Machine Learning (2020) 109:643-664
https://doi.org/10.1007/s10994-019-05838-7

®

Check for
updates

Few-shot learning with adaptively initialized task optimizer:
a practical meta-learning approach

Han-Jia Ye'(® - Xiang-Rong Sheng' - De-Chuan Zhan'

Received: 4 May 2019 / Revised: 12 July 2019 / Accepted: 6 September 2019 / Published online: 10 October 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract

Considering the data collection and labeling cost in real-world applications, training a model
with limited examples is an essential problem in machine learning, visual recognition, etc.
Directly training a model on such few-shot learning (FSL) tasks falls into the over-fitting
dilemma, which would turn to an effective task-level inductive bias as a key supervision.
By treating the few-shot task as an entirety, extracting task-level pattern, and learning a
task-agnostic model initialization, the model-agnostic meta-learning (MAML) framework
enables the applications of various models on the FSL tasks. Given a training set with a
few examples, MAML optimizes a model via fixed gradient descent steps from an initial
point chosen beforehand. Although this general framework possesses empirically satisfac-
tory results, its initialization neglects the task-specific characteristics and aggravates the
computational burden as well. In this manuscript, we propose our AdaptiVely InitiAlized
Task OptimizeR (AVIATOR) approach for few-shot learning, which incorporates task context
into the determination of the model initialization. This task-specific initialization facilitates
the model optimization process so that it obtains high-quality model solutions efficiently.
To this end, we decouple the model and apply a set transformation over the training set
to determine the initial top-layer classifier. Re-parameterization of the first-order gradient
descent approximation promotes the gradient back-propagation. Experiments on synthetic
and benchmark data sets validate that our AVIATOR approach achieves the state-of-the-art
performance, and visualization results demonstrate the fask-adaptive features of our proposed
AVIATOR method.

Keywords Few-shot learning - Meta-learning - Supervised-learning - Multi-task learning -
Task-specific

Editors: Kee-Eung-Kim and Jun Zhu.

B4 De-Chuan Zhan
zhandc @lamda.nju.edu.cn

Han-Jia Ye
yehj@lamda.nju.edu.cn

Nanjing University, Nanjing, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05838-7&domain=pdf
http://orcid.org/0000-0003-1173-1880

644 Machine Learning (2020) 109:643-664

1 Introduction

Although modern machine learning approaches achieve remarkable improvements in various
real-world fields such as visual recognition (Krizhevsky et al. 2017), one of the key elements
towards constructing such helpful models is a large training set (Russakovsky et al. 2015; Su
etal. 2018). Taking the instance collection and labeling cost into consideration, learning “rich”
knowledge from “small” data is necessary and important. For example, images of rare species
are hard to collect, thus the model should be able to do visual recognition based on single or
a few reference examples (Wang et al. 2018b); it is cumbersome to require a user recording
multiple facial expressions into a system in advance (Tan et al. 2006); for a robot, imitating
from one single demonstration of human must become a fantastic characteristic (Finn et al.
2017b). In addition to such instance collection difficulty for the “long-tailed” objects, to
make it worse, there also exists labeling cost when dealing with bio-informatics (Huang et al.
2014) or thousands of new-coming items (Karlinsky et al. 2017). The task with only limited
training examples from each class results in the few-shot learning (FSL) problem.

The training data in a machine learning task reveals the pattern of the data distribution,
and the principles of statistical learning require enough training examples from the same
distribution to make the model learnable and generalizable. Hence it seems that the FSL
violates previous analyses on the machine learning field, and it is almost incredible to train
a model through only a few training examples.

But how human can recognize novel objects with a few or even one single image? One
possible reason lies in his/her rich experience, a.k.a. the the inductive bias (Baxter 2000),
with seen objects (Lake et al. 2015). For example, a programmer adapts himself/herself to a
new task rapidly based on his/her rich experience from related tasks.

Similar learning schema works in the few-shot classification environment. Specifically,
a type of model inductive bias is extracted from the SEEN classes, and it is then applied to
few-shot tasks composed by UNSEEN classes. To this end, meta-learning mimics the few-
shot evaluation scenario during training, and figures out a common task configuration over
the sampled few-shot tasks from the SEEN classes (Vilalta and Drissi 2002; Maurer et al.
2016; Thrun and Pratt 2012). Feature embedding (Koch et al. 2015; Vinyals et al. 2016;
Snell et al. 2017; Triantafillou et al. 2017), embedding adaptation (Ye et al. 2018), and model
optimization strategies (Ravi and Larochelle 2017) all can be learned in a meta-learning way.

Model-agnostic meta-learning (MAML) (Finn et al. 2017a; Nichol et al. 2018) is an
important thread of meta-learning. Due to the observations that the quality of a model highly
depends on the initial point of its optimization, to avoid over-fitting, MAML learns a common
model initialization depicting the features across a wide range of few-shot tasks, then restricts
any few-shot models to be optimized by a fixed number of gradient descent steps from this
specified initialization. Although experiments verify the feasibility of MAML for FSL, there
still exist several problems. First, a single optimization initialization point is too difficult to
satisfy diverse tasks. Taking a binary task discerning “sunflower” and “dog” as an example.
A good initialization tends to be composed by classifiers with discriminative coefficients
towards plant and animal accordingly. While for another task containing “’cat” and “rose”,
the previous plant-animal initialization cannot be applied to this “reverse” animal-plant case
without careful updates. Furthermore, vanilla MAML requires the second order derivatives
of all parameters during training, and recent literature shows it is hard to apply such a method
without special hyper-parameter tuning tricks (Antoniou et al. 2018; Chen et al. 2019).

Due to the heterogeneity of classes from one task to another, in our manuscript, we propose
our AdaptiVely InitiAlized Task OptimizeR (AVIATOR) approach for few-shot learning,

@ Springer

Machine Learning (2020) 109:643-664 645

0,

M K

training set B

38

training set B

~ ! P .
N ! AN —— In-Task Optimization
N
N 1 \. ----» Meta Optimization
I N
\ i "\\
4 400 H AN
Vs, c ! ' Vs
AN : AN
— s N r—— ! — '%4 8 o
.
2| 5 o T | S e i - (6 N S -
'
training set A . training set C H training set A 08¢ . training set C
I
I
'
I
'
I
'
'
'

Model-Agnostic Meta-Learning (MAML) Few-Shot Adaptively Initialized Task Optimizer (AVIATOR)

Fig. 1 The main flow of model-agnostic meta-learning (MAML) and our proposed AdaptiVely InitiAlized
Task OptimizeR (AVIATOR) approach for few-shot learning. MAML figures out an initial point 6 for all tasks,
and the final model of each task (say 91’3) is fine-tuned from 6 through a fixed number of gradient descent

(say based on Vg;‘). While AVIATOR considers task characteristic, and sets specific initial points for each task

which transforms MAML into a practical FSL approach. AVIATOR incorporates the task
context, i.e., the class information inside a training set, into the construction of the model
initial point. Hence different tasks have adaptive model initialization, so as to obtain fask-
specific classifier effectively and efficiently. The notion of AVIATOR is illustrated in Fig. 1.

To this end, we decouple a model into the embedding part and the top-layer classifier. By
treating the current few-shot training set as the input, a mapping is learned to encode the task
characteristic and output an adaptive classifier initialization. To enable the gradient back-
propagation, we turn to the first-order approximation of the gradient descent, and apply a
simple re-parameterization strategy to implement and simplify the model training. During the
synthetic experiments, we find the model initialization output by MAML is too conservative
to cover all kinds of tasks, while the initial model used by AVIATOR handles model diversities
effectively. We also validate the superiority of our task-adaptive optimizer approach w.r.t.
the MAML variants on two benchmark data sets, i.e., MinilmageNet and CUB. Concrete
ablation studies and discussions illustrate the helpful task-specific feature of AVIATOR.

The main contributions of our manuscript can be summarized as follows:

— A practical task-adaptive optimizer for FSL which considers the task context.
— An effective meta-level optimization strategy with a low computational burden.
— Promising experimental results on benchmark data sets.

We start with the background and notations of the few-shot learning problem, and then
we discuss the related approaches. Before diving into our AVIATOR approach in detail, we
give a brief introduction to the MAML framework. The training and the re-parameterization
strategy of AVIATOR are stated in Sect. 4. Finally are experiments and conclusion.

