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Abstract
The unified transform method (UTM) provides a novel approach to the analysis of
initial boundary value problems for linear as well as for a particular class of nonlinear
partial differential equations called integrable. If the latter equations are formulated
in two dimensions (either one space and one time, or two space dimensions), the
UTM expresses the solution in terms of a matrix Riemann–Hilbert (RH) problem with
explicit dependence on the independent variables. For nonlinear integrable evolution
equations, such as the celebrated nonlinear Schrödinger (NLS) equation, the associated
jump matrices are computed in terms of the initial conditions and all boundary values.
The unknown boundary values are characterized in terms of the initial datum and the
given boundary conditions via the analysis of the so-called global relation. In general,
this analysis involves the solution of certain nonlinear equations. In certain cases,
called linearizable, it is possible to bypass this nonlinear step. In these cases, the UTM
solves the given initial boundary value problemwith the same level of efficiency as the
well-known inverse scattering transform solves the initial value problem on the infinite
line. We show here that the initial boundary value problem on a finite interval with
x-periodic boundary conditions (which can alternatively be viewed as the initial value
problem on a circle) belongs to the linearizable class. Indeed, by employing certain
transformations of the associated RH problem and by using the global relation, the
relevant jump matrices can be expressed explicitly in terms of the so-called scattering
data, which are computed in terms of the initial datum. Details are given for NLS, but
similar considerations are valid for other well-known integrable evolution equations,
including the Korteweg–de Vries (KdV) and modified KdV equations.
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1 Introduction

Two of the most extensively studied classes of solutions of nonlinear partial differen-
tial equations of evolution type are (i) solutions with decay at spatial infinity and (ii)
solutions which are periodic in space. For integrable evolution equations, the intro-
duction of the Inverse Scattering Transform (IST) about half a century ago had the
groundbreaking implication that the initial value problem (IVP) for solutions in the
first of these classes could be solved by means of only linear operations [7]. More
precisely, this approach expresses the solution of the IVP problem in terms of the
solution of a linear singular integral equation, or, equivalently, in terms of the solution
of a Riemann–Hilbert (RH) problem. Since this RH problem is formulated in terms
of spectral functions whose definition only involves the given initial data, the solution
formula is effective.

For the second of the above classes—the class of spatially periodic solutions—the
introduction of the so-called finite-gap integration method in the 1970s had far-
reaching implications, see [2]. This approachmakes it possible to generate large classes
of exact solutions, the so-called finite-gap solutions, by considering rational combi-
nations of theta functions defined on Riemann surfaces with a finite number of branch
cuts. The construction of solutions via this approach, in particular of the Korteweg–de
Vries (KdV) and the nonlinear Schrödinger (NLS) equations, has a long and illus-
trious history [9]. The theory combines several branches of mathematics, including
the spectral theory of differential operators with periodic coefficients, Riemann sur-
face theory, and algebraic geometry, and has had implications for diverse areas of
mathematics [2,8,9].

Despite the unquestionable success of the finite-gap approach, two questions nat-
urally present themselves:

• How effective is the finite-gap approach for the solution of the IVP for general
periodic initial data? If the initial data are in the finite-gap class, the solution
of the IVP can be retrieved by solving a Jacobi inversion problem on a finite-
genus Riemann surface. However, if the initial data are not in the class of finite-
gap potentials, then a theory of infinite-gap solutions is required. Although some
aspects of the approach certainly can be extended to Riemann surfaces of infinite-
genus [3,10,12], there are several complications associated with solving the Jacobi
inversion problem on an infinite-genus surface. In fact, from a computational point
of view even finite-gap solutions are not easily accessible [1,2].

• Why is the finite-gap integration method conceptually so different from the IST
formalism? For example, whereas the IST relies on the solution of a RH problem,
the algebro-geometric approach calls for the solution of a Jacobi inversion problem.
(A Jacobi inversion problem can be regarded as a RH problem on a branched plane
[11], but conceptually such an approach appears indirect.)

We propose a new approach for the solution of the space-periodic IVP for an
integrable evolution equation. Just like in the implementationof the IST for the problem
on the line, our approach expresses the solution of the periodic problem in terms of
the solution of a RH problem, and the definition of this RH problem involves only the
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given initial data. Thus, the presented solution of the periodic problem is conceptually
analogous to the solution of the problem on the line.

Let us explain the ideas that led us to the presented approach. Although the space-
periodic problem is often viewed as an IVP on the circle, it can also be viewed as
an initial boundary value problem (IBVP) on an interval with periodic boundary con-
ditions. In 1997, one of the authors introduced a methodology for the solution of
IBVPs for integrable equations [4]. The implementation of this method, known as
the Unified Transform or Fokas Method, to an IBVP typically consists of two steps.
The first step is to construct an integral representation of the solution characterized
by a RH problem formulated in the complex k-plane, where k denotes the spectral
parameter of the associated Lax pair. Since this representation involves, in general,
some unknown boundary values, the solution formula is not yet effective. The second
step is therefore to characterize the unknown boundary values by analyzing a certain
equation called the global relation. In general, the second step involves the solution of
a nonlinear problem. However, for certain so-called linearizable boundary conditions,
additional symmetries can be used to eliminate the unknown boundary values from
the formulation of the RH problem altogether.

