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Abstract. We extend the notion of the cardinality of a discrete groupoid (equal to the
Euler characteristic of the corresponding discrete orbifold) to the setting of Lie groupoids.
Since this quantity is an invariant under equivalence of groupoids, we call it the volume of
the associated stack rather than of the groupoid itself. Since there is no natural measure
in the smooth case like the counting measure in the discrete case, we need extra data to
define the volume. This data has the form of an invariant section of a natural line bun-
dle over the base of the groupoid. Invariant sections of a square root of this line bundle
constitute an “intrinsic Hilbert space” of the stack.
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1. Introduction

As part of a larger program of groupoidification, the cardinality of a groupoid
G−→−→G0 with finitely many orbits and finite isotropy groups was defined by Baez
and Dolan [1] to be the sum over orbits of the reciprocal of the orders of the
isotropy groups. This sum is well defined because the isotropy groups of different
elements of an orbit are isomorphic. It represents the total mass of the “natural
measure” of such a groupoid defined by Kim [11] in connection with a Lefschetz
formula for equivariant cohomology. This in turn was inspired by the same
expression in Behrend’s Lefschetz formula [3] for the Frobenius automorphism
on algebraic stacks. The expression also appears as the Euler characteristic of a
0-dimensional orbifold.

Baez and Dolan give many examples of and reasons for their definition. For
instance, if the groupoid is the transformation groupoid associated with the action
of a group H on a space X , its cardinality is the quotient #(X)/#(H) of the num-
ber of elements #(X) in X by the order #(H) of H . In particular, if X is a single
point, the cardinality is 1/#(H).

A. Weinstein’s research was partially supported by NSF Grant DMS-0204100.



354 ALAN WEINSTEIN

Since the cardinality is clearly an invariant under equivalence of groupoids, we
prefer to think of it as an invariant #(G0//G) of the quotient stack1 G0//G
(or X//H in the case of a transformation groupoid). The terminology is consistent
with the usual one when the action is free, so that X//H is simply the (stack asso-
ciated to the) set X/H , and #(X/H)=#(X)/#(H). On the other hand, when X is
a point, X//H is the universal classifying stack B H , so #(B H) becomes 1/#(H).
As Baez and Dolan themselves note, this result is consistent with the idea that
B H =pt//H may be thought of as “one #(H)’th of a point”. (Do not try to read
this aloud!)

The aim of the present work is to extend the notion of groupoid cardinality
from the discrete to the differentiable setting, i.e. to Lie groupoids and their asso-
ciated smooth stacks. We call our extended notion the volume of a stack, thinking
of the cardinality as a geometric rather than a topological quantity. It is clear that
we now need additional data, namely measures which generalize the counting mea-
sures on sets and groups which are implicit in the discrete situation. It turns out
that the appropriate data are all contained in a G-invariant section of the bundle
Q A

def=∧top A⊗∧top T ∗G0 defined in [10], where A is the Lie algebroid of G. In
fact, when G=G0, such a section is just a volume element b on G0, while when
G0 is a point, the section is the value at the identity of a bi-invariant multivector
field of top degree, or “inverse volume element”, a−1 (the inverse of the volume
element a) on the group G. In the former case, our definition will give the inte-
gral2 of b over G0, i.e. the volume of G0 with the measure given by b; in the lat-
ter, our definition will give the reciprocal of the integral over G of a. (If a=0, or
if G is noncompact, the invariant is defined to be 0.)

We will see that, in the discrete case, our invariant reduces to that of Baez and
Dolan, with the additional flexibility that we can replace the counting measures
by arbitrary measures subject to an invariance condition. Furthermore, if G is the
groupoid associated with a smooth action of a Lie group H on a manifold X , a
special kind of invariant section of Q A is the product of an H -invariant volume
element b on X and a bi-invariant, nowhere-vanishing volume element a on H ,
and for such a section our volume for X//H will be the quotient

∫
X b/

∫
H a. This

quotient makes clear sense when X and H are compact; when this is not the case,
but the action of H on X is still proper and cocompact (i.e. having compact orbit
space3), our invariant continues to be well-defined. Note that H is not required to
be unimodular; when it is not, the non-invariance of a Haar measure under con-
jugation must be countered exactly by the non-invariance of a measure on X .

More generally, we will see that any invariant section of Q A defines a measure
on the coarse moduli (or ordinary quotient, or orbit) space G0/G whose integral

1We refer to [4,5] for background material on differentiable stacks.
2We will assume here and usually elsewhere that all our manifolds are oriented; the nonorient-

able case can be handled with the use of densities instead of forms.
3Perhaps another appropriate name for this condition would be “coproper”.
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over any relatively compact open subset U is the volume of the inverse image of U
under the natural projection from G0//G to G0/G. Another way of expressing this
is to say that a section of Q A is a “smooth measure” on the stack, and the ordi-
nary measure on the orbit space is its push-forward. We can also consider the line
bundle associated to the frame bundle of Q A via the homomorphism a→|a|1/2

from the multiplicative reals to themselves. As in [20], we denote this line bun-
dle by |Q A|1/2. G still acts on this bundle, and its space of compactly supported
invariant sections carries a natural inner product. The Hilbert space completion of
this space is an “intrinsic L2 space” for the stack G0//G. In a similar way, one
may construct L p spaces in duality, and spaces of distributions.

A natural next step from here should be to attach a vector space (sections, or
distributional sections of Q A or one of its powers) to each groupoid G, and to
attach a linear map to each morphism in some nice category. Here, we think of the
volume of a stack as a linear map R→R associated to the diagram of groupoids
pt←G→pt. Such a diagram is a special case of a span G←S→H , which, accord-
ing to the degroupoidification program described in [2], should be considered as a
kind of morphism from G to H .

