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Abstract
In recent studies, tensor ring decomposition (TRD) has become a promising model for tensor
completion. However, TRD suffers from the rank selection problem due to the undetermined
multilinear rank. For tensor decomposition with missing entries, the sub-optimal rank selec-
tion of traditional methods leads to the overfitting/underfitting problem. In this paper, we
first explore the latent space of the TRD and theoretically prove the relationship between
the TR-rank and the rank of the tensor unfoldings. Then, we propose two tensor completion
models by imposing the different low-rank regularizations on the TR-factors, by which the
TR-rank of the underlying tensor is minimized and the low-rank structures of the underlying
tensor are exploited. By employing the alternating direction method of multipliers scheme,
our algorithms obtain the TR factors and the underlying tensor simultaneously. In experi-
ments of tensor completion tasks, our algorithms show robustness to rank selection and high
computation efficiency, in comparison to traditional low-rank approximation algorithms.
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1 Introduction

Tensors are the natural representations of higher-order data (Kolda and Bader 2009;
Sidiropoulos et al. 2017) and have been successfully applied to machine learning (Chen
et al. 2018; Novikov et al. 2015; Zhao et al. 2012), computer version (Liu et al. 2013; Zhao
et al. 2015), signal processing (Cichocki et al. 2015), remote sensing (Du et al. 2017), col-
laborative filtering (Hu et al. 2015) and so on. Most of the datasets in the applications are
partially observed, which boosts the wide studies of the tensor completion problem (Long
et al. 2018; Song et al. 2019). Tensor completion aims to recover the missing entries by
sparse observations. The existing methods impose assumptions of various low-rank priors
to discover the underlying tensor. According to the different types of low-rank assumption,
tensor completion methods can be divided into two categories which are based on tensor
decomposition and low-rank regularization, respectively.

Tensor decomposition is to find the decomposition factors (a.k.a., latent factors) of tensors,
thereby casting tensors into a multilinear tensor latent space of low-dimensionality (very few
degrees of freedom designated by the rank of the tensor decomposition). In recent years,
tensor ring decomposition (TRD) has been proposed and shows the properties of super-linear
compression ability and computational efficiency (Zhao et al. 2016). The most significant
advantage of TRD is that the model complexity grows linearly in the tensor order, thus
providing a natural solution for the “curse of dimensionality”. On the contrary, the number
of model parameters of Tucker decomposition (TKD) increases exponentially in the tensor
order. Although the CANDECOMP/PARAFAC decomposition (CPD) is a highly compact
representation which has the desirable property of being linear in the tensor order, the CPD
is difficult to optimize the latent factors. In recent years, based on the assumption that the
underlying tensor is in TR structure, several tensor completion methods have been proposed
and shown high performance and efficiency (Khoo et al. 2017; Wang et al. 2017; Yu et al.
2019; Yuan et al. 2018). One of the problems of TRD is that the performance of TR-based
completion methods is very sensitive to model selection. Due to the interdependence among
the optimal rank of the decomposition model, the different data structure and the missing
patterns, it is rather challenging to select a proper rank for the data approximation. Moreover,
finding the optimal TR-rank by cross-validation is not practical even for 3rd-order tensors, as
TRD is defined in terms of multi-linear rank (i.e., the number of the undetermined TR-rank
equals to the tensor order).

Low-rank-regularization-based tensor completion methods do not find the tensor decom-
position factors directly. Instead, they make assumptions that the underlying tensor has a
low-rank structure and impose convex surrogates of low-rankness on the tensor structure to
minimize the rank. One of the most common such surrogates is named nuclear norm (a.k.a.,
trace norm, or Schatten norm), which is the sum of the singular values of the matrix. Various
algorithms based on the minimization of CP-rank, Tucker-rank, TT-rank, and hierarchical-
Tucker-rank have been proposed (Bengua et al. 2017; Liu et al. 2013, 2019; Yuan and Zhang
2016). The biggest advantage of this type of methods is that they are free from the rank
selection since the rank of the underlying tensor will be automatically learned in the opti-
mization process. However, the nuclear norm regularization of the tensor always requires
multiple large-scale singular value decomposition (SVD) calculations on the tensor unfold-
ings, which in turn to require a high computational cost. Moreover, for TRD, the relationship
between the TR-rank and the rank of tensor unfoldings has not yet been explored, so currently,
there is no study about the tensor completion by low-TR-rank regularization.
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The existing TR-based completion algorithms lack efficient solution regarding the model
selection problem. Several studies (Khoo et al. 2017; Wang et al. 2017; Yuan et al. 2018)
have proposed TR-based completion algorithms by gradient descent (GD) and alternative
least squares (ALS) methods. The above algorithms have to manually tune the TR-rank to
obtain the better solution which is time-consuming and inefficient. The algorithms in Liu
et al. (2015, 2016) impose low-rank constraints on the CPD and TKD respectively to achieve
fast computations. However, the strong constraints on the factors will lead to poor completion
performance in many real-world data settings. For other tensor completion methods, Zhao
et al. (2015) proposes a completion algorithm using Bayesian inference which can tune the
CP-rank. Nevertheless, the multi-linear rank of TR makes it difficult to extend Bayesian
methods to TRD. Moreover, the greedy rank-tuning algorithms based on CP decomposition
(Yokota et al. 2016) and Tucker decomposition (Yokota et al. 2018) exhibit poor efficiency
when facing large-scale tensor and multi-linear rank model.

In this paper, in order to solve the rank selection problem of TRD and increase the com-
putational efficiency, we propose a novel tensor completion approach which exploits the
low-rankness of TR latent space by nuclear norm regularizations. Our main contributions are
listed below:

– The relationship between the rank of the tensor unfoldings and the TRD factors is theo-
retically proved, based on which the low-rank surrogate on TR latent factors is imposed
to minimize the TR-rank and explore more low-rank structure of the underlying tensor.

