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Abstract
We review the gauge and ghost cyle graph complexes as defined by Kreimer, Sars and
van Suijlekom in “Quantization of gauge fields, graph polynomials and graph homol-
ogy” and compute their cohomology. These complexes are generated by labelings on
the edges or cycles of graphs and the differentials act by exchanging these labels. We
show that both cases are instances of a more general construction of double complexes
associated with graphs. Furthermore, we describe a universal model for these kinds
of complexes which allows to treat all of them in a unified way.

Keywords Graph cohomology · Quantum field theory · Feynman diagrams · Gauge
theory · BRST quantization

Mathematics Subject Classification 18G35 · 81T13 · 81T70

1 Introduction

Kreimer et al. [11] showed how gauge theory amplitudes can be generated using only
a scalar field theory with cubic interaction. On the analytic side, this is achieved by
means of a new graph polynomial, dubbed the corolla polynomial, that transforms
integrands of scalar graphs into gauge theory integrands. On the combinatorial side,
all graphs relevant in gauge theory can be generated from the set of all 3-regular
graphs by means of operators that label edges and cycles. These labels represent edges
with different Feynman rules that incorporate contributions from 4-valent vertices and
relations between 3- and 4-valent vertices and are similar for gluon and ghost cycles.

Generating and exchanging these labels on a fixed graphΓ can be cast as operations
that square to zero, and hence define differentials on the free abelian group generated by
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all possible labelings of Γ . One of the main observations in [11] is that modeling edge
collapses and particle types by different labels on edges and cycles, called markings,
one thereby obtains two cochain complexes, called gauge and ghost cycle complexes,
whose cohomology encodes physical constraints on scattering amplitudes in gauge
theory. Very roughly speaking, the first marking represents modified Feynman rules,
such that that the full gauge theory amplitude is given by the sum over all marked,
3-regular graphs (representing all ways of expanding 4-gluon into 3-gluon vertices or
all ways of exchanging gluon for ghost loops, respectively). The second marking or,
more precisely, the two differentials that change the first into the second marking and
generate new marked edges of the second type, reflect physical constraints such as
unitarity and gauge covariance, in the sense that observable quantities must lie in the
kernel of these maps (similar to the approach in BRST quantization, see, for instance,
[3]). Thus, the relevance of understanding the cohomology of these complexes.

For a thorough discussion of the quantum field theoretical motivation and interpre-
tation of these complexes, we refer to the original article [11] and the review [10]. A
detailed discussion of the analytic approach via corolla polynomials can be found in
[12], and a general reference for background material on the quantization of gauge
theories is the classical work [2].

However, in the present article we are not concerned with physics, but only with the
cohomology of these complexes. In [11], it is stated that the gauge theory amplitude
is a cocycle in both complexes. The authors then discuss the physical implications of
this fact. Here, we study the full cohomology of these complexes and show that this
amplitude is not only a cocycle, but represents a non-trivial cohomology class, in fact
the only one.

We show that the two complexes introduced in [11] are special cases of a general
construction that associates a cochain complex to a graph and a class of subgraphs
allowed to bemarked. This complex is generated by all possiblemarkings of the graph,
and the differentials operate on the markings by generating and exchanging them. The
connection to physics comes here from the mere choice of marked substructures (i.e.,
cycles and edges) and the interpretation of the differentials.

Note that we are not dealing with “classical” graph complexes in the sense of [9].
Although edge markings may be interpreted as Feynman rules for edge collapses, the
differentials do not change the topology of graphs. Our construction is more simi-
lar to [5] which studies simplicial complexes associated with graphs and classes of
substructures, such as cliques and independent sets.

Our main statement is the following.

Theorem 1 Fix r , l ∈ N and let (G•, S + (−1)•T ) denote the total complex where S
and T are the gauge and ghost cycle differentials. Define

X :=
∑

Γ

∑

m

(Γ ,m),

as the sum over all admissible 1-markings of edges and cycles in 3-regular graphs Γ

with r legs and l loops. Then, SX = T X = 0 and X represents the only non-trivial
cohomology class in H•(G, S + (−1)•T ).

123
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This result is based on two properties of the gauge and ghost cycle complexes.
Firstly, there is a universal model for general complexes of marked graphs allowing
to treat both cases at once. Secondly, its differentials are of the form D = δ + d with
δ very simple. This allows to compute the cohomology of D by a spectral sequence
argument without the need of explicitly understanding the cohomology with respect
to d.1 Both properties are established in Theorems 2 and 3.

