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Abstract

As data can be acquired in an ever-increasing number of ways, multi-view data is becoming
more and more available. Considering the high price of labeling data in many machine
learning applications, we focus on multi-view semi-supervised classification problem. To
address this problem, in this paper, we propose a method called joint consensus and diversity
for multi-view semi-supervised classification, which learns a common label matrix for all
training samples and view-specific classifiers simultaneously. A novel classification loss
named probabilistic square hinge loss is proposed, which avoids the incorrect penalization
problem and characterizes the contribution of training samples according to its uncertainty.
Power mean is introduced to incorporate the losses of different views, which contains the
auto-weighted strategy as a special case and distinguishes the importance of various views.
To solve the non-convex minimization problem, we prove that its solution can be obtained
from another problem with introduced variables. And an efficient algorithm with proved
convergence is developed for optimization. Extensive experimental results on nine datasets
demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

With the advent of vast data collection ways, in many real applications of machine learning,
pattern recognition, computer vision and data mining, data are easier to have heteroge-
neous features representing samples from diverse information channels or different feature
extractors. For example, in web data, a web page can be represented by its content and link
information; in visual data, each image could be described by different descriptors, such as
GIST (Oliva and Torralba 2001), HOG (Dalal and Triggs 2005) and SIFT (Lowe 2004). This
kind of data is called multi-view data and each representation is referred to a view (Xu et al.
2013). In general, each representation captures specific characteristics of the studied object,
therefore, different views have complementary and partly independent information to one
another. On the other hand, since these representations describe the same object, there should
be consensus information among views. In recent years, how to better manipulate multi-view
data has aroused considerable research interests.

In many real applications, although data collection ways become various, labeling data is
still a time consuming and biased task. Therefore, the collected data usually have multiple
representations but scarce labels. For example, in image classification, extensive images
are accessible from the internet and different descriptors are applied to extract features.
However, obtaining labeled data is expensive because it requires efforts of human annotators
who should often be quite skilled. The above mentioned two characters: multiple views and
abundant unlabeled samples, suggest the multi-view semi-supervised learning (MVSSL)
strategy. Many researches (Cai et al. 2013; Chen et al. 2012; Gong 2017; Guz and Tur 2009;
Houetal. 2010; Nie et al. 2018; Yu et al. 2012) have shown that using multiple representations
and abundant unlabeled data jointly will boost performance. In this paper, we focus on the
classification task.

Existing multi-view semi-supervised classification methods can be roughly categorized
into three groups. The first group is known as co-training (Blum and Mitchell 1998), which
is originally designed for two-view data. It firstly trains classifiers with the labeled data
and classifies the unlabeled data on each view independently. Next the most confidently
predicted samples of each classifier are added to the other classifier’s training set, then
the procedure repeats. Based on the thought of co-training, many algorithms (Mao et al.
2009; Nigam and Ghani 2000; Sun and Jin 2011) have been proposed. The second group is
graph-based methods, which treats labeled and unlabeled instances as vertices of a common
graph and uses edges to propagate the label information (Gong et al. 2016). Methods (Cai
et al. 2013; Karasuyama and Mamitsuka 2013; Nie et al. 2016; Gong et al. 2016, 2017)
firstly construct graphs on each individually, then learn view weights to combine a common
graph and performs label propagation simultaneously. Nie et al. (2018) uses a parameter-free
way to learn a common graph matrix, a common label indicator matrix and view weights
simultaneously. The third group is regression-based methods (Tao et al. 2017; Yang et al.
2013), which learn view-specific projection matrices to exploit the diversity information and
employ the label matrix as the common regression target across views to enhance consensus.
Based on the projection matrices, out-of-sample data can be efficiently dealt with.

Compared with applying single-view semi-supervised methods on each view or the simply
concatenated view, the aforementioned multi-view algorithms can achieve better performance
in most cases. That is because these multi-view methods learn view-specific predictors to
explore the diversity information, and enforce the predictions consensus, which maximizes
the agreement among different views and exploits the consensus information. However,
their performance can be further improved due to the following reasons. Co-training based
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methods require classification on each view to be accurate. This kind of methods ignore the
diversity information of views and treat them equally. Their performance may suffer when
there exists a difficult-to-classify view because the erroneous information will be provided
to other classifiers. Graph-based methods have three main limitations. First, as transductive
approaches, these methods have low-efficiency to classify out-of-sample data, since they need
to rerun the algorithms. Second, due to the computational burdens of the graph construction
and the label propagation, these methods can not be utilized on datasets with large data
size. Last but not least, their performance may be deteriorated when two classes overlap
significantly (Xu and King 2014). Regression-based methods employ the regression loss as
the classification loss, which usually incorrectly penalize the right classification. Besides,
they distinguish the importance of training samples by manually assigning small weights for
unlabeled samples, which lacks a more reasonable learning mechanism.

In this paper, we propose a new method, named as joint consensus and diversity for multi-
view semi-supervised classification (JCD). To facilitate consensus, JCD learns a common
probability label matrix, which makes the classification consistent across views. To enhance
diversity, JCD learns view-specific classifiers, proposes probabilistic square hinge loss as
the classification loss, and incorporates the losses of multiple views by power mean. With
the learned linear classifiers, predictions for out-of-sample data can be easily made. And the
proposed classification loss fixes the incorrect penalization problem, and characterizes the
contribution importance of different training samples according to the degree of classifica-
tion uncertainty. Moreover, the power mean strategy distinguishes the importance of views
according to their losses. Hence, the impacts of boundary unlabeled data points and low-
quality views can be weaken. An efficient algorithm is developed to solve the non-convex
problem. We summarize the contributions of this paper as follows.

— With the proposed probabilistic square hinge loss, the incorrect penalization problem of
previous regression-based losses (Luo et al. 2017; Wang et al. 2014) has been overcame,
which enables different classifiers to obey the consensus principle and the diversity
principle simultaneously. And the importance diversity of different training samples is
taken into consideration.

— With the power mean incorporation strategy, the proposed JCD is robust against the low-
quality views. And we show that the auto-weighted strategy (Huang et al. 2019; Nie et al.
2016; Shu et al. 2017; Nie et al. 2018; Zhuge et al. 2017) is a special case of power mean
strategy.

— We prove that the solution can be obtained by solving another problem with introduced
variables and develop an efficient algorithm for optimization, which can be applied to
large-scale multi-view semi-supervised classification. We also prove that the algorithm
monotonically decreases the objective of the model until it converges to a stationary
point.