– Based on two different low-rank regularizations, we develop two tensor ring completion
models termed as tensor ring low-rank factors (TRLRF) and tensor ring latent nuclear
norm (TRLNN) which are suitable for different tensor completion tasks.

– The alternating direction method of multipliers (ADMM) solving scheme of the two
models are developed. The experimental results of simulation data show that our algo-
rithms are robust to rank selection. Moreover, the real-world data experiments show high
performance and high efficiency of our algorithms in both low-order and high-order
tensor completion tasks.

2 Preliminaries

2.1 Notations and tensor operations

We mainly adopt notations of Kolda and Bader (2009) in this paper. Scalars are denoted by
standard lowercase letter or standard uppercase letter, e.g., x, X . Vectors, matrices and ten-
sors are denoted by x,X andX respectively. A sequence of tensor {X (1),X (2), . . . ,X (N )} is
denoted by {X (n)}N

n=1, or simply [X ], in which X (n) is the nth tensor of the sequence.
The matrix sequences and vector sequences are defined in the same way. With index
(i1, i2, . . . , iN ), an element of a tensor X ∈ R

I1×I2×···×IN is denoted by X (i1, i2, . . . , iN ).
Moreover, the Frobenius norm of X is defined by ‖X‖F = √〈X ,X 〉, where 〈·, ·〉 is the
inner product. The nuclear norm of a matrix is denoted by ‖ · ‖∗ which is the sum of the
singular values of the matrix.

Moreover, we employ three types of tensor unfolding (matricization) operations in this
paper. The standard mode-n unfolding (Kolda and Bader 2009) of tensorX ∈ R

I1×I2×···×IN

is denoted by X(n) ∈ R
In×I1···In−1 In+1···IN . The second mode-n unfolding operation of ten-

sor X which is often used in TR operations (Zhao et al. 2016) is denoted by X<n> ∈
R

In×In+1···IN I1···In−1 . The third kind of mode-n unfolding of tensor X is denoted by X[n] ∈
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R
I1···In×In+1···IN which is often applied in tensor train operations (Oseledets 2011). Fur-

thermore, the inverse operation of tensor unfolding is matrix folding (tensorization), which
transforms matrices to higher-order tensors. The folding operations of the three types of
mode-n unfoldings are defined as fold(n)(·), fold<n>(·) and fold[n](·) respectively, i.e., for a
tensor X , we have fold(n)(X(n)) = X .

2.2 Tensor completion by tensor ring decomposition

TRD decomposes a tensor into a sequence of 3rd-order latent tensors (a.k.a., TR factors). For
n = 1, . . . , N , the TR factors are denoted by G(n) ∈ R

Rn×In×Rn+1 with R1 = RN+1.
For each TR factor, we define its 1st and 3rd modes as the “rank-modes” and its 2nd
mode as the “dimension-mode” due to the form of TRD. Furthermore, we define the vector
[R1, R2, . . . , RN ]� as TR-rank (Zhao et al. 2016). Note that in the context of TRD, the rank
is defined as a N -dimensional vector rather than a scalar as its matrix counterpart. Given the
TR factors, the (i1, i2, . . . , iN )th element of the tensor X can be given by:

X (i1, i2, . . . , iN ) = Trace(G(1)
i1

G(2)
i2

· · ·G(N )
iN

), (1)

where Trace(·) denotes the trace operation which equals to the sum of the diagonal elements
of a matrix and G(n)

in
∈ R

Rn×Rn+1 denotes the in th slice of G(n) along the dimension-mode.
To introduce the properties of TRD, we first define two tensor operations:

Definition 1 (Tensor circular permutation) The tensor circular permutation is to shift the
tensor order by one direction. For example, if we anticlockwise-shift a tensorX ∈ R

I1×···×IN

by c steps, the output tensor is denoted by X←−c ∈ R
Ic+1×···×IN ×I1×···×Ic .

Definition 2 [Merging of TR factors (Zhao et al. 2019)] If a tensor X ∈ R
I1×I2×···×IN is

decomposed as TR factors [G], then the adjacent TR factors can be merged by reshaping
and multiple matrix multiplication operations. For example, {G(i),G(i+1), · · · ,G( j)} can be
merged as: G(i,i+1,..., j) ∈ R

Ri ×∏ j
k=i Ik×R j+1 .

The diagrams to illustrate the two operations are shown in Fig. 1. Based on the two
operations, we can introduce one of the most important properties of TRD which is circular

Fig. 1 a The tensor circular
permutation of an N th order
tensor by c steps of
anticlockwise-shift. b The
merging of the two adjacent TR
factors G(n) and G(n+1)

G(n) G(n+1)

merge

G(n,n+1)

InIn+1

Rn RnRn+1 Rn+2 Rn+2

In In+1

(b) Merging of TR factors

Ic+1 Ic+2 IN I1 Ic. . . . . .X←−c
. . . . . .

I1 I2 I3 IN. . .
X . . .

(a) Circular permutation of tensor 
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permutation invariance (Zhao et al. 2016). If tensorX can be decomposed by {G(n)}N
n=1, then

its circular permutation saitisfies:

X←−c = Ψ (G(c+1), . . . ,G(N ),G(1), . . . ,G(c)), (2)

where Ψ (·) is the operator to calculate the tensor by using its TR factors. The following
relationship of the tensor and the TR factors can be applied as the operator Ψ (·):

X<n> = G(n)
(2)(G

(
=n)
<2>)�, (3)

where G(
=n) ∈ R
Rn+1×∏N

i=1,i 
=n Ii ×Rn is a subchain tensor by merging operation of all TR
factors except the nth core tensor, see more details in Zhao et al. (2019). We can see from (2)
that for TRD, the circular permutation of a tensor is corresponding to the circular permutation
of the TR factors.

