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Abstract
Reinforcement learningmethods rely on rewards provided by the environment that are extrin-
sic to the agent. However, many real-world scenarios involve sparse or delayed rewards. In
such cases, the agent can develop its own intrinsic reward function called curiosity to enable
the agent to explore its environment in the quest of new skills. We propose a novel end-to-
end curiosity mechanism for deep reinforcement learning methods, that allows an agent to
gradually acquire new skills. Our method scales to high-dimensional problems, avoids the
need of directly predicting the future, and, can perform in sequential decision scenarios. We
formulate the curiosity as the ability of the agent to predict its own knowledge about the
task. We base the prediction on the idea of skill learning to incentivize the discovery of new
skills, and guide exploration towards promising solutions. To further improve data efficiency
and generalization of the agent, we propose to learn a latent representation of the skills. We
present a variety of sparse reward tasks in MiniGrid, MuJoCo, and Atari games. We compare
the performance of an augmented agent that uses our curiosity reward to state-of-the-art
learners. Experimental evaluation exhibits higher performance compared to reinforcement
learning models that only learn by maximizing extrinsic rewards.

Keywords Reinforcement learning · Exploration · Autonomous exploration · Curiosity in
reinforcement learning

1 Introduction

Combining reinforcement learning (RL) with neural networks has led to a large number of
breakthroughs in many domains. They work by maximizing extrinsic rewards provided by
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the environment. In well-specified reward function tasks, such as Atari game (Abbeel et al.
2007) or robotic control (Levine et al. 2016), RL is able to achieve human performance. In
reality, many domains involve reward functions that are sparse or poorly-defined.

Overcoming sparse reward scenarios is a major issue in RL since the agent can only
reinforce its policy when the final goal is reached. In such scenarios, motivating the agent to
explore the environment is necessary. Several works have attempted to facilitate exploration
by combining the original rewardwith an additional reward. For instance, reward shaping (Ng
et al. 1999) guides the policy optimization towards promising solutions with a supplementary
reward, but, the necessity of engineering limits the applicability to specific domains. If we
have demonstrations of the task, we can extract a reward function using inverse reinforcement
learning (Ng and Russell 2000). However, such approaches are limited to behaviors that are
easy for humans to demonstrate.

An alternative approach to address the reward design problem is to motivate the agent to
explore novel states using curiosity—the ability to acquire new skills which might become
useful in the future. Curiosity is motivated by human early stage of development: babies
reward themselves for acquiring increasingly difficult new skills. Many formulations aim
to measure the novelty of the states in order to encourage exploration of novel states. For
instance, an approach (Racanière et al. 2017) bases the exploration of the agent on the
surprise—the ability of the agent to predict the future. Nevertheless, these models remain
hard to train in high dimensional state spaces such as images.

In this paper, we introduce a novel technique called goal-based curiosity (GoCu). We
propose an alternative solution to the curiosity mechanism by generating an exploration
bonus based on the agent’s knowledge about its environment. To do so, we use the idea of
goals to automatically decompose a task into several easier sub-tasks, and, skills, the ability to
achieve a goal given an observation. In summary, our main contribution is that we manage to
bypass most pitfalls of previous curiosity-based works with the following idea: GoCU is not
based on the ability to predict the future nor the novelty of the states, but on learning which
skills are mastered. That is, often visiting a state will result in a high intrinsic reward unless
the agent perceives that it has good knowledge about the associated skills. In details, given
an observation the agent predicts which goals it masters. We then reward the agent when
the uncertainty to achieve them is high, to encourage curiosity. Our method relies on two
deep neural networks: (1) to embed the states and goals to a latent space and (2) a predictor
network to predict the capabilities of the agent. In order to improve generalization among
skills, we embed the goals to a latent space using a variational autoencoder (Kingma and
Welling 2014).

We first evaluate our approach on a set of sequential sparse tasks (several sequential steps
are required in order to achieve the final goal) in theMinigrid (Chevalier-Boisvert et al. 2018)
environment. Next, we show that our approach can scale to large environments. Our method
can also learn policies in the MuJoCo environment, as well as in several Atari games, in a
small number of steps.We compare our algorithmagainst proximal policy optimization (PPO)
(Schulman et al. 2017), and advantage actor-critic (A2C) (Mnih et al. 2016) agent as well
as state-of-the-art curiosity-based RL methods. We show that curiosity-driven exploration
is crucial in tasks with sparse rewards and demonstrate that our agent explores faster as
compared to other methods.
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2 Related work

The problem of motivating the agent to explore sparse reward environments was studied in
the works that we discuss in this section. Most approaches can be grouped into three classes:
reward shaping and auxiliary tasks, goal conditioned learning, and, intrinsic curiosity.

2.1 Reward shaping and auxiliary tasks

Reward shaping (Ng et al. 1999) aims to guide the agent towards potentially promising
solutions with an additional hand-crafted reward. However, this idea is limited to specific
domains by the necessity of human engineering. Other attempts have beenmade to design this
additional reward without supervision. For instance, Stadie et al. (2015) improve exploration
by estimating visitation frequencies for states and state-action pairs. When a state-action is
not visited enough, a novelty bonus is assigned. Similarly, several works (Bellemare et al.
2016; Ostrovski et al. 2017) are based on a pseudo-count reward bonus to encourage the
exploration of novel states. These methods assume that the states need to be equally visited.
Obviously, this assumption is no longer valid in sequential tasks. By contrast, we let the
agent learn which states need to be explored in priority. UNREAL (Jaderberg et al. 2017)
trains the agent on unsupervised auxiliary tasks. In order to perform well, the agent must
acquire a good representation of the states which entails that it must explore the environment.
However, this method requires experts to design the auxiliary tasks. Our method enables the
agent to discover sub-tasks without any prior belief about the target task.