2 Related work

Although it is the fact that human is able to learn a novel concept through one single exam-
ple (Li et al. 2006; Lake et al. 2011, 2015), it is still difficult to train a model under the data
budget. For example, most visual recognition methods require thousands of training data to
fit the huge deep learning models (Russakovsky et al. 2015; Krizhevsky et al. 2017). Consid-
ering both the data collection (Li and Zhou 2015) and labeling cost (Huang et al. 2014), it is
necessary to enable a machine learning algorithm to have such a valuable ability—building
classifiers with limited training examples, i.e., the one-shot and the few-shot Learning. One

@ Springer

646 Machine Learning (2020) 109:643-664

naive ideais to fine-tune a pre-trained model or add strong regularizers. Neither these solutions
cannot achieve satisfying results in practice due to the data scarcity and model complexity.

Tracing back to Baxter (2000) and Vilalta and Drissi (2002)), the importance of task-level
inductive bias has been proposed and analyzed theoretically. Different from conventional
models predicting over the instance level, meta-learning, a.k.a. learning-to-learn, extracts
inductive bias across training fasks. A meta-model characterizes the task commonality and
generalizes its prediction to those UNSEEN tasks from a related environment (Maurer 2009;
Maurer et al. 2016; Denevi et al. 2018). Meta-learning approaches have been successfully
applied in various fields, like long-tail class-imbalance classification (Wang et al. 2017b;
Ren et al. 2018), domain adaptation (Motiian et al. 2017; Zhang et al. 2018), intimation
learning (Yu et al. 2018), density estimation (Reed et al. 2017), unsupervised learning (Garg
2018; Hsuetal. 2018), data compression (Wang et al. 2018a), recommendation system (Vartak
et al. 2017), and hyper-parameter tuning (Franceschi et al. 2017; Probst et al. 2019).

Benefited from meta-learning’s ability to generalize the prediction ability across tasks, in
Few-Shot Learning (FSL), the inductive bias is first learned over few-shot tasks composed by
SEEN classes, and then is evaluated for those few-shot tasks with UNSEEN classes. For exam-
ple, few-shot classification can be implemented in a non-parametric way with soft nearest
neighbor (Vinyals et al. 2016) or nearest center rule (Snell et al. 2017), so the representation
function acts as the task-level inductive bias. The learned embedding pulls similar instances
together and pushes dissimilar ones far away, such that a test instance can be classified even
with a few labeled training examples (Koch et al. 2015). Considering the hypothesis complex-
ity, the model training configurations also serve as a type of inductive bias. (Andrychowicz
et al. 2016; Ravi and Larochelle 2017) meta-determines the optimization strategy for each
task, including the learning rate and update directions as well. Other kinds of inductive biases
are also explored. Hariharan and Girshick (2017) and Wang et al. (2018b)) learn a generation
prior to augment examples given a single image; Dai et al. (2017) extracts logical derivations
from related tasks; Wang et al. (2017a)) and Shyam et al. (2017) utilize the prior to attend
images. An empirical study of few-shot learning approaches can be found in Chen et al.
(2019).

Model-agnostic meta-learning (MAML) (Finn et al. 2017a) proposes another kind of
inductive bias, i.e., the model initialization. After meta-learned a common model initialization
among tasks, the classifier of a new few-shot task can be fine-tuned with several steps of
gradient descent from that initial point. The universality of this MAML-type updates has
be proved in Finn and Levine (2018). MAML have been applied in various scenarios, such
as uncertainty estimation (Finn et al. 2018), robotics control (Yu et al. 2018; Clavera et al.
2018), neural translation (Gu et al. 2018), and language generation (Huang et al. 2018). In
spite of the success, there still exist problems with such a framework. Nichol et al. (2018)
handles the high computational burden of MAML with first-order approximation; Deleu and
Bengio (2018) points out possible negative adaptation with too many updates; Antoniou et al.
(2018) provides a bunch of tricks to tune the MAML framework; and Lee and Choi (2018)
decomposes the MAML backbone to introduce task-specific metric. In our paper, we aim to
incorporate the task context into the determination of the model initialization. By decoupling
the model into embedding and top-layer classifier, we propose a re-parameterization strategy
which enables the transition of the task information without touching the backbone. Our
AdaptiVely InitiAlized Task OptimizeR (AVIATOR) approach achieves good performance
with low computational burden in practice.

Different from Ye et al. (2018) which transforms embedding with a transformer-based set
function over the training set embedding output, AVIATOR adapts both top-layer classifier and
embedding via gradient descent. In addition, Triantafillou et al. (2019) constructs an embed-

@ Springer

Machine Learning (2020) 109:643-664 647

ding learning objective for class prototypes, and updates task embedding in the MAML style.
AVIATOR introduces the task-adaptive property through the dynamic initialization, which not
only incorporates task context but also accelerates the update process. More comparison can
be found in the experiments part.

3 Notations and background

In this section, we describe the Few-Shot Learning (FSL) setting formally at first, and then
present the main flow of the meta-learning methods dealing with FSL tasks. Atlast, we discuss
the relationship between the current meta-learning and the previous analyzed learning-to-
learn framework.

3.1 The few-shot learning problem

Following the literature, we define a N-way K -shot task as a classification problem with N
classes in total and K examples in each class. In the few-shot scenario, the value K is very
small, e.g., K = 1 or K = 5. The target of the Few-Shot Learning (FSL) task is to obtain an
effective classifier based on these N K training examples, which is able to discern an unseen
test instance among these N classes. The main difficulty of such FSL is the contradiction
between the complex model and scarce data, which makes a model prone to over-fit.

We denote the training set (a.k.a. support set) of the problem as Dain = {(Xi, yi)}fv: If .
Each (x;,yi) € Dyrain are the instance and label of the ith example respectively, where
x; € RP, and the label y; € {0, 1} comes from a class set composed by N classes. The
index of value 1 in the label vector y; indicates the class of the instance x;.

Rather than learning a few-shot model over UNSEEN classes from scratch, the inductive
bias extracted from related SEEN class tasks should be reused in advance. We use a superscript
S to emphasize a set or an instance sampled from the SEEN class set if necessary. Different
from UNSEEN few-shot tasks, classes in the SEEN set often have enough examples. Taking a
rare-bird classification problem as an example. The target is to train a classifier for UNSEEN
rare birds, where only a limited number of images of those birds can be collected in practice.
To obtain inductive bias towards birds classification, we can take advantage of the public
Caltech-UCSD Birds (CUB) (Wah et al. 2011) data sets which have 200 common birds and
enough examples in each of the 200 classes. In other words, the public birds data set in this
case serves as the SEEN class set, while the tasks with rare birds containing limited examples
correspond to the UNSEEN class set. The target of the FSL is to utilize the SEEN set to assist
the few-shot classification over the UNSEEN set.

3.2 Meta-learning for few-shot learning

Meta-learning is a popular approach to extract inductive bias from SEEN class set, which has
been widely used in the few-shot scenarios (Vinyals et al. 2016; Finn et al. 2017a; Snell et al.
2017; Yeetal. 2018). A comparison between standard classifier training and the meta-learning
paradigm can be found in Fig. 2.

The main idea of the meta-learning is to sample tasks from the SEEN sets to mimic the
evaluation scenario, i.e., the N-way K-shot task. In particular, N-way K -shot tasks Dtsrain
are sampled from the SEEN sets in a hierarchical way: first, N classes are chosen randomly
from all SEEN classes, and then K examples in each of the N classes are selected in random.

@ Springer

648 Machine Learning (2020) 109:643-664

REEH EBEE

training set test set

it
test set

training set

El=1] Iﬁﬁ!}wm

training set test set

training phase model test phase

- EENENS

B

raining se
Classification with enough training examples

NEON o &2,

training set

ks
3

Few-shot classification task Meta-Learning for Few-Shot Classification

Fig.2 Comparison between the few-shot classification and the standard supervised learning paradigm. Left:
Different from standard machine learning paradigm training a model based on a large data set, few-shot
classification considers the scenario there is only a limited number of instances in the training set. Right: The
general flow of the meta-learning procedure for few-shot classification. By sampling few-shot tasks from the
meat-training set (SEEN classes), the learned task inductive bias can be applied to the few-shot task from the
meta-test set (UNSEEN classes)

Following this strategy, the SEEN class set is named as “meta-train”, while the UNSEEN set is
denoted as “meta-test”.

