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Abstract

We present a new family of integrable versions of the Euler two-centre problem on
two-dimensional sphere in the presence of the Dirac magnetic monopole of arbitrary
charge. The new systems have very special algebraic potential and additional integral
quadratic in momenta, both in classical and quantum versions.
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1 Introduction

The celebrated Euler two-centre problem [9] was one of the first non-trivial mechanical
systems integrated completely since the solution of famous Kepler problem by Newton.
In its two-dimensional version, the Hamiltonian has the form

1 nop
H=—(p?+p5)——=—"—,
2(171‘*‘192) -

where

ri=\(@+02+q3, rn=/(qg—)*+4q3

are the distances from the two centres fixed at the points (& ¢, 0).
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Fig. 1 Position of the fixed centres in the classical (left) and the new (right) systems
In the confocal coordinates uy = ry + rp, u» = ry — rp, the variables in the

corresponding Hamilton—Jacobi equation can be separated, leading to the explicit
solution of the system in quadratures (see Arnold [3]). More recent detailed analysis
of this classical system can be found in Waalkens et al. [26].

Its natural generalisation to the spaces of constant curvature was originally found
in 1885 by Killing [13] and rediscovered by Kozlov and Harin [14] as part of a general
family of systems, separable in spherical elliptic coordinates. More of the history of
this problem with the references can be found in Borisov and Mamaev [5], who also
discussed various integrable generalisations of this system.

The main observation (in the hyperbolic case due already to Bolyai and
Lobachevsky and in spherical case to Serret (see [5]) is that for the system on the
unit sphere 2 the non-Euclidean analogue of the Newtonian potential j/r is i cot 0,
where 6 is the spherical distance between the particle and fixed centre. The dynamics
of corresponding natural 2-centre version with

U= —ucotf) — pcotbs,

where 61 and 0, are the spherical distances from the fixed centres, was first studied
by Killing [13], who separated the variables in the corresponding Hamilton—Jacobi
equation using the Neumann elliptic coordinates on sphere.

Note that this potential U has actually four singularities on the sphere, which can
be interpreted as two antipodal pairs of centres with opposite charges + & (see Fig.
1), and thus this system should probably be considered as a 4-centre problem with
Coulomb, rather than gravitational Newtonian interaction.

To write down the explicit formula for the Hamiltonian and the additional integral,
it is convenient to use the canonical Lie-Poisson bracket on the dual space e(3)* of the
Lie algebra of the group of motion of the Euclidean space. The corresponding variable
M;, gi, i =1, 2,3 has the Poisson brackets

{Mi, M} = eiuMy, {Mi.q;}=eijkq. {gi.q;} =0. (H
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We have two Casimir functions
Ci=lql*>, Co=WM.q.

The symplectic leaf with C; = |¢|?> = 1, C» = (M, q) = 0 is symplectically isomor-
phic to the cotangent bundle of the unit sphere T7*S2.

In the coordinates M, g the Hamiltonian of the spherical analogue of the Euler
two-centre problem is

Bqz — aq Bq3 + aq
2 TS ’
\/‘Iz + (g3 + Bq1)? \/‘Zz + (g3 — Bq1)?

H—1|M|2

where 1, a, § are parameters such that o + ,32 =1.

We have 4 fixed centres at (£ «, 0, & 8), two of which at (£ «, 0, 8) for u > 0 are
attractive, while their antipodes (% «, 0, — ) are repulsive (see Fig. 1).

The explicit form of the additional integral at the special Casimir level (M, g) =0
was found by Mamaev [16] (see also [5])1:

F=o®M? - 8*M2 — 208 | 1 Bar — g3 +u aq1 + Bygs

Ja3 + Bar —aq g+ @qs + Ban)?

For the recent detailed analysis of the orbits in this system see the paper by Gonzalez
Leonetal. [11].

Note that on the symplectic leaves with (M, q) # 0 (corresponding to the additional
non-zero Dirac magnetic field) the system is believed to be non-integrable for non-zero
values of parameters. From [25], it follows that at least it has no additional integrals
quadratic in momenta.

The aim of this paper is to introduce a new integrable family of systems on e(3)*
with the Hamiltonian

lg!

