imply the super-exponential distinguishability
of any two different pure translation-invariant quasi-free states.
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Appendix A: A variant of Audenaert’s inequality

It was shown in [6, Theorem 1] that for any two density operators �, σ on a finite-
dimensional Hilbert space H,

1− 1

2
‖� − σ‖1 ≤ Tr �ασ 1−α, α ∈ (0, 1),

or equivalently,

χ(�‖σ) := − log

(
1− 1

2
‖� − σ‖1

)
≥ (1− α)Dα,1(�‖σ). (A.1)

(see Sect. 4 for the definition of the Rényi (α, z)-divergences.) We will need a simple
extension of the above, given in Corollary A.2, which follows by a combination of
(A.1), the Araki–Lieb–Thirring (ALT) inequality [3, 21], and its converse given in [5].
Recall that the ALT inequality states that for any two positive semi-definite operators
A, B ∈ B(H),

Tr
(

Ar Br Ar )q ≤ Tr (AB A)rq , q ∈ [0,+∞), r ∈ [0, 1]. (A.2)
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The converse given in [5, Theorem 2] states that

Tr(AB A)rq ≤ (Tr (Ar Br Ar )q)r (‖A‖2rq Tr Brq
)1−r

, q ∈ [0,+∞), r ∈ [0, 1].
(A.3)

Lemma A.1 Let �, σ be density operators on a finite-dimensional Hilbert space H.
For any α ∈ (0, 1),

Dα,1(�‖σ) ≥
{

Dα,z(�‖σ), z ∈ (0, 1],
1
z Dα,z(�‖σ) − α

(1−α)2
z−1

z log dimH, z > 1.
(A.4)

Proof Let z′ ≤ z′′, A := �
α
2z′ , B := σ

1−α
z′ , q := z′′, r := z′/z′′. Then, (A.2) gives

Tr
(
�

α
2z′′ σ

1−α
z′′ �

α
2z′′
)z′′

≤ Tr
(
�

α
2z′ σ

1−α
z′ �

α
2z′
)z′

,

or equivalently, Dα,z′′(�‖σ) ≥ Dα,z′(�‖σ). In particular, the choice z′′ := 1, z′ := z
yields the first inequality in (A.4).

Now, let z′ := 1, z′′ := z > 1. Then, (A.3) gives

Tr �ασ 1−α ≤
(
Tr
(
�

α
2z σ

1−α
z �

α
2z

)z)1/z (‖�‖α
)1−1/z

︸ ︷︷ ︸
≤1

(
Tr σ 1−α

)1−1/z
. (A.5)

Let λ1, . . . , λd be the eigen-values of σ , where d := dimH. Since 1/(1−α) > 1, we
get

(Tr σ 1−α)
1

1−α =
(

d∑

i=1

λ1−α
i

) 1
1−α

=
(

d
d∑

i=1

1

d
λ1−α

i

) 1
1−α

≤ d
1

1−α

d∑

i=1

1

d
λi = d

α
1−α .

Writing this back into (A.5), we get

1

α − 1
log Tr �ασ 1−α

︸ ︷︷ ︸
=Dα,1(�‖σ)

≥ 1

z

1

α − 1
log Tr

(
�

α
2z σ

1−α
z �

α
2z

)z

︸ ︷︷ ︸
=Dα,z(�‖σ)

− α

(1− α)2

z − 1

z
log d,

which is exactly the second inequality in (A.4). ��
Corollary A.2 Let �, σ be density operators on a finite-dimensional Hilbert space H.
For every α ∈ (0, 1),

χ(�‖σ) ≥
{

(1− α)Dα,z(�‖σ), z ∈ (0, 1],
1
z (1− α)Dα,z(�‖σ) − α

1−α
z−1

z log dimH, z > 1.
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Proof Immediate from (A.1) and (A.4). ��

Appendix B: Quasi-free states on the spin chain

For simplicity of notation, let A := CAR
(
�2(Z)
)
, and ak := a(1{k}), where 1{k},

k ∈ Z, is the canonical orthonormal basis of �2(Z). As explained in Sect. 2.1, the even
part of A is given by

A+ := {x ∈ A : π(x) = x}
= span{I , a∗i1 . . . a∗in

a jm . . . a j1 : i1 < . . . < in, j1 < . . . < jm, n + m even}.