A mapping f is constructed based on Dyrain, Which outputs a classifier for the given N
classes. In detail, for a test instance X, its label can be predicted as

Vi = f(Dgrain) (X;). ey

The mapping f is learned with few-shot tasks from the meta-training set. To measure the
performance of such a classifier mapping f over the N classes when facing a few-shot training
set Dt‘srain, another test set (a.k.a. query set) Df;st with these N classes is sampled. A good
classifier mapping f will achieve low loss value after predicting the labels of all instances

from the test set. Therefore, the objective of meta-learning can be summarized as

min > Y D) 5. ¥9). ©)
(Dain Dicst)~S (x5 .¥5)DLy

train’

InEq. 2, (Dﬁain, D;zst) ~ § denote the enumeration of all sampled tasks from the SEEN class
set. The loss function £(-, -) measures the discrepancy between the prediction and true label
for each instance in Dist. By optimizing the objective, a general mapping f is constructed,
which maps a training task, even with a few instances in each class, to an effective classifier
for the particular task (meta-training phase). Hence such mapping can also be applied to few-
shot tasks from the UNSEEN class set (meta-test phase). The whole process is summarized in

Alg. 1.

Remark 1 Although there are only limited training examples in each class, the classifier
mapping f is shared among a lot of few-shot tasks. Furthermore, since such f is learned
from plenty of tasks, enough number of tasks alleviate the burden of within task sample
requirement from the meta-perspective to some extent.

3.3 Learning embedding for few-shot learning
A direct implementation of the classifier mapping f is the embedding function, f = ¢ :

RP — R?, which extract features of the input examples and transformed them into a latent
space with d dimensions. If the embedding ¢ makes similar objects close to each other while

@ Springer

Machine Learning (2020) 109:643-664 649

Algorithm 1 The flow of the meta-learning for Few-Shot Classification.

Require: Seen class set S
1: for all iteration = 1,... do
2: Sample N-way K shot (D

) from &

train’ test
3 forall x7,y9) € DR do

4 Predict y5 f(Dtram)(xS) based on Eq. 1

S: Compute loss Z(y yS) as Eq. 2

6 end for

7: Compute gradient V Z(xs S)eX‘S E(y 2 Y5 <)
8 Update the mapping f w1th selected optimizer.

9: end for

10: return Few-shot classifier mapping f.

dissimilar ones far away, then it is qualified for the few-shot classification task (Koch et al.
2015). For a test instance X, the embedding function ¢ makes a prediction based on a soft
nearest neighbor rule:

Vi = f(Dtrain) (x;) = Z sim(X;, X;)y;.)

(%i,¥i) € Dtrain

The sim(x;, x;) measures the similarity between the test instance x; and each training
instances x;. Such measurement can be completed by a normalized version of cosine simi-
larity (Vinyals et al. 2016) or negative euclidean distance (Snell et al. 2017). When there are
more than one instance in each class, i.e., K > 1, instances in the same class can also be
averaged to assist make final decision (Snell et al. 2017). By learning a good embedding, the
important features for few-shot classification is stressed, which will also be used for few-shot
tasks from the UNSEEN class set.

3.4 Discussion: the learning-to-learn framework

Instead of utilizing a test set to evaluate the quality of the mapping f in meta-learning as
in Eq. 2, in the learning-to-learn (L2L) framework, it is the training set error that is used to
provide the learning signal.!

As discussed in Maurer et al. (2016), the mapping f = W o ¢ is a composition of a linear
classifier W € R?*N and the embedding ¢. The L2L objective is formulated as a bi-level
optimization problem:

min Y Z LW T p(xi). yi)-

S S
DtrdmNS (X i)EDtrdm

=min > min Z LW TG (xi). yi)-)

S
Dtram S (X i)EDtr31n

In Eq. 4, all tasks sampled from the meta—training set share the common embedding ¢. On
top of the embedding and the training set Dtram, the classifier W for each task is generated
by directly optimizing the linear classifier until convergence. Assuming all tasks are sampled
from the same task distribution, the generalization ability of the learning-to-learn objective

! In this manuscript, we differentiate the meta-learning and learning-to-learn by their evaluation approach for
the meta-learned mapping f. Hence meta-learning optimizes Eq. 2, while Eq. 4 is for learning-to-learn.

@ Springer

650 Machine Learning (2020) 109:643-664

is guaranteed in Maurer et al. (2016). A similar objective is also used in the few-shot learning
field (Nichol et al. 2018).

Remark 2 Comparing with the learning-to-learn framework (c.f. Eq. 4), the meta-learning
framework (c.f. Eq. 2) has at least three main differences.

— Instead of focusing only on the few-shot training set Dﬁ'ain’ in meta-learning, another test

set Dtist is also sampled to evaluate the quality of the classifier mapping, which produces
a more accurate measurement of the quality of f;

— All tasks sampling from the same task-distribution is an important assumption for L2L.
Meta-learning weakens the assumption and directly applies the model learned on the
tasks with seen classes during meta-training to those tasks with UNSEEN classes in the
meta-test phase.

— In Eq. 4, only the embedding is updated across different tasks, while in the meta-learning
framework, the parameter update of f would be more flexible.

4 Few-shot learning with adaptively initialized optimizer

In this section, we present the main idea of our AdaptiVely InitiAlized Task OptimizeR
(AVIATOR) approach for few-shot learning in detail. Before that, we provide a brief intro-
duction to the model agnostic meta-learning approach.

4.1 Model-agnostic meta-learning (MAML)

Consider how we obtain a classifier f : R? — {0, 1}V from the training set.2 Given a
training set Dyrain Of a task, the model can be obtained by optimizing the loss on the training
set:

min Y L(fa(x).¥i))
fo
(%i,¥i) € Dtrain
0 is the set of all learnable parameters in f. A simple way to optimize such objective is the
gradient descent. Define a gradient operator &y (-):

EoDuain.- 00 = Y Vol(fo, (%), ¥0).
(X;,¥i) € Dtrain

which computes the gradient w.r.t. 6 given the training set and the current 7th step’s solution
0;. We omit the Dyain in Zy for notation simplicity. Therefore, the full gradient descent
update w.r.t. to the variable 0 to solve the optimization problem in Eq. 5 is:

Orp1 =0 —nZg(0) =6, —n Y Vel(fo,(x),y)-
(Xi,¥i)€Dtrain

n > 0 is the step-size. Usually, starting from an initial 6y, more than one gradient step will
be used to get the final solution. If the value of the objective can be obtained during the
optimization, complex step-size strategies can be utilized to accelerate the optimization.
The general idea of meta-learning aims to obtain a shared classifier mapping f among
tasks. Consider the dilemma with the limited training instances in Dirain, directly optimizing

2 With a bit abuse of the notation, we also define the mapping f as the classifier which maps the training
instance to a label.

@ Springer

Machine Learning (2020) 109:643-664 651

the problem till convergence will make the model over-fit and hard to generalize. In addition,
for alearner with non-convex objective, the quality of its solution depends on its initialization
point a lot. Model-agnostic meta-learning (MAML) (Finn et al. 2017a) handles such problems
with two strategies. First, an initialization of the model 6 is shared among tasks. Besides,
to avoid over-fitting, only a fixed number of gradient descent steps (say T steps) are carried
out. In other words, given a few-shot task Dirain, its classifier is obtained by T successive
gradient updates based on the common initialization 8y. Therefore, the objective of MAML
can be formulated as:

min > D U fa-nz060) Diain) X7, ¥5). (6)
(Dgain ’ Dgst)NS (X;S ’y;’s) EDgst

The MAML objective in Eq. 6 optimizes the initial parameter gy for the model f. In each
task, the task-specific classifier is obtained by one or more steps of gradient descent over
6, using the training set Dﬁain. This objective also requires the updated model in each task
has low loss value over instances from the corresponding test set Dist. It is notable that in
Eq. 6 and following objectives, we only do one inner-task gradient descent with step-size 7.
The objective with more steps can be easily extended. The output of MAML is the model
initialization 6p, so for a few-shot task from the UNSEEN class set, its task-specific model can
also be optimized by gradient descent from this initial parameter 6.

Similar to the general meta-learning objective in Eq. 2, the loss computed on the test set
Dt‘zst supervises the search of the initialization point 6y among tasks. To optimize such initial
parametric model fy,, a meta-level stochastic gradient descent is leveraged. In detail, for a

pair of (DS, Diast)s the update of) with a meta-level step-size y > 0 is:

6o = 6o — ¥ Vg,

=6—y Y. Vo200 Diain) 7). ¥9).

x5.y¥)eDigg

Owing to the fact that the gradient w.r.t. 8y is used for the inner update over the training
set Diain, during the meta-update, the gradient w.r.t. the updated 8 over the test set Dgst
is related to the second order derivatives of 6y, which will have high-computational burden.

The MAML training follows the procedure in Algorithm 1.