VR(@)’

depending on real parameters i, A, B satisfying A > B > 0. These systems can
be interpreted as the motion on the unit sphere with very particular algebraic electric
potentials having two singularities of Coulomb/Newtonian type in the external field
of Dirac magnetic monopole (see more in the next section).

We show that the new systems are integrable in both classical and quantum case
for all values of parameters and for all values of magnetic charge (or, equivalently, for
all values of Casimir function C, = (M, ¢q)). The additional integral

2VAB 1, My — 2V AB—E
lq1 R(q)

1
H=ZIMP R(9) = Aq3 + Bg} + (A + B)g3 — 2V/ABlqlqs

F = AM} + BM3 +

! There is a couple of sign typos in the explicit form of the integral in these papers, which were kindly
corrected for us by Ivan Mamaeyv.
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3108 A.P.Veselov, Y.Ye

is quadratic in M but with coefficients depending algebraically on ¢.

The significance of the new systems is explained by the fact that this is the only
integrable family of this type apart from the classical Clebsch system, which can be
interpreted as the Neumann system on sphere with quadratic potential and additional
Dirac magnetic field (see [24,25]).

2 New system

Consider now the general symplectic leaves in e(3)*, which are the coadjoint orbits
of the Euclidean motion group E (3) determined by

(¢,9) = R*, (M,q)=vR. 2)

Novikov and Schmelzer [20] introduced the variables

v

to identify the coadjoint orbits with T*$%: (¢, ¢) = R?, (L,q) = 0.
Assuming here for the convenience that the radius of sphere is 1, we have in the
new variables the Poisson brackets are

{Li.L;} =eijk (L —var), {Li.q;} = €ijkqr. {49i.q;} =0 4)
and the corresponding symplectic form becomes
w=dP A dQ +vdS, 5)

where dP A dQ is the standard symplectic form on 7*S? and dS is the area form
on S? (see [20]). As it was pointed out in [20], the second term corresponds to the
magnetic field of the Dirac monopole: H = v dS. For a modern generalisation of this
result to a wide class of the homogeneous spaces, we refer to [4] (see, in particular,
Sect. 3) and references therein.

Consider the following functions on e(3)*:

1 lq|
H=_M?-pu , (©6)
2 R(g)
2/ AB q3
F = AM? + BM? + =—=——(M, q)M3 — 2u~/AB , 7
! 2 gl VR(@)
where
R(q) = Aq3 + Bgi + (A + B)q3 — 2/ ABlqlg3 (8)

and wu, A, B are parameters satisfying A > B > 0.
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Fig.2 Graph of the repulsive
version of the potential U after
stereographic projection

lg1
: o VR@ . o
North pole is shown in Fig. 2. We can interpret it as the Coulomb-like potential with

two fixed charged centres (repulsive when u < 0, and attractive when u > 0).
Note that our system with positive © admits also Newtonian gravitational interpre-
tation in contrast to the classical Killing version.

The graph of the potential U = —pu

after stereographic projection from the

Theorem 1 The Poisson bracket of H and F is identically zero:
{F,H} =0.

On the symplectic leaf with |q|*> = 1, (M, q) = v, we have a new integrable system
on unit sphere with the potential having two Coulomb-like singularities with charge
w/~A — B fixed at the points (£ «, 0, B) with

_ [A-B _\/?
o= A,ﬁ_z

in the external field of Dirac magnetic monopole with charge v.

The proof can be done by direct calculation. The formulae (6)—(8) was the final
outcome of the lengthy local investigations started many years ago by the first author
in collaboration with Ferapontov and Sayles, see [25].

Let us check that the potential U (q) = —/+/R(g) has the described singularities.
For this re-write R(q) as

R(g) = (A — B)g3 + (WAgs — VBlq))*.
Indeed, we have
(A — B)g3 + (WAq3 — VBlg)? = (A — B)g3 + Ag3 — 2V ABlqlq3 + B(qg} + 43 +43)
= Aq3 + Bg? + (A + B)g3 — 2v/ABlqlgs.
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3110 A.P.Veselov, Y.Ye

Since A > B > 0 the equality
(A~ B)gy + (VAqs — VBlg)* =0

implies that both g» = 0 and ~/Ag3 — ~/Blg| = 0, which gives two points

/A B =0.g3= /21l
QI_ A q,QZ—vQS— Aq

One can check that near the singularities we have

R~ 2(A~ B)p,
where p < 1 is the spherical distance from the singularity, which means that

u

JV2(A—B)p

~

is Coulomb-like as claimed.
Note that at the antipodal points (£ «, 0, —8) the potential is smooth since