2.2 Goal conditioned learning

Goal conditioned learning motivates an agent to explore by constructing a goal-conditioned
policy and then optimize the rewards with respect to a goal distribution. For instance, the
approach, universal value function approximators (Schaul et al. 2015), trains a goal con-
ditioned policy but is limited to a single goal. Andrychowicz et al. propose an implicit
curriculum by using visited states as target and improve sample efficiency by replaying
episodes with different goals (Andrychowicz et al. 2017). However, selecting relevant goals
is not easy. Another work (Florensa et al. 2017) proposes to generate a series of increasing
distant initial states from a goal or to embed the goals to a latent space and then sample the
goals (Held et al. 2017). Reinforcement Learning with Imagined Goals (RIG) (Nair et al.
2018) trains a policy to reach a latent goal sampled from a VAE. However, this formulation
does not have a notion of which goals are hard for the learner. Instead, our method considers
how difficult is to achieve a goal to help the agent to find more efficient solutions to reach it.
Besides, we focus on the problem of optimizing learning of multiple skills simultaneously to
improve data efficiency. Despite successes in robotic manipulation tasks, generating increas-
ingly difficult goals is still challenging (Eppe et al. 2018), especially in sequential tasks. On
the other hand, our method bypasses this issue by training the agent to gradually acquire new
skills usingmultiple goals at once, and adapts curiosity based on the complexity of each state.

2.3 Intrinsic curiosity

Intrinsic curiosity refers to the idea of self-motivating the agent through an additional reward
signal, in order to guide the agent towards the desired outcome. Most techniques can be
grouped into two approaches.
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The first approach to generate curiosity relies on estimating a novelty measure, in order
to encourage the exploration of novel states. Schmidhuber et al. propose for the first time a
curiosity reward proportional to the predictability of the task (Schmidhuber 1991a) and then,
based on the learning progress (Schmidhuber 1991b). To give another example (Itti and Baldi
2006), the agent receives a reward proportional to the Bayesian surprise, the estimation of
which data affect the prior belief about the world of the observer. Several other works focused
on maximizing a measure such as empowerment (Salge et al. 2014) or, competence progress
(Baranes and Oudeyer 2013). Recently, a solution was proposed to measure uncertainty to
generalize count-based exploration (Bellemare et al. 2016). Nevertheless, these models are
hard to train in high dimensional state spaces such as images, or, in stochastic environments.

The second approach consists in optimizing the ability of the agent to predict the conse-
quences of its actions. Racanière et al. base the exploration of the agent on the surprise—the
ability of the agent to predict future (Racanière et al. 2017). A related concept (Pathak et al.
2017) estimates the surprise of the agent by predicting the consequences of the actions of the
agent on the environment. Namely, they use an inverse model to learn feature representations
of controllable aspects of the environment. Nevertheless, predicting the future is unsuitable
for domains in which variability is high, and tend to limit long-horizon performance due to
model drift. In that work, the intrinsic curiosity combines agent’s experiences and a predictor
to estimate how complex are the future states surrounding the current state; while embedding
states to a latent space to improve generalization. Another line of work aims to predict the
features of a fixed random neural network on the observation of the agent (Burda et al. 2018).
However, the low sample efficiency does not show clearly how to adapt this method to large
scale tasks. The intrinsic motivation may include the comparison between the current obser-
vation and the observations in an episodic memory (Savinov et al. 2019). This comparison
uses the concept of reachability, but is limited to episodic tasks and does not use the idea of
skill learning. Our work differs by proposing a technique that scales to continuous tasks and
let the agent discover new skills and reinforce them based on their difficulty. Our solution
is also more data efficient since we only need to do predictions on a small number of skills
instead of on the full episodic memory. By embedding the skills and states, we also improve
generalization capability of our agent. Finally, our method enables the use of efficient goal
sampling strategies to reduce training time. A solution is to (Lehman and Stanley 2011)main-
tain a list of behaviors, and reward the agent for exploring novel behaviors. In this paper,
we step toward this idea by considering the impact of the agent’s actions on its ability to
achieve skills. Furthermore, only the agent’s experience is required to predict the uncertainty
to master skills, thus alleviates the need of predicting complex changes in the environment.

3 Preliminaries

3.1 Reinforcement learning

Reinforcement learning (Sutton 1988) consists of an agent learning a policy π by interacting
with an environment. At each time-step the agent receives an observation st and chooses an
action at . The agent gets a feedback from the environment called a reward rt . Given this
reward and the observation, the agent can update its policy to improve the future rewards.
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Given a discount factor γ , the future discounted rewards, called return Rt , is defined as
follows:

Rt =
T∑

t ′=t

γ t ′−t rt ′ (1)

where T is the time-step at which the epoch terminates.
The agent learns to select the action with the maximum return Rt achievable for a given
observation (Sutton and Barto 1998). From Eq. (1), we can define the action value Qπ (s, a)

at a time t as the expected reward for selecting an action a for a given state st and following
a policy π .