Remark 3 One simple way to reduce the computational burden of MAML is to use the first-
order gradient to do the inner task update. In particular, define sg(-) as an operator which
stops the gradient for the input variable, then we can use sg(Zy(6y)) to replace the inner
gradient. Therefore, although the gradients in the inner update are related to the intermediate
variable 6; and the loss on the training set, the updated parameter 6 of the model can be
formulated as the 6y minus some constants gradient values. So the final objective of the the
first-order MAML is

min > > U Sfansg@o60) Pigain) X5, ¥5). @

)
S S S S S
(D Dieg)~S (X7.57)€Diest

train>
This first-order MAML achieves a little lower performance degrade over the benchmark
evaluation Finn et al. (2017a), while it accelerates the meta-training process a lot. Another
variant of the first-order MAML updates, Reptile (Nichol et al. 2018), returns to the learning-
to-learn objective and optimizes the loss on the training set:

@ Springer

652 Machine Learning (2020) 109:643-664

min Y Y0 L@ o) Digain) 57). ¥5)- (8)
¢ ps (x_f,yf)eDS

train train

Reptile empirically gets better few-shot classification results than the first-order MAML, but
it still remains a lot of hyper-parameters to tune during the meta-training.

Remark 4 We can think of MAML as a surrogate implementation of the bi-level learning-
to-learn objective in Eq. 4. First, it is the model initialization that shared among tasks;
then, instead of optimizing the model over the training set completely, it simplifies such
optimization process with a fixed number of gradient steps. So in MAML, a good enough
task-specific classifier is assumed to be obtained thanks to a good initialization. There are two
main advantages of such decisions. On the one hand, it gets rid of the inner-task minimization
problem and simplifies the holistic optimization. Furthermore, the conservative fixed number
of gradient descent fits the few-shot learning problem with the limit of the training data.

Remark 5 There are several hyper-parameters in the training process of MAML. In addition
to the number of steps (7") and learning rate (1) in the inner-task optimization, the meta-level
learning rate and schedule should also be determined for model training. With so many hyper-
parameters, however, it is hard to tune MAML in practice (Chen et al. 2019). Antoniou et al.
(2018) provide a lot of tricks and objective transformations to make MAML work better.

Remark 6 MAML optimizes an initial model over the same form of tasks, which can also be
used for the sample-efficient reinforcement learning (RL). Different from few-shot classifi-
cation scenarios where tasks during the model evaluation phase are sampled from the UNSEEN
classes, the tasks in RL fit the assumption of the task distribution. Finn et al. (2017a) has
verified the usage of MAML in several RL problems. In this paper, we focus on applying
MAML for few-shot classification.

4.2 Using the adaptively initialized optimizer

We decouple the model f5 : R? — R¥ into two parts. To make a prediction on an instance,
the feature extractor ¢ : R — R maps the input into an embedding space, and a top-layer
classifier W € R?*N carries out the final prediction.’> Each column of W corresponds to
each on of the N classes. In other words, f(x) = WT¢)(X). The feature embedding extracts
general representations among classes (Achille and Soatto 2018), while the top-layer classifier
encodes the relationship between an embedding feature and a particular class.

Consider a binary example classifying dog and cat. The embedding ¢ reveals the features
among all possible classes, while the columns of W depict the relatedness between features
and classes in the task. For example, a classifier for “dog” will have larger weights for
those discriminative features between dog and others. Focusing on the top-layer classifier,
it is noteworthy that there exists a one-to-one correspondence between the (columns of
the) classifier with those classes. In this case, MAML would construct an initial Wy with
coefficients biased towards dog and cat respectively, so that an effective final classifier could
be obtained easily with limited steps of gradient descent on a few examples. However, when
facing another task classifying cat and dog, a class-level permutation of the previous task, the
previous learned initial classifier Wy will have a negative effect due to the incorrespondence
between classes and their stressed features. In other words, a single model initialization
cannot handle heterogeneous tasks effectively.

3 We omit the bias of the classifier for discussion simplicity.

@ Springer

Machine Learning (2020) 109:643-664 653

-
i
L
L
B

i 1 —

—-| Z0(Derains 00) | ! Initialization E

— T ! Generation Eo(Duzain: 00)
Initial i /

Classifier | Ep(Dirain, O7) | ’ E0(Drrain, 07))

Classification
Scores

Classification
Scores

(a) MAML (b) AVIATOR

Fig.3 The workflow of the model-agnostic meta-learning (MAML) and our proposed AdaptiVely InitiAlized
Task OptimizeR (AVIATOR) approach. Instead of updating the task classifier based on a non-informative
initialization, AVIATOR takes task characteristic into account for an adaptively initialized model. = (-) is the
gradient operator

Inspired by this observation, we aim to make the learned model initialization adaptable to
all kinds of tasks by incorporating the task context. By encoding the task property through a
limited number of instances, the model initialization could be better estimated after such “first
impression”. After that, more details could be fulfilled by inner-task gradient updates. In the
“dog and cat” example, the few-shot training set will facilitate to recognize the relationship
between the class and a particular classifier, then an adapted initial classifier could be easily
generated via fully reusing the previously learned initial model. Therefore, we propose our
AdaptiVely InitiAlized Task OptimizeR (AVIATOR) approach for few-shot learning (Fig. 3).

Since the embedding function ¢ extracts general discriminative features among classes, we
attribute the main problem of MAML to the non-informative top-layer classifier initialization.
In our AVIATOR approach, we use the training set embedding of the current task as the context,
and use another mapping g to generate the initialization of W. It is notable that we do not
treat the output of g as the new classifier, and still use an adaptively updated W for final
classification. In the inner-task optimization, it is the gradient w.r.t. W (and ¢) used to update
the model, and g is only used to initialize the W.

The main difficulty lies in the fact that g only affects the initial value of W and will
be untouched in the following gradient updates and classification process. In other words,
after obtaining the updated classifier over the few-shot training set Dté;ain’ the loss over the
corresponding test set D{ist has nothing to do with g. Therefore, this kind of adaptive strategy
blocks the gradient flow to g, which makes it hard to update g during the meta-training stage.
To solve this problem, we propose to re-parameterize the gradient update flow with the
first-order approximation.

4.2.1 Enable the gradient flow

The inner-task updates of the model fy depends on the initialization and the gradient of the
model parameters. Denote 6 = {W, ¢}, we can expand the update process as
W = Wo = 18w (Diain: Wo)s ¢ = 0 — 154 (Digain: $0)-

Same as the previous discussion, we list one gradient step here, and more steps can be easily
extended. The next-step gradient depends on the training set loss with the previous-step

@ Springer

654 Machine Learning (2020) 109:643-664

model parameter. When using the first-order updates, we stop computing the gradient for
Ew (Dtsrain’ Wo) (resp. &y (Dtsrain’ ¢0)) w.r.t. W (resp. ¢), and the final updated W (resp. ¢)
is a function of Wy (resp. ¢p). Denote ‘p(Dt‘iain) ={¢p(x);Vx € Dgain} the embedding of the
training set, then we use a function g on ¢ (Dtsrain) to generate the initial top-layer classify
Wo. To enable the gradient descent for the initialization generation function g, we use the
following three-step re-parameterization strategy: First, the task-specific initial classifier Wy

is generated based on Wy = g(¢o (Dﬁain)). Then the value of such initial point is assigned to

an intermediate initialization Wo = sg(Wp), which is used to compute the following gradient
but is not related to g. After computing the gradient w.r.t. this Wy, we re-introduce g to
generate the final classifier W = g(qbo(DS) — nsg(Ew (Wp)).

train
In summary, we have the following objective for AVIATOR:
i S Sy oS
gélg Z Z z(fQ()—17sg(:~7f(é0)) (Dtrain)(xj)s Y;)
Dgst (X}S’Y}S)GD{Sm
s.t. 0o = {Wo. ¢o}: fo = {s8(Wo). s8(¢0)}, Wo = g(¢0(Digin))- (9)

4.2.2 Implementation of the classifier initialization mapping

The function g maps the embedding of the training set to the corresponding classifier, which
generates an adaptive initialization based on the “first impression” of data. There are two
main rules to design g. First, there exists a strong relationship between the instances in a
particular class and its corresponding classifier. In addition, the influence of other classes
should act as a set, i.e., their influences will be invariant for their permutations. Hence we
implement g based on the idea of deep sets (Zaheer et al. 2017), where the effect of a set
can be depicted as the transformed sum of the set instance embedding. Given the training set
embedding ¢ (DS), we use the mean of a particular class instances and the mean of the

train
complementary classes instances as the context for a classifier. For the nth class, denote

1 C 1
Pn = Z o). P = N K > d(x). (10)
yi=n Yi#n
Here the y; = n and y; # n mean the instances in or not in the nth class respectively.