It may be that the appropriate morphisms to consider when extending from the
finite case should be those which are between stacks of the same dimension, or
perhaps submersions of stacks, for which one could try to integrate over the fibres.
Here, an extension to groupoids of the relative modular class for Lie algebroid
morphisms in [12] should come into play.

From the point of view of microlocal analysis, one might even want to consider
more general geometric morphisms between stacks, encoded by lagrangian sub-
manifolds and symbols, which would induce pseudodifferential or even Fourier
integral operators between the corresponding vector spaces. A prerequisite for
doing this would be a correct definition of the cotangent bundle of a stack as a
“symplectic stack”. A symplectic stack cannot be simply a stack defined by a sym-
plectic groupoid, since such a stack has no symplectic structure of its own. Rather,
the cotangent stack should be presented by a “groupoid in the symplectic cate-
gory”, in which the groupoid structure operations are canonical relations which
may even be multiply-defined. In fact, one should get such an object when apply-
ing to the structure operations in a Lie groupoid the functor which assigns to each
mapping (or relation) between manifolds the conormal bundle to its graph.

2. First Definition and the Finite Case

In this section, we give a provisional definition of the volume of the stack G0//G
(sometimes denoted BG) presented by a groupoid G−→−→G0 (sometimes denoted
simply as G) in terms of an invariant section λ of Q A, where A is the Lie algebroid
of G. We will see that this definition has two difficulties. First of all, it depends
on the decomposition of λ as the quotient of a section b of

∧top T ∗G0 by a
section a of

∧top A∗, and it is not clear that it is independent of the decomposition.
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Second, it produces a sensible result only when the source and target maps from G
to G0 are proper, although only properness of the groupoid, i.e. properness of the
map (l, r) :G→G0×G0, should be needed. (Here and later, the letters l and r will
denote the source and target maps from G to G0. The reader may choose which
is to be the source and which is the target, but we will insist that the product gh
is defined when r(g)= l(h).)

In the next section, we will see how to remove the difficulties with our defini-
tion. But before even giving the definition, we will look more closely at the finite
case.

DEFINITION 2.1. [1] If G =G−→−→G0 is a groupoid with finite isotropy groups
and finitely many orbits, we define the cardinality of the stack G0//G to be the
sum

#(G0//G)
def=

∑

O
#(GO)−1,

where O ranges over the orbit space G0/G, and #(GO) denotes the order of the
isotropy group of any element of O. (The cardinality of the empty groupoid is
zero.)

It is clear from the definition that equivalent groupoids have the same cardinal-
ity, so that this quantity is really an invariant of the stack, independent of its pre-
sentation by a groupoid.

As Baez and Dolan [1] note, the corresponding sum may be convergent for some
interesting groupoids with infinitely many orbits. For example, the cardinality of
the stack presented by the groupoid of all finite sets and their bijections (or an
equivalent groupoid whose objects form a set rather than a class) is e=2.718 . . ..

It is not so simple to transfer Definition 2.1 to the smooth case, since the orbit
space is generally not a smooth manifold. Instead, we will reformulate the defini-
tion on the basis of the following simple fact, which is a special case of Theorem
2.4.

PROPOSITION 2.2. For any finite groupoid G−→−→G0,

#(G0//G)=
∑

y∈G0

#(r−1(y))−1.

Proposition 2.2 suggests defining the volume of G0//G, when G is a Lie grou-
poid, by integrating over G0 the reciprocals of the volumes of the fibres of the sur-
jective submersion r :G→G0. To do this, we need a measure on G0 and measures
along the fibres of r . Using this data, we make the following provisional definition,
assuming as usual that G and G0 are oriented.

DEFINITION 2.3. Let G−→−→G0 be a compact Lie groupoid (i.e. G is a compact
manifold, so that G0 and the fibres of r are also compact) with Lie algebroid A.
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Let a be a nowhere vanishing section of
∧top A∗ and b a section of

∧top T ∗G0.
The volume of the stack G0//G with data (a,b) is defined as

vol(a,b)(G0//G)
def=

∫

y∈G0

⎛

⎜
⎝

∫

r−1(y)

ar

⎞

⎟
⎠

−1

b.

In this definition, ar is the right-invariant form, defined along the tangent bun-
dle to the r -fibres, whose values along the unit section are given by a. (The Lie
algebroid A is identified with the tangent bundle along the units to the r -fibres.)

To show that this definition depends only on the stack and not on the pre-
senting groupoid, we cannot even begin without having a way of moving the data
(a,b) from one groupoid to any equivalent one. But this is not possible; what is
transferable between equivalent groupoids is only the product a−1b, which is a sec-
tion of the tensor product line bundle Q A

def=∧top A⊗∧top T ∗G0. (See [12] and
Section 4.) We thus need to show that vol(a,b)G0//G depends only the product
a−1b and not on the individual factors; i.e. that the volume is unchanged when
a and b are multiplied by the same nonvanishing function θ on G0.

To see how to proceed, we return to the finite case, where the bundles A and
T G0 have 0-dimensional fibres, so sections of their top exterior powers (and of the
top exterior powers of their duals) are simply scalar functions. With data (a,b),
Definition 2.3 in the case of a finite groupoid becomes

vol(a,b)(G0//G)
def=

∑

y∈G0

⎛

⎝
∑

g∈r−1(y)

a(l(g))

⎞

⎠

−1

b(y),

which becomes the cardinality formula in Proposition 2.2 when a and b are unity.
For the outer sum, we may sum over each orbit and then sum over the orbit

space, i.e.

vol(a,b)(G0//G)=
∑

O∈G0/G

∑

y∈O

⎛

⎝
∑

g∈r−1(y)

a(l(g))

⎞

⎠

−1

b(y).