Furthermore, as one of the applications of TRD, we can exploit TRD to predict missing
entries from an incomplete tensor. In general, tensor ring completion can be done by solving
the following problem:

min[G],X ‖X − Ψ ([G])‖2F s.t . PΩ(X ) = PΩ(T ), (4)

whereT is the observed tensor and PΩ(T ) denotes all the observed entries w.r.t. the index set
represented byΩ . Themodel is to optimize theTR factors [G] and obtain the completed tensor
X simultaneously. It is known from existing studies (Wang et al. 2017; Yuan et al. 2018)
that the performance of tensor ring completion is largely effected by TR-rank. However,
due to the undetermined multi-linear TR-rank and high-dimensionality of the incomplete
data, determining suitable TR-rank for completion therefore becomes an extremely time-
consuming work in practice.

2.3 Tensor completion by nuclear normminimization

The tensor completion model based on nuclear norm minimization can be generally formu-
lated by:

min
X

Rank(X ) + λ

2
‖PΩ(T − X )‖2F , (5)

where T is the observed tensor and X is the underlying tensor being recovered, Rank(·) is
the rank regularizer and λ is the hyper-parameter. Most studies apply the overlapped nuclear
norm of the tensor as the low-rank regularizer and employ nuclear norm as the low-rank
surrogate which cast the problem into minimizing the summation of the nuclear norm (SNN)
of the tensor unfoldings:

min
X

N∑

n=1

‖X(n)‖∗ + λ

2
‖PΩ(T − X )‖2F . (6)

Moreover, in consideration of increasing the flexibility of the low-rank constraint, a new type
of low-rank regularizer for tensor, termed as latent nuclear norm (LNN), has been proposed
and studied recently (Tomioka and Suzuki 2013). The LNN equals the infimum of sum of a
sequence of matrix nuclear norm. Given an N th order tensor X , it is defined as

‖X‖L N N = inf
X=W(1)+···+W(N )

N∑

n=1

‖W(n)
(n)‖∗, (7)
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where [W] ∈ R
I1×···×IN are the latent components of the tensor X . Compared to the con-

ventional overlapped tensor nuclear norm (Liu et al. 2013), the LNN-based model is proved
to provide more precise completion results especially in the unbalanced case of tensor rank
(Tomioka and Suzuki 2013). The latent model considers the original tensor as a summation
of several latent tensors and assumes that each latent tensor is low-rank in a specific mode:

∑N

n=1
‖W(n)

(n)‖∗ + λ

2
‖PΩ(T − X )‖2F ,

s.t . X =
∑N

n=1
W(n).

(8)

The LNN model can fit the tensor better than overlapped nuclear norm model if the tensor is
not low-rank in all modes, because of the flexible low-rank constraint of LNN. Tomioka and
Suzuki (2013), it has been theoretically proved that the mean square error of a latent norm
model scales no greater than the overlapped normmodel. However, though the model (6) and
model (8) can effectively regularize the rank of the underlying tensor in different situations,
both of the two models have to process multiple SVD operations. When facing large-scale
data, the huge computational cost of the nuclear-norm-minimization-based methods will be
an intractable problem.

3 Low-rank regularizations on tensor ring latent space

3.1 The upper bounds for the tensor unfoldings

In consideration of imposing low-rank constraints on the TR-factors, we need to first deduce
the relationship between the TR factors and the underlying tensor. In this subsection, we
first prove that the ranks of the tensor unfoldings are upper bounded by the rank of TR
factors. Then, we extend the theoretical result to a corollary that the rank of the unfoldings
of the tensor under arbitrary circular permutations can be bounded by the TR-rank. This
proves that the low-rank constraint on TR factors will impose a low-TR-rank constraint on
the underlying tensor. Till now, works in Liu et al. (2013) and Bengua et al. (2017) have
cast the low-rank tensor completion problem to minimizing the summation of the nuclear
norm (SNN) as Rank(X ) := ∑N

n=1 ‖X(n)‖∗ and Rank(X ) := ∑N
n=1 ‖X[n]‖∗, respectively.

These two low-rank regularizers minimize the Tucker-rank and the TT-rank of the underlying
tensor respectively. However, currently, there is no study on the relation between the rank
of TR factors and the rank of the underlying tensor. We provide the theoretical proof of the
relationship below.

Theorem 1 Given an Nth order tensor X ∈ R
I1×I2×···×IN which is in TR-format with the

TR-rank [R1, R2, . . . , RN ]� and the TR factors are denoted by {G(n)}N
n=1 ∈ R

Rn×In×Rn+1 ,
then the following inequality holds for all n = 1, . . . , N:

Rank(X(n)) ≤ Rank(G(n)
(2)). (9)

Proof For the nth TR factor G(n), according to equation (3), the relationship between the
rank of the tensor unfoldings and the rank of the TR factor unfoldings can be simply deduced
by:

Rank(X<n>) ≤ min{Rank(G(n)
(2)),Rank(G

(
=n)
<n>)}

≤ Rank(G(n)
(2)).

(10)
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The proof is completed by

Rank(X<n>) = Rank(X(n)) ≤ Rank(G(n)
(2)). (11)

�


This theorem proves the relationship between the rank of tensor unfoldings and the rank
of the TR factors. The rank of mode-n unfolding of the tensorX is upper bounded by the rank
of the dimension-mode unfolding of the corresponding core tensor G(n), which allows us to
impose a low-rank constraint on [G] to explore the more low-rank structure of the underlying
tensor. Furthermore, we extend Theorem 1 and provide Corollary 1, which reveals more rank
relationships between the tensor and the TR factors.

