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Abstract
Optimization over low rank matrices has broad applications in machine learning. For large-
scale problems, an attractive heuristic is to factorize the low rank matrix to a product of two
much smaller matrices. In this paper, we study the nonconvex problem minU∈Rn×r g(U) =
f (UUT ) under the assumptions that f (X) is restricted μ-strongly convex and L-smooth
on the set {X : X � 0, rank(X) ≤ r}. We propose an accelerated gradient method with
alternating constraint that operates directly on the U factors and show that the method has
local linear convergence rate with the optimal dependence on the condition number of

√
L/μ.

Globally, our method converges to the critical point with zero gradient from any initializer.
Our method also applies to the problem with the asymmetric factorization of X = ˜U˜VT

and the same convergence result can be obtained. Extensive experimental results verify the
advantage of our method.

1 Introduction

Low rank matrix estimation has broad applications in machine learning, computer vision and
signal processing. In this paper, we consider the problem of the form:

min
X∈Rn×n

f (X), s.t . X � 0, (1)

where there exists minimizer X∗ of rank-r . We consider the case of r � n. Optimizing
problem (1) in the X space often requires computing at least the top-r singular value/vectors
in each iteration and O(n2) memory to store a large n by n matrix, which restricts the
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applications with huge size matrices. To reduce the computational cost as well as the storage
space, many literatures exploit the observation that a positive semidefinite low rank matrix
can be factorized as a product of two much smaller matrices, i.e., X = UUT , and study the
following nonconvex problem instead:

min
U∈Rn×r

g(U) = f (UUT ). (2)

Awide family of problems can be cast as problem (2), includingmatrix sensing (Bhojanapalli
et al. 2016b), matrix completion (Jain et al. 2013), one bit matrix completion (Davenport et al.
2014), sparse principle component analysis (Cai et al. 2013) and factorization machine (Lin
and Ye 2016). In this paper, we study problem (2) and aim to propose an accelerated gradient
method that operates on the U factors directly. The factorization in problem (2) makes g(U)

nonconvex, even if f (X) is convex. Thus, proving the acceleration becomes a harder task
than the analysis for convex programming.

1.1 Related work

Recently, there is a trend to study the nonconvex problem (2) in the machine learning and
optimization community. Recent developments come from two aspects: (1). The geometric
aspectwhich proves that there is no spurious localminimum for some special cases of problem
(2), e.g., matrix sensing (Bhojanapalli et al. 2016b), matrix completion (Ge et al. 2016, 2017;
Li et al. 2018; Zhu et al. 2018; Zhang et al. 2018) for a unified analysis. (2). The algorithmic
aspect which analyzes the local linear convergence of some efficient schemes such as the
gradient descent method. Examples include (Burer and Monteiro 2003, 2005; Boumal et al.
2016; Tu et al. 2016; Zhang and Lafferty 2015; Park et al. 2016) for semidefinite programs,
(Sun and Luo 2015; Park et al. 2013; Hardt and Wootters 2014; Zheng and Lafferty 2016;
Zhao et al. 2015) formatrix completion, (Zhao et al. 2015; Park et al. 2013) formatrix sensing
and (Yi et al. 2016; Gu et al. 2016) for Robust PCA. The local linear convergence rate of the
gradient descent method is proved for problem (2) in a unified framework in Bhojanapalli
et al. (2016a), Chen and Wainwright (2015), Wang et al. (2017). However, no acceleration
scheme is studied in these literatures. It remains an open problem on how to analyze the
accelerated gradient method for nonconvex problem (2).