Similarly, the odd part A− is defined as

A− := {x ∈ A : π(x) = −x}
= span{I , a∗i1 . . . a∗in

a jm . . . a j1 : i1 < . . . < in, j1 < . . . < jm, n + m odd}.

Clearly, any x ∈ A can be uniquely decomposed as the sum of an even and an odd
element as

x = 1

2
(x + π(x))
︸ ︷︷ ︸

∈A+

+ 1

2
(x − π(x))
︸ ︷︷ ︸

∈A−

.

It is obvious from (2.5) that any quasi-free state ωQ is even in the sense that ωQ ◦π =
ωQ , or equivalently, ωQ(x) = 0 for every odd element x ∈ A−.

Likewise, let C := ⊗k∈ZB(C2) be the infinite spin chain algebra with single-site
Hilbert space C2. It is generated by the local Pauli operators σ

(n)
k , k = 0, 1, 2, 3,

n ∈ Z, where, e.g.,

σ
(n)
1 = . . . ⊗ I ⊗

[
0 1
1 0

]

︸ ︷︷ ︸
site n

⊗I ⊗ . . .

The map

π̂ : σ
(n)
k 
→

{
−σ

(n)
k , k = 1, 2,

σ
(n)
k , k = 0, 3,

n ∈ Z,

is easily seen to extend to an automorphism of C, which is called the parity automor-
phism of the infinite spin chain, and we can define the even part C+ and the odd part
C− of the spin chain analogously to the case of A. Again, any x ∈ C can be uniquely
decomposed as the sum of an even and an odd element as

x = 1

2
(x + π̂(x))
︸ ︷︷ ︸

∈C+

+ 1

2
(x − π̂(x))
︸ ︷︷ ︸

∈C−

.
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The translation automorphism τ̂ of the spin chain is the unique extension of the map
τ̂ : σ

(n)
k 
→ σ

(n+1)
k , k = 0, 1, 2, 3, n ∈ Z.

A formal extension of the Jordan–Wigner automorphism (2.3) would map

a j into
(⊗k< jσ3

)⊗
[
0 0
1 0

]

︸ ︷︷ ︸
site j

⊗I ⊗ . . . , (B.1)

which, however, does not correspond to any element of the spin chain. On the other
hand, for any even multinomial a∗i1 . . . a∗in

a jm . . . a j1 , the corresponding product using
the formal expression in (B.1) gives an (even) element of C, and the resulting map
extends to an isomorphism α between A+ and C+. This can be verified by a straight-
forward computation; for details, see, e.g., [23, Section 5.3]. It is also clear that if
k ≤ i1, . . . , in, j1, . . . , jm ≤ l then α(a∗i1 . . . a∗in

a jm . . . a j1) ∈ C[k,l], i.e., the automor-
phism is compatiblewith the locality structure of the two algebras, at least for intervals.
Moreover,α is compatiblewith the translations in the sense thatα◦τ ◦α−1 = τ̂ . Hence,
for any translation-invariant quasi-free state ωQ , ω̂Q := ωQ ◦ α−1 is a translation-
invariant state on C+, and the local restrictions of ωQ and ω̂Q on intervals are mapped
into each other by α. Finally, ω̂Q has a unique extension to a linear functional ω̃Q on
C by

ω̃Q(x) := ω̃Q

(
1

2
(x + π̂(x))

)
, x ∈ C.

Since

|ω̃Q(x)| =
∣∣∣∣ω̃Q

(
1

2
(x + π̂(x))

)∣∣∣∣ ≤
1

2

(‖x‖ + ∥∥π̂(x)
∥∥) = ‖x‖ , x ∈ C,

we get that
∥∥ω̃Q
∥∥ = 1 = ∥∥ω̃Q(I )

∥∥, whence the extended ω̃Q is a state on C (see,
e.g., [28, Proposition 2.11]). Clearly, ω̃Q is translation-invariant, it is even, and the
density operators of its local restrictions to C[k,l] coincide with the densities of the
corresponding local restrictions of ω̂Q .

Note that, more generally, the above construction gives a one-to-one correspon-
dence between even translation-invariant states on A and even translation-invariant
states on C.
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