— We verify the effectiveness of the proposed algorithm on nine real-world multi-view
datasets. The experimental results indicate that JCD achieves better classification results
than other compared methods.

2 Notations and related works
In this paper, matrices and vectors are written as boldface uppercase letters and boldface

lowercase letters respectively. For a matrix M, the ith row, jth column and (i, j)th element
are denoted by m;, m.; and m;, respectively. 7r(-) denotes the trace operation of a matrix
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and || - ||F is the matrix Frobenius norm. The £ norm of a vector m € R is denoted by
[lml|y = (Z;-j:] |m,~|2)%. 1, € RY denotes a g-dimensional vector of all ones. The signal
function is denoted by sgn(-). If x > 0, sgn(x) = 1; otherwise, sgn(x) = —1. The power
mean of a set {x;}, with order p is denoted as

Mp(xitn) = ()

Given n samples {Xx;},, the data matrix is denoted by X = [x1;...;X;,] € R"*d_The jth
sample x; = [xi(l), R xl.(v)] € R'*4 has features from V views, and the vth va) € RIXW)
has d®) features so that d = 3°V_, d®. X®) = [xgv); ...:x\V] denotes the data matrix
on the vth view, thus X = [X ..., XV)]. Supposing that n data samples belong to C
classes, the first / instances are already labeled and the rest u = n — [ samples (I < u)
are unlabeled. Denote Y; = [y;;...;y/l and Y, = [yi+1; - - -; ¥x] as the label matrices of /

labeled samples and u labeled samples, respectively, where y; € {0, 1}'*€ is a 1-of-C binary
label vector for the ith sample x;. Therefore, the label matrix for all samples can be denoted
as Y = [Y;; Y, ] € {0, 1€, To identify the C classes uniquely, the cth class is assigned
withacoding t) € {—1, 1}1X €. where only the cth element of t. is 1 and the others are —1.

2.1 Multi-view learning with adaptive neighbors

The multi-view learning with adaptive neighbors (MLAN) is a graph-based semi-supervised
method (Nie et al. 2018). Based on the view representations {X®}y and the given binary
label matrix Y;, MLAN learns a graph matrix S € R"*" and a class indicator matrix F =
[F;; F,] € R"*C across views simultaneously. The objective function of MLAN is

\4
: (v) )2 2 T
nSanZ1 2_silix” = X315 + Y ISIIF +ATr (FTLI)
= i,]
@)
n
s.t.Fp =Yy, Zsij =1, s;>0,(i)
j=1

where y > 0 is used to adjust the distribution of each s;, A > 0 is a balanced parameter and
L is the Laplacian matrix of S.

2.2 Multi-view semi-supervised classification via adaptive regression

The multi-view semi-supervised classification via adaptive regression (MVAR) is a
regression-based semi-supervised algorithm (Tao et al. 2017). For each representations
X® ¢ R”Xd(v), MVAR learns a corresponding projection matrix W) e R4 %C and a
bias vector b® e R!*C as the vth view classifier. To enforce view-specific predictor con-
sensus, MVAR learns a shared binary label matrix F € {0, 1}"*€ as the common regression
targets of different views. To be specific, the objective function of MVAR is
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min Z(cx(“))y (il W ) — 12 + 20 W3
W® b)) F, @

3)
st.F =Y, Za(v)=1, a® >0

where {¢(™}y are the learnable view weight factors for each view, y > 1 is to control the
distribution of view weights, A(*) > 0 is the regularization parameter of the vth view, and
u; > 0 is the instance weight parameter of the ith sample. For labeled samples {x;}; and
unlabeled samples {x;}}_, 41 {ui}n are manually assigned with different values to distinguish
their importance.

2.3 Semi-supervised learning with discriminative least squares regression

The adaptive semi-supervised learning with discriminative least squares regression (ASL-
DLSR)is asingle-view linear regression model (Luo etal. 2017) designed for semi-supervised
classification. Following (Wang et al. 2014), ASL-DLSR learns a transformation matrix
W e R4*C abias vectorb € R'*C and a probability label matrix F € R"*€ simultaneously.
Different from Wang et al. (2014) which employs {t()}c as regression targets, ASL-DLSR
introduces a adjustment vector m.) € Rfc for each class and employs {t) +m) Ot)}c
as regression targets, where © is the hadamard product. By introducing {m}c, ASL-DLSR
alleviates the incorrect penalization problem in Wang et al. (2014). The objective function
of ASL-DLSR can be written as

min x; W b—m,. tin — t. 2 sz
W.b,F.{m(}c 21:; el W+ © Oty = toll” + AIWIE

4
s.t.Fp =Yy, Zfic:L fie 20, m(C)ZO

where y > 1 and A > 0 are two hyper-parameters. Similar to Wang et al. (2014), ch=1 fl}:
is regarded as the weight of the ith sample, which measure the importance of the ith sample
according to its classification certainty.

We present the following example to show how introduced {m,)}c alleviate the incorrect
penalization problem. Suppose that a data set can be classified into 3 classes, and two data
points X; and X; belong to the first class. If the predictions of x; and x; are [2, —1, —1]
and [6, —1, —1], respectively, considering the first class indicator vector t(;) = [1, —1, —1],
they are both classified correctly. However, by calculating the regression losses to t(1), the
classification losses of x; and x; in Wang et al. (2014) are 1 and 25, respectively. By opti-
mizing mj) and setting m(;y = [3, 0, 0], the classification losses of x; and x; in ASL-DLSR
become 4 and 4. Compared with Wang et al. (2014), ASL-DLSR reduces the sum of incorrect
penalization of x; and x;.