Corollary 1 If the tensorX ∈ R
I1×···×IN is in TR-format with the TR-rank [R1, R2, . . . , RN ]�

and the TR factors are denoted by {G(n)}N
n=1 ∈ R

Rn×In×Rn+1 , then for ∀ c and n ∈ [1, N ],
the rank of X←−c ,[n] is bounded by TR-rank as

Rank(X←−c ,[n]) ≤ Rc+1Rt+1. (12)

where

t =
{

c + n, n ≤ N − c;
N − n + 1, otherwise.

(13)

Proof By applying the property of circular permutation invariance of TR decomposition
(Zhao et al. 2016) (Theorem 2.1), X←−c ∈ R

Ic+1×···×IN ×I1×···×Ic can be decomposed by

the TR-factors {G(c+1), . . . ,G(N ),G(1), . . . ,G(c)}, or simply {G←−c ,(1), . . . ,G
←−c ,(N )}. From

equation (1), we can deduce the relationship of an arbitrary element of X←−c with index
(i1, . . . , iN ) and the TR factors as follow:

X←−c (i1, . . . , iN ) = Trace

(
n∏

k=1

G
←−c ,(k)
ik

N∏

k=n+1

G
←−c ,(k)
ik

)

. (14)

For n ∈ [1, N ], we denote the merging operation of {G←−c ,(1), . . . ,

G
←−c ,(n)} and {G←−c ,(n+1), . . . ,G

←−c ,(N )} as G
←−c ,≤n and G

←−c ,>n respectively. Then, equation
(3) applied in Theorem 1 can be rewritten as a more general form:

X←−c ,[n] = G
←−c ,≤n
(2) (G

←−c ,>n
<2> )�. (15)

This indicates that there exists a matrix decomposition for X←−c ,[n] of rank Rc+1Rt+1, so we
have Rank(X←−c ,[n]) ≤ Rc+1Rt+1. �


Corollary 1 proves that the unfoldings of the arbitrary circular permuted tensor have the
rank upper bounds which are constrained by the TR-rank. Compared to Tucker-rank and TT-
rank, which are the bounds of the other kinds of tensor unfoldings, the TR-rank can bound
more tensor unfolding structures, thus exploiting more low-rank structures of the underlying
tensor. FromTheorem 1, we know that the rank of the unfolded tensor is an “under-estimator”
of the product of TR-rank.Meanwhile,we can also infer that the regularization on theTR-rank
is equivalent to minimizing the rank of the tensor unfoldings.
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3.2 Model formulation

Traditional rank minimization based tensor completion methods perform nuclear norm regu-
larization of multiple matrices generated by tensor unfoldings, and thus suffering from high
computational cost of large-scale SVD operations in every iteration. To reduce the computa-
tional cost, we impose low-rank regularizations on each of the TR factors. By imposing the
nuclear norm regularizations on the TR factors, we can largely decrease the computational
complexity of our model compared to tensor completion models based on (6) which impose
low-rank regularization on thewhole tensor. Our basic tensor completionmodel is formulated
as follow:

min[G],X

N∑

n=1

Rank(G(n)) + λ

2
‖X − Ψ ([G])‖2F ,

s.t . PΩ(X ) = PΩ(T ).

(16)

Based on Theorem 1, we impose nuclear norm regularization on the dimension-mode of
the TR factors (i.e., ‖G(n)

(2)‖∗) to explore more low-rank structure of the underlying tensor.
Moreover, according to Corollary 1, we consider to impose nuclear norm regularizations on
the two rank-modes of the TR factors, i.e., the unfoldings of the TR factors along mode-1
and mode-3, which can be expressed by

∑N
n=1 ‖G(n)

(1)‖∗+
∑N

n=1 ‖G(n)
(3)‖∗. When the model is

optimized, nuclear norms of the rank-mode unfoldings and the fitting error of the approx-
imated tensor are minimized simultaneously, resulting in the initial TR-rank becoming the
upper bound of the real TR-rank of the tensor, thus equipping our model with robustness to
rank selection. Finally, the tensor ring low-rank factors (TRLRF) model can be expressed
as:

min[G],X

N∑

n=1

3∑

i=1

‖G(n)
(i) ‖∗ + λ

2
‖X − Ψ ([G])‖2F

s.t . PΩ(X ) = PΩ(T ),

(17)

where the optimization objectives are the recovered underlying tensorX and the TR factors
[G], λ > 0 is the tuning parameter and T is the input incomplete tensor. Our TRLRF model
has two distinctive advantages. Firstly, the low-rank assumption (i.e., nuclear norm) is placed
on tensor factors instead of on the original tensor, this greatly reduces the computational
complexity of the SVD operation. Secondly, low-rankness of tensor factors can enhance the
robustness to rank selection, which can alleviate the burden of searching for better TR-rank
and reduce the computational cost in the implementation.

By imposing overlapped nuclear norms on the TRD latent factors, TRLRF can minimize
the TR-rank of each mode of the tensor and explore more low-rank structures. However,
when the low-rank property in each mode of the underlying tensor is unbalanced (which is
usually the case in real-world data), the equal low-rank constraint on each TR factor will
become less efficient. Inspired by the previous study of latent nuclear norm (Tomioka and
Suzuki 2013), which is a more flexible low-rank constraint than overlapped nuclear norm,
we employ model (7) to the TR factors. In this respect, we further decompose each TR factor
into a sum of latent components. Under the low-rank regularization of the latent model, the
underlying tensor does not need to be low-rank at every mode. Our tensor ring latent nuclear
norm (TRLNN) model is formulated as:
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min[G],X

N∑

n=1

3∑

i=1

‖W(n,i)
(i) ‖∗ + λ

2
‖X − Ψ ([G])‖2F

s.t . PΩ(X ) = PΩ(T ),G(n) =
3∑

i=1

W(n,i),

n = 1, . . . , N .