R(%a,0,—p) = —2/B #0.
The Euler equations on ¢(3)* are known to coincide with the classical Kirchhoff
equations of the rigid body in the infinite ideal fluid [20]. The only other known

integrable case with the Hamiltonian H = %|M |> + U(q) is the classical Clebsch
system [7] with quadratic potential

1
U= 5(6116112 + axq3 + azq3).
One can show that these two systems exhaust all integrable cases in this class with
quadratic in M integral [25].

In the second known classical integrable Steklov—Lyapunov case [15,23] of the
Kirchhoff equations, the Hamiltonian

1 2 1 2
H = EIMI - (M, Aq)+§(C q,q9)

with A = diag (a1, a2, a3), C = diag (ap — a3, a3 —aj, a; — az) has the terms linear
in M, responsible for the additional non-Dirac magnetic field.

3 New system in spherical elliptic coordinates
Consider the unit sphere given in the Cartesian coordinates g1, g2, g3 by the equation
af +a3 +ai =1,
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New integrable two-centre problem on sphere 3111

and introduce the spherical elliptical coordinates [18,19] as the roots u1, uy of the
quadratic equation

2 2 2
qq + 9, a3

d) =
@) A—u B—-—u C-—u

=0, ®

where C = 0and A > B > 0 are the same as before.

Such coordinates were first introduced by Neumann in 1859 in order to solve the
spherical analogue of harmonic oscillator using the Jacobi method of separation of
variables (see [18]). These spherical coordinates play a very special role in the general
Killing—Eisenhart theory of separation variables, see recent work [21] and references
therein.

Expressing the function

Ou) = (u —wup)(u —us)

T —u(A—u)(B —u) (10)

in terms of partial fractions, we have the formula for the Cartesian coordinates in terms
of the elliptic coordinates

2 (A —u)(A—u)

G="ga-p L= . _B?;)(_BA_) S u/;b;;' (1
The metric on the sphere in the elliptic coordinates takes the form
ds? = ”}(;1”;2 w3+ ”;(;Sldug. (12)
where
fu) =—4u(u — A)(u — B). (13)
The graph of f(u) and the positions of the variables
0<u1<B=<uy<A
are shown in Fig. 3.
From (9), we have
(= uD)(u —u2) = u = (Bqi + Aqi + (A + B)gu + ABg;,
implying
uy +uz = Bgi + Ag3 + (A + B)g3, uiup = ABg3. (14)
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3112 A.P.Veselov, Y.Ye

f(u)

*c
S

Fig.3 Choice of roots u1, up

In particular,

(Vi1 — u)* = uy +uy = 2/utiz = Bgi + Ag3 + (A + B)g3 — 2V/ABg3
= B(g} +q3 +43) + (A~ B)g3 + Aq3 — 2v/ABg3 = (A — B)g3 + (V'Aqz — VB)?,

so
R(q) = (A = B)g3 + (VAg3 = VB)’ = (Vu1 — u2)*.
Thus, the (electric) potential of our new system is

n

H —
INCORENTENT

Note that we have chosen here g3 = Juiuz/ V/AB to be positive, which leads to the
singularities corresponding to | = uy = B lying in the upper half-space.

To write down the kinetic term, we need to introduce the potential of the Dirac
magnetic monopole on sphere, which is known to be impossible to choose non-singular
for non-zero magnetic charge v by topological reasons (see e.g. Wu and Yang [27]).
If we make two punctures at North and South poles, then we can use, for example,

Ug) =

q1dg2 — q2dq;
P 5 -

A=v
ai +q3

15)

Indeed, one can check that on the sphere |g 2=1

dA =v(q1dg2 A dg3 + g2dg3 A dg1 + q3dg1 Adgz) = vdS
(where dS is the area form on the unit sphere), which is the magnetic form of the Dirac
monopole with charge v.