Nesterov’s acceleration technique (Nesterov 1983, 1988, 2004) has been empirically ver-
ified efficient on some nonconvex problems, e.g., Deep Learning (Sutskever et al. 2013).
Several literatures studied the accelerated gradient method and the inertial gradient descent
method for the general nonconvex programming (Ghadimi and Lan 2016; Li and Lin 2015;
Xu and Yin 2014). However, they only proved the convergence and had no guarantee on the
acceleration for nonconvex problems. Carmon et al. (2018), Carmon et al. (2017), Agarwal
et al. (2017) and Jin et al. (2018) analyzed the accelerated gradient method for the general
nonconvex optimization and proved the complexity of O(ε−7/4log(1/ε)) to escape saddle
points or achieve critical points. They studied the general problem and did not exploit the
specification of problem (2). Thus, their complexity is sublinear. Necoara et al. (2019) stud-
ied several conditions under which the gradient descent and accelerated gradient method
converge linearly for non-strongly convex optimization. Their conclusion of the gradient
descent method can be extended to nonconvex problem (2). For the accelerated gradient
method, Necoara et al. required a strong assumption that all yk, k = 0, 1, . . . ,1 have the
same projection onto the optimum solution set. It does not hold for problem (2).

1 Necoara et al. (2019) analyzed the method with recursions of yk = xk +
√
L−√

μ√
L+√

μ
(xk − xk−1) and

xk+1 = yk − η∇ f (yk ).
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1.2 Our contributions

In this paper, we use Nesterov’s acceleration scheme for problem (2) and an efficient accel-
erated gradient method with alternating constraint is proposed, which operates on the U
factors directly. We back up our method with provable theoretical results. Specifically, our
contributions can be summarized as follows:

1. We establish the curvature of local restricted strong convexity along a certain trajectory
by restricting the problem onto a constraint set, which allows us to use the classical
accelerated gradient method for convex programs to solve the constrained problem. We
build our result with the tool of polar decomposition.

2. In order to reduce the negative influence of the constraint and ensure the convergence
to the critical point of the original unconstrained problem, rather than the reformulated
constrained problem, we propose a novel alternating constraint strategy and combine it
with the classical accelerated gradient method.

3. When f is restricted μ-strongly convex and restricted L-smooth, our method has the
local linear convergence to the optimum solution, which has the same dependence on√
L/μ as convex programming. As far as we know, we are the first to establish the

convergence matching the optimal dependence on
√
L/μ for this kind of nonconvex

problems. Globally, our method converges to a critical point of problem (2) from any
initializer.

1.3 Notations and assumptions

For matrices U,V ∈ R
n×r , we use ‖U‖F as the Frobenius norm, ‖U‖2 as the spectral norm

and 〈U,V〉 = trace(UTV) as their inner products. We denote σr (U) as the smallest singular
value of U and σ1(U) = ‖U‖2 as the largest one. We use US ∈ R

r×r as the submatrix
of U with the rows indicated by the index set S ⊆ {1, 2, . . . , n}, U−S ∈ R

(n−r)×r as the
submatrix with the rows indicated by the indexes out of S and XS,S ∈ R

r×r as the submatrix
of X with the rows and columns indicated by S. X � 0 means that X is symmetric and
positive semidefinite. Let IΩS (U) be the indicator function of set ΩS . For the objective
function g(U), its gradient w.r.t. U is ∇g(U) = 2∇ f (UUT )U. We assume that ∇ f (UUT )

is symmetric for simplicity. Our conclusions for the asymmetric case naturally generalize
since ∇g(U) = ∇ f (UUT )U + ∇ f (UUT )TU in this case. Denote the optimum solution set
of problem (2) as

X ∗ = {U∗ : U∗ ∈ R
n×r ,U∗U∗T = X∗}. (3)

where X∗ is a minimizer of problem (1). An important issue in minimizing g(U) is that its
optimum solution is not unique, i.e., if U∗ is the optimum solution of problem (2), then U∗R
is also an optimum solution for any orthogonal matrix R ∈ R

r×r . Given U, we define the
optimum solution that is closest to U as

PX ∗(U) = U∗R, where R = argminR∈Rr×r ,RRT =I‖U∗R − U‖2F . (4)

1.3.1 Assumptions

In this paper, we assume that f is restricted μ-strongly convex and L-smooth on the set
{X : X � 0, rank(X) ≤ r}. We state the standard definitions below.
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Definition 1 Let f : Rn×n → R be a convex differentiable function. Then, f is restricted
μ-strongly convex on the set {X : X � 0, rank(X) ≤ r} if, for any X,Y ∈ {X : X �
0, rank(X) ≤ r}, we have

f (Y) ≥ f (X) + 〈∇ f (X),Y − X〉 + μ
2 ‖Y − X‖2F .