For each orbit O, we have

SO
def=

∑

y∈O

⎛

⎝
∑

g∈r−1(y)

a(l(g))

⎞

⎠

−1

b(y)=
∑

y∈O

⎛

⎝
∑

x∈O

∑

g∈l−1(x)∩r−1(y)

a(x)

⎞

⎠

−1

b(y).

Now the number of elements in l−1(x)∩ r−1(y) depends only on the orbit O and
is equal to the cardinality #(GO) of the typical isotropy group. Hence, we have

SO=#(GO)−1

(
∑

x∈O
a(x)

)−1
∑

y∈O
b(y).
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In general, SO will depend on all the values of b/a on O, but if λ= b/a is
constant on orbits (i.e. a G-invariant section of the trivial bundle Q A), it only
depends on the constant value λ(O) of that section on the orbit, and we obtain
the final formula:

volλ(G0//G)=
∑

O∈G0/G

#(GO)−1λ(O).

Since the right hand side is clearly invariant under equivalence of groupoids, we
have the following result.

THEOREM 2.4. Let G−→−→G0 be a finite groupoid. Let a and b be functions on G0

such that a is nowhere vanishing and the quotient λ= b/a is G-invariant, so that λ

may be considered as a function on G0/G, or a G-invariant section of Q A, where A
is the (zero-dimensional) Lie algebroid of G.

Then the quantity

∑

y∈G0

⎛

⎝
∑

g∈r−1(y)

a(l(g))

⎞

⎠

−1

b(y)

is equal to
∑

O∈G0/G

#(GO)−1λ(O).

In particular, it depends on a and b only via their quotient λ.
Furthermore, given an equivalence between G and another finite groupoid G ′, with

Lie algebroid A′, there is a bijective correspondence between G-invariant sections of
Q A and Q A′ , and if λ′ =b′/a′ is the section corresponding to λ=b/a, then

∑

y∈G0

⎛

⎝
∑

g∈r−1(y)

a(l(g))

⎞

⎠

−1

b(y)=
∑

y′∈G ′0

⎛

⎝
∑

g′∈r ′−1(y′)
a′(l ′(g′))

⎞

⎠

−1

b′(y′).

We may therefore make the following definition.

DEFINITION 2.5. Let G−→−→G0 be a groupoid with finite isotropy groups,
G0//G the corresponding stack, and π : G0//G→ G0/G the natural projection.
Then any function λ on G0/G (i.e. G-invariant section of Q A, where A is the Lie
algebroid of G) defines a measure µλ on G0//G for which the “measurable sets”
are the preimages under π of finite subsets of G0/G, and the measure of such a
subset U is defined by

µλ(π
−1(U))

def=
∑

O∈U
#(GO)−1λ(O).

We may therefore consider µλ as a volume element, or measure, on G0//G; its
push-forward under the natural projection π :G0//G→G0/G is the measure which
assigns to each point O the measure #(GO)−1λ(O).
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3. The Differentiable Case

Definition 2.3 has the virtue that it clearly leads to a finite result for any compact
groupoid, but its invariance properties are hard to verify directly. We would like
to imitate the orbit decomposition method of the previous section, but this works
nicely only when the groupoid is strongly regular in the sense that the decomposi-
tion into orbits is a fibration. Our strategy will be to apply the orbit decomposi-
tion on the strongly regular part of the groupoid, whose complement turns out to
be negligible as far as integration is concerned. The latter fact follows immediately
from the slice theorem in [19] and Zung’s linearization theorem [21] for proper
groupoids, since the orbit structure of a proper groupoid is locally like that of the
action of a compact group, for which there is a principal orbit type.

Assume now, then, that G−→−→G0 is a strongly regular, compact (hence proper)
groupoid, and let f :G0→G0/G be the natural projection. Then the integral over
G0 in Definition 2.3 of the function

⎛

⎜
⎝

∫

r−1(y)

ar

⎞

⎟
⎠

−1

times the volume element b can be written as iterated integral–first over the fibres
of f , i.e. over the individual orbits, and then over the orbit space. To do this, we
will need to decompose b as the product of a volume element along the G-orbits
and one on the orbit space.

The inner integral in Definition 2.3 can also be written as an iterated integral. In
fact, the restriction to r−1(y) of the map l is a principal fibration over the orbit Gy

with structure group the isotropy group Gy acting from the right by groupoid mul-
tiplication. Again, to get an iterated integral, we must decompose the integrand ar

as a product of a volume element along the Gy-orbits and one along the G-orbit
Gy.

To obtain the decompositions above we must make a choice. To see what to do,
we recall the exact sequence of vector bundles over G0,

0→ker ρ→ A→T G0→ cokerρ→0,

where ρ : A→ T G0 is the anchor map of G, which may be identified with the
restriction of T l :T G→T G0 to the kernel of T r along the unit section. The kernel
of ρ is thus the bundle of Lie algebras of the isotropy groups, while its coker-
nel is the conormal bundle to the foliation by G-orbits. The standard “alternating
product” rule for top exterior powers in an exact sequence yields a natural isomor-
phism

Q A=
top∧

A⊗
top∧

T ∗G0≈
top∧

ker ρ⊗
top∧

(cokerρ)∗. (1)
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More explicitly, the isomorphism in (1) comes from the natural isomorphisms
A/ker ρ≈ρ(A) and cokerρ≈T G0/ρ(A).