(18)

Similar to theTRLRFmodel, theTRLNN is also to optimize theTR factors and the underlying
tensor simultaneously. From model (18), we can see that the rank along different modes for
each TR factor G(n) is independently regularized by different components W(n,i), which is
well suited to the unbalanced rank scenario. The TRLNN model is considered to be a better
setting than TRLRF for a tensor that has unbalanced low-rank structure (Tomioka and Suzuki
2013).

3.3 ADMM solving scheme

The alternating direction method of multipliers (ADMM) (Boyd et al. 2011) is the most
commonly-used and efficient algorithm to solve constrained optimization problems. Due to
the non-smoothness property of the nuclear norm regularizers of ourmodels, the conventional
gradient-descent-based algorithms usually lead to slow convergence rate (sub-linearly), so
we apply the ADMM to solve our models. As shown in existing studies (Liu et al. 2013,
2015), we can utilize ADMM to achieve more efficient solving schemes of our models.

3.3.1 TRLRF

To solve the model in (17) by ADMM scheme, because the variables of TRLRF model
are inter-dependent, we impose auxiliary variables to simplify the optimization. Thus, the
TRLRF model can be rewritten as

min[M],[G],X

N∑

n=1

3∑

i=1

‖M(n,i)
(i) ‖∗ + λ

2
‖X − Ψ ([G])‖2F ,

s.t . M(n,i)
(i) = G(n)

(i) , n = 1, . . . , N , i = 1, 2, 3,

PΩ(X ) = PΩ(T ),

(19)

where [M] := {M(n,i)}N ,3
n=1,i=1 are the auxiliary variables of [G]. By merging the additional

equal constraints of the auxiliary variables into the Lagrangian equation, the augmented
Lagrangian function of TRLRF model becomes

L ([G],X , [M], [Y])

=
N∑

n=1

3∑

i=1

(‖M(n,i)
(i) ‖∗+ < Y(n,i),M(n,i) − G(n) >

+ μ

2
‖M(n,i) − G(n)‖2F

) + λ

2
‖X − Ψ ([G])‖2F ,

s.t . PΩ(X ) = PΩ(T ),

(20)

where [Y] := {Y(n,i)}N ,3
n=1,i=1 are the Lagrangian multipliers, and μ > 0 is a penalty param-

eter. For n = 1, . . . , N , i = 1, 2, 3, G(n), M(n,i) and Y(n,i) are each independent, so we
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can update them by the updating scheme below. By using (20), the augmented Lagrangian
function w.r.t. G(n) can be simplified as

L(G(n)) =
3∑

i=1

μ

2

∥
∥
∥M(n,i) − G(n) + 1

μ
Y(n,i)

∥
∥
∥
2

F

+ λ

2

∥
∥X − Ψ ([G])∥∥2F + CG,

(21)

where the constant CG consists of other parts of the Lagrangian function which is irrelevant
to updating G(n). This is a least squares problem, so for n = 1, . . . , N , G(n) can be updated
by

G(n)
+ = fold(2)

(( 3∑

i=1

(μM(n,i)
(2) + Y(n,i)

(2) )

+ λX<n>G
(
=n)
<2>

)(
λG(
=n),�

<2> G(
=n)
<2> + 3μI

)−1
)
,

(22)

where I ∈ R
R2

n×R2
n denotes the identity matrix. For i = 1, 2, 3, the augmented Lagrangian

functions w.r.t. [M] is expressed as

L(M(n,i)) = μ

2

∥
∥M(n,i) − G(n) + 1

μ
Y(n,i)

∥
∥2

F

+ ∥
∥M(n,i)

(i)

∥
∥∗ + CM,

(23)

where CM is considered as a constant. The above formulation has a closed-form (Cai et al.
2010), which is given by

M(n,i)
+ = fold(i)

(
D 1

μ

(
G(n)

(i) − 1

μ
Y(n,i)

(i)

))
, (24)

where Dβ(·) is the singular value thresholding (SVT) operation, e.g., ifUSV� is the singular
value decomposition of matrix A, then Dβ(A) = Umax{S − βI, 0}V�. The augmented
Lagrangian functions w.r.t. X is given by

L(X ) = λ

2

∥
∥X − Ψ ([G])∥∥2F + CX ,

s.t . PΩ(X ) = PΩ(T ),

(25)

which is equivalent to the tensor decomposition-based model in (4). The expression forX is
updated by inputing the observed values in the corresponding entries, and by approximating
the missing entries by the updated TR factors [G] for every iteration, i.e.,

X+ = PΩ(T ) + PΩ̄ (Ψ ([G])), (26)

where Ω̄ is the set of indices ofmissing entrieswhich is a complement toΩ . For n = 1, . . . , N
and i = 1, 2, 3, the Lagrangian multiplier Y(n,i) is updated as

Y(n,i)
+ = Y(n,i) + μ

(
M(n,i) − G(n)

)
. (27)

In addition, the penalty term of the Lagrangian functions L is restricted by μ which is also
updated for every iteration by μ+ = max{ρμ,μmax }, where 1 < ρ < 1.5 is a tuning hyper
parameter.
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3.3.2 TRLNN

Different from the solving scheme of TRLRF, the TRLNNmodel dose not need auxiliary vari-
ables. We first merge the equal constraint and formulate the augmented Lagrangian function
as:

L ([G],X , [W], [Y])

=
N∑

n=1

(
3∑

i=1

‖W(n,i)
(i) ‖∗+ < Y(n),

3∑

i=1

W(n,i) − G(n) >

+μ

2
‖

3∑

i=1

W(n,i) − G(n)‖2F
)

+ λ

2
‖X − Ψ ([G])‖2F ,

s.t . PΩ(X ) = PΩ(T ).