Qπ (s, a) = E [Rt | st = s, a] (2)

The optimal policy π∗ is defined as selecting the action with the optimal Q-value, the high-
est expected return, followed by an optimal sequence of actions. This obeys the Bellman
optimality equation:

Q∗(s, a) = E

[
r + γ max

a′ Q∗(s ′
, a

′
) | s, a

]
(3)

In temporal difference (TD) learning methods such as Q-learning or Sarsa, the Q-values
are updated after each time-step instead of updating the values after each epoch, as happens
in Monte Carlo learning.

3.2 Policy gradient reinforcement learning

Here we briefly introduce the policy gradient-based reinforcement learning methods. Instead
of learning Q-values that represent the policy—the except return given a state and action,
policy gradient based methods learn directly a policy function. In our method, we use PPO
(Schulman et al. 2017), a policy gradient basedmethod, thatwas shown to have lowoscillation
during training, effective in high dimensional action spaces and can learn a stochastic policy.

The agent’s policy maps a state to a probability distribution. This policy parameterized by
θ usually uses a neural network or a convolutional neural network (Krizhevsky et al. 2012)
if inputs are images. We refer to πθ or J (θ) as the value policy, the expected discounted
rewards obtained by the agent when following the policy πθ .

J (θ) = Eθ

[
T∑

t=0

γ t rt

]
(4)

Sutton et al. (2000) demonstrate that the gradient of the value J can be estimated as
follows:

∇θ J (θ) = Eθ

[
R(st , at )∇θ logπθ (at |st )

]
(5)

with R(st , at ) the return defined in Eq. 1. In order to reduce the variance of the gradient and to
allow an update at each iteration, some methods such as proximal policy optimization (PPO)
(Schulman et al. 2017) or trust region policy optimization (TRPO) (Schulman et al. 2015)
use an estimation of the advantage function Ãt . The loss function to optimize becomes:

LPG(θ) = Et
[
At logπθ (at |st )

]
(6)

PPO introduces a penalty to control the change of the policy at each iteration to reduce
oscillating behaviors. The novel objective function becomes:

LCL I P (θ) = Et
[
min(rt (θ)At , clip(rt (θ), 1 − ε, 1 + ε)At )

]
(7)
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where rt is the ratio of the probability under the new and old policies and ε a hyperparameter.

3.3 Variational autoencoders

Variational autoencoders (VAEs) (Fig. 1) have been widely used to learn latent representation
of high dimensional data such as images (Kingma and Welling 2014). In this paper, we use
a VAE to embed the observations from the environment. The input image is passed through
an encoder network qφ which outputs the parameters μ and σ of a multivariate Gaussian
distribution. A latent vector is sampled and the decoder network pψ decodes it into the
original state space. The parameters φ and ψ of the encoder and decoder are jointly optimize
to maximize the loss function:

L(ψ, φ; s(i)) = −βDKL(qφ(z|s(i))||p(z)) + Eqφ(z|s(i))
[
log pψ(s(i)|z)

]
(8)

where the first term is a regularizer, the Kullback–Leibler divergence between the encoder
distribution qφ(z|s(i)) and p(z). This measure the divergence—how much information is
lost when using q to represent p. p(z) is some prior specified as a standard normal dis-
tribution p(z) = N (0, 1). The second term is the expected negative log-likelihood—the
reconstruction loss. The expectation is taken with respect to the encoder’s distribution over
the representations.

4 Method

4.1 GoCu: goal-based curiosity algorithm

We consider an agent interacting with an environment; at each time step t the agent performs
an action and receives an extrinsic reward ret supplied by the environment. In sparse reward
tasks, rewards are infrequent or delayed which entails that agents learn slowly.

We propose to introduce a new reward signal—goal-based curiosity reward r gc, to encour-
age the agent to discover new skills (Fig. 2). In our approach, at time t the agent receives the
sum of these two rewards rt = ret + r gct . To encourage the agent to explore the environment
and favor the discovery of new skills, we design r gc to be higher in complex states. To do
so, a curiosity signal is produced in novel states, and, in states involving skills that the agent
seeks to reinforce.

ϕ σ

Fig. 1 Variational auto encoder structure. The input image is passed through an encoder networkwhich outputs
the parameters μ and σ of a multivariate Gaussian distribution. A latent vector is sampled and the decoder
network decodes it into an image
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Fig. 2 In a state s, the agent
interacts with the environment by
performing an action a, and
receives an extrinsic reward re . A
policy π(st ; θP ) is trained to
optimize the sum of re and rgc .
The intrinsic reward rgc is
generated by the goal-based
curiosity module to favor the
exploration of novel or complex
states

Algorithm 1 PPO + GoCu pseudo-code

1: Collect D = {s(i)} using random exploration
2: Train VAE on D by optimizing (8)
3: Initialize replay buffer R
4: Initialize goal buffer Rg
5: Initialize environment env
6: Initialize goal-based curiosity module GCM
7: t = 0
8: for rollout r=1 to M do
9: Sample K goals from Rg g′ = {φ(g) ∼ f p(g)}
10: for l=1 to N do
11: Sample at ∼ π(at |st )
12: Collect st+1, r

e
t ∼ env(st+1, r

e
t |st , at ))

13: Calculate curiosity-based reward rgct = GCM(st+1)

