

CORRECTION

Correction to: The arithmetic of Carmichael quotients

Min Sha¹

Published online: 30 November 2017 © Akadémiai Kiadó, Budapest, Hungary 2017

Abstract The statement of Proposition 4.3 in the published paper is not correct. Here we change the statement and give a complete proof.

Erratum to: Period Math Hung (2015) 71:11–23 https://doi.org/10.1007/s10998-014-0079-3

1 Replacement of [3, Proposition 4.3]

We first illustrate a counter-example for [3, Proposition 4.3]. Take $m = 273 = 3 \times 7 \times 13$. Using the notation in [3, Proposition 4.3], we have d = 3 and d' = 1. That is, the homomorphism ϕ_m defined there is surjective. However, for any positive integer *a* coprime to *m*, $C_m(a)$ is divisible by 3, because $6 \mid \lambda(m)$ and then $9 \mid a^{\lambda(m)} - 1$. This leads to a contradiction.

Proposition 4.3 and its proof in [3] should be replaced by Proposition 1.1 below. Fortunately, this does not affect other results and arguments in [3], although Proposition 4.3 in [3] was quoted several times there.

Assume that positive integer *m* has the prime factorization $m = p_1^{r_1} \cdots p_k^{r_k}$. In [1, Proposition 4.4], the Euler quotient has been used to define a homomorphism from $(\mathbb{Z}/m^2\mathbb{Z})^*$ to $(\mathbb{Z}/m\mathbb{Z}, +)$, whose image is $d\mathbb{Z}/m\mathbb{Z}$, where

$$d = \prod_{i=1}^{k} d_i \quad \text{and} \quad d_i = \begin{cases} \gcd(p_i^{r_i}, 2\varphi(m)/\varphi(p_i^{r_i})) \text{ if } p_i = 2 \text{ and } r_i \ge 2, \\ \gcd(p_i^{r_i}, \varphi(m)/\varphi(p_i^{r_i})) \text{ otherwise.} \end{cases}$$
(1.1)

In fact, the above d, d_i are equivalent to those d, d_i defined in [3], respectively.

🖂 Min Sha

shamin2010@gmail.com

The online version of the original article can be found under https://doi.org/10.1007/s10998-014-0079-3.

¹ Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

By [3, Proposition 2.2 (2)], the Carmichael quotient $C_m(x)$ induces a homomorphism

$$\phi_m: (\mathbb{Z}/m^2\mathbb{Z})^* \to (\mathbb{Z}/m\mathbb{Z}, +), x \mapsto C_m(x),$$

where $C_m(x) = (x^{\lambda(m)} - 1)/m$ and $\lambda(m)$ is the Carmichael function.

Proposition 1.1 Let $m = p_1^{r_1} \cdots p_k^{r_k}$ be the prime factorization of $m \ge 2$. For $1 \le i \le k$, *put*

$$d'_{i} = \begin{cases} \gcd(p_{i}^{r_{i}}, 2\lambda(m)/\lambda(p_{i}^{r_{i}})) & \text{if } p_{i} = 2 \text{ and } r_{i} = 2, \\ \gcd(p_{i}^{r_{i}}, \lambda(m)/\lambda(p_{i}^{r_{i}})) & \text{otherwise.} \end{cases}$$

Let $d' = \prod_{i=1}^{k} d'_{i}$. Then the image of the homomorphism ϕ_m is $d'\mathbb{Z}/m\mathbb{Z}$.

Proof We show the desired result case by case.

(I) First we prove the result for the case k = 1, that is $m = p^r$, where p is a prime and r is a positive integer.

Suppose that p = 2. If r = 2, then $C_m(3) = 2$, and for any positive integer n we have $C_m(2n + 1) = n(n + 1)$, which is even, so the image of ϕ_m is $2\mathbb{Z}/m\mathbb{Z}$. On the other hand, if r = 1 or $r \ge 3$, since $C_2(3) = 1$ and $C_8(3) = 1$, by using [3, Proposition 2.8] we see that $C_m(3)$ is an odd integer, so the image of ϕ_m is $\mathbb{Z}/m\mathbb{Z}$.

Now, assume that p > 2. Note that $C_p(p+1) \equiv -1 \pmod{p}$, by [3, Proposition 2.8] we have $C_m(p+1) \equiv -1 \pmod{p}$, which implies that $p \nmid C_m(p+1)$. Thus, there exists a positive integer *n* such that $nC_m(p+1) \equiv 1 \pmod{m}$. Then, by [3, Proposition 2.2 (1)] we deduce that $C_m((p+1)^n) \equiv 1 \pmod{m}$. So, the image of ϕ_m is $\mathbb{Z}/m\mathbb{Z}$.

(II) To complete the proof, we prove the result when $k \ge 2$.