It turns out that the boundary conditions corresponding to the space-periodic prob-
lemare linearizable. This suggests that it should bepossible to use the abovephilosophy
to obtain an effective solution. Although the analysis is quite different from that of
other linearizable problems, we have indeed been able to find a RH problem whose
formulation only involves the initial data.

The new approach is as effective for the periodic problem as the IST is for the
problem on the line in the sense that all ingredients of the RH problem are defined
in terms of quantities obtained by solving a linear Volterra integral equation whose
kernel is characterized by the initial data. However, the formulation of the RH problem
in the periodic case is complicated by the fact that the jump contour is determined by
the zeros of an entire function (more precisely, the jump contour involves the spectral
gaps known from the finite-gap approach).

Section 2 presents the main result. Section 3 presents details for the example when
q0(x) = q0 is a constant, which provides an illustration of the effectiveness of the new
formalism, as well as a verification of its correctness.

2 Themain result

We write D1, . . . , D4 for the four open quadrants of the complex plane, see Figs. 1
and 2. A bar over a function denotes that the Schwarz conjugate is taken, i.e., f̄ (k) =
f (k̄). We define θ by

θ = θ(x, t, k) = kx + 2k2t . (2.1)

Theorem 2.1 Suppose that q(x, t) is a smooth solution of the NLS equation

iqt + qxx − 2λq|q|2 = 0, λ = ±1, (2.2)
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which is x-periodic of period L > 0, i.e., q(x + L, t) = q(x, t). Define a(k) and b(k)
in terms of the initial datum

q0(x) = q(x, 0), 0 < x < L, (2.3)

by

a(k) = μ(2)(0, k), b(k) = μ(1)(0, k), k ∈ C, (2.4)

where the vector
(
μ(1)(x, k), μ(2)(x, k)

)
satisfies the linear Volterra integral equation

⎧
⎪⎪⎨

⎪⎪⎩

μ(1)(x, k) = −
∫ L

x
e2ik(y−x)q0(y)μ

(2)(y, k)dy,

μ(2)(x, k) = 1 − λ

∫ L

x
q0(y)μ

(1)(y, k)dy,
0 < x < L, k ∈ C. (2.5)

Define Γ̃ (k) in terms of a(k) and b(k) by

Γ̃ = λ

2eikL b̄

(
āeikL − ae−ikL − i

√
4 − Δ2

)
, (2.6)

where Δ(k) is given by

Δ = ae−ikL + āeikL , k ∈ C. (2.7)

Define the contour �̃ by �̃ = R ∪ iR ∪ C, where C denotes a set of branch cuts
of

√
4 − Δ2 consisting of subintervals of R and vertical line segments which connect

the zeros of odd order of 4 − Δ2. Orient C as shown in Fig. 1 and let �̃� denote the
contour �̃ with all branch points of

√
4 − Δ2 and points of self-intersection removed,

see [6] for details.
Assume that the function Γ̃ has no poles on the contour �̃ and that it has at most

finitely many simple poles in D1 ∪ D3; denote the possible poles in D1 by {p j }n11 and
the possible poles in D3 by {q j }n21 . Let P̃ = {p j , p̄ j }n11 ∪ {q j , q̄ j }n21 .

Consider the following RH problem: Find a 2 × 2-matrix-valued function m̃ such
that

• m̃(x, t, ·) : C\(�̃ ∪ P̃) → C
2×2 is analytic.

• The limits of m(x, t, k) as k approaches �̃� from the left (+) and right (−) exist,
are continuous on �̃�, and satisfy

m̃−(x, t, k) = m̃+(x, t, k)ṽ(x, t, k), k ∈ �̃�, (2.8)
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where ṽ is defined by

ṽ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽ1 =
⎛

⎜
⎝

a−λb ¯̃
Γ −λΓ̃ (ā ¯̃

Γ −b̄)e2ikL

a−λb ¯̃
Γ

−Γ̃ e2ikLe−2iθ

λ
¯̃

Γ e2iθ

(a−λb ¯̃
Γ )(a+λb̄Γ̃ e2ikL )

a
a+λb̄Γ̃ e2ikL

⎞

⎟
⎠ , k ∈ iR+\C̄,

ṽ2 =
⎛

⎜
⎝

1 − λΓ̃
¯̃

Γ − (āΓ̃ e2ikL+b)e−2iθ

ā+λb ¯̃
Γ e−2ikL

λ(a ¯̃
Γ e−2ikL+b̄)e2iθ

a+λb̄Γ̃ e2ikL
1

(a+λb̄Γ̃ e2ikL )(ā+λb ¯̃
Γ e−2ikL )