After concatenating p, and p,;, we use a two-layer fully connected network to generate the
d-dimensional classifier for the nth class. The bias can be generated in a similar way. We use
this simple implementation to show the effectiveness of the AVIATOR idea. More complicated
implementations can be found in the ablation study part in the experiments. The whole flow
of our AVIATOR approach can be found in Algorithm 2.

Remark 7 With the decoupled top-layer classifier W and the embedding ¢, a straightforward
way to construct such adaptive model is to make W become the output of g, i.e., W =
8(¢ (Dyrain)). So we have y; = g(¢ (Dirain)) " ¢ (X 7). It incoporates the few-shot training set
into the determiniation of the whole initialization, and increase the complexity by the mapping
composition. The main difference between this implementation and ours is that it includes g
as a part of the predictor and also updates g during the inner-task optimization. Since g could
be complicated, the inner updates over g will not only increase the computational burden
but also make the model prone to over-fit. While in AVIATOR, g only help determine the
initialization of the linear top-layer classifier W, and will not participate in the inner-task
update. Empirically, we find this naive task-adaptive solution is hard to train and easy to
over-fit.

@ Springer

Machine Learning (2020) 109:643-664 655

Algorithm 2 The flow of the AVIATOR approach for Few-Shot Classification.
Require: Seen class set S, inner-task step-size 7, number of steps 7', meta-update step-size y .
1: for all iteration = 1,... do

2: Sample N-way K -shot (Dgain’ Dgst) from S

3 Construct task-specific classifier initialization Wy = g(¢ (Dtsrain))

4 Assign the value of W) to an intermediate variable WO = sg(Wy)

5: for all update iteration = 0,...7...7 do

6: Inner-task update: W1 = Wy — nEw (Wy), ¢rp1 = dr — 18y (¢r)
7: end for

8 Construct final classifier Wy = g(d)(DtSrain)) — nsg(Ew (Wp)) — nsg(Ew (Wp)) — - --
9: Set6 = {Wr, o1}

10: for all (x;.s, y}S) S Dist do

11 Predict y;? = (xf)

12: Compute loss z(yf, y}g) as Eq. 2

13: end for

: . oS S
14: Compute gradient Vg o Z(xf,yf)ethst 3y y7)

15: Update the parameter {¢, g} with selected optimizer and step-size y.
16: end for
17: return Few-Shot classifier mapping fp.

Remark 8 1t is notable that due to the fixed initial classifier used in the vanilla MAML, the
form of training and evaluation few-shot tasks should be consistent. In other words, when
sampling 5-way tasks during the meta-training phase, the initial classifier is learned as a
d x 5 matrix, which is hard to generalize to tasks with other numbers of classes. In contrast,
AVIATOR generates the classifier initialization for each class based on the context of the
current class and the holistic effect of other classes. Thus it is easy for AVIATOR to deal with
tasks with more classes, which makes our proposed method practical.

5 Experiments

We verify the effectiveness of our proposed AdaptiVely InitiAlized Task OptimizeR
(AVIATOR) approach through both synthetic and real benchmark data sets. We will intro-
duce the details of the model setups, including data sets, implementations, and evaluation
protocols at first. Then we describe the results. At last we analyze the ablated model.

5.1 Setups

Here we introduce the general setups for few-shot classification in our experiments.

5.1.1 Data sets

Two benchmarks are used in our experiments. The minilmageNet dataset (Vinyals et al. 2016)
is a subset of the ILSVRC-12 dataset (Russakovsky et al. 2015). There are totally 100 classes
and 600 examples in each class. For evaluation, we follow the split of Ravi and Larochelle
(2017) and use 64 of 100 classes for meta-training, 16 for validation, and 20 for meta-test
(model evaluation). In other words, a model is trained on few-shot tasks sampled from the 64
SEEN classes set during meta-training, and the best model is selected based on the few-shot

@ Springer

656 Machine Learning (2020) 109:643-664

classification performance over the 16 class set. The final model is evaluated based on few-
shot tasks sampled from the 20 UNSEEN classes. Following (Vinyals et al. 2016; Finn et al.
2017a; Snell et al. 2017), all images are first re-scaled to the fixed size 3 x 84 x 84 during
the pre-processing.

The Caltech-UCSD Birds (CUB) 200-2011 data set (Wah et al. 2011) is designed for fine-
grained classification, which contains a total of 11,788 images of birds over 200 species. Due
to the similarity between classes, it constructs difficult classification tasks when given limited
training examples. Following the configuration of Triantafillou et al. (2017) and Chen et al.
(2019), we use the provided bounding box of CUB to crop the center object of each image.
All images in CUB are also resized to 3 x 84 x 84. 100 classes are used for meta-training, 50
classes are used for model selection, and the last 50 classes are served as the UNSEEN set for
model evaluation. Since there is no public released split from Triantafillou et al. (2017), we
randomly shuffle all 200 classes in CUB, and choose SEEN and UNSEEN sets by ourselves.

5.1.2 Evaluation protocols

We use the same evaluation protocol over all benchmark data sets (Vinyals et al. 2016; Finn
et al. 2017a; Snell et al. 2017; Triantafillou et al. 2017), i.e., the performance of 1-shot
5-way and 5-shot 5-way classification. We keep the same configuration of tasks between
meta-training and meta-test. In other words, for the 1-shot 5-way problem, we keep sampling
the 1-shot 5-way training set (a.k.a. support set in the literature) from SEEN class set during
meta-training. Besides, to evaluate the optimized classifier for a particular N-way problem,
another 15 examples from each of the N classes are sampled as the test set (a.k.a. query set
in the literature) to provide the loss and supervision. Most previous methods are evaluated
on 600 tasks sampled from the UNSEEN class set (Vinyals et al. 2016; Finn et al. 2017a;
Snell et al. 2017; Triantafillou et al. 2017; Antoniou et al. 2018; Chen et al. 2019), which
introduces high variance. Different from that, in our experiments, we test the model over
10,000 sampled few-shot tasks (Rusu et al. 2018; Ye et al. 2018). The mean accuracy and
95% confidence interval are recorded for comparison.

5.1.3 Implementation details

Following the setting of most existing methods (Vinyals et al. 2016; Finn et al. 2017a; Snell
et al. 2017; Triantafillou et al. 2017), we use 4 identical neural network blocks to implement
the embedding backbone ¢. In each of the block, four components, i.e., a 3 x 3 convolution
with 64 filters, a batch normalization (Ioffe and Szegedy 2015), aReLU activation, and a2 x 2
max-pooling, are stacked upon each other. Different from previous methods, we add another
global max-pooling layer following the last block, which outputs 64-dimensional embeddings
at last. The global pooling not only deals with the spatial transformation effectively but also
relieves the optimization burden a lot.

Before the meta-training stage, we try to find a good initialization for the embedding ¢. In
particular, we add a linear layer on the backbone output and optimize a 64-way classification
problem on the meta-training set with the cross-entropy loss function. Stochastic gradient
descent with ADAM (Kingma and Ba 2014) is used to complete such optimization. The
16 classes for model selection also assist the choice of the pre-trained model. After each
epoch, we use the current embedding and measure the nearest neighbor based few-shot
classification performance on the sampled few-shot tasks from these 16 classes. The most
suitable embedding function is recorded. After that, such learned backbone is used to initialize

@ Springer

Machine Learning (2020) 109:643-664 657

Table 1 The range of hyper-parameters in three families of curves

Curve families a B 1%

Linear (y = ax + f) [-3,3] [-3,3] -

Square (y = a(x — B)2 +7) [—0.15, —0.02] U [0.02, 0.15] (3.0, 3.0] (3.0, 3.0]
Sine (y = asin(Bx + 7)) [0.1,5.0] [0.5,2.0] 0.5, 27]

the embedding part ¢ of the whole model. For the meta-learning phase, ADAM is used with
an initial learning rate le—4 for the backbone part and 10 times faster rates for the top
layers. The learning rate of all layers will be halved after optimizing 2000 tasks. During the
experiments, we find the pre-train stage facilitates the learning of few-shot optimizer a lot,
which is consistent with Rusu et al. (2018) and Ye et al. (2018). Besides, we set the inner-task
learning rate n = 0.05, with T = 15 gradient descent updates. The sizes of two hidden layers
in the initialization generation function are 128 and 64 respectively.

5.2 Synthetic regression tasks

We first use a simple regression task to verify the ability of AVIATOR to deal with complex
tasks. In each few-shot regression task, a limited number of points are provided for curve
fitting, and the model is required to predict the value of unseen points (sampled from the
same curve) precisely. To increase the difficulty of this task, three curve families are used,
namely the linear (y = ax +), square (y = a(x — ﬁ)2 +), and sine (y = asin(Bx +y)).
The range of parameters in the function families are listed in Table 1.