For simplicity, denote $m_i = m/p_i^{r_i}$ and $n_i = \lambda(m)/\lambda(p_i^{r_i})$ for each $1 \le i \le k$, and then let m'_i be an integer such that $m_i^2 m'_i \equiv 1 \pmod{p_i^{r_i}}$. By [3, Proposition 2.7], we have

$$C_m(a) \equiv \sum_{i=1}^k m_i m'_i n_i C_{p_i^{r_i}}(a) \pmod{m}.$$
 (1.2)

So, for each $1 \le i \le k$, $C_m(a) \equiv m_i m'_i n_i C_{p_i^{r_i}}(a) \pmod{p_i^{r_i}}$. If $p_i = 2$ and $r_i = 2$, note that for any odd integer a > 1, $C_4(a)$ is even, then we see that $d'_i \mid n_i C_{p_i^{r_i}}(a)$, and thus $d'_i \mid C_m(a)$. Otherwise if $p_i > 2$ or $r_i \ne 2$, then $d'_i \mid n_i$, and so $d'_i \mid C_m(a)$. Hence, we have $d' \mid C_m(a)$ for any integer a coprime to m.

Let $b = \text{gcd}(m, m_1m'_1n_1, \dots, m_km'_kn_k)$. Then, there exist integers X_1, \dots, X_k such that

$$b \equiv \sum_{i=1}^{k} m_i m'_i n_i X_i \pmod{m}.$$
(1.3)

If we denote $b_i = \gcd(p_i^{r_i}, m_i m_i' n_i)$ for each $1 \le i \le k$, then $b = \prod_{i=1}^k b_i$; here, we remark that $b_i = \gcd(p_i^{r_i}, n_i)$. It is easy to see that for each $1 \le i \le k$, if $p_i > 2$ or $r_i \ne 2$, we have $d'_i = b_i$. Further, when $p_i = 2$ and $r_i = 2$, $d'_i = 2b_i$ if $8 \nmid \lambda(2p_1 \dots p_k)$, and $d'_i = b_i$ otherwise.

We now have three cases for *m*:

(i) There exists $1 \le j \le k$ such that $p_j = 2, r_j = 2$ and

$$8 \nmid \lambda(2p_1 \dots p_k).$$

Deringer

(ii) There exists $1 \le j \le k$ such that $p_j = 2, r_j = 2$ and

$$8 \mid \lambda(2p_1 \dots p_k).$$

(iii) All the other cases.

Clearly, in Cases (ii) and (iii) we have d' = b, and in Case (i) d' = 2b.

According to (I), there exist integers a_i with $p_i \nmid a_i$ for $1 \le i \le k$ defined by

$$C_{p_i^{r_i}}(a_i) \equiv \begin{cases} 2X_i \text{ in Case (i),} \\ X_i \text{ in Case (ii),} \\ \\ X_i \text{ in Case (ii) and } i \neq j, \\ 0 \text{ in Case (ii) and } i = j. \end{cases}$$
(mod $p_i^{r_i}$)

By the Chinese Remainder Theorem, we can choose a positive integer *a* such that $a \equiv a_i \pmod{p_i^{2r_i}}$. So, by [3, Proposition 2.2 (2)] we have $C_{p_i^{r_i}}(a) \equiv C_{p_i^{r_i}}(a_i) \pmod{p_i^{r_i}}$. Then, combining with (1.3) and the relation between *b* and *d'*, we obtain $m_i m'_i n_i C_{p_i^{r_i}}(a) \equiv d' \pmod{p_i^{r_i}}$ for each $1 \le i \le k$ in all the three cases. Finally, using (1.2) we have $C_m(a) \equiv d' \pmod{m}$, which completes the proof.

Comparing (1.1) with Proposition 1.1, we have $d' \mid d$. Moreover, by [3, Proposition 2.1] we get

$$\frac{\varphi(m)}{\lambda(m)}d'\mathbb{Z}/m\mathbb{Z}=d\mathbb{Z}/m\mathbb{Z},$$

which implies that $gcd(\frac{\varphi(m)}{\lambda(m)}d', m) = d$.

2 Another error

We take this opportunity to correct another error. In the proof of [3, Lemma 3.4], the last identity " $\equiv \ell n^{-1}2^{r-2}$ " may be not true, and it should be deleted. Because by using $n^{2^{r-2}} \equiv 1 \pmod{2^r}$, we only know that $(n^{2^{r-2}} + 1)/2$ is an odd integer, which may be not congruent to 1 modulo 2^r . Clearly, this error does not change the result there.

Acknowledgements The author wants to thank the anonymous referee of his joint paper [2] for pointing out the error in [3, Proposition 4.3] and giving the counter-example.

References

- 1. T. Agoh, K. Dilcher, L. Skula, Fermat quotients for composite moduli. J. Number Theory 66, 29-50 (1997)
- F. Luca, M. Sha, I.E. Shparlinski, On two functions arising in the study of the Euler and Carmichael quotients. Colloq. Math. 149, 179–192 (2017)
- 3. M. Sha, The arithmetic of Carmichael quotients. Period. Math. Hung. 71, 11-23 (2015)