(28)

Due to the interdependence of [G], [W] and [Y], we provide the updating scheme of these
variables as below. To update [G], for n = 1, . . . , N , model (28) can be rewritten by:

L(G(n)) = μ

2

∥
∥
∥

3∑

i=1

W(n,i) − G(n) + 1

μ
Y(n)

∥
∥
∥
2

F

+ λ

2

∥
∥X − Ψ ([G])∥∥2F + CG,

(29)

where CG is the irrelevant part of the augmented Lagrangian function to update G(n) and can
be considered as a constant value. In this way, updating G(n) equals to solving a least squares
problem, so G(n) can be updated by:

G(n)
+ = fold(2)

((
λX<n>G

(
=n)
<2> + μ

3∑

i=1

W(n,i)
(2)

+ Y(n)
(2)

)(
λG(
=n),�

<2> G(
=n)
<2> + μI

)−1
)
,

(30)

where I ∈ R
R2

n×R2
n is an identity matrix. Similarly, for n = 1, . . . , N , i = 1, 2, 3, in order to

update [W], function (28) can be rewritten by:

L(W(n,i)) =μ

2

∥
∥W(n,i) +

3∑

j=1, j 
=i

W(n,i) − G(n)

+ 1

μ
Y(n,i)

∥
∥2

F + ∥
∥W(n,i)

(i)

∥
∥∗ + CW ,

(31)

where CW is the variable which is not related toW(n,i). The formulation has a closed-form
solution, which is given by:

W(n,i)
+ = fold(i)

(
D 1

μ

(
G(n)

(i) − 1

μ
Y(n,i)

(i) −
3∑

j=1, j 
=i

W(n,i))
)
. (32)

Next, to update X , the augmented Lagrangian function (20) can be rewritten by:

L(X ) = λ

2

∥
∥X − Ψ ([G])∥∥2F + CX ,

s.t . PΩ(X ) = PΩ(T ),

(33)
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which is a standard model for TR-based completion, and X can be updated by:

X+ = PΩ(T ) + PΩ̄ (Ψ ([G])). (34)

Finally, for n = 1, . . . , N , the closed-form solution for Lagrangian multipliers Y(n) is
updated by

Y(n)
+ = Y(n) + μ

(
3∑

i=1

W(n,i) − G(n)

)

. (35)

The parameter settings and the algorithm details will be provided in the experiment section.

3.4 Complexity analysis and convergence analysis

We assume to recover a tensor X ∈ R
I×I×···×I by our models with TR-rank R1 = R2 =

· · · = RN = R for simplicity. The computational complexity of updating [M] for TRLRF
and [W] for TRLNN are mainly spent on the SVD calculation, which areO(N I R3 + I 2R2)

equally. The complexity of HaLRTC (Liu et al. 2013) is O(N I N+1) which is much higher
than our models as it conducts the SVD on the whole tensor.

Moreover, the main computational complexity of our algorithms is cost by updating [G].
In (22) and (30), the multiplication X<n>G

(
=n)
<2> costsO(R2 I N ) complexity, and calculating

the inverse of the matrix of size R2 × R2 costs O(R6) complexity. The calculation repeats
N times in every iteration of the algorithm, so the update of [G] in the two models both cost
O(N R2 I N + N R6) complexity. It is comparable to the computational complexity of TRALS
(Wang et al. 2017) which is O(P N R4 I N + N R6) where P denotes the observation rate.
However, the TRALS applies slice-wise update scheme, and our algorithms apply the factor-
wise update scheme which needs much fewer loops to update all the TR factors. Because of
the representation capability of TRD, the high power in R is not an issue for the complexity
of TR-based algorithms. The TR-rank of TR-based algorithms can always be set as a small
value. Another desirable property of TR-rank regularization of our algorithms is that it can
speed up the model selection process in practice, and thus the computational cost of our
algorithm can be greatly reduced.

It should be noted that ourTRLRFandTRLNNmodels are non-convex, so the convergence
to the global minimum cannot be theoretically guaranteed. However, the convergence of
our algorithms can be verified empirically (see experiment details in Fig. 2). By applying
the synthetic tensor which has the TR structure, we conduct the completion experiment
by our algorithms in different TR-rank and different hyper-parameter λ. Each independent
experiment is conducted 100 times and the average results are shown in the graphs. From the
figure, we can see that the convergence of our algorithms is fast and stable. Moreover, the
extensive experimental results in the next section also illustrate the stability and effectiveness
of our algorithms.

4 Experimental results

In the experiment section, we firstly testify the rank robustness of our algorithms and the
difference of our algorithms by the simulation experiment. Then by numerous benchmark
and real-world data, we testify the performance of our algorithms in many situations and
compare with the other low-rank approximation algorithms. Moreover, we consider to set
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Fig. 2 Illustration of convergence for TRLRF and TRLNN under different hyper-parameter choices. A syn-
thetic tensor with TR structure (size 7 × 8 × 7 × 8 with TR-rank {4,4,4,4}, missing rate 0.5) is tested. The
experiment records the change of the objective function values along the number of iterations. a and b show
the convergence curves of TRLRF under different TR-rank and λ respectively. The convergence curves of
TRLNN are presented in (c) and (d)

two optimization stopping conditions: (i) maximum number of iterations kmax and (ii) the
difference between two iterations (i.e., ‖X − X last‖F/‖X‖F ) which is thresholded by the
tolerance tol. The implementation process and hyper-parameter selection of TRLRF and
TRLNN are summarized in Algorithm 1.