Now, given data a and b as above for which λ= a−1b is a G-invariant section
of Q A, there is a corresponding G-invariant section, which we also denote by λ, of
∧top ker ρ⊗∧top

(cokerρ)∗. Since G is a proper groupoid acting on the line bun-
dle

∧top ker ρ (which we assume, as usual, to be orientable), we can find a non-
vanishing invariant section4 α of this bundle. We may then write λ as α−1β, and
the invariance of λ implies that β is an invariant section of

∧top
(cokerρ)∗.

Remark 3.1. Note that we could not have imposed the invariance requirement on
a and b, since the line bundles of which they are sections do not have natural
actions of G, only actions up to homotopy. On the other hand, it is only in the
regular case that we can speak of smooth sections of the kernel and cokernel of ρ.

The section β gives a bi-invariant volume element on each isotropy group of G
which is “the same” on all the isotropy groups over a given orbit. We thus have
a well-defined volume function volβ(GO) on the orbit space G0/G. On the other
hand, α is a G-invariant volume element on the orbit space. We therefore have the
well defined expression

∫

O∈G0/G

volβ(GO)−1α,

which reduces to
∑

O∈G0/G

#(GO)−1λ(O)

in the finite case. Furthermore, it is clear that this expression does not depend on
the choice of β, since multiplying it by a function θ , which must be invariant,
requires multiplication of α by the same function, and the effects of the two mul-
tiplications cancel one another.

We will now prove the following extension of Theorem 2.4, which validates
Definition 2.3

THEOREM 3.2. Let G−→−→G0 be a compact Lie groupoid with Lie algebroid A for
which the map r :G→G0 is proper (hence a locally trivial fibration). Let a and b be
sections of

∧top A∗ and
∧top T ∗G0, respectively, such that a is nowhere vanishing,

and the quotient λ=a−1b is a G-invariant section of Q A
def=∧top A⊗∧top T ∗G0.

Then the quantity

∫

y∈G0

⎛

⎜
⎝

∫

r−1(y)

ar

⎞

⎟
⎠

−1

b

4To construct such a section, start with any non-vanishing section, then average over G, using
a cutoff function [16] as in the proof of the vanishing theorem for groupoid cohomology in [6].
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is equal to
∫

O∈G0/G

volβ(GO)−1α,

where α and β are any G-invariant sections of
∧top

(ker ρ)∗ and
∧top

(cokerρ)∗,
respectively, such that α is nowhere vanishing and α−1β corresponds to λ under the
natural isomorphism (1). In particular, it depends on a and b only through their quo-
tient λ.

Furthermore, given an equivalence between G and another compact groupoid G ′,
with Lie algebroid A′, there is a bijective correspondence between G-invariant sec-
tions of Q A and Q A′ , and if λ′ =b′/a′ is the section corresponding to λ=b/a, then

∫

y∈G0

⎛

⎜
⎝

∫

r−1(y)

ar

⎞

⎟
⎠

−1

b=
∫

y′∈G ′0

⎛

⎜
⎝

∫

r ′−1(y′)

a′l ′

⎞

⎟
⎠

−1

b′.

Proof. Since a compact Lie groupoid is proper, and a proper groupoid is locally
equivalent to action groupoids for actions of compact groups, the natural pro-
jection π : G0→ G0/G is a fibration with compact fibres when restricted to an
invariant open subset V ⊂ G0 whose complement has positive codimension and
therefore does not contribute to the integral in the theorem. We may therefore take
the integral over this strongly regular set and will use the Fubini theorem, imitat-
ing the summation proof of Theorem 2.4. We denote by ω the unique section of
∧top

ρ(A)∗ for which b=ωβ (from which it follows that a=αω).

∫

y∈G0

⎛

⎜
⎝

∫

g∈r−1(y)

ar

⎞

⎟
⎠

−1

b=
∫

y∈V

⎛

⎜
⎝

∫

r−1(y)

ar

⎞

⎟
⎠

−1

b=

=
∫

y∈V

⎛

⎜
⎝

∫

r−1(y)

ar

⎞

⎟
⎠

−1

ωβ=

=
∫

O∈π(V)

⎡

⎢
⎢
⎣

∫

y∈O

⎛

⎜
⎝

∫

r−1(y)

(αω)l

⎞

⎟
⎠

−1

ω

⎤

⎥
⎥
⎦β.

But, using the fibration l : r−1(y)→O, we have

∫

r−1(y)

(αω)l =
∫

x∈O

⎛

⎜
⎝

∫

l−1(x)∩r−1(y)

α

⎞

⎟
⎠ω=
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=
∫

x∈O
volα(GO)ω=

=volα(GO)

∫

O
ω.

Combining the last two calculations, we obtain:

∫

y∈G0

⎛

⎜
⎝

∫

g∈r−1(y)

ar

⎞

⎟
⎠

−1

b=
∫

O∈π(V)

⎡

⎢
⎣

∫

y∈O

⎛

⎝volα(GO)

∫

O
ω

⎞

⎠

−1

ω

⎤

⎥
⎦β=

=
∫

O∈π(V)

volα(GO)−1

⎛

⎝
∫

O
ω

⎞

⎠

−1 ⎛

⎝
∫

O
ω

⎞

⎠β=

=
∫

O∈π(V)

volα(GO)−1β=

=
∫

G0/G

volα(GO)−1β.

(For the last equality, we simply take integration over the strongly regular part as a
definition of integration over the singular space G0/G. Convergence of the integral
over the noncompact complement of the singular points is guaranteed by its equal-
ity with the expression involving nonsingular integrals over G and the r -fibres.)

We may therefore make the following definition.