Definition 2 Let f : Rn×n → R be a convex differentiable function. Then, f is restricted
L-smooth on the set {X : X � 0, rank(X) ≤ r} if, for anyX,Y ∈ {X : X � 0, rank(X) ≤ r},
we have

f (Y) ≤ f (X) + 〈∇ f (X),Y − X〉 + L
2 ‖Y − X‖2F

and

‖∇ f (Y) − ∇ f (X)‖F ≤ L‖Y − X‖F .

1.3.2 Polar decomposition

Polar decomposition is a powerful tool formatrix analysis.We briefly review it in this section.
We only describe the left polar decomposition of a square matrix.

Definition 3 The polar decomposition of a matrix A ∈ R
r×r has the form A = HQ where

H ∈ R
r×r is positive semidefinite and Q ∈ R

r×r is an orthogonal matrix.

If A ∈ R
r×r is of full rank, then A has the unique polar decomposition with positive definite

H. In fact, since a positive semidefinite Hermitian matrix has a unique positive semidefinite
square root, H is uniquely given by H = √

AAT . Q = H−1A is also unique.
In this paper, we use the tool of polar decomposition’s perturbation theorem to build the

restricted strong convexity of g(U). It is described below.

Lemma 1 (Li 1995) LetA ∈ R
r×r be of full rank andHQ be its unique polar decomposition,

A + �A be of full rank and (H + �H)(Q + �Q) be its unique polar decomposition. Then,
we have

‖�Q‖F ≤ 2

σr (A)
‖�A‖F .

2 The restricted strongly convex curvature

Function g(U) is a special kind of nonconvex function and the non-convexity only comes
from the factorization of UUT . Based on this observation, we exploit the special curvature
of g(U) in this section.

The existing works proved the local linear convergence of the gradient descent method
for problem (2) by exploiting curvatures such as the local second order growth property (Sun
and Luo 2015; Chen andWainwright 2015) or the (α, β) regularity condition (Jin et al. 2018;
Bhojanapalli et al. 2016a, b; Wang et al. 2017). The former is described as

g(U) ≥ g(U∗) + α

2
‖PX ∗(U) − U‖2F ,∀U (5)

while the later is defined as

〈∇g(U),U − PX ∗(U)〉 ≥ α

2
‖PX ∗(U) − U‖2F + 1

2β
‖∇g(U)‖2F ,∀U, (6)
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where U∗ ∈ X ∗ and PX ∗(U) is defined in (4). Both (5) and (6) can be derived by the local
weakly strongly convex condition (Necoara et al. 2019) combing with the smoothness of
g(U). The former is described as

g(U∗) ≥ g(U) + 〈∇g(U), PX ∗(U) − U〉 + α

2
‖PX ∗(U) − U‖2F , (7)

where α = μσ 2
r (U∗). As discussed in Sect. 1.3, the optimum solution of problem (2) is not

unique. This non-uniqueness makes the difference between the weakly strong convexity and
strong convexity, e.g., on the right hand side of (7), we use PX ∗(U), rather thanU∗. Moreover,
the weakly strongly convex condition cannot infer convexity and g(U) is not convex even
around a small neighborhood of the global optimum solution (Li et al. 2016).

Necoara et al. (2019) studied several conditions under which the linear convergence of
the gradient descent method is guaranteed for general convex programming without strong
convexity. The weakly strongly convex condition is the strongest one and can derive all the
other conditions. However, it is not enough to analyze the accelerated gradient method only
with the weakly strongly convex condition. Necoara et al. (2019) proved the acceleration of
the classical accelerated gradient method under an additional assumption that all the iterates
{yk, k = 0, 1, . . .} have the same projection onto the optimum solution set besides the weakly
strongly convex condition and the smoothness condition. From the proof in (Necoara et al.
2019, Sect. 5.2.1), we can see that the non-uniqueness of the optimum solution makes the
main trouble to analyze the accelerated gradient method2. The additional assumption made
in Necoara et al. (2019) somehow aims to reduce this non-uniqueness. Since this assumption
is not satisfied for problem (2), only (7) is not enough to prove the acceleration for problem
(2) and it requires us to exploit stronger curvature than (7) to analyze the accelerated gradient
method.