⎞

⎟
⎠ , k ∈ R+\C̄,

ṽ3 =
⎛

⎝
ā−λb̄Γ̃ −λ

¯̃
Γ (aΓ̃ −b)e−2ikL

ā−λb̄Γ̃
− Γ̃ e−2iθ

(ā−λb̄Γ̃ )(ā+λb ¯̃
Γ e−2ikL )

λ
¯̃

Γ e−2ikLe2iθ ā

ā+λb ¯̃
Γ e−2ikL

⎞

⎠ , k ∈ iR−\C̄,

ṽ4 =
⎛

⎜
⎝

1−λΓ̃
¯̃

Γ

(a−λb ¯̃
Γ )(ā−λb̄Γ̃ )

− (aΓ̃ −b)e−2iθ

ā−λb̄Γ̃

λ(ā ¯̃
Γ −b̄)e2iθ

a−λb ¯̃
Γ

1

⎞

⎟
⎠ , k ∈ R−\C̄,

ṽcutD1
=

⎛

⎝
a+λb̄Γ̃+e2ikL
a+λb̄Γ̃−e2ikL

(Γ̃− − Γ̃+)e2ikLe−2iθ

0 a+λb̄Γ̃−e2ikL
a+λb̄Γ̃+e2ikL

⎞

⎠ , k ∈ C ∩ D1,

ṽcutD2
=

⎛

⎝
1 0

λ(
¯̃

Γ−− ¯̃
Γ+)e2iθ

(a−λb ¯̃
Γ−)(a−λb ¯̃

Γ+)
1

⎞

⎠ , k ∈ C ∩ D2,

ṽcutD3
=

(
1 (Γ̃−−Γ̃+)e−2iθ

(ā−λb̄Γ̃−)(ā−λb̄Γ̃+)

0 1

)

, k ∈ C ∩ D3,

ṽcutD4
=

⎛

⎜
⎝

ā+λb ¯̃
Γ−e−2ikL

ā+λb ¯̃
Γ+e−2ikL

0

λ(
¯̃

Γ− − ¯̃
Γ+)e2iθe−2ikL ā+λb ¯̃

Γ+e−2ikL

ā+λb ¯̃
Γ−e−2ikL

⎞

⎟
⎠ , k ∈ C ∩ D4,

ṽcut1 = ṽcutD1
ṽ1−, k ∈ C ∩ iR+,

ṽcut2 = ṽcutD1
ṽ2−, k ∈ C ∩ R+,

ṽcut3 = ṽcutD3
ṽ3−, k ∈ C ∩ iR−,

ṽcut4 = ṽcutD3
ṽ4−, k ∈ C ∩ R−,

(2.9)

and ṽ j− denotes the boundary values of ṽ j as k approaches C from the right.
• m̃(x, t, k) = I + O

(
k−1

)
as k → ∞, k ∈ C\∪n∈ZDn , whereDn is the open disk

Dn =
{
k ∈ C

∣∣∣
∣

∣∣∣
∣k − nπ

L

∣∣∣
∣ <

π

4L

}
. (2.10)

• m̃(x, t, k) = O(1) as k → �̃\�̃�, k ∈ C\�̃.
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D1D2

D3 D4

ṽ1

ṽ2

ṽcut2

ṽ2

ṽcut2

ṽ3

ṽ4

ṽcut4

ṽ4

ṽcut4

D1D2

D3 D4

ṽ1

ṽcut1
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ṽ4

Fig. 1 Example of the contour �̃ = R ∪ iR ∪ C and the associated jump matrices for λ = 1 (left) and
λ = −1 (right). Dots indicate branch points, and thick lines indicate the set of branch cuts C

• At the points p j ∈ D1 and p̄ j ∈ D4, m̃ satisfies, for j = 1, . . . , n1,

Res
k=p j

[m̃(x, t, k)]2 =
[
[m̃]1(a + λb̄Γ̃ e2ikL)āe2ikLe−2iθ

]
(x, t, p j ) Res

k=p j
Γ̃ (k),

(2.11a)

Res
k= p̄ j

[m̃(x, t, k)]1 =
[
λ[m̃]2(ā + λb ¯̃

Γ e−2ikL)ae−2ikLe2iθ
]
(x, t, p̄ j ) Res

k=p j
Γ̃ (k).

(2.11b)

• At the points q j ∈ D3 and q̄ j ∈ D2, m̃ satisfies, for j = 1, . . . , n2,

Res
k=q j

[m̃(x, t, k)]2 =
[
[m̃]1 ae−2iθ

ā−λb̄Γ̃

]
(x, t, q j )Res

k=q j
Γ̃ (k), (2.11c)

Res
k=q̄ j

[m̃(x, t, k)]1 =
[
λ[m̃]2 āe2iθ

a−λb ¯̃
Γ

]
(x, t, q̄ j )Res

k=q j
Γ̃ (k). (2.11d)

The above RH problem has a unique solution m̃(x, t, k) for each (x, t) ∈ [0, L] ×
[0,∞). The solution q of the NLS Eq. (2.2) can be obtained from m̃ via the equation

q(x, t) = 2i lim
k→∞ km̃12(x, t, k), (x, t) ∈ [0, L] × [0,∞), (2.12)

where the limit is taken along any ray {k ∈ C| arg k = φ}whereφ ∈ R\{nπ/2 | n ∈ Z}
(i.e., the ray is not contained in R ∪ iR).