The exposition is organized as follows. In the next section, we introduce markings
and complexes of marked graphs in general, then we specialize to edge-, cycle- or
vertex-marked graphs, the latter serving as our “computational model” to study the
former two cases. We compute its cohomology in Sect. 3 in two steps. First, we study
only the cohomology with respect to the simple differential δ, and then, we apply the
result in a spectral sequence associated with the double complex formed by δ + d. In
Sect. 4, we combine the gauge and ghost cycle complexes into a large double complex
and show that its cohomology is generated by a single element, the full gauge theory
amplitude,2 thereby proving the main theorem.

2 Complexes of marked graphs

We introduce some notations and then describe complexes of marked graphs of which
the gauge and ghost cycle complexes in [11] emerge as special cases. We call them
edge- and cycle-marking complexes. After discussing these two in detail, we introduce
the case of vertex markings which serves as a universal model to study these kinds of
complexes.

2.1 General markings

LetΓ = (Γ 0, Γ 1) be a connected graph.We call edges connected to univalent vertices
external (edges) or legs, and all other edges are referred to as internal or, by abuse of
language, simply as edges. Thus, the set Γ 1 of edges of Γ splits into Γ 1 = Γ 1

ext �Γ 1
int.

A similar decomposition holds for the set of vertices of Γ , Γ 0 = Γ 0
ext � Γ 0

int.
Since our operations will focus solely on the internal structure of graphs, we write

V = V (Γ ) := Γ 0
int and E = E(Γ ) := Γ 1

int for its internal vertices and edges. In
that spirit, we denote graphs by Γ = (V , E), as is customary in graph theory, tacitly
remembering the external structure encoded by the pair

(
Γ 0
ext, Γ

1
ext

)
.

A subgraph of Γ is a pair of subsets V ′ ⊂ V and E ′ ⊂ E such that (V ′, E ′) is a
graph itself. Note that our definition of subgraphs relies only on the internal structure
of Γ . However, we allow subgraphs to have univalent vertices. In particular, (internal)
vertices and edges of Γ are (identified with their corresponding) subgraphs of Γ .

Definition 1 Fix a finite set S = {0, . . . , s} ⊂ N. For a finite graph Γ , let Sub(Γ )

denote the set of all subgraphs of Γ . Given a subset P ⊂ Sub(Γ ) a P-marking of Γ

1 The differential d is quite interesting in its own right as its computation is related to NP-hard problems
in graph theory, cf. [8].
2 For the experts: Symmetry factors can of course be included (as shown in [11]), but they do not play a
role for the cohomology of the complex.
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(in S) is a map m : P → S. We call the pair (Γ ,m) a marked graph and think of
the subgraphs in m−1(0) as being not marked. Likewise, for i ∈ {1, . . . , s} we refer
to the elements of m−1(i) as i-marked. A marking is admissible if no two marked
elements share a common vertex and, in the case that vertices are marked, no two
marked vertices are connected by an edge.

In the following, we will describe (co-)chain complexes of marked graphs. For
this, we consider only admissible markings with s = 2, but more general settings are
obviously possible. Throughout this work, all coefficients will be in Z.

Definition 2 Fix a graph Γ and P ⊂ Sub(Γ ) a set of subgraphs of Γ endowed with a
total order. Let P(Γ ) denote the free abelian group generated by all markings (Γ ,m)

where m : P → {0, 1, 2} is admissible.
The marking induces a partition of P . We write P = P0 � Pm , where P0 denotes

the unmarked objects in P and Pm = P1 � P2 the 1- and 2-marked ones.

The groupP(Γ ) carries two gradings.WithP(Γ )
j
i denoting the subgroup ofP(Γ )

generated by markings with |P1| = i and |P2| = j , we set

P(Γ ) j :=
⊕

i∈N
P(Γ )

j
i .

We define two differentials on this group by changing and permuting the markings.

Definition 3 For (Γ ,m) ∈ P(Γ ), let (Γ ,m|p �→2) denote the marking that is identical
to m on P\p and marks p by 2. Define linear maps δ, d : P(Γ ) j −→ P(Γ ) j+1 by

δ(Γ ,m) := (−1)|Pm | ∑

p∈P1

(−1)|{p′∈P1|p′>p}|δ p(Γ ,m),

d(Γ ,m) :=
∑

p∈P0

(−1)|{p′∈Pm |p′<p}|d p(Γ ,m),

where δ p(Γ ,m) := (Γ ,m|p �→2) and

d p(Γ ,m) :=
{
0 ifpshares a vertex with somep′ ∈ P

(Γ ,m|p �→2) else.

Remark 1 Obviously, Definitions 2 and 3 depend on the chosen order on P . We omit
this piece of data in the following, because the cohomology of these complexes will
turn out to be independent of it. This can be shown explicitly, but follows also a
posteriori from Proposition 3. See also Remark 2.