14: Add st , st+1, r
e
t , at , r

gc
t to Rr

15: t+ = 1
16: Calculate returns Re,r ,Rgc,r for extrinsic and curiosity-based reward
17: Calculate advantages Ae,r ,Agc,r for extrinsic and curiosity-based reward
18: Calculate the new advantage Ar = Ae,r + σ Agc,r
19: Optimize PPO using on Rr and Ar
20: Update GCM every K episodes on R
21: Add new goals to Rg given Rr

The policy π(st ; θP ) is represented by a deep neural networks. Its parameters θP are
optimized to maximize the following equation:

max
θP

Eπ(st ;θP )

[
∑

t

rt

]
(9)

Any RL algorithm could be used to learn the policy π(st ; θP ). In this work, we use
proximal policy optimization (PPO) (Schulman et al. 2017) as policy learning method. Our
main contribution is the goal-based curiosity module (GCM) module that helps the agent in
the quest of new knowledge. We describe more details of each step below. See Algorithm 1
for a more formal description of the algorithm. In order to combine the extrinsic re and the
goal-based curiosity r gc reward, we decompose the return into two terms R = Re + Rgc.
These two terms are estimated by collecting samples from the environment. The state values
Ve and Vgc are computed by the same critic neural network with two heads, one for each
value function. Finally, we combine them to obtain the advantage function:

Ar = Ae,r + σ Agc,r (10)
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where σ controls the importance of the goal-based curiosity advantage. Note that themeasure
performance that we aim to improve with GoCu is the extrinsic rewards; the intrinsic rewards
only intend to guide exploration of the environment.

4.2 Goal-based curiosity module (GCM)

We build the goal-based curiosity module (GCM) on the following idea. Rather than using
count-based exploration, or next frame prediction error as exploration bonus, GCM rewards
the states based on the uncertainty to master skills. We introduce the concept of skill that
represents the ability of the agent to achieve a goal g in a state s. A skill is mastered when
the agent can achieve g from s with a high degree of confidence. The confidence is measured
in two ways: (1) the difficulty to go from s to g, (2) the progress of the agent to achieve this
skill. As a result, curiosity incentivizes the agent to seek new knowledge and discover new
skills that might lead to the final goal.

A straightforward solution is to consider the final goal as the goal to be achieved in any
state. However, in sparse reward environments, reaching the final goal may be infrequent,
entailing that for most of the episodes the agent only experiences failures. Therefore, training
a probabilistic model for predicting if the final goal is mastered is highly inaccurate. Instead,
we propose to estimate if the agent can solve multiple intermediate goals. Since these goals
are easier to master—encountered more frequently, the estimation becomes more accurate
while carrying information about the final goal. In the absence of domain knowledge, a
general choice is to set the goals as states experienced by the agent during exploration.

In details, the goal-based curiosity module takes as input the current observation and
produces the curiosity based reward r gc. The algorithm can be broken down in fours parts
(Fig. 3). First, at the beginning of each episode, K goals are sampled with 1 ≤ K ∈ N (Sect.
4.2.1). Second, at each step, we embed the current observation and the goals into a latent
space using a variational autoencoder ve : O → R

n (Fig. 1). Third, the agent predicts the
probability that each goal can be achieved from the current state. Our implementation relies
on a deep predictor neural network which predicts the probability that a goal is mastered
m : Rn × R

n → [0,1] and the curiosity based reward is calculated. To help the agent in

Fig. 3 Goal-based curiosity module. The module takes as input an observation s, and, at the beginning of
every episode samples K goals. The goals and the observation are embedded during step 2, φ(g) and φ(s)
respectively. Step 3 predicts the probability that each goal is mastered; and given this vector of probabilities
calculates the curiosity reward signal rgc . At the end of each episode, multiple new goals are added to the
goal buffer based on the states experienced
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the quest of new knowledge, we design the reward to encourage the agent to move towards
regions of the state-action space that are simultaneously novels and for which the skills
are “hard-to-learn”. Namely, we take advantage of uncertainty given the probabilities that
the goals are mastered by the agent. We give details about the reward calculation in Sect.
4.2.2. Finally, at the end of the episode, the GCM is updated according to the experienced
observations and the predictor neural network is retrained to fit with the new knowledge of
the agent (Sect. 4.2.3).

4.2.1 Goals

As described earlier, estimating if the agent can solve the entire task is challenging. Instead,
we introduce the concept of skill to decompose the problem of reaching a distant final goal
into multiple easier goals. A skill is the ability of the agent to reach a goal from a given state.
Let G be the space of possible goals. We suppose that every goal g ∈ G corresponds to some
predicate fg : S → {0, 1} and that a skill is mastered given a state s when fg(s) = 1. In
order to keep a consistent representation, we suppose the goal space G to be the same as the
state space S, G = R

n .
Workingwith high-dimensional state spaces such as images is complex. Instead,we embed

the goals and states to a latent space Z using a variational autoencoder ve, φ(s) = ve(s) and
φ(g) = ve(g). In addition to improve data efficiency, it crucially improves generalization
capability of our model (Zhao et al. 2018; Rezende et al. 2016). That is, the deep predictor
network can generalize knowledge for two goals sharing a similar embedded representation.
We initialize the parameters of a VAE by stepping a random agent for a small number
of iterations before beginning training. Then, we train a VAE on observations seen along
trajectories. The goals are stored in a goal buffer Rg .