Algorithm 1. Solving scheme and parameter settings of TRLRF and TRLNN.
1: Input: incomplete observation PΩ(T ), initial TR-rank {Rn}N

n=1 .
2: Initialization: For n = 1, . . . , N , i = 1, 2, 3, random sample G(n) by Gaussian
distribution N ∼ (0, 1), [Y] = 0, [M] = 0, [W] = 0, λ = 5, μ0 = 1, μmax = 102,
ρ = 1.01, tol = 10−6, k = 0, kmax = 300.
3: For k = 1 to kmax do
4: X last = X .
5: For TRLRF, update the variables by (22), (24), (26), (27).

For TRLNN, update the variables by (30), (32), (34), (35).
6: μ = max(ρμ,μmax )

7: If ‖X − X last ‖F /‖X‖F < tol, break
8: End for
9: Output: completed tensor X and TR factors [G].

Moreover, for performance evaluation, the relative square error (RSE) and peak signal-to-
noise ratio (PSNR) are adopted for the evaluation of the completion results. RSE is calculated
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Fig. 3 Completion results of three TR-based algorithms with the increase of the selected TR-rank. Each
element of the prescribed TR-rank is set identically in the algorithms, and the real TR-rank of (a) and (b) are
balance and unbalance, respectively

by RSE = ‖T real − Y‖F/‖T real‖F , where T real is the real tensor with full observations,
Y is the completed tensor. PSNR is obtained by PSNR = 10 log10(255

2/MSE), where
MSE is deduced by MSE = ‖X − Y‖2F/num(X ), and num(·) denotes the total number of
the elements of the tensor. The algorithms are implemented on Matlab software and all the
computations are conducted by using a Mac computer with Intel Core i7 and 64GB DDR3
memory.1

4.1 Synthetic data

In the synthetic data experiment, we mainly aim to show the difference between TRLRF and
TRLNN. The two TR-structured synthetic tensors are of size 12 × 12 × 12 × 12 with 30%
randommissing entries. For the first and the second synthetic tensors, the real TR-rank are set
as {6, 6, 6, 6} and {3, 6, 3, 6}, respectively. Three TR-based algorithms [i.e., TRLRF, TRLNN
and TRALS (Wang et al. 2017)] are used to recover the two incomplete TR-structured tensors
which own balanced TR-rank and unbalanced TR-rank, respectively. The TRALS algorithm
is considered as the baseline because it cannot tune the TR-rank. With the increase of the
prescribed TR-rank, the completion results are shown in Fig. 3. From Fig. 3a, we can see
that TRALS obtains its best performance when the prescribed TR-rank equals the real rank
of the synthetic tensor but it becomes overfitting when the prescribed TR-rank goes up.
On the other hand, the performance of TRLRF and TRLNN are relatively stable when the
prescribed TR-rank is increased over the real-rank. TRLRF performs better than TRLNN due
to the strong low-rank regularization on each mode of the TR factors. However, in Fig. 3b,
when the elements of the real TR-rank is unbalanced, TRLRF becomes less efficient than
TRLNN when the prescribed TR-rank is {6, 6, 6, 6}. In this situation, only a subset of the
modes of the TR-rank needs to be regularized. When the TR-rank continues to increase,
the TRLRF and TRLNN show robustness to the rank-increasing, while the performance of
TRALS shows a sharp decrease due to the overfitting problem.

1 The Matlab code of our algorithms is available at www.github.com/yuanlonghao/TRLRF.
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Fig. 4 The eight benchmark images of size 256 × 256 × 3

4.2 Benchmark image inpainting

In this section, we adopt eight widely-used benchmark RGB images (Fig. 4) to validate the
completion performance of our TRLRF and TRLNN. The original images can be considered
as tensors of size 256 × 256 × 3. The first experiment is conducted to demonstrate the
rank-robustness performance of our algorithms. We treat TRALS and TRWOPT (Yuan et al.
2018) as the baseline because their TR-rank cannot be tuned automatically. We test these
three algorithms on the “Lena” image with 80% random missing which is the case that
the TRD-based algorithms are prone to be overfitting. The TR-rank for each independent
experiment is set as R = R1 = R2 = R3 and R = {2, 4, 6, 8, 10, 12}. Figure 5 shows the
visual inpainting results of the compared algorithms when the TR-rank increases. We can see
that when the TR-rank is {2, 2, 2}, all the algorithms show distinct underfitting, and when
the TR-rank is {4, 4, 4}, all the algorithms show relatively good results due to the proper
rank selection. However, when the TR-rank continues to increase, TRALS and TRWOPT
show performance decrease due to the overfitting problem while our TRLRF and TRLNN
are robust to rank increase and obtain even higher performance than the low TR-rank cases.
The experiment results are in accordance with the synthetic data experiments in the previous
section.

The next experiment is to testify the inpainting performance of our algorithms com-
pared with other related low-rank-based algorithms. In addition to comparing the TR-based
algorithms, the CP decomposition based TenALS and FBCP (Zhao et al. 2015), the Tucker-
rank minimization based HaLRTC (Liu et al. 2013; Zhao et al. 2015) and the tensor
SVD scheme based t-SVD (Zhang et al. 2014) are also included in our comparison. We
test the eight algorithms on all the eight benchmark images with different missing rates:
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. According to the parameter-tuning suggestions from
each paper, the hyper-parameters are respectively tuned for the compared algorithm to try to
exhibit their best performance.