Regression tasks in both meta-training and meta-test stages are sampled in a hierarchical
way. First, one of the three curve families are determined, then the parameters of a curve
are sampled from the pre-specified range. The training and test points in regression tasks are
perturbed by normal distribution A/ (0, 0.3) from the oracle curve. Five points are used as the
training set. After fitting the curve with square loss, the model is evaluated on 10 test points.
Both MAML and AVIATOR are meta-trained and meta-tested with 10,000 tasks. A 4-layer
MLP, with ReL.U activation and hidden layer dimension 100 is used as the backbone for
both methods. Mean Square Error (MSE) is computed to evaluate the ability of the few-shot
regression model. Since the heterogeneity of the tasks, AVIATOR is expected to get better
results.

After meta-training, MAML and AVIATOR achieve 3.043 and 1.926 MSE respectively.
One regression task for each curve family is randomly chosen for illustration (in Fig. 4). It can
be found that MAML uses the same model initialization in all cases, which is non-informative
for the complex task. The initial curve of AVIATOR obviously adapts for different scenarios.

5.3 Synthetic classification tasks

To visualize the classification boundary, we test MAML and AVIATOR on a 2-D classification
task. We generate 100 classes in total based on the normal distribution, with mean sampled
from [O, 1]2 and variance equals 0.057. Half of the 100 classes are used for meta-training,
half of the remaining classes are used for model selection, and the last 25 classes are for
meta-test. Equipped with a two-layer MLP as the encoder, MAML and AVIATOR are trained
by 50,000 5-shot 3-way tasks, and tested on 10,000 tasks. The average few-shot classification

@ Springer

658 Machine Learning (2020) 109:643-664

a 4 a
==+ Initial ==+ ++ Updated Oracle ===+ Initial =*=+* Updated Oracle ==+ Initial =+ +++ Updated Oracle
o -
2 o 2 2
.
.
O N ey
o - L I of LN T
o -
.O“
2| e =2 . -2 <
o .
-4 -4 -4
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5
(a) MAML, Linear (b) MAML, Square (¢) MAML, Sine
a 4 a
==+ Initial ==+ +* Updated Oracle ==+ Initial == " Updated Oracle ==+ Initial ==+-+ Updated Oracle
-~ .
/
2 2 4 \\ 2 . 9
& . S PR
Ry - AN
) ° of! O\
V] / -3 U ~
o /',' o NG 7 Sa\a
// \\, / .
. // o . - .\.- z
-2| e = U -2 e
o .
4 -4 a
5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5
(d) AviATOR, Linear (€) AVIATOR, Square (f) AVIATOR, Sine

Fig.4 Initial and updated regression models of MAML and AVIATOR on 3 different types of curves. Learning
with 5 noisy examples (the black dots), the model is asked to fit the curve

Table 2 The 3-way classification performance of MAML and AVIATOR on the synthetic classification data
set. The average accuracy using inner-task step-size 0.01 and different numbers of updates are reported

T 1 5 10 15
MAML 3534 £0.36% 43.19 £0.30% 45.45 £0.30% 45.42 £ 0.29%
AVIATOR 83.6 +0.30% 86.57 £ 0.26% 87.13+£0.25% 87.59 £0.25%

accuracy of MAML and AVIATOR are listed in Table 2. By observing the results, we can find
AVIATOR achieves much better classification results than MAML. Besides, to achieve the
same level quality of the few-shot classification model (w.r.t. the test accuracy), AVIATOR
requires much fewer steps. So the adaptively initialized model can effectively reduce the
computational burden of the gradient-based meta-learning approach.

One 3-way task is randomly selected for visualization, as shown in Fig. 5. The first row
in the figure corresponds to the task, while the second row presents the same task with a
permutation of classes. 200 instances from each class are drawn to show the range of the
class, and different classes instances/classification boundaries are denoted by different colors.
From the results, MAML uses the uniform non-informative initial classifier, which is difficult
to apply on various tasks, so that more gradient descent steps are required to update the initial
model to fit a specific task. While for AVIATOR, it deals with two permuted tasks well, and
the adaptively generated initial classifier is close to the final updated ones.

@ Springer

Machine Learning (2020) 109:643-664 659

(d) AVIATOR, Updated

a

(e) MAML, Tnitial ~ (f) MAML, Updated (g) AVIATOR, Initial ~ (h) AVIATOR, Updated

Fig.5 Initial and updated classification models of MAML and AVIATOR on 2 different 3-way tasks. Colors of
instances denote the class, and the shadow region are the classification boundary of the specified model. Each
row corresponds to a task, and these two tasks only differ in the order of the classes

Table3 The average classification accuracy and 95% confidence interval when different methods are evaluated
on few-shot tasks sampled from MinilmageNet. All methods use the 4-layer ConvNet Backbone

MinilmageNet

1-Shot 5-Way

5-Shot 5-Way

MatchNet (Vinyals et al. 2016)
ProtoNet (Snell et al. 2017)
RelationNet (Sung et al. 2017)
MAML (Finn et al. 2017a)

MAML (reproduce) (Chen et al. 2019)
MAML+(Antoniou et al. 2018)
ProtoMAML (Triantafillou et al. 2019)

AVIATOR (ours)

48.14 £ 0.78%
47.74 & 0.84%
49.31 £ 0.85%
48.07 £ 1.75%
46.47 £ 0.82%
5240 £ 1.13%
52.05 £0.21%
54.97 £ 0.22%

63.48 £ 0.66%
66.68 £ 0.68%
66.60 & 0.69%
63.15£0.91%
62.71 £0.71%
67.15 £0.26%
67.36 £0.18%
68.37 £ 0.17%

Values in bold denote the ones with the highest classification accuracy

5.4 Benchmark results

Table 3 shows the results of various few-shot learning methods on the MinilmageNet data
sets, where both 1-shot 5-way and 5-shot 5-way tasks are investigated. The main results of
comparison methods are cited from a recent empirical study on few-shot learning (Chen et al.
2019). Different from the reported value of Finn et al. (2017a), there exists a noticeable gap of
MAML’s results between the reported and reproduced one. By adding some specific training
strategies, Antoniou et al. (2018) improves the few-shot classification ability of MAML. We
also re-implement the ProtoMAML (Triantafillou et al. 2019) approach, which constructs
an embedding learning objective based on the relationship between the prototypes and the
classifiers. Owing to the adaptive embedding in ProtoMAML, it can improve over vanilla
MAML a lot, as reported in their paper. Our AVIATOR approach gets the best performance
among all previous results, which validates the importance of the task-adaptive initialization
in the few-shot inner-task update. It is also notable that our results are evaluated on 10,000

@ Springer

660 Machine Learning (2020) 109:643-664

Table4 The average classification accuracy and 95% confidence interval when different methods are evaluated
on few-shot tasks sampled from CUB. All methods use the 4-layer ConvNet Backbone

CUB 1-Shot 5-Way 5-Shot 5-Way
MatchNet (Vinyals et al. 2016) 61.16 £0.89% 72.86 £ 0.70%
ProtoNet (Snell et al. 2017) 51.31£091% 70.77 £ 0.69%
RelationNet (Sung et al. 2017) 62.45 £0.98% 76.11 + 0.69%
MAML (reproduce) (Chen et al. 2019) 55.92 £ 0.95% 72.09 £0.76%
ProtoMAML (Triantafillou et al. 2019) 64.28 +£0.23% 75.06 £ 0.19%
AVIATOR (ours) 67.59 £ 0.23 % 75324+ 0.17 %

Values in bold denote the ones with the highest classification accuracy

Table 5 Comparison between different MAML-based improvements on MinilmageNet benchmark with the
4-layer ConvNet backbone

MinilmageNet 1-Shot 5-Way 5-Shot 5-Way
MAML (reproduce) (Chen et al. 2019) 46.47 £ 0.78% 62.71 £ 0.66%
Meta-SGD (Li et al. 2017) 47.74 + 0.84% 66.68 £+ 0.68%
MT-Net (Lee and Choi 2018) 51.70 + 1.84% -

MAML+ (Antoniou et al. 2018) 5240 £ 1.13% 67.15 £ 0.26%
ProtoMAML (Triantafillou et al. 2019) 52.05£0.21% 67.36 £0.18%
AVIATOR (ours) 54.97 + 0.22% 68.37 + 0.17%

Values in bold denote the ones with the highest classification accuracy

tasks, which are more convinced with a lower confidence interval. Similar trends can also be
found in CUB data set in Table 4.

5.5 Ablation studies and discussions

In this subsection, we analyze various properties of our proposed AVIATOR approach on the
MinilmageNet data set.