In practice, every episode starts with sampling a sub-set g′ of latent goals given a distri-
bution function f p:

g′ = {φ(g) ∼ f p(g)} sample K goals ∈ G (11)

In the current implementation, the probability of sampling a goal f p(g) is uniform for all
the goals. In future work, we anticipate more complex distributions to take into account the
difficulty of the goals.

During training, the goals aim to provide additional feedback to the agent to improve
exploration. At the end of an episode, we add a mechanism to further enable sample-efficient
learning. In addition to the state reached at the end of the episode, we artificially generate
new goals by selecting states experienced during the episode. We discuss in Sect. 5.1.4 the
strategies to select the new goals after experiencing an epoch. To keep the goals as different
as possible, we only add the goals that are different from the existing ones. To do so, we
measure the similarity between the embedded goals in a similar manner to that of the RIG
(Nair et al. 2018).

sim(g1, g2) = −‖φ(g1) − φ(g2)‖A ∝ √
log veφ(φ(g2)|g1) (12)

where g1 and g2 are two goals, their embedded representation denoted by φ(g1), φ(g2)
respectively, and veφ the VAE encoder.

4.2.2 Reward calculation

Given the embedding representations of the current state φ(s) and the goals, GCM produces
the curiosity reward r gc. We propose to train a predictor network to predict the probabil-
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ity that a skill is mastered—the probability that a goal φ(g) can be achieved from φ(s),
m(φ(s), φ(g)). The prediction is made for each pair of current state—goal, and the concate-
nation produces a vector: gactive = 〈(m(φ(s), φ(g1)), . . . ,m(φ(s), φ(gK )))〉. Given these
predictions we define the goal-based curiosity reward:

r gc =
[

(〈α〉 − h〈(m(φ(s), φ(g1)), . . . ,m(φ(s), φ(gK )))〉)
δ

]
(13)

where h is a function mapping the probability vector gactive to a real number which expresses
the complexity of the state. A state is complexwhen skills are hard-to-learn—the goals can be
achieved with small probabilities. The parameter δ controls the scale of the curiosity reward,
and 〈α〉 the sign of the intrinsic reward. In the current implementation, we use α = 〈1.0〉,
a uniform vector of 1, and h = max(). The choice of h depends on the desired exploration
behavior. In practice, h = max() results in a positive reward unless all skills are considered
as mastered by the agent, forcing a complete exploration of the environment. Another choice
could be h = mean(); the curiosity signal would decrease when a majority of skills (but not
necessarily all) are mastered with high probabilities. As a consequence, the agent is forced
to explore novel states, leading to a faster but possibly partial exploration of the state space.

In otherwords, predicting that the agent cannot achieve a goal results in a positive curiosity-
based reward, r gc > 0. Curiosity pushes the agent to explore novel regions of the state space,
and discover more efficient solutions to achieve the goals. One issue with the combination of
extrinsic reward and curiosity-based reward is the scaling of the intrinsic reward which may
vary between tasks. In order to mitigate this scaling problem, we normalize the curiosity-
based reward:

r gct = r gct
σ(Rgc)

(14)

with σ(Rgc) an estimation of the standard deviations of the curiosity-based reward returns.

4.2.3 GCM update

The VAE network and predictor network are optimized every Pvae and Pm time-steps respec-
tively. The agent’s observations are collected in a memory bank and every Pvae time-steps
the VAE is retrained for 20 epochs. When the memory bank is full, a random element is
replaced with the new observation. This is necessary to ensure that the representation of the
goals adapts over exploration.

The update of the predictor network can be broken down into three parts: (1) training
samples are collected during exploration, (2) a label is assigned to each example, and, (3)
the network is optimized. First, the policy interacts with the environment to produce a set of
trajectories {τ 1, . . . , τ i }.Within each trajectory, each visited states st is concatenatedwith the
dmax next states {(st ·st+1), (st ·st+2), . . . , (st ·st+dmax )}. For each training sample (st , st+y),
we consider the left element to be the initial state (s), and the right element the goal that the
agent aims to achieve (g).

Second, a label (mastered/unmastered) is assigned to each example - skill, (s, g). To do
so, we compute a complexity score for each example sc(s, g) that takes into account the
difficulty to go from s to g, and the progress of the agent to achieve this skill. In details, we
use a linear combination of the prior knowledge of the predictor network p(s, g) and the
number of time-steps dist(s, g) between the state s and the goal g—skill difficulty:

sc(s, g) = λprior(s, g) + βdist(s, g) (15)
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where prior(s, g) is the belief of the predictor network about the skill, and the scalars λ and
β weight each component. Given sc(s, g), the probability that in a state s the skill (s, g) is
considered mastered pskill(s, g) (label +1) follows:

pskill(s, g) = 1.0 − 1.0

1.0 + e−b(sc(s,g)−a)
(16)

where a > 0 controls the boundary between the two classes. The term a acts as the degree of
certainty to decide whether the agent should explore new parts of the environment or continue
to acquire knowledge about this skill. It can be interpreted as follows: to ensure that the skills
can be achieved with high certainty, a should be small. Hence, only low difficulty skills
are labeled as mastered (label +1). Thereby, during exploration, GCM produces a positive
reward (Eq. 13) in states involving skills that the agent seeks to reinforce (label 0). Finally,
the predictor network is optimized every Pm = 20000 time-steps via supervised learning.