Figure 6a, b show the average RSE and PSNR results of the eight images, respec-
tively. The TRLRF and TRLNN show better results than other algorithms in most of
the cases. The completion performance of all the algorithms decreases w.r.t. the increase
of the missing rate. In particular, when the missing rate reaches 0.9 and 0.95, the per-
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Fig. 5 Visual completion results of the reshaped RGB image “Lena” of size 256 × 256 × 3
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Fig. 6 Average completion results of the eight RGB images of size 256× 256× 3 with different missing rate.
The smaller RSE values and the larger PSNR values indicate higher performance
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formance of most algorithms falls drastically. It should be noted that finding the best
TR-rank to obtain the best completion results is very laborious, and tuning the rank for
each image in different missing rate is not practical in real applications, especially for
TR-based algorithms which need to tune multilinear rank. However, the rank selection is
much easier for our proposed algorithms because the performance of TRLRF and TRLNN
are fairly stable even though the TR-rank is selected from a wide range. As for run-
ning time, the average running time for a single image of each algorithm is 11.2, 10.7,
37.8, 22.9, 14.5, 20.3, 8.5, 13.4 (seconds) respectively, which shows the efficiency of our
algorithms.

4.3 Hyperspectral image completion

A hyperspectral image (HSI) of size 200 × 200 × 80 which records an area of the urban
landscape is tested in this section.2 In order to test the performance of the algorithms on
higher-order tensors, the HSI data is also reshaped to higher-order tensors, which makes it
easy to find more low-rank features of the data. We compare our TRLRF and TRLNN to
the other five tensor completion algorithms in 3rd-order tensor (200 × 200 × 80) case and
8th-order tensor (8×5×5×8×5×5×8×10) case. The higher-order tensors are generated
from original HSI data by directly reshaping it to the specified order and size. Moreover,
we test two missing patterns: the dead line missing which often happens in HSI recording
process (He et al. 2015; Zhang et al. 2014), and the 90% random missing case to test the
reconstruction performance of the algorithms.

The compared algorithms are TRALS (Wang et al. 2017), TTSGD (Yuan et al. 2019),
FBCP (Zhao et al. 2015), HaLRTC (Liu et al. 2013) and t-SVD Zhang et al. (2014) which
apply the low-rank approximation of TR-rank, TT-rank, CP-rank, Tucker-rank and tensor
tubal-rank, respectively. It should be noted that in order to make a clear comparison of the
algorithms which apply different kinds of rank, we set the prescribed rank equally for all
the algorithms in each missing case. All the tuning parameters of every algorithm were set
according to the previous experiments. The completion performance of RSE, PSNR and
running time are listed in Table 1 and the visual completion results are shown in Fig. 7.
From the completion results we can see, our TRLRF provides the best recovery performance
for the HSI image in almost all the cases, and TRLNN also performs well in all the com-
pletion tasks. In the case of 3rd-order dead line missing, most of the algorithms perform
well. However, when the tensor is reshaped to 8th-order, the performance of FBCP and HaL-
RTC decreases. Moreover, in the 90% random missing case, the TR-based and TT-based
algorithms show steady performance from 3rd-order tensor to 8th-order tensor, while the
other algorithms show a sharp performance decrease and HaLTRC even fails to complete
the 8th-order 90% missing case. As for running time, our algorithms own an ordinary speed
but a lot faster than TRALS. Moreover, the running time for 3rd-order tensors is much less
than the running time of 8th-order tensors for most algorithms, even though the rank is
set lower for the high-order tensor cases. This is because the processing of high-order ten-
sors always leads to more computational loops and it will cost more time than low-order
tensors.

2 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
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Table 1 HSI completion results (RSE, PSNR and running time) under two different tensor orders and two
missing situations. The PSNR is calculated by the three color bands: 80, 34and9

Algorithms TRLRF TRLNN TRALS TTSGD FBCP HaLRTC t-SVD
Rank tuning � � � � �

deadline missing RSE 0.0840 0.0874 0.109 0.403 0.101 0.128 0.122

(3rd-order) PSNR 34.55 33.93 32.02 20.89 32.87 30.83 31.27

rank=20 time 167.4 128.1 619.2 151.1 99.3 106.2 71.1

0.9 random missing RSE 0.0806 0.165 0.157 0.328 0.388 0.345 0.268

(3rd-order) PSNR 31.50 27.48 28.17 22.67 21.15 22.17 21.79

rank=15 time 170.8 198.6 289.4 418.0 71.5 105.7 128.6

deadline missing RSE 0.0924 0.0996 0.101 0.309 0.133 0.136 0.0956

(8th-order) PSNR 33.58 31.91 32.71 23.19 30.45 30.40 33.26

rank=10 time 583.0 560.2 616.2 126.4 221.45 111.1 374.9

0.9 random missing RSE 0.109 0.118 0.127 0.251 0.401 0.910 0.262

(8th-order) PSNR 31.03 30.43 30.10 24.78 20.87 13.78 24.45

rank=5 time 337.5 328.9 480.9 188.5 145.36 68.9 380.9

Original

 deadline 
3rd-order
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  3rd-order

TRLRF TRLNN TRALS TT-SGD FBCP HaLRTC t-SVD

90% missing 
   8th-order

 deadline 
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TRLRF TRLNN TRALS TT-SGD FBCP HaLRTC t-SVD

90% missing 
   8th-order

 deadline 
8th-order

deadline missing 90% random missing

Fig. 7 Visual results of the HSI completion tasks. The the color bands 80, 34, 9 are chosen for the image
display

5 Conclusion

In this paper, we make the virtue of applying both the nuclear norm regularization and
tensor ring decomposition, to formulate a new tensor completion approach that achieves
tensor completion and decomposition simultaneously. By exploiting the rank relationship
between the tensor and the TR latent space, we employ low-rank constraints on the TR
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factors by two different low-rank regularizations, thus providing more robust completion
performance. We develop the ADMM solving scheme to optimize the proposed models,
resulting in satisfying running time. The experimental results on various datasets not only
verify the robustness and efficiency of the proposed algorithms but also demonstrate the
superior performance of our method against the compared algorithms. Furthermore, it is
expected that the idea of imposing rank regularization constraint on tensor latent space can
be extended to various tensor decomposition models in order to develop more efficient and
robust algorithms.
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