Proposition 1 Both maps δ and d square to zero. Moreover, δd + dδ = 0, so that
D := δ + d is a differential on P(Γ ).
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Proof This is shown in [11], propositions 4.14 and 4.17, for the case P = E(Γ ). The
same proof works for general P , since due to the notion of admissible markings δ and
d cannot “mix” elements of P . Therefore,

δδ(Γ ,m) = (−1)|Pm | ∑

p∈P1

(−1)|{p′∈P1|p′>p}|δδ p(Γ ,m)

=
∑

p∈P1

(−1)|{p′∈P1|p′>p}| ∑

q∈P1\{p}
(−1)|{q ′∈P1\{p}|q ′>q}|δqδ p(Γ ,m)

=
∑

p∈P1

∑

q∈P1\{p}
(−1)|{p′∈P1|p′>p}|+|{q ′∈P1\{p}|q ′>q}|δqδ p(Γ ,m)

=
∑

p,q∈P1,p<q

(−1)|{r∈Pm |p<r<q}|δqδ p(Γ ,m)

+
∑

p,q∈P1,q<p

(−1)|{r∈Pm |q<r<p}|−1δqδ p(Γ ,m) = 0.

Similarly,

dd(Γ ,m) =
∑

p∈P0

(−1)|{p′∈Pm |p′<p}|dd p(Γ ,m)

=
∑

p∈P0

(−1)|{p′∈Pm |p′<p}| ∑

q∈P0\{p}
(−1)|{q ′∈Pm∪{p}|q ′<q}|dqd p(Γ ,m)

=
∑

p∈P0

∑

q∈P0\{p}
(−1)|{p′∈Pm |p′<p}|+|{q ′∈Pm∪{p}|q ′<q}|dqd p(Γ ,m)

=
∑

p,q∈P0,p<q

(−1)1+|{r∈Pm |p<r<q}|dqd p(Γ ,m)

+
∑

p,q∈P0,q<p

(−1)|{r∈Pm |q<r<p}|dqd p(Γ ,m) = 0.

Finally,

dδ(Γ ,m) = (−1)|Pm | ∑

p∈P1

(−1)|{p′∈P1|p′>p}|dδ p(Γ ,m)

= (−1)|Pm | ∑

p∈P1,q∈P0

(−1)|{p′∈P1|p′>p}|+|{q ′∈Pm |q ′<q}|dqδ p(Γ ,m),

δd(Γ ,m) =
∑

p∈P0

(−1)|{p′∈Pm |p′<p}|δd p(Γ ,m)

= (−1)|Pm |+1
∑

p∈P0,q∈P1

(−1)|{p′∈Pm |p′<p}|+|{q ′∈P1|q ′>q}|δqd p(Γ ,m)

= −dδ(Γ ,m).

	�
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In summary, given a graph Γ and any “type” of subgraphs P ⊂ Sub(Γ ) that can
be marked we get a cochain complex (P(Γ ), D). In the following, we specialize this
construction to three cases where P consists of edges, cycles (the two cases considered
in [11]) or vertices (our universal model).

2.2 The edge-marking complex

We start with the case of edge markings, i.e., we apply the construction outlined above
to P = E = E(Γ ).

Definition 4 Let Grar ,l denote the set of all isomorphism classes of finite connected
graphs Γ = (Γ 0, Γ 1) ≈ (V , E) with the following properties

– Γ has first Betti number is equal to l, i.e., has l independent cycles.
– Γ has r legs, i.e., r vertices of valence one, all other vertices have valence equal
to three.

– Γ has no self-loops (edges connecting a single vertex to itself).

Definition 5 Fix r , l ∈ N. For Γ ∈ Grar ,l let E(Γ ) denote the free abelian group
generated by all admissible markings m : E → {0, 1, 2} of the (ordered) edges of Γ .

A marking induces a partition of the edge set. We write E = E0 � Em where E0
denotes the unmarked edges and Em = E1 � E2 the 1- and 2-marked ones.

Remark 2 As mentioned in the previous section, all choices of orders on the marked
elements produce isomorphic complexes. Nevertheless, a priori one needs to take care
in regard to graph automorphisms and how they change a chosen order. In the usual
definition of differentials on graph complexes, graphs are oriented by an order on their
edge set.3 Two orientations o and o′ on a graph Γ are related by

(Γ , o) = sgn(ϕ) · (Γ , o′),

where ϕ is the permutation on E induced by the change of order. As a consequence,
we have (Γ , o) = −(Γ , o) = 0 for any graph that has an automorphism inducing an
odd permutation of its edge set. In particular, graphs with multi-edges vanish. To keep
all graphs in the game, we take the order as an additional, separately chosen piece
of information, tacitly equipping every isomorphism class of graphs with a choice.
Ultimately, this works because our differentials do not relate different graphs but
operate on the marking only.