5.5.1 The influence of different components in the inner-task update

There exist various key components to update the classifier within a task. In addition to
focusing on the model initialization in MAML and AVIATOR, Meta-SGD (Li et al. 2017)
adds another learnable parameter to assist the gradient descent; MT-Net (Lee and Choi 2018)
enhances the construction of the backbone, which decomposes the embedding function into
two task-common and task-specific feature generation flows; Antoniou et al. (2018) propose
an orthogonal way to train MAML, some special tricks like the accumulated annealed step-
wise losses are used. Since ProtoMAML (Triantafillou et al. 2019) dynamically updates the
embedding for each task in a MAML way, the further performance improvement of Pro-
toMAML verifies the importance of considering task context and make the method adaptive.
Table 5 lists the results of all these methods. AVIATOR easily gets the best performance with
only an addition of a simple top-layer initialization generation function.

@ Springer

Machine Learning (2020) 109:643-664 661

Table 6 Comparison between different methods on MinilmageNet benchmark with the 4-layer ConvNet
backbone. By using the attention, AVIATOR™T achieves better results

MinilmageNet

1-Shot 5-Way

5-Shot 5-Way

MAML (reproduce) (Chen et al. 2019)
MAML+ (Antoniou et al. 2018)
FEAT (Ye et al. 2018)

AVIATOR (ours)

48.14 £ 0.78%
5240 £ 1.13%
55.15 £ 1.13%
54.97 £0.22%

63.48 £0.66%
67.15£0.26%
71.61 £ 0.26%
68.37£0.17%
71.26 £0.17%

AVIATOR™ (ours) 55.60 + 0.21%

Values in bold denote the ones with the highest classification accuracy

5.5.2 Different implementation of the g

In previous experiments, we use the simple two-layer fully connected network to implement
the the initialization generation function g. Attention mechanism (Vaswani et al. 2017) can
also be introduced to generate the top-layer linear classifier. Denote the embedding prototype
of the training setas P = [py, ..., Pn] € R4*N For the nth class, the corresponding classi-
fier is generated by p,, + Softmax(p;M P)P.Here M is alearnable matrix, and Softmax(-)
is used to normalize the similarity value between one class and other prototypes. The usage
of the attention can depict the relationship between classes better, which results in the AVI-
ATOR™T approach. The results of all methods are shown in Table 6, where AVIATOR™ can
further improve the few-shot classification performance. We also list the results of FEAT,
which also takes advantage of the self-attention to adapt the embedding. It is notable that dif-
ferent from the embedding-based approach FEAT, AVIATOR™ incorporates task context with
an optimization-based strategy, and could be further improved with other helpful objectives
(Ye et al. 2018).

5.5.3 Generalization of AVIATOR to more ways

One promising feature of the embedding-based few-shot learning approach is their ability
to generalize to different forms of tasks. As in matching network (Vinyals et al. 2016) and
prototypical network (Snell et al. 2017), by learning a few-shot facilitated embedding, tasks
with a various number of classes can all be classified via the nearest neighbor rule. For
MAML-based approaches, the main obstacle is the strong relationship between the classifier
and the number of classes. By generating initial classifier based on the training set embedding
adaptively, our AVIATOR approach handles different ways of tasks effectively. With models
trained by 1-shot 5-way tasks, we test the same model on 1-shot {5, 10, 15, 20}-way tasks.
The results of our re-implemented ProtoNet (Snell et al. 2017), AVIATOR, and AVIATOR™T
can be found in Fig. 6. Our AVIATOR and its variants can get the best performance in most
scenarios.

6 Conclusion
Model-agnostic meta-learning (MAML) is an important flow of the few-shot learning

research, which capsules the model information into the gradient and supervises the
model update by the loss on the training set. Current results observe the difficulties of

@ Springer

662 Machine Learning (2020) 109:643-664

B Avioore
556 550 [EEEE Aviaror

71.3 71.3 AVIATOR*
70 E

[EEEE Aviator

a
o

- -
= =
£ AN ProtoNet £ o0 N ProtoNet
> > 50
& 40 &
5 5 40
V 30 v
] g 30
c 20 c
g g 20
s 10 s 10

o 1]

5 10 15 20 5 10 15 20
Number of categories per task Number of categories per task
(a) 1-Shot (b) 5-Shot

Fig.6 Testing AVIATOR variants and our re-produced ProtoNet on MinilmageNet with different numbers of
ways. After meta-train with 5-way, these models are evaluated on {5, 10, 15, 20} ways 1-shot/5-shot tasks

MAML tackling complicated tasks, and its weakness to adaptively build the correspon-
dence between a class and an initialized model. We propose our AdaptiVely InitiAlized
Task OptimizeR (AVIATOR) approach to incorporate the task context and enable the
gradient-based meta-learning applicable on various kinds of few-shot learning tasks. Using
a re-parameterization strategy, the task-specific initialization facilitates the inner-task train-
ing a lot. Visualization experiments on synthetic data show the adaptively generated model
initialization of AVIATOR is consistent with the first impression of the task. Empirical results
on benchmark data sets verify the superiority of AVIATOR as well. The improvement of
AVIATOR over MAML can be applied to almost all fields where MAML works well. We will
investigate more real applications in the future.

Acknowledgements This research was supported by the The National Key R&D Program of China
(2018 YFB1004300), NSFC (61773198, 61751306, 61632004), and the program A for Outstanding Ph.D.
candidate of Nanjing University.

References

Achille, A., & Soatto, S. (2018). Emergence of invariance and disentanglement in deep representations. Journal
of Machine Learning Research, 19, 50:1-50:34.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman, M. W., Pfau, D., Schaul, T., et al. (2016). Learning
to learn by gradient descent by gradient descent. Advances in Neural Information Processing Systems,
29, 3981-3989.

Antoniou, A., Edwards, H., & Storkey, A. J. (2018). How to train your MAML. CoRR arXiv:1810.09502.

Baxter, J. (2000). A model of inductive bias learning. Journal of Artificial Intelligence Research, 12, 149—198.

Chen, W. Y., Liu, Y.C., Kira, Z., Wang, Y.C.F,, & Huang, J. B. (2019). A closer look at few-shot classification.
CoRR arXiv:1904.04232.

Clavera, 1., Nagabandi, A., Fearing, R.S., Abbeel, P., Levine, S., & Finn, C. (2018). Learning to adapt: Meta-
learning for model-based control. CoRR arXiv:1803.11347.

Dai, W. Z., Muggleton, S., Wen, J., Tamaddoni-Nezhad, A., & Zhou, Z. H. (2017). Logical vision: One-shot
meta-interpretive learning from real images. In Proceedings of the 27th international conference on
inductive logic programming, Orléans, France (pp. 46—62).

Deleu, T., & Bengio, Y. (2018). The effects of negative adaptation in model-agnostic meta-learning. CoORR
arXiv:1812.02159.

Denevi, G., Ciliberto, C., Stamos, D., & Pontil, M. (2018). Learning to learn around A common mean. Advances
in Neural Information Processing Systems, 31, 10190-10200.

@ Springer

http://arxiv.org/abs/1810.09502
http://arxiv.org/abs/1904.04232
http://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1812.02159

Machine Learning (2020) 109:643-664 663

Finn, C., Abbeel, P., & Levine, S. (2017a). Model-agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th international conference on machine learning, Sydney, Australia (pp. 1126—
1135).

Finn, C., & Levine, S. (2018). Meta-learning and universality: Deep representations and gradient descent
can approximate any learning algorithm. In Proceeding of the 6th international conference on learning
representations, Vancouver, Canada.

Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic meta-learning. Advances in Neural Infor-
mation Processing Systems, 31, 9537-9548.

Finn, C., Yu, T., Zhang, T., Abbeel, P., & Levine, S. (2017b). One-shot visual imitation learning via meta-
learning. In Proceedings of the 1st annual conference on robot learning, Mountain View, CA (pp. 357—
368).

Franceschi, L., Donini, M., Frasconi, P., & Pontil, M. (2017). A bridge between hyperparameter optimization
and larning-to-learn. CoRR arXiv:1712.06283.

Garg, V. (2018). Supervising unsupervised learning. Advances in Neural Information Processing Systems, 31,
4996-5006.

Gu, J., Wang, Y., Chen, Y., Li, V. O. K., & Cho, K. (2018). Meta-learning for low-resource neural machine
translation. In Proceedings of the 2018 conference on empirical methods in natural language processing,
Brussels, Belgium (pp. 3622-3631).

Hariharan, B., & Girshick, R. B. (2017). Low-shot visual recognition by shrinking and hallucinating features.
In [EEE international conference on computer vision (pp. 3037-3046). Italy: Venice.