3 The proposed methodology
In this section, we propose the formulation of our model: joint consensus and diversity for

multi-view semi-supervised classification (JCD). We first formulate the objective function
for each single view and then integrate them to the multi-view scenario.
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Based on the vth view data matrix X*) and the label matrix Y; for labeled samples, we
aim to train a classifier f ®) and learn a label matrix F = [f;; ... ; f,] € R"*€ forall samples
simultaneously, where f; € R!*C is the label vector of the ith sample va). To fulfill this
goal, the general objective function can be formulated as

n

min Z Z(f(v) (X,@), fi) + 102 (f(v)) ®)

(v) =
SO ER=Y T

where F; € R!*C represents the first [ rows of F = [F;; F,], f(”)(xl(")) e R%C is the

prediction of va), Z(-, ) is the classification loss function, A > 0 is a trade-off parameter,

and .Q( . ) is the regularization term. By combining different classifiers, loss functions and
regularization terms, the vth view semi-supervised classification can be implemented in a
variety of ways.
: C (v) : W) (v _ <@ yw) (v)

In this paper, the predictions of x;~ shall be parameterized as 'V (x;"") = x; " W +b'"),
where W® ¢ R4"%C i the projection matrix and b® e R!*C is the bias vector. Although
we adopt a linear model here, our results can be extended for non-linear kernels as well. If
XEU) belongs to the cth class, the square hinge loss can be calculated as

¢ 2

SON (@ 4 p®)
Hic(W®, b®; )_Zl(l—z(m(xi w4 0)) ©)
i

where #(¢); and b;v) are the jth element of t( and b, w:(;) is the jth column of W), and
the function (@) is defined as (a)+ = max(0, a).

Based on (6), we propose a novel probabilistic square hinge loss to characterize the
contribution importance of varying training samples, i.e.

C
K(f(v) (XEU))v fi) _ Z fl); Hic(w(v)7 b(v); Xl(v)) @)

c=1

where f; = [ fi1, ..., fic]l € [0, 1]'%C is the probability label vector for the ith sample, f;.
refers to the probability of ith instance belonging to the cth class, and y > 1 is an adaptive
parameter. The advantages of (7) are embodied in the following two aspects. (1)Similar to Luo
et al. (2017), Wang et al. (2014), Zf: 1 fl’; can be regarded as the weight of the ith sample.
Due to the constraint F; = Y;, the weights of labeled samples are always 1, which ensures
the significance of them. When y > 1, the weights of unlabeled samples are determined
by the certainty degree of classification, which makes the more clearly classified unlabeled
samples play more important roles on the training stage. (2)Taking the advantage of hinge
loss, our proposed probabilistic fitting loss overcomes the incorrect penalization problem
of previous regression-based losses (Luo et al. 2017; Wang et al. 2014). Considering the
example introduced in Sect. 2.3, if (7) is used to calculated the classification losses of the
two right classification points x; and x;, their classification losses are both 0, which avoids
the incorrect penalization.

To control the complexity of each single-view model, we adopt .Q( f (“)) = ||[W®)] |% as
the regularization term. Then, we obtain the objective functions of each view, and the vth
one is denoted as LV (W® b® F) (v =1,..., V). After proposing the objective function
of each view, we integrate them for multi-view data. A rough way to obtain the multi-view
formulation is to add them up directly. However, this way neglects the different importance
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of views. To distinguish the importance of varying views, we adopt the power mean strategy
and propose our JCD as the following form:

min  M,({LP W b F)}y)
{W(”>,b(”)}v F

Vv

1

= 7 =5 LO(W®, b F)p
\ v UE 1 ( )

1
%

p
(XA (1= 10y "W +50)% + AW

1 i=le=l  j=I

Vv n C c 8)
V=

C
st.F =Y, fie=0, Y fie=1(ic)

c=1

where p is a parameter and it satisfies p < 1 and p # 0. The power mean strategy dis-
tinguishes the importance of various views according to the view loss, which enables the
views with smaller losses to play more important roles in classification. The auto-weighted
strategy has been widely adopted by recent works (Huang et al. 2019; Nie et al. 2016; Shu
et al. 2017; Nie et al. 2018; Zhuge et al. 2017) to incorporate the loslses of different views,

which essentially is a special case of power mean strategy with p = 3.

4 Optimization procedure

The problem (8) is non-convex and difficult to solve directly. Different from Huang et al.
(2019), Nie et al. (2016), Shu et al. (2017), Zhuge et al. (2017) which use re-weighted method
Nie et al. (2017) to deal with the auto-weighted integration strategy, we will prove that the
solution of (8) can be obtained by solving the following problem

min 7 (W), (b"}y. F.a. (E"}y )

\4
=Y (¢ TV WD bW, FE")e) - sen(q) - (@)7)
v=1
Vv n C )
= Z (a(”) ( Z Z f,-ZHva)W(”) +pW — ei(u’() Oty — t(c)”%
v=1 i=1 c=1

FUWOI) = sen@) - @)
st F =Y, fie=0, file=1, a® >0, " >0icv)

where 7(-) and 7@ (-) represent the unified objective function and the vth view objective
function, respectively; g is a hyper-parameter and satisfies %—{—% =La=[D, ...,aV]e
RLXV is a view weight vector, and a® refers the importance of the vth view; Ev9 =
[egv’c) ; ...;e,(lv’c)] S R’rc is an introduced adjustment matrix, and efv’c) is the ith row
of E®-9) Different from (8), the contributions of various views are directly reflected by the
explicitly defined view weight in (9). To solve (9), we adopt an alternative strategy to optimize
four groups of variables F, {E(“'C)}V,C, {(W® b®}y and « iteratively.
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4.1 Optimize probability label matrix F

When o, {(W®}y, {(b®}y and {E- C)}V ¢ are fixed, considering the constraint F; = Y; and
the independency of each f;, we can update {f;}" for unlabeled samples by solving the
following u problems independently

i=l+1

C
min ) fii AW 450 0t — b

c=1 v=1

st.filc=1, fi,=0@G=I1+1,...,n)

(10)

Denote gic = Y1, (X(U)HXEU)W(U) +b® — el(v’c) O te) — toll3 as the (i, c)th element of
Q € R"*€ and Q can be calculated based on fixed variables. If y = 1, the problem (10) has
a trivial solution

Jic =< c=argming;; >
ic e ij an

where < - > is 1 if the argument is true or O otherwise. If ¥ > 1, setting the derivative of
the Lagrangian function of the problem (10) w.r.t f;. to zero and combining the constraint
Zle fic = 1, we arrive the following closed-form solution of the problem (10)

o= ————— (12)