The group E(Γ ) carries two gradings. With E(Γ )
j
i denoting the subgroup of E(Γ )

generated by marked graphs with i edges of type 1 and j edges of type 2, we set

E(Γ ) j :=
⊕

i∈N
E(Γ )

j
i .

3 This is not the only choice; cf. [1] for a thorough discussion of this matter.
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Definition 3 and Proposition 1 produce three differentials σ, s, S : E(Γ ) j −→
E(Γ ) j+1, given by

σ(Γ ,m) = (−1)|Em | ∑

e∈E1

(−1)|{e′∈E1|e′>e}|σe(Γ ,m),

s(Γ ,m) =
∑

e∈E0

(−1)|{e′∈Em |e′<e}|se(Γ ,m),

S = s + σ,

where σe(Γ ,m) = (Γ ,m|e �→2) and

se(Γ ,m) =
{
0 if e is adjacent to another marked edge

(Γ ,m|e �→2) else.

Example 1 Let (Γ ,m) =
1|

2

3
4

5
with E ordered as pictured, the 1- and

2-markings denoted by “|” and “||,” respectively. Then,

s(Γ ,m) = − | || − |
|| , σ (Γ ,m) = − ||

,

σ s(Γ ,m) = − || || − ||
|| = −sσ(Γ ,m).

Let E := ⊕
Γ ∈Grar ,l E(Γ ). This group naturally inherits a grading and a differential

S = s + σ from each of its summands and hence defines a cochain complex.

Definition 6 The complex (E, S) is called the edge-marking complex.

2.3 The cycle-marking complex

Now we mark cycles instead of edges.

Definition 7 Let Γ be a connected graph. A cycle c in Γ is a closed path without
repeated vertices, i.e., a subgraph c ⊂ Γ such that

– every v ∈ V is incident to none or exactly two elements in c.
– c ⊂ Γ is connected.

We denote by C = C(Γ ) the set of all cycles in Γ .

Definition 8 For fixed r , l ∈ N and Γ ∈ Grar ,l , let C(Γ ) denote the free abelian group
generated by all admissible markings m : C → {0, 1, 2} of the (ordered set of) cycles
of Γ .

Analogous to the case of edge markings, every cycle marking induces a partition
of the cycle set, C = C0 � Cm and Cm = C1 � C2.
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The group C(Γ ) is bigraded by the number of 1- and 2-markings. Let C(Γ )
j
i denote

the subgroup generated by marked graphs with i cycles of type 1 and j cycles of type
2 and let

C(Γ ) j :=
⊕

i∈N
C(Γ )

j
i .

The three differentials δ, d, D translate to τ, t, T : C(Γ ) j −→ C(Γ ) j+1:

τ(Γ ,m) = (−1)|Cm | ∑

c∈C1

(−1)|{c′∈C1|c′>c}|τc(Γ ,m),

t(Γ ,m) =
∑

c∈C0

(−1)|{c′∈Cm |c′<c}|tc(Γ ,m),

T = t + τ,

where τc(Γ ,m) = (Γ ,m|c �→2) and

tc(Γ ,m) =
{
0 if c shares a vertex with another marked cycle

(Γ ,m|c �→2) else.

Example 2 Let (Γ ,m) = 1 2 with C ordered as pictured, the 1- and

2-markings drawn as dotted and dashed cycles, respectively. Then,

t(Γ ,m) = , τ (Γ ,m) = − ,

τ t(Γ ,m) = = −tτ(Γ ,m).

Definition 9 Let C := ⊕
Γ ∈Grar ,l C(Γ ), graded by the number of 1- and 2-marked

cycles, and equipped with the differential T = t + τ . The complex (C, T ) is called
the cycle-marking complex.

2.4 Marking vertices

Note that all of the previously defined differentials do not alter the topology of graphs,
they only change their markings. Furthermore, σ and τ act only on 1-marked edges
or cycles, respectively, of a graph Γ and hence are completely independent of its
topology. On the other hand, s and t generate new 2-markings, so they depend on
the incidence structure and the marking of Γ in a non-trivial way. Nevertheless, it is
possible to construct a universal model for all cases of (admissible) markings; in this
section, we show that every complex P(Γ ) can be modeled by marking the vertices
of an associated graph Γ ′.
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Definition 10 Given a (not necessarily connected or 3-regular) graphΓ (without exter-
nal legs and self-loops), let V(Γ ) denote the free abelian group generated by all
markings (Γ ,m) where m : V → {0, 1, 2} marks the (ordered set of) vertices of Γ

such that no two marked vertices are connected by an edge.
We write V = V0 � Vm with Vm = V1 � V2 for the partition of V induced by a

marking.

Let V(Γ )
j
i denote the subgroup generated by marked graphs with i vertices of type

1 and j vertices of type 2 and let

V(Γ ) j :=
⊕

i∈N
V(Γ )

j
i .