Let

A = A (u)duy + Az(u)dus
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be any such 1-form [e.g. given by (15)] written in the elliptic coordinates, so that

dA = vdS = B(u)duj A dus,

where
uy —up
B(u) =v—= (16)
= fun) fuz)
is the density of the Dirac magnetic field in the elliptic coordinates.
Define the magnetic momenta by
pi=pi—Aiw),i=12 17
The corresponding Poisson brackets are
{P1. p2} = Bw), {p1,u1} = {p2, u2} =1,
with all other to be zero.
The Hamiltonian and the integral of the new system can be written now as
1 flu) . fluz) . u
H=§( Pl + P) == (18)
up —up uy —u| Ju2 — Juq
Sflu) fu2) . - N
F=u P+ u P+ 1@ pr+ g pa+ V).  (19)
up —uz uz —uj
where
V=) f(u2) V=S ) fuz)
pr=—Vv———, =V —
Juiuy + us Juiuy + u
and
2,bL. JUiu 2 2
V=-—7"->7:-—-vGJur —Ju".
U2 — Juq
Note that the electric potential can be written in Stdckel form as
M _ w(Juz 4 ur)

U=— =
Jur — Juq Uy — Uy

so, when the magnetic charge v = 0, we can take A = 0, p; = p; and the variables
in the corresponding Hamilton—Jacobi equation

fu) <§)2+ f(u2) (g)z_uw—nﬁ):h

up —up \ ouy U —uyp \ oup Uy — U
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3114 A.P.Veselov, Y.Ye

can be separated (similarly to the classical two-centre problem, see Kozlov and
Harin [14]).
What makes our case special is that the integrability holds for general v, although
the separation of variables does not work, at least immediately (see Sect. 6).
Another nice property of the new system is that it has a natural integrable quantum
version.

4 Quantum version
Let us first recall the geometric quantisation of the Dirac magnetic monopole following

Kemp and one of the authors [12].
Let

X1 =930 —q203, X2 =q103 —q301, X3 =¢201 —q102
be the vector fields generating rotations of S2 given by ql2 + q% + q32 = land Vy; be
the corresponding covariant derivatives with respect to the Dirac U (1)-connection i A
with A given, for example, by (15).
Note that in the quantum case the charge v of the Dirac magnetic monopole must be

quantised, as it was pointed out already by Dirac [8]. Geometrically this corresponds
to the integrality of the Chern class of U (1)-bundle over sphere:

1
— vdS =2v € Z.
27T S2

Then one can check [12] that
Vi =iVy,
and the operators ¢; of multiplication by ¢; satisfy the commutation relations

Vi, Vil = i€im (Vm — vGim)

and thus can be considered as quantisation of Novikov—Schmelzer variables. The
quantum versions of the original variables

M; =V, +vgj, (20)
satisfy the standard angular momentum relations
[Mkv Mm] = iekmnMn’ [Mks qu] = iekmnq,\n’

and coincide with Fierz’s modification of the angular momentum in the presence of
the Dirac magnetic monopole [10].
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New integrable two-centre problem on sphere 3115

The quantum Hamiltonian of the Dirac monopole can be written in terms of mag-
netic angular momentum M as

N . .
H=§(M12+M22+M32).

Since the operator H is a Casimir operator for SO(3), it acts on every irreducible
representation of SO (3) as a scalar, which allows to use the representation theory for
an explicit computation of the spectrum of Dirac magnetic monopole on the Hilbert
space of functions F (S?) (see the details in [12]).

The quantum Hamiltonian of our system can now be defined by the same formula

lq]
VR(@)'

g o_ l 2 02 2y
A = S} 4+ 03 + 41) — 1)
whereas before R(q) = (A — B)q22 + (\/Zq3 — \/E|q|)2. Here slightly abusing

notations, we mean by f(g) the operator of multiplication by f(g) on the space of
functions F(S?). Define similarly the quantum version of F by

“ N ~ 2+ AB  « N q3
F =AM} + BM? + (M, q)M3 — 2u~AB———. (22)
! > gl VR(@)

Note that there is no ordering problem here since M3 commutes with the operator
M, @lg|™".

Theorem 2 Operators H and F given by (21), (22) commute:
[H, F1=0,
so F is the second quantum integral of the system, ensuring its integrability.

The proof is again by straightforward check. When the magnetic charge v = 0, the
Hamiltonian and integral become

N 1 ~ N ~
Ae—ta—pn a2 g a2 — 2uvaB—L

27 R JRQ)'

where A is the Laplace—Beltrami operator on the unit sphere.