Proof The NLS Eq. (2.2) has a Lax pair given by

μx + ikσ̂3μ = Qμ, μt + 2ik2σ̂3μ = Q̃μ, (2.13)
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where k ∈ C is the spectral parameter, μ(x, t, k) is a 2 × 2-matrix valued function,
the matrices Q and Q̃ are defined in terms of the solution q(x, t) of (2.2) by

Q =
(
0 q
λq̄ 0

)
, Q̃ = 2kQ − i Qxσ3 − iλ|q|2σ3, (2.14)

and σ̂3μ = [σ3, μ]. Suppose q(x, t) is a smooth solution of (2.2) defined for (x, t) ∈
R × [0, T ] such that q(x + L, t) = q(x, t), where L > 0 and 0 < T < ∞ is an
arbitrary fixed final time. Let μ j (x, t, k), j = 1, 2, 3, 4, denote the four solutions
of (2.13) which are normalized to be the identity matrix at the points (0, T ), (0, 0),
(L, 0), and (L, T ), respectively, see [5]. The spectral functions a, b, A, B are defined
for k ∈ C by

s(k) =
(
a(k̄) b(k)

λb(k̄) a(k)

)

, S(k) =
(

A(k̄) B(k)

λB(k̄) A(k)

)

, (2.15)

where

s(k) = μ3(0, 0, k), S(k) = μ1(0, 0, k).

Note that {μ j }41, s, and S are entire functions of k. Clearly, S(k) depends on T , whereas
s(k) does not. The entries of the matrices s(k) and S(k) are related by the so-called
global relation, see [5, Eq. (1.4)]:

(aA + λb̄e2ikL B)B − (bA + āe2ikL B)A = e4ik
2T c+(k), k ∈ C, (2.16)

where c+(k) is an entire function such that

c+(k) = O

(
1

k

)
+ O

(
e2ikL

k

)
, k → ∞, k ∈ C. (2.17)

The above functions satisfy the unit determinant relations

aā − λbb̄ = 1, AĀ − λB B̄ = 1. (2.18)

As k → ∞, the functions a and b satisfy

a(k) = 1 + O

(
1

k

)
+ O

(
e2ikL

k

)
, b(k) = O

(
1

k

)
+ O

(
e2ikL

k

)
. (2.19)

Using the entries of s and S, we construct the following quantities:

α(k) = aA + λb̄Be2ikL , β(k) = bA + āBe2ikL ,

d(k) = a Ā − λbB̄, δ(k) = α Ā − λβ B̄.
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Fig. 2 The four open quadrants
D1, . . . D4, the contour R ∪ iR,
and the jump matrices
J1, . . . , J4 defined in (2.24) D1D2

D3 D4

J2

J1

J4

J3

The eigenfunctions μ j are related by

μ3 = μ2e
−iθσ̂3s(k), μ1 = μ2e

−iθσ̂3 S(k), μ4 = μ2e
−iθσ̂3

(
ᾱ β

λβ̄ α

)
. (2.20)

The RH problem for M . It was shown in [5] that the sectionally meromorphic
function M(x, t, k) defined by

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
[μ2]1

α
, [μ4]2), k ∈ D1,

(
[μ1]1
d , [μ3]2), k ∈ D2,

([μ3]1, [μ1]2
d̄

), k ∈ D3,

([μ4]1, [μ2]2
ᾱ

), k ∈ D4,

(2.21)

satisfies

M−(x, t, k) = M+(x, t, k)J (x, t, k), k ∈ R ∪ iR, (2.22a)

M(x, t, k) = I + O(1/k), k → ∞ (2.22b)

where the contour R ∪ iR is oriented as shown in Fig. 2 and

J =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J2, arg k = 0,

J1, arg k = π/2,

J4, arg k = π,

J3, arg k = 3π/2,

(2.23)

with

J1 =
(

δ/d −Be2ikLe−2iθ

λB̄e2iθ /(dα) a/α

)
,

J2 =
(

1 −βe−2iθ /ᾱ

λβ̄e2iθ /α 1/(αᾱ)

)
,
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J3 =
(

δ̄/d̄ −Be−2iθ /d̄ᾱ

λB̄e−2ikLe2iθ ā/ᾱ

)
, J4 = J3 J

−1
2 J1. (2.24)

The jump matrix J depends on x and t only through the function θ(x, t, k) defined in
(2.1). The solution q(x, t) of (2.2) can be recovered from M using

q(x, t) = 2i lim
k→∞ kM12(x, t, k), (2.25)

where the limit may be taken in any open quadrant.
If the functions α(k) and d(k) have no zeros, then M is analytic for k ∈ C\(R∪ iR)

and it can be characterized as the unique solution of the RH problem (2.22). The jump
matrix J depends via the spectral functions on the initial data q(x, 0) as well as on
the boundary values q(0, t) and qx (0, t). If all these boundary values are known, then
the value of q(x, t) at any point (x, t) can be obtained by solving the RH problem
(2.22) for M and using (2.25). If the functions α(k) and d(k) have zeros, then M may
have pole singularities and the RH problem has to be supplemented with appropriate
residue conditions, see [5, Proposition 2.3].