Mimicking the previous constructions (only the notion of admissible markings has
changed), we obtain three differentials μ, u,U : V(Γ ) j −→ V(Γ ) j+1, given by

μ(Γ ,m) := (−1)|Vm | ∑

v∈V1
(−1)|{v′∈V1|v′>v}|μv(Γ ,m),

u(Γ ,m) :=
∑

v∈V0
(−1)|{v′∈Vm |v′<v}|uv(Γ ,m),

U := u + μ,

where μv(Γ ,m) := (Γ ,m|v �→2) and

uv(Γ ,m) :=
{
0 if v is adjacent to another marked vertex

(Γ ,m|v �→2) else.

Example 3 Let (Γ ,m) =
1

2

3
4

5

with V ordered as pictured, the 1- and 2-markings

drawn as “◦” and “�,” respectively. Then,

u(Γ ,m) = + − , μ(Γ ,m) = − ,

μu(Γ ,m) = + − = −uμ(Γ ,m).

Adapting the proof of Proposition 1, we conclude that (V(Γ ),U ) is a cochain
complex. The universality of this complex is established by

Theorem 2 Given a graph Γ and P ⊂ Sub(Γ ) let (P(Γ ), D) be the associated
complex constructed in Sect. 2.1. Define a graph Γ ′ = (V ′, E ′) by

V ′ := P, E ′ := {(p, p′) | p and p′ share a common vertex} ⊂ V ′ × V ′.

Then, (P(Γ ), D) ∼= (V(Γ ′),U ) as cochain complexes.
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Proof Let the order on V ′ be induced by the one on P . We define a linear map
� : P(Γ )

j
i → V(Γ ′) ji by �(Γ ,m) := (Γ ′,m′) with m′(v) := m(p). The definition

of E ′ implies that m′ is admissible if and only if m is. Then,

�δ(Γ ,m) = (−1)|Pm | ∑

p∈P1

(−1)|{p′∈P1|p′>p}|�(Γ ,mp �→2)

= (−1)|Pm | ∑

v∈P1

(−1)|{p′∈P1|p′>p}|(Γ ′,m′
v �→2)

= (−1)|Vm | ∑

v∈V1
(−1)|{v′∈V1|v′>v}|(Γ ′,m′

v �→2) = μ�(Γ ,m)

and similar for�d = u�. Furthermore,� is invertible; its inverse is given by sending
a marking m′ of Γ ′ to the marking m : P → {0, 1, 2}, p �→ m′(v), where v ∈ V ′ is
the unique vertex representing p. 	�
Example 4 For themarked graphs in Examples 1 and 2, the associated graphs (Γ ′,m′),
with the notation of Example 3, are

1

2

3
4

5
and 1 2 , respectively. The complex

(V(Γ ′),U ) contains thus all information of (P(Γ ), D) while being as simple as
possible.

Remark 3 We rephrase the content of this section in abstract terms. Consider a category
of complexes of marked graphs, formed by complexes of the form (P(Γ ), D) for Γ

a finite graph and cochain maps between them. Then, we have shown that vertex-
markings form a subcategory which is equivalent to the larger category; the inclusion
of this subcategory defines a functor which is fully faithful by construction and the
previous theorem shows that it is also essentially surjective and hence part of an
equivalence.

3 Cohomology of complexes of marked graphs

In this section, we show that both the edge- and cycle-marking complexes are acyclic.
By Theorem 2, it suffices to consider the case of vertex markings, i.e., the complex
(V,U ), where V := ⊕

Γ ∈Grar ,l V(Γ ′). Moreover, since taking homology commutes
with taking direct sums, we focus on the complexes (V(Γ ),U ) for an arbitrary graph
Γ .

The proof is based on two steps. First, we calculate the cohomology of the complex
(V(Γ ), μ), and then, we use the result in a spectral sequence to find the cohomology
of the double complex (V(Γ ), u + μ).

3.1 The cohomology of the complex (V,�)

Fix a graph Γ and let (Γ ,m) ∈ V(Γ )
j
i , so m specifies i 1- and j 2-marked vertices.

Since themapμ changes 1-markings into 2-markings, the imageμ(Γ ,m) is an element
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Complexes of marked graphs in gauge theory 2427

of V(Γ )
j+1
i−1 , given by the sum over i copies of Γ where a single 1-marked vertex has

been replaced with a 2-marked vertex.
We can model this situation in a rather simple way. Let Λn denote the graph on

n disconnected vertices, ordered by v1 < · · · < vn , and define a chain complex4

(L(Λn), μ) by

L(Λn)i := 〈(Λn,m) | m : V (Λn) → {1, 2}, |m−1(1)| = i〉.