4.2 Optimize adjustment variables {E"9}y ¢

When F, a, (W®¥}y, {b®}y are fixed, considering the independency of each independency

of each e(v ) we can update {E9}y ¢ by solving the following V x n x C problems
51multaneously
; YR @:0) (v,¢) 2 .
e@?}l)go ie |l —€ O tll” (Yv,i,0) (13)

i =

where hi(v’c) = xi(v)W(”) +b® —te).Ifi =1,...,land y;c =0, e ) can be assigned with

any values, so we need not to update the correspondmg efv C), Otherwise, based on the fact
that the squared 2-norm of vector can be decoupled element by element, the problem (13)
can be further decoupled equivalently into the following C subproblems:

min (hl(;”) (v L)Gt(C)J> k=1,...,0) (14)

ei(;’c) >0

2
Note that (f);)> = 1. Thus, it is easy to conclude that (hl(;‘c) (v DOt J) =

2 .
( @.c) h(v DO 1) j) . Considering that ef/'.)") is nonnegative, we can obtain the optimal

ij
solution of (13)

(v o _

U

€(vc), if yo=0andi =1,...,![
(15)

max (t(c),i o) hg’c), O) , otherwise
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4.3 Optimize projection matrices {W")}y and bias vectors {b("}y

Given o, F and {E(”’C)}V,c to update {W®, b™1y . since the relations among views are
decoupled, the problem disassembles into V separate subproblems. By removing the constant
term, the vth subproblem (v = 1, ..., V) can be written as the following matrix form:

T
min Tr[(XVW® + 1,60) U(XOWD 4 1,50)
W) b (16)

— 27 M (XOW® 4 1,1b<”>)T] + kTr[(W(“))TW(”)]
where U € R™" is a diagonal matrix, and its (i, i)th element u;; = Zle(fic)y

reflects the importance of the ith data; the ith row of M® e R"*C is computed by
mi(”) = CC:] (fic)”(e(v’c) Ot + t(C)). W® and b® can be updated in an alternative

i
way. Setting the derivative of (16) w.r.t variable b®) to zero, we have

b® =17 (M® - UX®W®) /171, (17)
Set the derivative of (16) w.r.t variable W) to zero, then we have
o) @\ rx® 5\ pw
WO = (X)) UX® +alw) (X)) D (18)

where D® = M® —U1,b®™. When d") < n, using (18) to update W) is efficient. When
n < dW, since U is invertible, according to the following identity,

—1 -1
(ATB'A+C7') AT =cCA"(ACA"+B) B (19)
W® can be efficiently calculated as follows

W = (x@))T (x (X(“>)T + AU“)*lU*D(”) (20)

4.4 Optimize view weight vector a

With fixed (W™}, (b®}y, {EV9)} v.c and F, the losses of different views can be calculated

accordingly, then we can update o by solving the following V problems independently
I(n)inoa(”)j(") (W<v>’ b® . F, {EW)}C) — sen(q) - (@) Q1)
o v 2

Denote 7 = JO(W® b® F, {E®)}c). Setting the derivative of (21) w.r.t a™ to zero

and combining the constraint a® > 0, we obtain the following closed-form solution of the
problem (21)

@) 1 ® L4
a®) = (max (@,0))" - (@)q : (22)

According to the above four steps, we alternatively update F, {E}y ¢, (W® b®}y,
as well as o, and repeat these procedures iteratively until the objective function value of
(8) converges. We summarize the iteration process in Algorithm 1. For a testing point
X, = [xt(l), e xt(V)], its label vector f; is calculated by f; = ZV oz(”)(x,(v)W(“) +b®),

v=1
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Supposing that f; is a predicted label vector for an unlabeled training sample or a testing sam-

ple, the elements of its binary label vectory; = [yi1, ..., yicl € {0, 1}1%€ can be determined
by
Yie =< ¢ = argmax f;; >
ic jE[LC] i (23)

Algorithm 1 Algorithm to solve JCD in Eq. (8)
Input:
1. Data for V views (X)) X(*) ¢ Rrxd®
2. The label matrix Y; € R *C for [ labeled instances.
3. The parameters p, y and A.
Output:
1. The probability label matrix F € R"*€ for all samples.
2. The binary label matrix Y, € R“*C for unlabeled training samples with (23).
3. The projection matrices {W(”)}V and bias vectors {b(”)}v for each view.
4. The view weight vector & = [a(l), o Ot(V)].
Initialization:
1. Use labeled representations on each view and label matrix to calculated W® and b® by least square
classification, Vv;
2. Initialize the weight factor a® = % for each view, Yv;
3. Initialize E*) = 0, ¥v, c.
Procedure:
While not converged do
1: Calculate F according to (11) or (12).
2: Compute {E9}y ¢ using Eq. (15).
3: Calculate {b(“)}v by (17) and Compute {W(”)}V according to (18) or (20).
4: Compute « by Eq. (22).
End While

5 Algorithm analysis

In this section, we will give analysis of the proposed Algorithm 1 in two aspects. The con-
vergence behavior is first discussed, then time complexity is analyzed.

5.1 Convergency guarantee

Proposition 1 The solution of the problem (8) can be obtained by solving the problem (9).

Proof By introducing adjustment variables {E"*“)}y ¢, we can infer that

min [xPW® +b® — ") @ te) -t

e}v,z') 20

¢ 2
) _(v) (v)
= Z (1 — t(c)j(Xiv W:; + ij ))+
j=1
which indicates mingw. J©(W® bW F(EVI}e) = £OW® b® F). Denote
oV = (W® bW F}. The optimal @ and ™ of the problem (9) can be obtained
by solving the following problem

24)
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Vv

min 3 (a”L®(@Y) ~ sgn(g) - (@7
{(I)(U)’a(v)}v —
(25)

st ¥ =Y, fiez0, Y fie=1, a" > 0(¥i c,v)
c=1
Let ® = {{W®}y, {b(”)}v F} and ®* denotes the optimal @ of (9). Combining o™ =

(E(”)(<I><”))/(q sgn(q)))q I and considering 1/p+1/q =1, p < 1 and p # 0, ®* can be
obtained from the following equivalent problems:

v <<£(v)(q>(v))

E(v)(q)(v)) 9
q - sgn(q) ) l)

1
)q—l £(v)(q>(v)) — sgn(q) - ( -sgn(q)

1% 1 N )
=Y () 0@ () e @ @9

14 | e !
~~ min (7) -1 (1 — ,)L@)(q,(v))q%
sgn(q) q

where C are the constraints corresponding to ®. Denote Cy = (g - sgn(g))'/1=9 . When
p < land p # 0, according to 1/p + 1/q = 1, we can conclude that C; > 0, then it is
equivalent to solve the following problems to obtain ®*:

C, L (@W)yP v
= arg min Z ( ) = arg min Z sgn(p) - LV (@W)P
L S(C— LS C— .-
v 27
=argmin *| — Z LO(@Y)r = argmin M, (LY (@)}y)
ecc |V 5 ®cC
which completes the proof. O

Proposition 2 Algorithm 1 will monotonically decrease the objective function of (8) in each
iteration until it converges to a stationary point.