The RH problem for m. It is possible to formulate a RH problem which involves
jump matrices defined in terms of the ratio Γ = B/A, as opposed to A and B.
Indeed, consider the sectionally meromorphic function m(x, t, k) defined in terms of
the eigenfunctions μ j (x, t, k), j = 1, . . . , 4, by

m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
A[μ2]1

α
,

[μ4]2
A ), k ∈ D1,

(
[μ1]1
d , [μ3]2), k ∈ D2,

([μ3]1, [μ1]2
d̄

), k ∈ D3,

(
[μ4]1
Ā

,
Ā[μ2]2

ᾱ
), k ∈ D4.

(2.26)

The function m is related to the solution M defined in (2.21) by

m = MH ,

where the sectionally meromorphic function H is defined by

H1 =
(
A 0
0 1/A

)
, H2 = H3 = I , H4 =

(
1/ Ā 0
0 Ā

)
,

with Hj denoting the restriction of H to Dj , j = 1, 2, 3, 4.
The limits ofm(x, t, k) as k approaches (R∪ iR)\{0} from the left and right satisfy

m−(x, t, k) = m+(x, t, k)v(x, t, k), k ∈ (R ∪ iR)\{0}, (2.27)
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where the jump matrix v is defined by

v1 =
⎛

⎝
a−λbΓ̄ −λΓ (āΓ̄ −b̄)e2ikL

a−λbΓ̄
−Γ e2ikLe−2iθ

λΓ̄ e2iθ

(a−λbΓ̄ )(a+λb̄Γ e2ikL )

a
a+λb̄Γ e2ikL

⎞

⎠ , arg k = π

2
,

v2 =
⎛

⎝
1 − λΓ Γ̄ − (āΓ e2ikL+b)e−2iθ

ā+λbΓ̄ e−2ikL

λ(aΓ̄ e−2ikL+b̄)e2iθ

a+λb̄Γ e2ikL
1

(a+λb̄Γ e2ikL )(ā+λbΓ̄ e−2ikL )

⎞

⎠ , arg k = 0,

v3 =
⎛

⎝
ā−λb̄Γ −λΓ̄ (aΓ −b)e−2ikL

ā−λb̄Γ
− Γ e−2iθ

(ā−λb̄Γ )(ā+λbΓ̄ e−2ikL )

λΓ̄ e−2ikLe2iθ ā
ā+λbΓ̄ e−2ikL

⎞

⎠ , arg k = −π

2
,

v4 =
⎛

⎝
1−λΓ Γ̄

(a−λbΓ̄ )(ā−λb̄Γ )
− (aΓ −b)e−2iθ

ā−λb̄Γ

λ(āΓ̄ −b̄)e2iθ

a−λbΓ̄
1

⎞

⎠ , arg k = π. (2.28)

Furthermore,

m(x, t, k) = I + O(k−1) as k → ∞, (2.29a)

m(x, t, k) = O(1) as k → 0. (2.29b)

Also, the function m satisfies detm = 1, as well as the symmetry relations

m11(x, t, k) = m22(x, t, k̄), m21(x, t, k) = λm12(x, t, k̄). (2.30)

TheRHproblem for m̃. In order to define a RH problemwhich depends on Γ̃ instead
of Γ , where Γ̃ is independent of T , we introduce the function g(k) by

g1 =
⎛

⎝
a+λb̄Γ e2ikL

a+λb̄Γ̃ e2ikL
(Γ̃ − Γ )e2ikLe−2iθ

0 a+λb̄Γ̃ e2ikL

a+λb̄Γ e2ikL

⎞

⎠ , g2 =
⎛

⎜
⎝

1 0

λ(
¯̃

Γ −Γ̄ )e2iθ

(a−λbΓ̄ )(a−λb ¯̃
Γ )

1

⎞

⎟
⎠ ,

g3 =
⎛

⎝
1 (Γ̃ −Γ )e−2iθ

(ā−λb̄Γ )(ā−λb̄Γ̃ )

0 1

⎞

⎠ , g4 =
⎛

⎜
⎝

ā+λb ¯̃
Γ e−2ikL

ā+λbΓ̄ e−2ikL 0

λ(
¯̃

Γ − Γ̄ )e−2ikLe2iθ ā+λbΓ̄ e−2ikL

ā+λb ¯̃
Γ e−2ikL

⎞

⎟
⎠ ,

(2.31)

where g j denotes the restriction of g to Dj , j = 1, . . . , 4. In (2.31), Γ = B/A and
Γ̃ is defined by (2.6). We define m̃(x, t, k) by

m̃ = mg. (2.32)