5 Experiments

5.1 Minigrid

5.1.1 Environment

We evaluate our agent on a set of tasks in the MiniGrid environment (Chevalier-Boisvert
et al. 2018). The tasks are partially observable, with varying components such as navigation,
sequential solving, and planning. We consider the Door & key task domain that we modify
to generate RGB images. An example is depicted in Fig. 4a. It consists in a board surrounded
by grey walls that the agent cannot cross. The agent is represented by a red triangle, and the
final goal to reach by a green square. In order to reach the final goal, the agent has first to
pick a key randomly positioned on the map, then unlock a door and finally get to the green
square. The agent receives as input a 32×32 RGB image of the visible cells, represented by a
light gray rectangle. The agent can choose among the 7 possible actions: turn left, turn right,
move forward, pick up an object, drop the object being carried, open doors - interact with
objects and complete the task. Solving such sparse tasks is challenging since the agent only
receives a positive reward +1 when it reaches the final goal. Most of the times, the agent
only receives 0 as reward. Using efficient exploration strategies such as curiosity is crucial.

Fig. 4 Examples of training environments. Door & key environment with a board of size 16 × 16 (left).
Example of task in the MuJoCo domain consisting in a 7-DoF Sawyer arm that aims to reach a target (right)
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5.1.2 Implementation details

The agent was trained for 5,000,000 frames. Any RL algorithm could be used to train our
model. In our experiments, we combine PPO and GoCu that indicates to perform well. The
PPO agent processes the input with a convolutional neural network that consists in a serie
of three convolution layers, with 16,32,64 filters respectively, kernel size 2 × 2, stride of
size 2 and padding 1, with rectified linear unit (ReLU) function as the activation function.
In the experiments, we use a rollout of length 128, an entropy coefficient 0.01, batch size
256, a discount rate λ = 0.99, value loss term coefficient 0.5, and a clipping ε = 0.2. The
experiments were run with 16 parallel environments and, optimized with Adam (Kingma
and Ba 2015) for 4 optimization steps and a learning rate α = 0.0001. At the beginning of
an episode, K = 50 goals are sampled from the goal buffer with a maximum size 1500. The
intrinsic advantage is combined in PPO with σ = 0.25 and δ = 10 as scaling factor of the
curiosity-based reward (Eq. 13). We use λ = 3, β = 1 to weight the prior belief against new
knowledge and, b = 0.8, a = 15 to assign the label of training samples. In our experiments,
we observed that when λ > 10, the agent struggles to integrate new knowledge—discover
new skills, whereas a small value (i.e. λ � 2) may result in overfitting of observations.
The parameter a controls the difficulty threshold to classify whether the skill is mastered or
not. We found that a value 10 < a < 30 performs well in most tasks. Since b controls the
boundary between the two classes, keeping a large value b > 0.7 makes the boundary large,
crucial to improving performance of the predictor network.

We pretrained the VAE with 10,000 images collected with a random exploration policy.
The encoder neural network consists in 3 convolutional layers with the following parameters
(filter: 32,32,32 kernel size: 3 × 3, 3 × 3,3 × 3, stride size: 2,1,1) and apply a rectifier
non-linearity. They are followed by a fully connected layer of size 128. The latent vector μ

and σ are of size 10. The 4 last layers are the corresponding decoding layers. We use the
compressed representation, the fully connected layer that follows the encoder network, to
embed the goals and states. To measure the distance between two goals (Eq. 12), we found
that A = I corresponding to Euclidean distance, performs better than cosine or Mahalanobis
distance.

The predictor network is a fully-connected network with 5 hidden layers of size 512. It
takes as input the concatenation of the embedding of a state and a goal and outputs (softmax
function) the probability that the skill is mastered. The input of each layer is batch normalized
and followed by a ReLu activation function.We use Adam to optimize the predictor network,
with learning rate 0.0005 on batch of size 128. Every 20,000 training-steps, the network is
optimized on the new training samples for 15 epochs.

5.1.3 Learning with variable numbers of goals

To isolate how much the number of goals contributes to our algorithm, we vary the number
of active goals while fixing other parts of our method. We compare the performance of PPO
+ GoCu trained with the same hyperparameters and a number of goals K ∈ {5, 10, 50, 200}.
For this experiment, the agents were trained on theDoor& key task with a board of size 8×8.
The goal was to evaluate the gain we can have by increasing the number of goals sampled at
each epoch.

The results shown in Fig. 5 show that increasing the number of goals greatly improves
performance. However, we also note a too large number of goals, K = 200, makes the
curiosity saturate. Experiments suggest that an excessive number of goals increases prediction
errors of the predictor network. In contrast, learning an insufficient number of skills (K ∈
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Fig. 5 Extrinsic rewards achieved by PPO + GoCu for different number of goals in the task Door & key
8 × 8

{5, 10}) decreases convergence speed. Note that in the 11× 11 environment the results show
similar trends. We observe that K = 50 was optimal, and in practice, K ∈ {10, 50} works
on many tasks.