Proof Suppose the updated F, E@9 W® and b® of Algorithm 1 are denoted as F,E©0,
W® and b®), respectively. As shown in Algorithm 1, the optimization of the problem (9)
can be divided into four subproblems. Therefore, by finding the optimal solution of each
subproblem, it can be concluded that

\4
> (aV TV N B FAE)e) — sen(q) - (@)

v=l1

(28)
14
=2 (a<v>j<v> (WO b® F {EC))0) — sen(q) - (a<v))q)
v=1

Denote the updated W a5 <i>(v) = {W(”), bW F }. Based on (24) and (28), it can be inferred
that

v v
Z aW @ (&,(v)) < Z aW @ (q)(v)) (29)

v=1 v=1
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1
Combing a® = C, LV (@) =T = C, LM ()P~ it can be concluded that

|4 \4
Z ﬁ(v)(q)(v))P—lﬂ(U)(&,(v)) < Z ﬁ(v)(q)(v))P—lﬁ(v)(q)(U)) (30)

v=1 v=1

Since p < 1 and p # 0, we define the function g(x) = sgn(p) - x?, then
g(£V@")) = sen(p) - LV (@) (31

g(L(”) (™)) is a concave function in the domain of £® (®®)). The supergradient of g(x)
can be calculated by g’(x) = sgn(p) - px?~! = |p|xP~!, then

¢ (£V@")) = Iple® @W)r~! (32)
According to the definition of supergradient, we have:
g(£0@™)) — g (£ @")) =g/ (£V(@) (@) - £V (@™))  (33)

Thus, we have

\%4 \4
> sen(p) - £0@) = 37 [ple @)1 e @)

v=1 v=1
1% 1% (34)
< Z sgn(p) - L(U)(q,(v))P _ Z |p|£’(v)(q,(v))}771ﬁ(v)(q)(v))
v=1 v=1
Combining (30) and (34), it arrives at
Vv Vv
> san(p) - LW DY )P <> “sgn(p) - LV (WD, bV, )
v=1 v=1 (35)
) w) RO F (v) ) K@)
= M, ({£OW. b ,F)]V) <M, ({22 W™, ,F)]V)
O

Thus Algorithm 1 will monotonically decrease the objective of (8) in each iteration until
it converges. In the convergence, the equality in Eq. (35) holds, thus {W(”)}v, {B(”)}V, F
will satisfy the KKT condition of problem (8). Therefore, Algorithm 1 will converge to a
stationary point of the problem (8).

5.2 Computational complexity

As seen from Algorithm 1, we solve the problem (8) and (9) in an alternative way. The
computation complexity of updating F is O (uC?). The updating of {E(”’C)}V,C and the
calculation of @ can be completed together with O(VnC) computations. The total time
complexity of computing {b™}y is O(ndC). To update W, when d™ < n, it costs
0 (n(d™)?) for matrix multiplication and 0((d™)3) for matrix inversion; when d¥) > n,
it costs O (n2d ™) for matrix multiplication and O (n?) for matrix inversion. The total time
complexity of computing (W®}y is O(X)_, max(n, d®) min(n, d®)?). Since C < n
and V « n, the time complexity of Algorithm 1is O(T ZX:I max(n, d®) min(n, d¥)?),
where T is the total number of iterations.
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6 Experiments

In this section, to validate the effectiveness and superiority of the proposed model, we compare
our proposed JCD with related semi-supervised classification methods in terms of classifi-
cation accuracy and F-score on nine benchmark datasets. Then we present the convergence
behavior curves and comparison of computational time. Lastly, we evaluate the impact of
parameters on our proposed algorithm.

6.1 Data set descriptions

MSRC-v1 data set is composed of 240 images and divided into 8 categories. Following (Lee
and Kristen 2009), 7 classes composed of tree, building, airplane, cow, face, car, bicycle
are selected, and each class has 30 images. Since there is no published image descriptors,
six popular features are extracted for each image: i.e. 256 local binary pattern (LBP), 100
histogram of oriented gradient (HOG), 512 GIST, 1302 CENTRIST, 48 color moment (CMT)
and 200 SIFT features.

Caltech7 data set consists 8677 objective images, each with 0.1 mega pixel resolution,
belonging to 101 classes. Following (Dueck and Frey 2007), 7 widely used classes with
total 441 images are selected, including Dolla-Bill, Faces, Garfield, Motorbikes, Snoopy,
Stop-Sign and Windsor-Chair. For each image, the same six visual features are extracted as
MSRC-v1 data set.

Digits data set (Asuncion and Newman 2007) contains 2,000 data points for O to 9 ten digit
classes, and each class has 200 data points. Six public features are available: 76 Fourier
coefficients of the character shapes (FOU), 216 profile correlations (FAC), 64 Karhunen-
love coefficients (KAR), 240 pixel averages in 2 x 3 windows (PIX), 47 Zernike moment
(ZER) and 6 morphological (MOR) features.

ScenelS data set is composed of 4485 images belonging to 15 categories: highway (260
images), inside of cities (308 images), tall buildings (356 images), streets (292 images), sub-
urb residence (241 images), forest (328 images), coast (360 images), mountain (374 images),
open country (410 images), bedroom (216 images), kitchen (210 images), livingroom (289
images), office (215 images), industrial (311 images) and store (315 images). Following (Tao
et al. 2017), six visual features are extracted: 200 SIFT, 200 SUREF, 680 PHOG, 256 LBP,
512 GIST and 32 WT features.

WebKB data set (Sindhwani et al. 2005) consists 1051 web documents from four universities.
The 1051 pages are classified into 2 classes: 230 Course pages and 821 Non-Course pages.
Each page has two views: Fulltext view with 2949 features represents the textual content
on the web page, while Inlinks view with 334 features records that the anchor text on the
hyperlinks pointing to the pages.

BBCsport (Greene and Cunningham 2009) consists news about athletics, cricket, football,
rugby, tennis. Each raw document is split into segments, and segments are randomly assigned
to views. Two datasets are used: BBCsport2 consists 544 documents, which have 2 views
with 3183 and 3203 features; BBCsport3 consists 282 documents, which have 3 views with
2582, 2544 and 2465 features.