DEFINITION 3.3. Let G−→−→G0 be a proper Lie groupoid, G0//G the corre-
sponding stack, π :G0//G→G0/G the natural projection, and V⊆G0 the strongly
regular set. Then any G-invariant section λ of Q A, where A is the Lie algebroid of
G, defines a (signed) measure µλ on G0//G for which the “measurable sets” are
the preimages under π of relatively compact open subsets of G0/G, and the mea-
sure of such sets is defined as

µλ(π
−1(U))

def=
∫

O∈U∩π(V)

volβ(GO)−1α,

where α and β are as in Theorem 3.2.

We may therefore consider λ as a volume element, or measure on the stack
G0//G. Its push-forward under the natural projection π :G0//G→G0/G is the
measure which assigns to each relatively compact open subset U of G0/G the inte-
gral of the smooth form volβ(GO)−1α over the intersection of U with the part of
G0/G over which G is strongly regular.
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4. Morita Invariance

Although the formula in Definition 3.3 shows that the volume of a stack clearly
depends only on Morita invariant data for a groupoid, it still needs to be shown
that any Morita equivalence between groupoids G ′ and G ′′ with Lie algebroids A′
and A′′ induces a natural isomorphism between the spaces of smooth invariant sec-
tions of the line bundles Q A′ and Q A′′ . These spaces may therefore be considered
as representatives of “the space of volume elements of a stack”.

The argument for invariance begins with the special case of the inclusion of an
open subset of G0 which is full, i.e. which intersects every G-orbit.

LEMMA 4.1. Let G−→−→G0 be a groupoid, G ′0⊆G0 a full open subset, G ′ −→−→G ′0
the restriction of G to G ′0. Then the restriction operation defines an isomorphism
from the smooth G-invariant sections of Q A to the smooth G ′-invariant sections
of Q A′ .

Proof. Since G ′0 intersects each orbit, each invariant section λ′ of Q A′ extends
uniquely to an invariant section of Q A. It is clear that restriction preserves
smoothness; we just have to show the same for extension, i.e. that an invariant
section of Q A is smooth if and only if its restriction to some full open subset is
smooth.

It is easy to prove the last statement when G0 has constant dimension, using
smooth bisections, which exist through each point of G. But we will need to apply
the result to the case where G0 has components of different dimensions, and so we
take another approach.

Note that the action of G on Q A can be encoded as an isomorphism j : l !Q A→
r !Q A of line bundles over G. Following Mackenzie [13] we use ! rather than ∗
to denote pull-backs.) A section λ of Q A is then G-invariant if and only if the
pulled back sections satisfy jl !λ= r !λ. Moreover, since l and r are submersions, λ

is smooth in a neighborhood of x ∈G0 if and only if the pull-back l !λ (or r !λ)
is smooth in a neighborhood of some point of l−1(x) (or r−1(x)). It follows eas-
ily that the set of points x ∈G0 near which an invariant section λ is smooth is
G-invariant, and the lemma follows.

We thus have:

COROLLARY 4.2. Let G−→−→G0 be a groupoid, G ′0 and G ′′0 full open subsets. Then
the restrictions from G0 induce a natural isomorphism between smooth invariant sec-
tions of Q A′ and those of Q A′′ .

To establish invariance of Q A under general Morita equivalences, we will use the
following standard5 notion of “linking groupoids”.

5It is hard to pinpoint the first occurrence of this notion, but it is implicit in work of
Kumjian and Renault giving geometric constructions of linking algebras in the algebraic theory of
Morita equivalence. The first explicit appearance of the term seems to be in [14].
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PROPOSITION 4.3. Let G ′ and G ′′ be groupoids and B an invertible (G ′, G ′′)-bib-
undle. Then there is a unique (up to natural isomorphism) groupoid G such that:

1. G0 is the disjoint union of G ′0 and G ′′0.
2. G ′ and G ′′ are the restrictions of G to G ′0 and G ′′0, respectively.
3. The set l−1(G ′0)∩r−1(G ′′0) is identified with B in such a way that the projections

of B to G ′0 and G ′′0 and the left and right actions on the bibundle B with left and
right multiplication in the groupoid G.

Proof. We assume without loss of generality that B is disjoint from G ′ and G ′′.
Let G be the disjoint union G ′ ∪ B∪ B∪G ′′, where B is a copy of B. The inversion
operation on G is defined to be the union of those on G ′ and G ′′ and the corre-
spondence between B and B, along with its inverse. The groupoid structure on G
is then completely determined by the conditions enumerated in the statement of
the Proposition.

Combining Corollary 4.2 and Proposition 4.3, we obtain the main result of this
section. The proof of the last part of the following statement is left to the reader.

THEOREM 4.4. Let G ′ and G ′′ be groupoids and B an invertible (G ′, G ′′)-bibundle.
Then B induces an isomorphism between the G-invariant sections of Q A′ and the
G ′-invariant sections of Q A′′ . Isomorphic bibundles induce the same isomorphism, and
the composition of bibundles induces the composed isomorphism.

Remark 4.5. A more formal way of stating the results above is that there is a
2-functor from the 2-category of groupoids, invertible bibundles, and isomorphisms
of invertible bibundles to the “discrete” 2-category of vector spaces, isomorphisms
of vector spaces, and trivial isomorphisms of isomorphisms. This is very reminis-
cent of the decategorification construction of [1], except that it is not clear how
it extends to more general morphisms. It may be that the more appropriate con-
struction is that which produces (sometimes partially defined) morphisms of vector
spaces of distributions from suitable canonical relations between cotangent bun-
dles, as suggested in the introduction.