Let C be the set of branch cuts of
√
4 − Δ2 introduced in Theorem 2.1. The function√

4 − Δ2 is analytic and single-valued on C\C; the branch is fixed by the condition
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that
√
4 − Δ2 = 2 sin(kL)(1 + O(k−1)) as k ∈ C\ ∪n∈Z Dn tends to infinity, see [6]

for details.
A straightforward computation shows that m̃ satisfies the jump relation (2.8) on

(R ∪ iR)\C, where ṽ is given by (2.28) with Γ replaced by Γ̃ . However, since the
square root

√
4 − Δ2 changes sign as k crosses a branch cut, ṽ is not given by the

same expression as v on (R∪ iR)∩C. Also, if λ = −1, then m̃ may have jumps across
the contours C ∩ Dj , j = 1, . . . , 4. Remarkably, all these jumps can be expressed in
terms of a and b, yielding (2.28).

The proof of uniqueness of the solution m̃ of the RH problem of Theorem 2.1 uses
the fact that the problem with P̃ �= ∅ can be transformed into a problem with P̃ = ∅
and the fact that det m̃ is an entire function, see [6].

Fix (x, t) ∈ [0, L]×[0,∞). Choose T ∈ (t,∞) and define m̃ by (2.32) withm and
g defined using T as final time. Straightforward computations show that m̃ = MHg
satisfies the RH problem of Theorem 2.1 and that (2.12) holds at (x, t) (the verification
of (2.12) uses (2.25) and the fact that g − I is exponentially small as k → ∞ along
any ray arg k = constant not contained in R ∪ iR; details are given in [6]). 
�
Remark 2.2 The solutions obtained via algebraic geometry correspond to the particular
case of the above formalism when the number of branch cuts of

√
4 − Δ2 is finite.

This implies that in these particular cases the associated RH problems can be solved
via Riemann theta functions.

3 Example: Constant initial data

To illustrate the approach of Theorem 2.1, we consider the case of constant initial data

q(x, 0) = q0, x ∈ [0, L],

where q0 > 0 can be taken to be positive thanks to the phase invariance of (2.2). In
this case, direct integration of the x-part of the Lax pair (2.13) leads to the following
expressions for the spectral functions a and b:

a(k) = eikL
(
cos(Lr(k)) − ik sin(Lr(k))

r(k)

)
, b(k) = −q0eikL sin(Lr(k))

r(k)
,

(3.1)

where r(k) denotes the square root

r(k) =
√
k2 − λq20 .

It follows that

Δ(k) = 2 cos(Lr(k)).

Note that a, b, and Δ are entire functions of k even though r(k) has a branch cut.
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The function 4 − Δ2 = 4 sin2(Lr) has the two simple zeros

λ± =
{

±q0 if λ = 1,

±iq0 if λ = −1,

as well as the infinite sequence of double zeros

±
√
n2π2 + λL2q20

L
, n ∈ Z\{0}.

If λ = 1, then all zeros are real; if λ = −1, then the zeros are real for |n| ≥ Lq0/π
and purely imaginary for |n| < Lq0/π . The function

√
4 − Δ2 is single-valued on

C\C, where C consists of a single branch cut:

C = (λ−, λ+).

Let us fix the branch in the definition of r so that r : C\C → C is analytic and r(k) ∼ k
as k → ∞. Then,

√
4 − Δ2 = 2 sin(Lr),

and hence, the function Γ̃ : C\C → C defined in (2.6) is given by

Γ̃ (k) = −λi(k − r(k))

q0
. (3.2)

The function Γ̃ (k) has no poles. The contour �̃ is given by �̃ = R ∪ iR and is
oriented as shown in Fig. 2; the origin is its only point of self-intersection and so
�̃� = (R ∪ iR)\{0, λ±}. Substituting the expressions (3.1) and (3.2) for a, b, Γ̃ into
the definition (2.28) of the jump matrix ṽ, we get

ṽ1 =
⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL)

q0
i(k−r)e2i(θ−kL+Lr)

q0
ei Lr (r cos(Lr)−ik sin(Lr))

r

⎞

⎠ , k ∈ iR+\C, (3.3a)

ṽ2 =
⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL+Lr)

q0
i(k−r)e2i(θ−kL+Lr)

q0
1

⎞

⎠ , k ∈ R+\C, (3.3b)

ṽ3 =
⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL+Lr)

q0
i(k−r)e2i(θ−kL)

q0
e−i Lr (r cos(Lr)+ik sin(Lr))

r

⎞

⎠ , k ∈ iR−\C, (3.3c)

ṽ4 =
⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL)

q0
i(k−r)e2i(θ−kL)

q0
1

⎞

⎠ , k ∈ R−\C. (3.3d)
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−q0 q0

ṽ1

ṽ2ṽcut2

ṽ3

ṽ4 ṽcut4

−iq0

iq0

ṽ1

ṽcut1
ṽ2

ṽ3

ṽcut3

ṽ4

Fig. 3 Jump matrices for the RH problem 3.1 for λ = 1 (left) and λ = −1 (right)