Kinect skeleton action (KSA) data set (Ma et al. 2014) includes four subjects performing five
actions, namely boxing, gesturing, jogging, throw-catch and walking. KSA consists 20,000
video frames with 4,000 for each subject. Each frame has two views with 120 and 10 features.
MNIST8M data set (Loosli et al. 2007) is composed of 8100,000 handwritten digits from 0
to 9. The digits have been normalized in 28 x 28 images. From each digit, 10,000 examples
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are randomly selected, forming a subset (MNIST) of 100,000 examples. Three features are
extracted: 100 SIFT, 100 SURF and 32 WT.

6.2 Experiment setup

We compare our proposed JCD with several state-of-the-art semi-supervised classification
algorithms, including adaptive semi-supervised learning (ASL) (Wang et al. 2014), auto-
weighted multiple graph learning (AMGL) (Nie et al. 2016), multi-view learning with
adaptive neighbors (MLAN) (Nie et al. 2018), multi-feature learning via hierarchical regres-
sion (MLHR) (Yang et al. 2013) and multi-view semi-supervised learning via adaptive
regression (MVAR) (Tao et al. 2017).

ASL is a single-view regression-based method, which learns a linear classifier and a
probability matrix for unlabeled training samples simultaneously. ASL is implemented on
each view matrix and the concatenated feature matrix of all views. The best single view
results and the results corresponding to the the concatenated data are reported by S-ASL and
C-ASL, respectively. AMGL is a multi-view graph-based method, which jointly performs
label propagation and view weight learning. MLHR is a multi-view regression-based method,
which learns local and global linear regression models. MLAN and MVAR are introduced
in Sects. 2.1 and 2.2.

For each dataset except MNIST, two thirds of instances are randomly selected as the
training data, while the remaining ones are served as the testing data. On MNIST, one fives
of examples are randomly selected as the training set, and the remaining fours are testing
data. To mimic the real situation (I < u), we choose only 10% or 20% samples with labels
randomly in the training stage on these datasets except KSA and MNIST. On KSA dataset,
only 1% or 2% samples are randomly selected to assign labels. And on MNIST, only 3% or
6% samples are randomly selected to assign labels.

The classification performance is evaluated in terms of classification accuracy and F-score.
In the experiments, the stop criteria of our proposed JCD is defined as following:

L(t—1)—L()

<107
Lt —1)

where L(t) is the objective value of (8) in the tth iteration.

For JCD, the linear model is used in all experiments. The adaptive parameter y is tuned
in the range of {1.1, 1.3, 1.5, 1.7, 1.9, 2.5, 3.3} and the balanced parameter A is tuned from
{107%,1073,10*, 1073, 1072, 10—, 10°}. Following (Huang et al. 2019; Nie et al. 2016,
2018; Shu et al. 2017; Zhuge et al. 2017), the parameter p is set to be % For the compared
methods, we download their codes form authors’ websites and determine the searching ranges
of the parameters according to their papers. All hyper-parameters are tuned by grid search on
the testing data, and the classification results of using the best tuned parameters are recorded.

6.3 Classification results comparison

For a fair comparison, each data set is randomly split into training and testing dataset 10

times, and we report the average accuracy with standard deviation (STD) and the average

F-score for the unlabeled training and testing data. Tables 1 and 2 show the classification

accuracy results on nine datasets with different percentage of training labeled samples, where

“NA” indicates that the transductive methods can not predict labels for testing samples.
From Tables 1, 2 and Fig. 1, we can conclude that:

@ Springer



Machine Learning (2020) 109:445-465

459

Table 1 The classification accuracy (%) on seven data sets with different percentages (t %) of labeled samples

Data ™% 10 20
set Method Unlabeled Testing Unlabeled Testing
MSRC-v1 S-ASL 72.94(4.42) 69.43(3.60) 78.93(5.40) 77.71(3.51)
C-ASL 76.19(8.65) 75.43(11.08) 86.34(3.23) 84.86(3.70)
AMGL 84.21(4.00) NA 88.57(2.05) NA
MLAN 81.98(1.83) NA 85.71(3.12) NA
MLHR 84.29(2.50) 78.86(5.50) 90.27(2.32) 89.29(2.54)
MVAR 85.48(2.78) 84.86(2.54) 90.18(3.12) 90.29(2.84)
JCD 88.89(2.67) 87.43(3.22) 93.48(2.92) 92.29(2.71)
Caltech7 S-ASL 82.84(3.30) 81.32(3.40) 86.14(2.61) 85.56(2.41)
C-ASL 85.68(2.36) 84.77(2.32) 89.43(3.14) 89.27(2.75)
AMGL 80.51(3.95) NA 86.93(2.38) NA
MLAN 81.71(2.50) NA 85.31(2.24) NA
MLHR 75.53(3.89) 74.44(2.80) 84.47(2.49) 82.91(1.39)
MVAR 84.44(2.26) 85.63(3.30) 86.40(2.12) 88.28(1.71)
JCD 86.85(2.03) 86.69(2.39) 90.26(1.70) 90.53(0.99)
Digits S-ASL 94.23(0.43) 94.12(0.75) 95.21(0.58) 94.85(0.70)
C-ASL 95.56(0.36) 95.66(0.79) 96.07(0.49) 95.85(0.74)
AMGL 90.91(1.43) NA 93.87(0.62) NA
MLAN 96.80(0.42) NA 97.37(0.39) NA
MLHR 93.51(0.77) 93.55(0.76) 95.54(0.62) 95.57(0.69)
MVAR 95.94(0.71) 95.43(0.96) 96.45(0.52) 95.84(0.58)
JCD 96.95(0.55) 96.93(0.80) 97.45(0.51) 97.39(0.35)
Scenel5 S-ASL 54.39(1.07) 54.37(2.06) 59.61(1.27) 59.09(1.29)
C-ASL 54.67(1.53) 53.15(1.92) 56.78(1.60) 56.31(1.10)
AMGL 60.88(1.30) NA 67.64(0.91) NA
MLAN 60.64(0.76) NA 64.07(1.15) NA
MLHR 62.97(1.63) 62.85(1.50) 69.92(1.39) 69.43(0.77)
MVAR 59.78(0.82) 53.17(1.37) 68.65(0.96) 65.07(0.72)
JCD 67.71(1.06) 68.94(1.43) 73.52(1.07) 73.28(1.29)
WebKB S-ASL 92.10(1.23) 91.91(1.98) 92.79(1.02) 92.17(1.21)
C-ASL 90.33(2.29) 88.75(1.82) 92.99(1.23) 91.40(1.00)
AMGL 84.86(2.62) NA 92.63(1.24) NA
MLAN 84.32(1.39) NA 86.76(1.40) NA
MLHR 91.97(0.99) 91.42(1.81) 92.65(1.25) 93.11(1.05)
MVAR 91.40(2.27) 91.51(1.89) 93.29(1.17) 93.05(1.38)
JCD 92.88(0.97) 92.05(1.39) 94.51(1.43) 93.59(0.89)
BBCsport2 S-ASL 77.70(5.89) 70.38(6.54) 85.38(3.14) 77.72(3.15)
C-ASL 85.00(3.24) 80.54(5.24) 89.58(2.17) 86.52(4.25)
AMGL 55.65(9.72) NA 70.66(5.09) NA
MLAN 41.74(6.61) NA 47.41(4.38) NA
MLHR 71.02(6.52) 73.10(3.42) 83.50(2.54) 86.41(4.40)
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Table 1 continued