5.1.4 Goal generation strategies

In this section we experimentally evaluate different strategies for adding new goals to
the goal buffer. At the end of an episode, l new goals are added to the goal buffer, with l a
hyper-parameter that we empirically set to 7.We consider the following strategies to generate
the new goals:

– random-l states encountered during the last epoch are randomly added to the goal buffer,
– proportional-l states are added to the goal buffer with a probability inversely proportional

to their order of visit (the final state has the highest probability),
– late-l states encountered during the l ∗ 4 last time-steps of the epoch are randomly added

to the goal buffer.

All the strategies were testedwith the same hyper-parameters. The results comparing these
strategies can be found in Table 1. We found that in the task 5 × 5, all the strategies lead to
similar performance. As can also be seen, the proportional strategy is the most efficient one
in term of convergence speed and average reward (at convergence) in the task 8 × 8 and 11
× 11. The proportional strategy achieves an almost perfect score in the three tasks.

5.1.5 Overall performance

In this section, we perform a set of two experiments to evaluate the overall performance
of our algorithm. First, we verify if GoCu achieves better performance than traditional RL
methods. Second, we compare GoCu against state-of-the-art curiosity-based learners.

In order to verify that GoCu improves performance, we evaluate PPO (Schulman et al.
2017) with and without GoCu on the Door & key task. Moreover, we compare against A2C
(Mnih et al. 2016) and DQN (Mnih et al. 2013, 2015). We report the average extrinsic
reward supplied by the environment. We present in Fig. 6 the evolution of the extrinsic
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Fig. 6 Extrinsic rewards achieved by the agent on the Door & key task. An episode is considered successful
when the agent reaches the final goal resulting in a +1 reward

Fig. 7 Comparison of GoCu algorithm (green) to other algorithms on several environments with varying size
(degree of sparsity) (Color figure online)

reward achieved by the agent. In such sparse tasks, the DQN agent fails to solve the task. The
learning curve shows that our agent outperforms PPO trained without GoCu as well as A2C.
After converging, PPO + GoCu achieves an almost perfect score in 95% of the runs, slightly
higher than PPO trained without curiosity, 93%. Only our method scales with the size of the
environment and is significantly faster in term of convergence speed.

In addition, we also conduct a set of experiments to compare GoCuwith RND (Burda et al.
2018), PPO + EC (Savinov et al. 2019), A3C + ICM (Pathak et al. 2017), and, PPO + ICM
(Pathak et al. 2017). We perform an evaluation using the same open-source implementation
with exactly the same hyper-parameters of the original works. We ran the agents for 3 runs
each for 1 million time-steps on the Door & key 5 × 5 task, 10 millions time-steps on Door
& key 8 × 8, and, 15 millions time-steps for the board of size 11 × 11. We can see in Fig.
7 that in 2 out 3 domains our method is significantly faster than the baselines and improves
the performance of PPO, while on task 5 × 5, we obtain similar performance with RND.
We also observe that PPO + ICM and A3C + ICM result in poor performance in the early
stages of learning in the three tasks and was not able to reach the goal. Note that we didn’t
fine-tune hyper-parameters for each domain, that might be an opportunity to further improve
performance.

5.2 Simulated robotics

5.2.1 Environment

Our second set of experiments explores domains from the Mujoco control benchmark
(Todorov et al. 2012). We evaluate performance on five tasks. (1) Visual Reacher: a 7-
DoF Sawyer arm learns to reach goal positions. The end-effector (EE) is constrained to a
2-dimensional rectangle. (2) Visual Door Hook: a 7-DoF Sawyer arm with a hook on the end
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of the effector to handle a door hook. (3) Visual Pusher and (4) Visual Multi-Object pusher:
the arm aims to push one or two pucks to a target. Note that the end-effector is constrained to
only move in the XY plane. (5) Visual Pick and Place: a Sawyer arm with a grab at the end
of the effector to grab a small ball that the agent has to place at a target. We extend the tasks
to produce 32 × 32 RGB observations. The rewards are sparse indicator functions being the
distance in the final state between the objects and their goals. We show an example of two
tasks in Fig. 4b.

5.2.2 Implementation details

For these tasks, we keep the hyper-parameters of PPO unchanged for both augmented and
baseline agents. We use Adam to optimize the predictor network as well as PPO. For these
tasks, we pretrained theVAEwith 10,000 images.We compare ourmethodwith the following
prior works: A3C + ICM (Pathak et al. 2017), PPO + ICM (Pathak et al. 2017), PPO + EC
(Savinov et al. 2019), HER (Hindsight Experience Replay) (Andrychowicz et al. 2017), RIG
(RL with Imagined Goals) (Nair et al. 2018) and, DSAE (Deep Spatial Autoencoders) (Finn
et al. 2016).

The parameters of GoCu are similar as for the minigrid domain. For this range of tasks,
the predictor network consists in a fully-connected network with 3 hidden layers of size
512. Adam optimizer was used with learning rate 0.0003 and batch size 64. We decrease the
number of active goals to 25 and the capacity of the goal buffer to 1000.

5.2.3 Overall performance

Agents were trained for 500K time steps. We trained 5 agents separately without additional
parameters tuning. Table 2 reports the final distance to the goal of our method against six
baselines. In these experiments,we observe thatHER tends to performpoorly due to the visual
representation of the tasks. RIG achieves higher performance in the visual pick and place task
thanks to the use of sub-goals that guide the agent towards the goal. From Table 2, it is clear
that PPO + ICM is significantly outperformed, we suspect that the high similarity among
states results in small rewards. On the other hand, our curiosity-based approach outperforms
the prior methods only using visual information in 3 out of 5 domains. Overall, the results
show that our method can learn policies in the robotic domain. It confirms that GoCu is a
crucial element which makes learning from sparse rewards possible.