5. Transformation Groupoids

Let h �→ h X be an action of a Lie group H on a manifold X , and let v �→ vX be
the corresponding Lie algebra action, which takes v ∈ h to the vector field on X
which generates the 1-parameter group (exp(−tv))H of diffeomorphisms. (We need
the minus sign to get a representation rather than an antirepresentation.) Let G=
H × X −→−→ X=G0 be the corresponding transformation Lie groupoid. Its Lie alge-
broid is the trivial bundle A=h× X , and the anchor is (v,x) �→vX (x). Any section
of Q A may be factored as a−1b, where a is a constant element of

∧top h∗ and b
is a form of top degree on X . If H is unimodular, we can take a to be adjoint-
invariant, in which case G-invariance of a−1b is equivalent to H -invariance of b.
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If H is not unimodular, then, for a−1b to be invariant, we must have, for each h∈
H , h∗X b=µ(h)b, where µ :H→R

× is the modular function of H (i.e. the determi-
nant of the adjoint representation).

Whether or not the group H is unimodular, the transformation groupoid is uni-
modular as long as the action (and hence the groupoid) is proper, which we will
assume from now on. As a result, we can choose a and b as required above. Since
the isotropy groups are compact, the modular function is identically 1 on them,
and so the form b will be H -invariant.

If H is compact, we may apply Definition 2.3 to any relatively compact region
in X/H to conclude that the induced measure there, pushed forward from X//H ,
is

( ∫
H ar

)−1
b. In particular, if the integral of b over X is finite, we have

vol(a,b)(X//H)=volb(X)/vola(H),

exactly as in the finite case.
If H is not compact, we must use Definition 3.3. As in the discussion leading

up to that definition, we choose, over the regular part of G0, an invariant section
α of

∧top ker ρ∗, i.e. an invariant family of bi-invariant measures on the isotropy
groups. These, together with a, induce a section of

∧top
(A/ker ρ)∗. This section

is transferred by ρ itself to a section of
∧top

ρ(A)∗, which with b then induces an
invariant section β of cokerρ, i.e. a top-degree form on the orbit space. We may
then use the formula in Definition 3.3 to compute the measure on X//H arising
from the invariant section a−1b of Q A.

EXAMPLE 5.1. Let X be the Euclidean plane with its usual Euclidean measure
b= dx∧ dy= rdr ∧ dθ , and H the group SO(2) acting in the usual way by rota-
tions around the origin. Let a be the usual angle measure on SO(2). Then the isot-
ropy groups of regular points are trivial; if we take counting measure on them, the
induced measure on the regular orbit space R

+ with coordinate r is the quotient
(dθ)−1⊗ rdr ∧ dθ , which may be identified with r dr . The measure on the stack
R

2//SO(2) is then given by r dr .
Suppose, now, that we replace SO(2) by the full orthogonal group O(2). Since

the adjoint representation of O(2) is no longer orientation preserving, we must
work with densities rather than forms, but we may take the infinitesimal data a−1b
to be essentially the same as before. The main difference here is that the isotropy
groups are now Z2, so that the measure on the stack R

2//O(2) becomes 1
2rdr .

5.1. STACKS OF CONJUGACY CLASSES AND ADJOINT ORBITS

Let H be any Lie group acting on either H itself by conjugation or on the Lie
algebra h by the adjoint representation. In either case, the space X on which H
is acting carries a natural isomorphism from

∧top T ∗X to the trivial bundle with
fibre

∧top h∗. As a result, the bundle Q A has a natural invariant trivialization, so
the groupoid is unimodular, and we may use the constant section 1 (i.e. choosing
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a and b to be “the same”) to compute “canonical” measures on H//H and h//H
when the action is proper. In fact the action is proper just when H is compact. In
this case we have vol1(H//H)= 1, while the volume of h//H is infinite. In either
case, it is still interesting to compute the induced measure. We concentrate on the
case of the action on h, since that on H is related to it by the exponential map,
which is equivariant. (The regular part of H is contained in the set of regular val-
ues of the exponential map.)

To compute the induced measure, we begin by choosing invariant measures on
the isotropy groups of the strongly regular elements, i.e. on the maximal tori. For
convenience, we choose the measures for which the total volume is 1.

Following [9], we choose a basis of the Lie algebra h of the form

(e1, . . . , er , f1, . . . , fk,g1, . . . ,gk),

where the first r entries are a basis of a Cartan subalgebra t which are also a
basis for the lattice exp−1(e) ∩ t, and, for each j , f j and g j span a plane on
which the adjoint action of t is given by [e, f j ]=σ j (e)g j and [e,g j ]=−σ j (e)f j for
linear forms σ1, . . . , σk in t∗. The dual basis will be denoted (e∗1, . . . , e∗r , f∗1 , . . . , f∗k ,

g∗1, . . . ,g∗k ), As measure6 on t we choose e∗1∧· · ·∧e∗r , which has total volume 1 on
T , and on h we take

e∗1 ∧· · ·∧ e∗r ∧ f∗1 ∧· · ·∧ f∗k ∧g∗1 ∧· · ·∧g∗k .

This induces the measure f∗1 ∧· · ·∧ f∗k ∧g∗1 ∧· · ·∧g∗k on h/k=h/ker ρ.
We now use the anchor map ρ (or, more precisely, ρ−1∗), to transfer the last

measure to the tangent space ρ(h) to the adjoint orbit through a typical point e
(which may be taken in t since the latter intersects every orbit). Since, at the base-
point e ∈ t, ρ is just [e, ·], so that ρ−1∗(f j ∧ g j )= (σ j (e))−2f j ∧ g j , we obtain the
measure

∏

j

(σ j (e))−2f∗1 ∧· · ·∧ f∗k ∧g∗1 ∧· · ·∧g∗k

on the tangent space to the adjoint orbit. Dividing the given measure on h by this
one, we obtain

∏

j

(σ j (e))2e∗1 ∧· · ·∧ e∗r (2)

on the normal space to the orbit, i.e. on the tangent space to h/H , identified with
a tangent space to t.