Data ™% 10 20

set Method Unlabeled Testing Unlabeled Testing
MVAR 68.04(4.15) 67.88(5.92) 78.71(1.60) 85.00(4.66)
JCD 89.81(2.61) 91.30(3.02) 93.36(2.21) 94.57(2.76)

BBCsport3 S-ASL 73.84(3.85) 66.04(5.22) 76.46(2.08) 71.04(3.32)
C-ASL 81.71(2.07) 75.31(3.71) 82.86(2.54) 78.44(3.15)
AMGL 50.79(4.71) NA 64.15(6.91) NA
MLAN 38.90(6.07) NA 44.90(8.20) NA
MLHR 69.27(4.27) 71.25(4.77) 80.95(2.74) 82.71(2.26)
MVAR 67.68(7.77) 67.29(9.57) 78.23(2.57) 80.10(1.73)
JCD 86.59(1.75) 86.04(4.40) 87.41(2.03) 88.33(1.28)

Standard deviation (%) is in the parentheses

Table 2 The classification accuracy (%) on two data sets with different percentages (7 %) of labeled samples

Data ™% Tk sA=l, TMNIST=3 TKSA=2, TUNIST=6

set Method Unlabeled Testing Unlabeled Testing

KSA S-ASL 82.39(3.26) 82.04(3.40) 81.63(2.03) 81.18(2.13)
C-ASL 88.61(6.59) 88.45(6.79) 86.39(4.99) 85.84(5.11)
AMGL 85.02(1.95) NA 88.55(0.95) NA
MLAN 85.34(6.26) NA 90.11(1.72) NA
MLHR 84.25(2.26) 79.33(2.59) 88.31(1.42) 81.80(1.62)
MVAR 93.55(1.36) 93.22(1.59) 95.88(0.69) 95.52(0.73)
JCD 96.90(1.88) 96.85(1.71) 97.41(1.13) 97.37(1.22)

MNIST S-ASL 52.40(1.00) 52.35(0.87) 54.48(0.56) 54.72(0.35)
C-ASL 53.83(0.85) 54.19(0.71) 58.21(0.62) 58.90(0.37)
AMGL 20.63(0.42) NA 45.29(1.15) NA
MLAN 44.67(2.61) NA 50.82(2.43) NA
MLHR 68.13(0.78) 67.98(0.57) 71.35(0.57) 71.26(0.54)
MVAR 69.12(1.09) 69.21(0.67) 72.16(0.72) 71.75(0.55)
JCD 73.58(0.60) 73.65(0.27) 77.69(0.47) 77.70(0.31)

Standard deviation (%) is in the parentheses

(1) All methods achieve better performance as the increase of labeled data in the training

stages in most cases, which is consistent with intuition.

(2) The performance of graph-based methods are unstable. On Digits, MLAN ranks second,
while it performs worse than other multi-view methods on Sencel5. On BBCsport2,
BBCsport3 and MNIST, AMGL and MLAN perform much worse than other methods.
This is probably because that the graph learning is based on the original data represen-
tations and the performance may suffer from redundant features.

(3) In Caltech7, WebKB, BBCsport2, BBCsport3 and MNIST, the performance of S-ASL
is not the worst. This on the opposite side illustrates that the performance of multi-view
methods will not be enhanced if the multiple representations are not properly integrated.

@ Springer



Machine Learning (2020) 109:445-465 461

EAvGL [ls-AsL [lc-AsL [IMLHR [CIMVAR [[]ucD [ MLAN |

90 98
90
s . _96
g gao g
o 80 o @
S S G 94
o o o
) 270 g
Y70 v 92
6 60 920
10(u)  10(t)  20(u)  20(t) 10(u)  10(t)  20(u)  20(t) 10(u)  10(t)  20(u)  20(t)
Percentage of labeled samples (%) Percentage of labeled samples (%) Per ge of labeled ples (%)
(a) MSRC-v1 (b) Caltech7 (¢) Digits
75 95
20
Kes X85 =0
4 e e
8 3 850
w o o
55 w75 w
30
65 10
10(u)  10(t)  20(u)  20(t) 10(u)  10(t)  20(u)  20(t) 10(u)  10(t)  20(u)  20(t)
Percentage of labeled samples (%) Percentage of labeled samples (%) Per ge of labeled ples (%)
(d) Scenels (e) WebKB (f) BBCsport2
80
80
95 70
—_ _ ~60
X 60 IS IS
< <90 <
e e 50
g4 ges g
uw uw [Py
80
20 20
75 10
10(u)  10(t)  20(u)  20(t) 1(u) 1(t) 2(u) 2(t) 3(u) 3(t) 6(u) 6(t)
Percentage of labeled samples (%) Percentage of labeled samples (%) Per ge of labeled les (%)
(g) BBCsport3 (h) KSA (i) MNIST

Fig.1 F-score comparison on nine data sets with different percentages of labeled samples. (#) and (¢) denote
the results on unlabeled training data and testing data, respectively

(4) Since our model makes use of both the consensus and diversity information of multi-view
data, and takes the contribution importance of instances into consideration, together with
learning the view weight factors, it consistently outperforms the compared methods in
terms of both classification accuracy and F-score over all datasets.