5 Hyperbolic version
Replacing the Euclidean group of motion E(3) by the group E (2, 1) of motion of the

pseudo-Euclidean space R>! we come to the following natural hyperbolic version of
our system.
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3116 A.P.Veselov, Y.Ye

The corresponding Lie algebra of so(2, 1) consists of 3 x 3 matrices X satisfying
X:XJ+JXT =0, where

-1 0 0
J=1 0 -1 0
0 0 1

We have a natural basis M, M>, M3, defined by
0 —da3z ap
X=|a3 0 ar | =aMy +ayMy + a3 M3,
a  a 0
with the commutation relations between themselves and with natural generators of

translations q1, ¢2, g3:

My, My] = M3, [My, M3] = —My, [M3, M{] = —M>,
(M1, g2]1 = g3 = —[M2, q1]), [M1,q3] = g2 = —[M3, q1], [M2, q3] = —q1 = —[M3, q2].
(23)

The Casimir functions are
C1=(q.79) = —4i — 43 +43 = llqII’.
defining the pseudo-Euclidean structure on R>!, and
Cr=(M,q) =M, Jq) =—Miq1 — Mag> + M3qg3.

The relation C; = ||¢||*> = 1 now defines the two-sheeted hyperboloid, one sheet of
which presenting a model of the hyperbolic plane (see Fig. 4).
The Hamiltonian of the natural hyperbolic analogue of the new system is

wllgll

1
H=—(M>+ M?— M?)+ : (24)
27T T VR@
where
R(q) = —Aq2* — Bqi® 4+ (A + B) g3 — 2/ AB|lql|g3, (25)

which can be rewritten as
R(q) = (B — A)g3 + (V'Ags — vVBllg)*.
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New integrable two-centre problem on sphere 3117

Fig.4 Pseudo-spheres in R21

Gl

Assuming now that B > A > 0, we see that the potential has two singularities when
gy = 0 \/_q3 — \/§||q|| = 0, or, if we assume that ||g||> = 1, at two points

&¥E=A,0, 8),
The correspondmg additional integral has the form
v AB vAB
F=AM?2+BM® —2 Y22 M, gymy +2 BV 228 (26)
lgl] VR(q)

Theorem 3 The functions H and F given by (24)—(26) commute with respect to the
Lie—Poisson bracket (23) on the dual of Lie algebra so(2, 1)*.

At the symplectic leaf ||q||*> = 1, (M, q) = v this gives a new integrable two-centre
problem on the hyperbolic plane with constant magnetic field of charge v. The same
is true for the natural quantum versions Hand F.

The formulae in the corresponding hyperbolic elliptic coordinates u 1, u2, defined
as the roots

2 2 2
q q q
2 +73=0, lgll* = —qf — 43 + 43 = 1,

A—u B—u

are similar to the spherical case.

Note that on the symplectic leaves with ||g||> = —1, determining a one-sheeted
hyperboloid, we have a “de Sitter” version of the problem using the same formulae
with B > 0 > A.

6 Concluding remarks
The geometry of the new systems is still to be properly studied, but the most important

problem is to study the corresponding dynamics in the classical case and the spectrum
in the quantum case.
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3118 A.P.Veselov, Y.Ye

For the detailed analysis of the spherical version of the Euler two-centre problem
[13,14], we refer to the work of Albouy and Stuchi [1,2], Borisov and Mamaev [5,6]
and Gonzalez Leon et al [11].

In our case, this looks much more difficult because of the presence of the magnetic
field, which usually creates a lot of problem for the separation of variables.

A famous example of this sort is the classical Clebsch system, describing special
integrable cases of rigid body motion in an ideal fluid [7]. It can be written as Euler
equation on e(3)* with

1 1
H = SIM® + 3 (Aqi + Bg3 + Cq3),

(see [20]) and can be interpreted as the harmonic oscillator on sphere with additional
Dirac magnetic field [24]. As we have already mentioned, Clebsch and our new systems
are the only two electric extensions of Dirac magnetic monopole having an additional
integral, which is quadratic in momenta [25].

Recently there was a substantial progress in separation of variables for the Clebsch
systems due to Magri and Skrypnyk [17,22]. It would be interesting to see if these
new ideas can be applied in our case as well.
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