Note that here the markings are required to mark every vertex of Λn . This complex
captures the action ofμ on a single configuration of marked vertices, i.e., on markings
m,m′ with Vm = Vm′ as subsets of V . There are, however, also other configurations
of marked vertices which have to be taken into account.

Definition 11 An independent set of size n in a graph Γ is a subset of V of size n such
that no two of its elements are adjacent. We write In = In(Γ ) ⊂ 22

V
for the set of all

independent sets with size n in Γ .

RephrasingDefinition 10,we see that everymarkingm onΓ corresponds bijectively
to an independent set Vm ⊂ V with a choice of labeling or 2-partition Vm = V1 � V2
of its elements. Taking as many copies of L(Λn) as there are independent sets of size
n in Γ allows to model the action of μ on V(Γ ).

Lemma 1 Given Γ ∈ Grar ,l define a chain complex (L, μ) by

Li :=
⊕

j∈N

⊕

m∈Ii+ j (Γ )

L(Λi+ j )i . (1)

Then, there is an isomorphism of chain complexes (V(Γ ), μ) ∼= (L, μ).

Proof Recall that the vertices of Γ are ordered. Thus, for each marking m on Γ with
|Vm | = i + j there is an induced order on Vm(Γ ) and a unique order preserving
bijection ϕm between Vm(Γ ) and the vertices of Λi+ j (which are all marked). For any

m in Ii+ j (Γ ), we send (Γ ,m) ∈ V(Γ )
j
i to (a copy of) (Λi+ j ,m′)wherem′ = m◦ϕ−1

m .
This defines a chain map from V(Γ )i to Li which is bijective by construction. 	�
Lemma 2 H•(L(Λn), μ) = 0 for all n > 0.

Proof Fix n > 0. To prove the lemma, we define a chain isomorphism Φ between
(L(Λn), μ) and the augmented (and degree shifted) simplicial chain complex
C̃(Δ)[+1] of the standard (n − 1)-simplex Δ = [v1, . . . , vn] which is contractible
and hence has vanishing reduced homology.

For C̃i := Ci−1(Δ), C̃0 = Z and ∂0 = ε : ∑
λivi �→ ∑

λi , define

Φi : L(Λn)i → C̃i , Φi (Λn,m) :=
{
[{vk | vk is 1-marked}] i > 0

1 i = 0.

4 In this section, we use homological conventions, i.e., we grade by the number of 1-marked elements. The
connection to the cohomology of (V(Γ ), μ) is established at the end.
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Let mv mark a single vertex by 1, then we compute

εΦ1(Λn,mv) = ε[v] = 1 = Φ0μ(Λn,m ≡ 2),

where m ≡ 2 denotes the constant map, marking every vertex by 2.
For l > 0 and vk1 < · · · < vkl , the 1-marked vertices of Λn

∂Φl(Λn,m) =
l∑

i=1

(−1)i+1[vk1, . . . , ∧
vki , . . . , vkl ]

and

Φl−1μ(Λn,m) = (−1)n
l∑

i=1

(−1)l−iΦ(Λn,m|ei �→2)

= (−1)n
l∑

i=1

(−1)l−i [vk1 , . . . , ∧
vki , . . . , vkl ].

The expressionsmatch up to a sign (−1)n−l+1 whichmay be absorbed by ∂ �→ (−1)n∂
without changing the homology of this complex. The map Φ is clearly bijective, so it
induces an isomorphism on homology. 	�

There is one summand on the right side of (1) which has non-trivial homology,
the piece corresponding to the empty graph Λ0 representing the case where Γ has no
marked vertices at all. This element is μ-closed, but not exact.

Lemma 3 Hk(L(Λ0), μ) = 0 for all k > 0 and isomorphic to Z in degree 0.

Proof L(Λ0) consists of a single element, the empty graph, concentrated in degree 0,
and μ maps it to 0. 	�

Putting everything together, we arrive at

Proposition 2 The homology of the complex (V(Γ ), μ) is given by

Hk(V(Γ ), μ) ∼=
{
Z k = 0

0 else.

Finally, since μ is of bidegree (−1,+1), we have

Hk

( ⊕

j∈N
V(Γ ) j−•• , μ

)
=

⊕

j∈N
Hk

(
V(Γ ) j−•• , μ

) =
⊕

j∈N
H j−k(V(Γ )•k, μ

)
,

so that

Hn(V(Γ ), μ) ∼=
{
Z n = 0,

0 else,
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and the sole class in H0(V(Γ ), μ) is represented by (Γ ,m0) ∈ V(Γ )00, the graph Γ

with no marked vertices.