5.3 Atari games

We also evaluate the proposed curiosity method on three difficult exploration Atari 2600
games from the Arcade Learning Environment (ALE) (Abbeel et al. 2007): Montezuma s
Revenge, Private Eye, and, Pitfall. In the selected games, training an agent with a poor
exploration strategy often results in a suboptimal policy.We first compare to the performance
of a baseline A2C, and, PPO implementation without intrinsic reward. The results are shown
in Table 3. In these games, training an agent with a poor exploration strategy results in a
score close to zero, except for Montezuma s Revenge that PPO could partially solve.

In addition, we also compare our method against other techniques using alternative explo-
ration bonus (Table 3). In Pitfall, PPO + GoCu achieves similar performance as RND. Many
interactions yield negative rewards that dissuade our agent and other baselines from exploring
efficiently the environment. Despite this issue, PPO + GoCu performs better than algorithms

123



Machine Learning (2020) 109:493–512 509

Ta
bl
e
2

C
om

pa
ri
so
n
of

se
ve
n
m
od

el
s
ov
er

fiv
e
ta
sk
s
in

th
e
M
uj
oc
o
do

m
ai
n

M
et
ho
d

Fi
na
ld

is
ta
nc
e
go
al
(a
tc
on
ve
rg
en
ce
)

V
is
ua
lr
ea
ch
er

V
is
ua
ld

oo
r
ho
ok

V
is
ua
lp

us
he
r

V
is
ua
lm

ul
ti-
ob
je
ct
pu
sh
er

V
is
ua
lp

ic
k
an
d
pl
ac
e

H
E
R

0.
09

±
0.
01

0.
42

±
0.
02

0.
26

±
0.
02

0.
36

±
0.
03

0.
19

±
0.
01

A
3C

+
IC

M
0.
15

±
0.
03

0.
41

±
0.
04

0.
32

±
0.
04

0.
35

±
0.
03

0.
17

±
0.
02

PP
O
+
IC

M
0.
08

±
0.
01

0.
32

±
0.
02

0.
11

±
0.
01

0.
21

±
0.
02

0.
12

±
0.
01

PP
O
+
E
C

0.
08

±
0.
02

0.
11

±
0.
01

0.
12

±
0.
02

0.
18

±
0.
03

0.
11

±
0.
01

R
IG

0.
07

±
0.
02

0.
08

±
0.
01

0.
17

±
0.
02

0.
10

±
0.
02

0.
08

±
0.
01

D
SA

E
0.
10

±
0.
01

0.
28

±
0.
05

0.
25

±
0.
01

0.
27

±
0.
02

0.
13

±
0.
01

PP
O
+
G
oC

u
0.
07

±
0.
01

0.
06

±
0.
02

0.
09

±
0.
02

0.
06

±
0.
03

0.
13

±
0.
02

W
e
re
po

rt
th
e
fin

al
di
st
an
ce

to
go

al
fo
r
5
ru
ns

th
at
w
er
e
pe
rf
or
m
ed

fo
r
50

0K
si
m
ul
at
io
ns

st
ep
s

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
in
g
m
et
ho

d

123



510 Machine Learning (2020) 109:493–512

Table 3 Final mean score of our method and baselines on Atari games

Method Maximum Mean Score (at convergence)

Montezuma’s revenge Private eye Pitfall

A2C (Mnih et al. 2016) 13 574 −15

PPO (Schulman et al. 2017) 2497 105 −32

RND (Burda et al. 2018) 8152 8666 −3

PPO + EC (Savinov et al. 2019) 8032 9258 −10

PPO + ICM (Pathak et al. 2017) 351 503 −14

DeepCS (Stanton and Clune 2019) – 1105 −186

Average Human (Wang et al. 2016) 4753 69,571 6464

PPO + GoCu (Ours) 10,958 12,546 −4

We report the results achieved over total 100M timesteps of training, averaged over 3 seeds
Bold values indicate the best performing method

without curiosity. However, in Montezuma s Revenge, PPO + GoCu outperforms average
human performance and previous state of the art. On Private PPO + GoCu s performance
are higher than other baselines. The strong performance of PPO + GoCu on these tasks
suggests that encouraging the agent to learn new skills is a new mean to enable learning in
sparse-reward domains.

6 Conclusion

In this work we introduce a new mechanism for generating curiosity, easy to implement, and
that scales to high dimensional inputs such as images. It enables an arbitrary RL agent to
acquire new skills using self-generated curiosity. A key concept is to reward the states with
associated skills difficult to master; to move towards regions of the state-action space that
are “hard-to-learn”. Furthermore, by representing the states and goals with a VAE, we can
improve data efficiency aswell as improving generalization.Wehave shown its ability to solve
complex tasks with continuous state spaces, and exceeds baseline agents in term of overall
performance and convergence speed. To support these claims,we presented an evaluation on a
set complex and sparse visual tasks fromMinigrid, MuJoCo, and Atari games. An interesting
future research direction is to share the goals among tasks to improve generalization and
reduce training time when the task becomes more complex. For example in Minigrid, the
goal collect the key is shared among the tasks, independently of the size of the environment.
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