6We will abuse language by using the term “measure” to refer to top degree forms, and some-
times even to particular values of these forms.
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Since the volume of each isotropy group in the chosen measure is equal to 1,
the expression (2) is also the induced measure on the stack h//H . We may com-
pare this expression with a calculation in [9]. According to the formula there on
the bottom of p. 22, for any function φ on h/H ,

∫

h

φ(p(X))dX =
∫

t+

∏

j

(σ j (e))2φ(e)de, (3)

where h/H is identified with the positive Weyl chamber t+, p :h→h/H is the natu-
ral projection, dX is the measure on h which agrees at 0 (via the exponential map)
with the invariant measure on H with total volume 1, and de= e∗1 ∧· · ·∧ e∗r . Thus,
our “natural” measure on h//H , which involved no choices, may be identified with
the push-forward under p of the measure dX on h normalized as described above.

If the group H is noncompact, but is semisimple and reductive, its adjoint rep-
resentation still defines a proper action when restricted to the open subset DH ⊂h

of strongly stable elements. These are defined in [18], where it is shown that the
adjoint action of H on DH is proper. Several characterizations of strongly stable
elements are given there; the shortest of these to state is that the strongly stable
elements are those which belong to the Lie algebra of a unique maximal compact
subgroup of K . It is also shown there (in slightly different terms) that the action
groupoid H ×DH −→−→DH is equivalent to its restriction K ×EK −→−→EK , where K
is any maximal compact subgroup of H and EK =DH ∩ k. (The elements v of
EK are characterized by the condition that the vector field µS on the symmetric
space S=H/K given by the infinitesimal action of µ∈H has a nondegenerate zero
at the coset eK .) Thus, the natural measure on DH //H is the same as that on
EK //K .

A similar reduction is possible for the conjugation action of H on itself,
following the analysis of Demazure [8].

5.2. SYMPLECTIC GROUPOIDS AND POISSON MANIFOLDS

A Lie groupoid G−→−→G0 is a symplectic groupoid if G is equipped with a sym-
plectic structure ω which is multiplicative in the sense that m∗ω=ω1+ω2 on the
space G2 ⊂G ×G of composable pairs, where m :G2→G is the product opera-
tion, and ω1 and ω2 are the pull-backs of ω by the first and second projections
from G2 to G. Some standard facts (see, for example [17]) about symplectic grou-
poids are: G0 carries a unique Poisson structure 
 for which l and r are Poisson
and anti-Poisson maps, respectively; the units form a lagrangian submanifold of
G; the Lie algebroid of G is naturally isomorphic to T ∗G0 with the anchor map
T ∗G0→ T G0 given by 
 and a bracket for which {d f,dg}= d{ f, g} for all func-
tions f and g on G0. Conversely, if G0 is any Poisson manifold for which the
associated Lie algebroid structure on T ∗G0 is integrable to a groupoid, then the
integrating groupoid with simply-connected source fibres is a symplectic groupoid
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with underlying Poisson manifold G0. If we allow integration by stacks rather than
just manifolds, then there is a bijective (up to natural isomorphisms) correspon-
dence between Poisson manifolds and symplectic groupoids with simply-connected
source fibres [15].

Writing A as usual for the Lie algebroid T ∗G0, we have a natural isomorphism
between Q A and the tensor square (

∧top T ∗G0)
⊗2. Q A therefore carries a natural

orientation, and its positive sections are the squares of nowhere-vanishing sections
ν of

∧top T ∗G0. Assuming G to have connected source fibres, we have (whether
or not ν is nowhere-vanishing) that ν2 is G-invariant exactly when ν is invariant
under all hamiltonian vector fields.

5.3. SYMPLECTIC MANIFOLDS

Let (S,ωS) be a 2m-dimensional, connected7 symplectic manifold, considered as a
Poisson manifold. The source-connected symplectic groupoids for S (all of them
transitive) are just the quotients of the fundamental groupoid π(S) associated with
normal subgroups of the fundamental group of S. For any such groupoid, the
invariant sections of Q A are just the constant multiples λ= cν2

S of the square of

the Liouville measure νS= (−1)m(m−1)/2

m! ωm
S .

Now let G−→−→G0 be the symplectic groupoid of S associated with the sub-
group K of the fundamental group. This groupoid is proper when K is finite;
two natural choices are the trivial group and the fundamental group itself, when
it is finite. It is equivalent to the groupoid K −→−→pt; i.e. G0/G is just a point,
and G0//G= BK . We recall from the Introduction that #(BK )=1/#(K ) (in par-
ticular, we get the value 1 when K is the trivial group and G is the pair grou-
poid), but we are interested here in the volume vol(BK ), which will depend on the
choice of the constant c in λ. To compute this volume, we begin by factoring cν2

s
as the product of the sections a−1=cνs of

∧top A∗ and b=νS of
∧top T ∗G0. Next,

we choose the section 1 of the trivial bundle ker ρ. Noting first that integrating
1 over the isotropy groups will give #(K ), we next observe that the induced sec-
tion of

∧top
(A/ker ρ)∗ is again a−1 = cνS . Its inverse is the section a = c−1ν−1

S
of

∧top
(A/ker ρ) = ∧top

(T ∗G0)
∗. Now we must transfer this to a section of

∧top T ∗G0 by using ρ−1∗, with ρ :T ∗S→T S given by the Poisson structure inverse
to ωS . It is not hard to see (for instance by using symplectic bases) that ρ∗ pulls
back νS to ν−1

S , so ρ−1∗ transfers c−1ν−1
S to c−1νS . Finally, we divide this mea-

sure along the “orbits” into the measure νS on the base of the groupoid to obtain
the measure c on the orbit space. Since this orbit space consists of a single point,
we conclude that volcν2

S
(G0//G)=c/#(K ). Observing that this agrees with the car-

dinality just when c= 1, we are led to the conclusion that the Liouville measure

7From the point of view of Poisson geometry, we should perhaps call a manifold with nonde-
generate closed 2-form “symplectic” only if it is connected, since otherwise it has more than one
symplectic leaf!
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(including the factor of 1/n!) is really the natural one on a symplectic manifold.
(Of course, this is just a consequence of the fact that the Liouville measure is the
only one, up to sign, which corresponds to its inverse by the Poisson structure.)