Hsu, K., Levine, S., & Finn, C. (2018). Unsupervised learning via meta-learning. CoRR arXiv:1810.02334

Huang, P. S., Wang, C., Singh, R., Yih, W., & He, X. (2018). Natural language to structured query generation via
meta-learning. In Proceedings of the 2018 conference of the North American chapter of the association
Sfor computational linguistics: Human language technologies, New Orleans, LA (pp. 732-738).

Huang, S. J., Jin, R., & Zhou, Z. H. (2014). Active learning by querying informative and representative
examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(10), 1936-1949.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd international conference on machine learning, Lille, France
(pp. 448-456).

Karlinsky, L., Shtok, J., Tzur, Y., & Tzadok, A. (2017). Fine-grained recognition of thousands of object
categories with single-example training. In IEEE conference on computer vision and pattern recognition,
Honolulu, HI (pp. 965-974).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR arXiv:1412.6980.

Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural networks for one-shot image recognition.
In ICML deep learning workshop (Vol. 2) https://sites.google.com/site/deeplearning2015/home.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6), 84-90.

Lake, B. M., Salakhutdinov, R., Gross, J., & Tenenbaum, J. B. (2011). One shot learning of simple visual
concepts. In Proceedings of the 33th annual meeting of the cognitive science society, Boston, MA.
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through proba-

bilistic program induction. Science, 350(6266), 1332-1338.

Lee, Y., & Choi, S. (2018). Gradient-based meta-learning with learned layerwise metric and subspace. In
Proceedings of the 35th international conference on machine learning, Stockholm, Sweden (pp. 2933—
2942).

Li, E. F, Fergus, R., & Perona, P. (2006). One-shot learning of object categories. I[EEE Transactions on Pattern
Analysis and Machine Intelligence, 28(4), 594-611.

Li, Y. F, & Zhou, Z. H. (2015). Towards making unlabeled data never hurt. [EEE Transactions on Pattern
Analysis and Machine Intelligence, 37(1), 175-188.

Li, Z., Zhou, F,, Chen, F.,, & Li, H. (2017). Meta-SGD: Learning to learn quickly for few shot learning. CORR
arXiv:1707.09835.

Maurer, A. (2009). Transfer bounds for linear feature learning. Machine Learning, 75(3), 327-350.

Maurer, A., Pontil, M., & Romera-Paredes, B. (2016). The benefit of multitask representation learning. Journal
of Machine Learning Research, 17, 81:1-81:32.

Motiian, S., Jones, Q., Iranmanesh, S. M., & Doretto, G. (2017). Few-shot adversarial domain adaptation.
Advances in Neural Information Processing Systems, 30, 6673—6683.

Nichol, A., Achiam, J., & Schulman, J. (2018). On first-order meta-learning algorithms. CoRR
arXiv:1803.02999.

Probst, P., Boulesteix, A. L., & Bischl, B. (2019). Tunability: Importance of hyperparameters of machine
learning algorithms. Journal of Machine Learning Research, 20, 53:1-53:32.

@ Springer

http://arxiv.org/abs/1712.06283
http://arxiv.org/abs/1810.02334
http://arxiv.org/abs/1412.6980
https://sites.google.com/site/deeplearning2015/home
http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1803.02999

664 Machine Learning (2020) 109:643-664

Ravi, S., & Larochelle, H. (2017). Optimization as a model for few-shot learning. In In international conference
on learning representations.

Reed, S. E., Chen, Y., Paine, T., van den Oord, A., Eslami S. M. A., Rezende, D. J., Vinyals, O., & de Freitas,
N. (2017). Few-shot autoregressive density estimation: Towards learning to learn distributions. CoRR
arXiv:1710.10304.

Ren, M., Zeng, W., Yang, B., & Urtasun, R. (2018). Learning to reweight examples for robust deep learning.
In Proceedings of the 35th international conference on machine learning, Stockholm, Sweden (pp. 4331—
4340).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3), 211-252.

Rusu, A. A.,Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., & Hadsell, R. (2018). Meta-learning
with latent embedding optimization. CoRR arXiv:1807.05960.

Shyam, P., Gupta, S., & Dukkipati, A. (2017). Attentive recurrent comparators. In Proceedings of the 34th
international conference on machine learning, Sydney, Australia (pp. 3173-3181).

Snell, J., Swersky, K., & Zemel, R. S. (2017). Prototypical networks for few-shot learning. Advances in Neural
Information Processing Systems, 30, 4080—-4090.

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P. Y., & Gao, Y. (2018). Is robustness the cost of accuracy? A
comprehensive study on the robustness of 18 deep image classification models. In Proceedings of the
15th European conference on computer vision, Munich, Germany (pp. 644—661).

Sung, F, Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S., & Hospedales, T. M. (2017). Learning to compare:
Relation network for few-shot learning. CoRR arXiv:1711.06025.

Tan, X., Chen, S., Zhou, Z. H., & Zhang, F. (2006). Face recognition from a single image per person: A survey.
Pattern Recognition, 39(9), 1725-1745.

Thrun, S., & Pratt, L. (2012). Learning to learn. New York: Springer.

Triantafillou, E., Zemel, R. S., & Urtasun, R. (2017). Few-shot learning through an information retrieval lens.
Advances in Neural Information Processing Systems, 30, 2252-2262.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Manzagol,
P. A., & Larochelle, H. (2019). Meta-dataset: A dataset of datasets for learning to learn from few examples.
CoRR arXiv:1903.03096.

Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., & Larochelle, H. (2017). A meta-learning perspective
on cold-start recommendations for items. Advances in Neural Information Processing Systems, 30,6907—
6917.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you
need. Advances in Neural Information Processing Systems, 30, 6000-6010.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial Intelligence Review,
18(2), 77-95.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra, D. (2016). Matching networks for one
shot learning. Advances in Neural Information Processing Systems, 29, 3630-3638.

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD birds-200-2011
dataset. Technical report.

Wang, P, Liu, L., Shen, C., Huang, Z., van den Hengel, A., & Shen, H.T. (2017a). Multi-attention network for
one shot learning. In IEEE conference on computer vision and pattern recognition, Honolulu, HI (pp.
6212-6220).

Wang, T., Zhu, J. Y., Torralba, A., & Efros, A. A. (2018a). Dataset distillation. CoRR arXiv:1811.10959.

Wang, Y., Ramanan, D., & Hebert, M. (2017b). Learning to model the tail. Advances in Neural Information
Processing Systems, 30, 7032-7042.

Wang, Y., Girshick, R. B., Hebert, M., & Hariharan, B. (2018b). Low-shot learning from imaginary data.
CoRR arXiv:1801.05401.

Ye, H.J., Hu, H., Zhan, D. C., & Sha, F. (2018). Learning embedding adaptation for few-shot learning. CoORR
arXiv:1812.03664.

Yu, T., Finn, C., Xie, A., Dasari, S., Zhang, T., Abbeel, P, & Levine, S. (2018). One-shot imitation from
observing humans via domain-adaptive meta-learning. CoRR arXiv:1802.01557.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Péczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets.
Advances in Neural Information Processing Systems, 30, 3394-3404.

Zhang, Y., Wei, Y., & Yang, Q. (2018). Learning to multitask. Advances in Neural Information Processing
Systems, 31, 5776-5787.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/1710.10304
http://arxiv.org/abs/1807.05960
http://arxiv.org/abs/1711.06025
http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1811.10959
http://arxiv.org/abs/1801.05401
http://arxiv.org/abs/1812.03664
http://arxiv.org/abs/1802.01557

	Few-shot learning with adaptively initialized task optimizer: a practical meta-learning approach
	Abstract
	1 Introduction
	2 Related work
	3 Notations and background
	3.1 The few-shot learning problem
	3.2 Meta-learning for few-shot learning
	3.3 Learning embedding for few-shot learning
	3.4 Discussion: the learning-to-learn framework

	4 Few-shot learning with adaptively initialized optimizer
	4.1 Model-agnostic meta-learning (MAML)
	4.2 Using the adaptively initialized optimizer
	4.2.1 Enable the gradient flow
	4.2.2 Implementation of the classifier initialization mapping

	5 Experiments
	5.1 Setups
	5.1.1 Data sets
	5.1.2 Evaluation protocols
	5.1.3 Implementation details

	5.2 Synthetic regression tasks
	5.3 Synthetic classification tasks
	5.4 Benchmark results
	5.5 Ablation studies and discussions
	5.5.1 The influence of different components in the inner-task update
	5.5.2 Different implementation of the g
	5.5.3 Generalization of Aviator to more ways

	6 Conclusion
	Acknowledgements
	References