3.2 The cohomology of the complex (V, u+ �)

Having understood the cohomology of V with respect to μ, we now consider the full
differential U = u + μ. Again, it suffices to study each summand V(Γ ) individually.
The bigrading is given by the number of 1- and 2-marked vertices so that u andμ have
bidegrees (0, 1) and (− 1, 1). In the following, it will be convenient to change this
bigrading into the total number of marked vertices and those of type 1. From now on,
we work with cohomological grading, i.e., we take the second part of the bigrading to
be negative.

Hence, given a graph Γ we define

T :=T (Γ ), T i, j := 〈
(Γ ,m) | m : V → {0, 1, 2}, |Vm | = i, |V1| = − j

〉 = V(Γ )
i+ j
− j .

The differentials u and μ are then of bidegree (1, 0) and (0, 1), respectively. The
associated total complex is (T , u+μ), where T n = ⊕

i+ j=n T i, j , so n is the number
of 2-marked vertices.

Theorem 3 For any graph Γ , the double complex (T ,U ) is acyclic, i.e., the cohomol-
ogy Hn(T ,U ) vanishes for all n > 0 and is isomorphic to Z in degree 0.

Proof It is possible to give a constructive proof making the isomorphism explicit, but
we opt for a spectral sequence argument. Our notation follows the conventions in [4].

Let T be filtered by T = F0T ⊇ · · · ⊇ F pT ⊇ · · · ⊇ FmT = 0 with

F pT n :=
⊕

i+ j=n,i≥p

T i, j .

The associated spectral sequence starts with

E p,q
0 = F pT p+q/F p+1T p+q = T p,q ,

d p,q
0 : E p,q

0 −→ E p,q+1
0 = μ : T p,q −→ T p,q+1.

On its first page, we have E p,q
1 = Hq(T p,•, μ) and d p,q

1 induced by u. But according

to Proposition 2, the only nonzero term is E0,0
1 = H0(T 0,•, μ). All the maps d p,q

1 are
thus zero, so that the sequence collapses at its first page and we have

E p,q∞ = GpH p+q(T , u + μ) =
{
H0(T 0,•, μ) p, q = 0

0 else.

Thus, H0(T ,U ) ∼= Z and all other cohomology groups of (T ,U ) are trivial. 	�
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Remark 4 As mentioned in the introduction, the cohomology with respect to the dif-
ferential u is highly non-trivial (cf. [8]). In principle, it could be studied by themethods
of [6]: Set up a spectral sequence for (T , u + μ) as above, but filtered “in the other
direction”, i.e., with E p,q

1 = H p(T •,q , u). Since the total complex H•(T , u + μ) is
acyclic, classes in H•(T , u) must have “partners” which they kill or get killed by on
some later page of the spectral sequence.

3.3 The cohomology of the edge- and cycle-marking complexes

In terms of the edge- and cycle-marking complexes, Theorem 3 translates into

Hk(E, S) =
⊕

Γ ∈Grar ,l
Hk(E(Γ ), S) ∼=

⊕

Γ ∈Grar ,l
Hk(V(Γ ′),U ) ∼=

{⊕
Γ Z k = 0

0 else

and similar for (C, T ).
It is possible to write down explicit maximal generators for these cohomology

groups.

Proposition 3 Define two linear maps χ+ : E → E and δ+ : C → C by

χ+(Γ ,m) :=
∑

e∈E
χe+(Γ ,m),

χe+(Γ ,m) :=
{
0 if e is adjacent to another marked edge

(Γ ,me �→1) else,

and

δ+(Γ ,m) :=
∑

c∈C
δc+(Γ ,m),

δc+(Γ ,m) :=
{
0 if c is adjacent to a marked edge

(Γ ,mc �→1) else.

Denote by m0 : E → {0} the trivial marking. Then, Seχ+(Γ ,m0) = 0 and
T eδ+(Γ ,m0) = 0.

Proof A straightforward calculation, see propositions 4.29 and 4.35 in [11]. 	�
From a physics point of view, as advocated in [11], this establishes the expected

result; the cohomology of (E, S) or (C, T ) is generated by the sum over all graphs
marked accordingly which resembles the pure gluon or gluon/ghost amplitudes.5

5 Note that “real” ghost cycles are directed. This can be included without changing any of the results by
declaring a marked cycle to represent the sum of two ghost cycles with opposite orientation.
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4 The total complex

We can combine the edge- and cycle-marking graph complexes into a single complex
by considering admissible markings m : E � C → {0, 1, 2}.

Define the free abelian groups

Gi, j := 〈
(Γ ,m) | Γ ∈ Grar ,l ,m : E � C → {0, 1, 2} : |E2| = i, |C2| = j

〉
.

These groups populate a double complex with horizontal differential S and vertical
differential T . The next lemma allows us to form the associated total complex,

Gn :=
⊕

i+ j=n

Gi, j , S + (−1)nT : Gn −→ Gn+1.

Lemma 4 The maps S and T commute.