If λ = 1, then C = (−q0, q0) so the formulation of the RH problem also involves the
jump matrices ṽcut2 and ṽcut4 , whereas if λ = −1, then C = (−iq0, iq0) so the formu-

lation instead involves the jump matrices ṽcut1 and ṽcut3 . Let r(k) =
√

|k2 − λq20 | ≥ 0.
A calculation shows that if λ = 1, then

ṽcut2 =
(

0 (r(k)+ik)e−2i(θ−kL)

q0

− (r(k)−ik)e2i(θ−kL)

q0
e−2Lr(k)

)

, k ∈ C ∩ R+, (3.4a)

ṽcut4 =
(

0 − (r(k)−ik)e−2i(θ−kL)

q0
(r(k)+ik)e2i(θ−kL)

q0
1

)

, k ∈ C ∩ R−, (3.4b)

where r(k) =
√
q20 − k2 ≥ 0. If λ = −1, then

ṽcut1 =
(

0 i(r(k)−k)e−2i(θ−kL)

q0
i(r(k)+k)e2i(θ−kL)

q0
1+e2i Lr(k)

2 + k(1−e2i Lr(k))
2r(k)

)

, k ∈ C ∩ iR+, (3.5a)

ṽcut3 =
(

0 − i(r(k)+k)e−2i(θ−kL)

q0

− i(r(k)−k)e2i(θ−kL)

q0
1+e−2i Lr(k)

2 + k(1−e−2i Lr(k))
2r(k)

)

, k ∈ C ∩ iR−, (3.5b)

where r(k) =
√
q20 + k2 ≥ 0. We conclude that in the case of constant initial data,

the RH problem for m̃ can be formulated as follows (recall that the contour R∪ iR is
oriented as shown in Fig. 2; see also Fig. 3).

RH problem 3.1 (The RH problem for constant initial data) Find a 2×2-matrix valued
function m̃(x, t, k) with the following properties:

• m̃(x, t, ·) : C\(R ∪ iR) → C
2×2 is analytic.
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• The limits of m(x, t, k) as k approaches (R ∪ iR)\{0, λ±} from the left and right
exist, are continuous on (R ∪ iR)\{0, λ±}, and satisfy

m̃−(x, t, k) = m̃+(x, t, k)ṽ(x, t, k), k ∈ (R ∪ iR)\{0, λ±}, (3.6)

where ṽ is defined as follows (see Fig. 3):

– If λ = 1, then

ṽ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽ1 on iR+,

ṽ2 on (q0,+∞),

ṽcut2 on (0, q0),

ṽ3 on iR−,

ṽ4 on (−∞,−q0),

ṽcut4 on (−q0, 0),

where {ṽ j }41, ṽcut2 , and ṽcut4 are defined by (3.3) and (3.4).
– If λ = −1, then

ṽ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽ1 on (iq0,+∞),

ṽcut1 on (0, iq0),

ṽ2 on R+,

ṽ3 on (−i∞,−iq0),

ṽcut3 on (−iq0, 0),

ṽ4 on R−,

where {ṽ j }41, ṽcut1 , and ṽcut3 are defined by (3.3) and (3.5).

• m̃(x, t, k) = I + O
(
k−1

)
as k → ∞, k ∈ C\ ∪n∈Z Dn .

• m̃(x, t, k) = O(1) as k → {0, λ±}, k ∈ C\(R ∪ iR).

Remark 3.2 It is easy to verify that the jump matrices in RH problem 3.1 satisfy the
following consistency conditions at the origin:

⎧
⎨

⎩

(ṽcut4 )−1ṽ3(ṽ
cut
2 )−1ṽ1

∣∣
k=0 = I , λ = 1,

ṽ−1
4 ṽcut3 ṽ−1

2 ṽcut1

∣∣
k=0 = I , λ = −1.

3.1 Solution of the RH problem for m̃

In what follows, we solve the RH problem 3.1 for m̃ explicitly by transforming it
to a RH problem which has a constant off-diagonal jump across the branch cut C =
(λ−, λ+).
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The jump matrices ṽ1 and ṽ3 in (3.3) admit the factorizations

ṽ1 =
⎛

⎝
1 0

iq0e2i(θ−kL+Lr)

2λr 1

⎞

⎠

⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL)

q0

0 k+r
2r

⎞

⎠ ,

ṽ3 =
⎛

⎝
1 0

iq0e2i(θ−kL)

2λr 1

⎞

⎠

⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL+Lr)

q0

0 k+r
2r

⎞

⎠ .

It follows that the jump across iR\C can be removed by introducing a new solution m̂
by

m̂ = m̃ ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
1 0

iq0e2i(θ−kL+Lr)

2λr 1

⎞

⎠ , k ∈ D1,

⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL)

q0

0 k+r
2r

⎞

⎠

−1

, k ∈ D2,

⎛

⎝
1 0

iq0e2i(θ−kL)

2λr 1

⎞

⎠ , k ∈ D3,

⎛

⎝
2λr(k−r)

q20

iλ(k−r)e−2i(θ−kL+Lr)

q0

0 k+r
2r

⎞

⎠

−1

, k ∈ D4.