5.4. REGULAR POISSON MANIFOLDS

We look here at a very simple example. Let G0 = P = � × R be the Poisson
manifold given by a family ωt of symplectic structures on a 2-sphere �, param-
etrized by t ∈ R. If the area V (t) = ∫

�
ωt of the symplectic leaf � × {t} has

no critical points as a function of t , then this Poisson manifold is integrable.
(See, for example, Sections 5 and 7 of [7]). Its symplectic groupoid G is a circle
bundle over �×�×R for which the map (l, r) takes the entire fibre over (x,y, t)
to ((x, t), (y, t)). The fibres over the diagonal points (x, t), (x, t) are the isotropy
groups, and the corresponding Lie algebra bundle is naturally isomorphic to T ∗R.
(For any Poisson manifold at a regular point, the isotropy algebras of a symplectic
groupoid are naturally isomorphic to the conormal spaces of the symplectic leaves.)
Under this isomorphism, the kernel of the exponential map from the isotropy alge-
bra at (x, t) to the corresponding isotropy group consists of the integer multiples
of dV =V ′(t)dt .

Let us now choose the section λ = f (t)(ωt ∧ dt)2 of Q A and compute the
corresponding measure on the stack G0//G, which is a bundle of BS1’s over R.
As we did in the symplectic case, we factor λ as the product of the sections a−1=
f (t)ωt ∧ dt of

∧top A∗ and b= ωt ∧ dt of
∧top T ∗G0. Writing τ for the coordi-

nate on the isotropy groups corresponding to dt , we choose the measure dτ , for
which the volume of the isotropy group at (x, t) is equal to V ′(t). The induced
measure on A/ker ρ is then f (t)−1(ωt )

−1, which pushes forward under ρ−1∗ to
the measure f (t)−1ωt along the symplectic leaves. Dividing this into the measure
ωt ∧ dt on the base of our groupoid gives the measure f (t)dt on the quotient
space. Using now the fact that the volume of the isotropy group at t is V ′(t), we
find that the measure on the stack G0//G is equal to ( f (t)/V ′(t))dt . To better
understand this result, we assume f positive, so that λ is the square of the mea-
sure ( f (t))1/2ωt ∧dt on P . Dividing the latter by the Liouville measure along the
leaves gives ( f (t))1/2dt as “quotient” measure on R. It agrees with the stack mea-
sure just when λ is the square of ωt ∧V ′(t)dt=ωt ∧dV (t).

We may interpret the last calculations as meaning that, just as Liouville measure
is a natural measure on a symplectic manifold, so dV is a “natural” measure on
the leaf space of the Poisson manifold above. A possible generalization to arbitrary
regular Poisson manifolds goes as follows.

Let G0= P be a Poisson manifold which is strongly regular in the sense that its
symplectic leaves are the fibres of a smooth fibration P→ M . Following [7], we
introduce the lattice (“réseau”) �⊂ T ∗M of differentials of periods of the sym-
plectic forms on the leaves. It is a (not necessarily closed) lagrangian submani-
fold of T ∗M for which the projection to M is a local diffeomorphism and whose
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intersection with each fibre is a (discrete) additive subgroup. The Poisson manifold
is integrable to a symplectic groupoid when � is closed and a covering space of M .

We will assume further, for simplicity, that the leaves are simply connected and
that the intersection of � with each cotangent space is a full lattice, in which
case the quotient T ∗M/� is a bundle of tori whose pull-back to P is the isot-
ropy subgroupoid of the symplectic groupoid G of P . (The assumption that the
leaves are simply connected implies that the symplectic groupoid is unique up to
isomorphism.) In this case, the lattice defines an integrable GL(n,Z) structure on
M which determines (up to sign) a natural measure.

CONJECTURE 5.2. With notation as above, if the section λ of Q A is the square
of an invariant measure on P , factored as the product of the Liouville measure along
the symplectic leaves and (the pull-back of) a measure β on the leaf space M , then
the induced measure on the stack P//G agrees with β if and only β is the measure
associated to the integer affine structure on M .

5.5. DUALS OF LIE ALGEBRAS

If H is a compact Lie group, its coadjoint representation on h∗ is equivalent, via a
bi-invariant metric, to its adjoint representation on h. Different choices of the met-
ric will lead to different identifications, hence the canonical section of Q A for the
adjoint action does not lead to a canonical section of Q A for the coadjoint action.

In fact, the natural structure on h∗ is its Lie-Poisson structure, for which T ∗G
is a symplectic groupoid. On an open dense subset, this Poisson structure is reg-
ular and satisfies the hypotheses of the conjecture at the end of the previous sec-
tion. For the special case of SU (2), the Poisson structure on the complement of
the origin has concentric spheres as its symplectic leaves, and we may choose a
linear radial coordinate t so that the symplectic area of the sphere of radius t is
V (t)=4π t . The “natural” measure on the leaf space is then 4πdt , whose product
with the Liouville measure along the leaves is ωt ∧4πdt =4π tω1∧dt. Notice that
this is not a translation-invariant measure!
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