6.4 Convergence analysis and time comparison

In order to verify the convergence of Algorithm 1, we plot the corresponding convergence
curves of the objective function (8) on datasets MSRC-v1, Caltech7 and Digits, when the
percentage of labeled samples is 10%. As seen from Fig. 2, the objective function value
monotonically decreases as the iteration round increases and converges to a fixed value.
Additionally, the algorithm converges within 20 iterations over all datasets, validating the
efficiency and fine convergence speed of this algorithm.

To demonstrate the efficiency of JCD, we reports the training time of six methods on nine
datasets. Note that C-ASL is the only single-view method. All algorithms are performed on

@ Springer



462 Machine Learning (2020) 109:445-465

N
B

S
S

310 510

300 500
2200

'S
©
S

290
280
270
260
250
240

IS
3
S

2000

IS
bS]
=

1800

IS
o
S

Objective Value
S »
8838
Objective Value

Objective Value

1600

~
@
S

a
S

)
B
S

0 5 10 15 20 25 30 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of Iterations Number of Iterations Number of Iterations

(a) MSRC-v1 (b) Caltech7 (¢) Digits

Fig.2 Convergence curves of the objective function values in (8)

Table 3 Average training time (seconds) on nine datasets

Data C-ASL AMGL MLAN MLHR MVAR JCD

MSRC-vl 4.0554 0.0204 0.0819 0.4559 0.0481 0.0472
Caltech7 7.3391 0.0604 0.2300 1.7165 0.2077 0.1667
Dights 3.2222 2.1310 5.7958 9.5113 1.0560 0.5195
Scenel5 20.2448 12.5792 72.0071 177.5527 10.9998 5.3850
WebKB 16.6136 0.2418 1.1649 15.9556 1.0314 0.8337
BBCsport2 20.3666 0.1073 0.1798 9.9832 0.3838 0.1469
BBCsport3 24.1512 0.0528 0.0846 3.3156 0.1755 0.0671
KSA 679.1013 362.0398 3234.6878 407.3175 84.9592 36.7199
MNIST 1013.5178 1228.9081 10472.7038 1600.6276 109.9823 54.0728

a work station with 4 processors (3.4 GHz for each) and 32GB memory, using MATLAB
R2017a. With predetermined parameters, each method is implemented for 5 independent
times. The average time are reported in Table 3.

From the experimental comparison, we have the following observations: (1) On datasets
MSRC-v1, Caltech7, WebKB, BBCsport2 and BBCsport3, which have much larger dimen-
sionality than data size, AMGL takes the least time because it only has linear complexity
w.r.t the dimensionality on the construction of graph matrices. The proposed JCD spends less
time than other methods except AMGL. C-ASL spends the most time because it not only
has cubic time complexity w.r.t the dimensionality but also needs iterations. (2) On datasets
Digits and Scenel5, which have comparable data size and dimensionality on some views,
JCD spends the least time. MLHR consumes the most time because it has cubic complexity
w.r.t both the data size and the dimensionality. (3) On datasets KSA and MNIST, which have
much larger data size than dimensionality, JCD consumes less time than other methods. JCD
and MVAR have comparable computational burden in each iteration. JCD costs less time
because it has faster convergence speed. MLAN costs much more time than other methods
because it not only has high complexity w.r.t the data size but also needs iterations.

6.5 Parameter determination
To illustrate the influence of parameters y and A on the performance of the proposed JCD,

we present the classification accuracy results with varying parameters on three datasets, i.e.,
MSRC-v1, Caltech7 and Digits. We vary y within the range {1.1, 1.3, 1.5, 1.7, 1.9}. Another
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Fig.3 Sensitivity analysis on parameters y and A with 10% labeled samples

Table 4 The F-score (%) on three data sets with different p

Dataset p 0.2 0.4 0.5 0.6 0.8 1
MSRC-v1 Unlabeled 88.83 89.19 89.17 89.50 90.09 90.17
Testing 88.03 88.23 88.06 89.14 89.88 90.28
Caltech7 Unlabeled 81.03 80.14 79.65 79.43 75.92 64.83
Testing 78.83 79.05 78.81 78.19 73.57 63.94
Dights Unlabeled 97.12 96.99 96.97 96.91 96.89 96.87
Testing 97.04 97.13 97.07 96.98 96.92 96.74

parameter X is varied from {1072, 10~*, 1073, 1072, 10~!}. pisfixed as 0.5 and 10% training
samples are randomly selected with labels.

As we can see from the results in Fig. 3, if the parameters are determined with suitable
values on the training stage, the proposed JCD also achieves satisfactory performance on
the testing stage with the same parameters. However, how to identify the optimal parame-
ters is data dependent. Three datasets have different optimal parameters because their data
characteristics are different.

To show the influence of the view weight parameter p on the performance of the proposed
JCD, the F-score results with varying p on three datasets MSRC-v1, Caltech7 and Digits
are presented. With fixed y and A, p is varied from {0.2, 0.4, 0.5, 0.6, 0.8, 1}. 20% training
samples are randomly selected with labels. The average results of 5 independent times are
reported in Table 4.

From Table 4, we have the following observations: (1) On MSRC-v1, JCD tends to achieve
better performance with the increase of p. That is probably because the views with large losses
contain complementary information on this dataset, and the performance may be improved
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by making full use of them. (2) As p increases, the performance of JCD drops significantly
on Caltech 7, and it decreases slowly on Dights. That is probably because the views with
large losses contain redundant information in these datasets, and the performance may be
improved by reducing their influence. (3) When 0.4 < p < 0.6, JCD achieves satisfactory
performance on all three datasets.

7 Conclusion

In this paper, we propose a multi-view semi-classification algorithm named as JCD, which
exploits both consensus and diversity information. Following the consensus principle, JCD
learns acommon probability label matrix, which ensures the classification consensus. Follow-
ing the diversity principle, JCD learns view-specific classifiers, and weights various views and
samples automatically, which make it robust against the existence of low-quality views and
boundary instances. An optimization algorithm to efficiently solve the proposed non-smooth
objective is introduced with proved convergence. Extensive experimental results show that
JCD achieves superior performance.

There are several interesting directions to study in the future: First, we would like to design
new regularization terms based on instance weight learning strategy for semi-supervised
learning; Second, how to extend JCD for the incomplete multi-view data is also an interesting
problem.
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