Proof Since τ and σ change the respective 1-markings only, we have τσ = στ, τ s =
sτ and tσ = σ t by definition.

It remains to show that t and s commute. Given a marked graph (Γ ,m) write
E ′ ⊂ E0 for the edges of Γ that can be 2-marked and for each e ∈ E ′ let C ′

e ⊂ C0 be
the set of cycles disjoint from e and any other marked edge or cycle. Then,

ts(Γ ,m) =
∑

c∈C0

∑

e∈E0

(−1)|{c′∈Cm |c′<c}|+|{e′∈Em |e′<e}|tcse(Γ ,m)

=
∑

e∈E ′

∑

c∈C ′
e

(−1)|{c′∈Cm |c′<c}|+|{e′∈Em |e′<e}(Γ ,me �→2,c �→2),

all other summands vanish. The expression for st(Γ ,m) is similar,

st(Γ ,m) =
∑

c∈C ′′

∑

e∈E ′′
c

(−1)|{c′∈Cm |c′<c}|+|{e′∈Em |e′<e}|(Γ ,me �→2,c �→2)

with C ′′ ⊂ C0 and E ′′
c ⊂ E0 defined as above. Thus, ts(Γ ,m) and st(Γ ,m) are both

given by sums over subsets of E0 × C0,

{(e, c) | e ∈ E ′ ∧ c ∈ C ′
e} and {(e, c) | c ∈ C ′′ ∧ e ∈ E ′′

c }.

If a pair (e∗, c∗) is in the left-hand set, then e∗ and c∗ can both be 2-marked in Γ at the
same time, i.e., the order is unimportant. Therefore, the pair is also in the right-hand
set. Hence, both sums are identical, so [s, t] = 0. 	�
Theorem 4 The cohomology of the total complex is given by

Hn(G•, S + (−1)•T
) ∼=

{⊕
Γ ∈Grar ,l Z if n = 0

0 else.
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Proof Same as the proof of Theorem 3. 	�
Moreover, an explicit maximal generator is given by the following construction.

Let m0 : E � C → {0} denote the trivial marking. If

Xr ,l :=
∑

Γ ∈Grar ,l
(Γ ,m0)

encodes the lth order r -point amplitude for a scalar cubical field, then its general gauge
theoretic counterpart6 is

X̃r ,l :=
∑

Γ ∈Grar ,l
eδ+eχ+(Γ ,m0),

the sum over all 1-marked graphs. Proposition 3 shows that S X̃r ,l = 0 and T X̃r ,l = 0,
so X̃r ,l is the sole maximal generator of H0(G•, S + (−1)•T ). Putting everything
together, we have proven Theorem 1.
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6. Khoroshkin, A., Willwacher, T., Živković, M.: Differentials on graph complexes. Adv. Math. 307,

1184–1214 (2017)

6 Including fermions into the picture is amere technicality. The compatibility of symmetry factors, however,
is not so simple. See [11], Lemma 4.10 and 4.24, as well as [7] and [12].

123

http://creativecommons.org/licenses/by/4.0/
http://chaosbook.org/FieldTheory/pdf.html
http://chaosbook.org/FieldTheory/pdf.html
https://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf
https://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf


Complexes of marked graphs in gauge theory 2433

7. Kißler, H.: Diagrammatic analysis of the ’t Hooft-Veltman gauge (in preparation) (2020)
8. Knispel, A.: Combinatorial BRST homology and graph differentials. Master’s thesis (2017). http://

www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/Knispel.pdf
9. Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European Congress of

Math. (Paris 1992), Vol. II. Progress in Mathematics, 120. Birkhäuser Basel (1994)
10. Kreimer, D.: The corolla polynomial: a graph polynomial on half-edges. In: Proceedings of Science,

Loops and Legs in Quantum Field Theory (2018)
11. Kreimer, D., Sars, M., van Suijlekom, W.: Quantization of gauge fields, graph polynomials and graph

cohomology. Ann. Phys. 336, 180–222 (2013)
12. Sars, M.: Parametric representation of Feynman amplitudes in gauge theories. Ph.D. thesis (2015).

http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SarsThesisNeu.pdf

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/Knispel.pdf
http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/Knispel.pdf
http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SarsThesisNeu.pdf

	Complexes of marked graphs in gauge theory
	Abstract
	1 Introduction
	2 Complexes of marked graphs
	2.1 General markings
	2.2 The edge-marking complex
	2.3 The cycle-marking complex
	2.4 Marking vertices

	3 Cohomology of complexes of marked graphs
	3.1 The cohomology of the complex (mathcalV,µ)
	3.2 The cohomology of the complex (mathcalV,u+µ)
	3.3 The cohomology of the edge- and cycle-marking complexes

	4 The total complex
	Acknowledgements
	References