Straightforward computations using (3.3)–(3.5) show that m̂ only has a jump across
the cut (λ−, λ+). Let us orient

(λ−, λ+) =
{

(−q0, q0), λ = 1,

(−iq0, iq0), λ = −1,

to the right if λ = 1 and upward if λ = −1. We find that m̂(x, t, ·) : C\(λ−, λ+) →
C
2×2 is analytic, that m̂ = I + O(k−1) as k → ∞, and that m̂ satisfies the jump

condition

m̂− = m̂+
(

0 f
−1/ f 0

)
for k ∈ (λ−, λ+), (3.7)

where f (k) ≡ f (x, t, k) is defined by

f (k) = −2iλr+(k)

q0
e−2i(θ−kL) =

⎧
⎪⎪⎨

⎪⎪⎩

2
√

|q20−k2|e−2i(θ−kL)

q0
, λ = 1,

− 2i
√

|k2+q20 |e−2i(θ−kL)

q0
, λ = −1.
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The jumpmatrix in (3.7) can bemade constant (i.e., independent of k) by performing
another transformation. Define δ(k) ≡ δ(x, t, k) by

δ(k) = exp

(
r(k)

2π i

∫ λ+

λ−
ln f (s)

r+(s)(s − k)
ds

)
, k ∈ C\(λ−, λ+). (3.8)

The function δ satisfies the jump relation δ+δ− = f on (λ−, λ+) and limk→∞ δ(k) =
δ∞, where

δ∞ = exp

(
− 1

2π i

∫ λ+

λ−
ln f (s)

r+(s)
ds

)
. (3.9)

Moreover, δ(k) = O((k − λ±)1/4) and δ(k)−1 = O((k − λ±)−1/4) as k → λ±.
Consequently, m̌ = δ

−σ3∞ m̂δσ3 satisfies the following RH problem: (i) m̌(x, t, ·) :
C\(λ−, λ+) → C

2×2 is analytic, (ii) m̌ = I + O(k−1) as k → ∞, (iii) m̌ =
O((k − λ±)−1/4) as k → λ±, and (iv) m̌ satisfies the jump condition

m̌− = m̌+
(

0 1
−1 0

)
for k ∈ (λ−, λ+).

The unique solution of this RH problem is given explicitly by

m̌ = 1

2

(
Q + Q−1 i(Q − Q−1)

−I (Q − Q−1) Q + Q−1

)
with Q(k) =

(
k − λ+

k − λ−

)1/4

, (3.10)

where the branch of Q : C\(λ−, λ+) → C is such that Q ∼ 1 as k → ∞. Since m̃ is
easily obtained from m̌ by inverting the transformations m̃ → m̂ → m̌, this provides
an explicit solution of the RH problem for m̃.

We next use the formula (3.10) for m̌ together with (2.12) to find q(x, t). By (2.12),

q(x, t) = 2i lim
k→∞ km̂12(x, t, k) = 2iδ2∞ lim

k→∞ km̌12(x, t, k) = λ+ − λ−

2
δ2∞. (3.11)

In order to compute δ∞, we note that

δ∞ = ec0 exp

( ∫ λ+

λ−
s(x − L)

πr+(s)
ds

)
exp

( ∫ λ+

λ−
2s2t

πr+(s)
ds

)
, (3.12)

where

c0 = − 1

2π i

∫ λ+

λ−
ln(−2iλr+(s)) − ln q0

r+(s)
ds.

The integral in (3.12) involving x − L vanishes because the integrand is odd, and the
integral involving t can be computed by opening up the contour and deforming the
contour to infinity:
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∫ λ+

λ−
2s2t

πr+(s)
ds = −1

2

∮

C

2s2t

πr(s)
ds = −iλq20 t,

where C is a counterclockwise circle encircling the cut [λ−, λ+]. If λ = 1, then the
substitution s = q0 sin θ gives

c0 = 1

π

∫ q0

0

ln(2
√
q20 − s2) − ln q0
√
q20 − s2

ds = 1

π

∫ π/2

0
ln(2 cos θ)dθ = 0, (3.13a)

while if λ = −1, then the substitutions s = iσ = iq0 sin θ yield

c0 = 1

π

∫ q0

0

ln(−2i
√
q20 − σ 2) − ln q0

√
q20 − σ 2

dσ = 1

π

∫ π/2

0
ln(−2i cos θ)dθ = −π i

4
.

(3.13b)

It follows that

δ∞ =
{
e−iλq20 t , λ = 1,

e− π i
4 e−iλq20 t , λ = −1.

(3.14)

Substituting this expression for δ∞ into (3.11), we find that the solution q(x, t) of
(2.2) corresponding to the constant initial data q(x, 0) = q0 ∈ R is given by

q(x, t) = q0e
−2iλq20 t . (3.15)

It is of course easily verified that this q satisfies the correct initial value problem.
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