Motivated by Necoara et al. (2019), we should remove the non-uniqueness in problem
(2). Our intuition is based on the following observation. Suppose that we can find an index
set S ⊆ {1, 2, . . . , n} with size r such that X∗

S,S is of r full rank, then there exists a unique

decomposition X∗
S,S = U∗

S(U
∗
S)

T where we require U∗
S � 0. Thus, we can easily have

that there exists a unique U∗ such that U∗U∗T = X∗ and U∗
S � 0. To verify it, consider

S = {1, . . . , r} for simplicity. Then UUT =
(

USUT
S USUT−S

U−SUT
S U−SUT−S

)

=
(

XS,S XS,−S

X−S,S X−S,−S

)

.

The uniqueness of US comes from XS,S � 0 and US � 0 and the uniqueness of U−S comes
from U−S = X−S,SU

−T
S .

Based on the above observation, we can reformulate problem (2) as

min
U∈ΩS

g(U) (8)

where

ΩS = {U ∈ R
n×r : US � εI}

and ε is a small enough constant such that ε � σr (U∗
S). We require US � εI rather than

US � 0 to make the projection onto ΩS computable. Due to the additional constraint of
U ∈ ΩS , we observe that the optimum solution of problem (8) is unique. Moreover, the
minimizer of (8) minimizes also (2).

2 Necoara et al. (2019) used induction to prove (Necoara et al. 2019, Lemma 1).When the optimum solution is
not unique, y∗ in [Necoara et al. 2019, Equation (57)] should be replaced by PX ∗ (yk ) and they have different
values for different k. Thus, the induction is not correct any more.
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Until now,we are ready to establish a stronger curvature than (7) by restricting the variables
of g(U) on the set ΩS . We should lower bound ‖PX ∗(U) − U‖2F in (7) by ‖U∗ − U‖2F . Our
result is built upon polar decomposition’s perturbation theorem (Li 1995). Based onLemma1,
we first establish the following critical lemma.

Lemma 2 For any U ∈ ΩS and V ∈ ΩS, let R = argminR∈Rr×r ,RRT =I‖VR − U‖2F and

V̂ = VR. Then, we have

‖V − U‖F ≤ 3‖U‖2
σr (US)

‖V̂ − U‖F .

Proof Since the conclusion is not affected by permutating the rows ofU andV under the same

permutation, we can consider the case of S = {1, . . . , r} for simplicity. Let U =
(

U1

U2

)

,

V =
(

V1

V2

)

and V̂ =
(

V̂1

V̂2

)

, where U1,V1, V̂1 ∈ R
r×r . Then, we have V̂1 = V1R. From

U ∈ ΩS and V ∈ ΩS , we know U1 � 0 and V1 � 0. Thus, U1I and V1R are the unique
polar decompositions of U1 and V̂1, respectively. From Lemma 1, we have

‖R − I‖F ≤ 2

σr (U1)
‖V̂1 − U1‖F .

With some simple computations, we can have

‖V − U‖F =‖V̂RT − U‖F
=‖V̂RT − URT + URT − U‖F
≤‖V̂RT − URT ‖F + ‖URT − U‖F
≤‖V̂ − U‖F + ‖U‖2‖R − I‖F
≤‖V̂ − U‖F + 2‖U‖2

σr (U1)
‖V̂1 − U1‖F

≤ 3‖U‖2
σr (U1)

‖V̂ − U‖F ,

(9)

where we use σr (U1) ≤ ‖U‖2 and ‖V̂1−U1‖F ≤ ‖V̂−U‖F in the last inequality. Replacing
U1 with US , we can have the conclusion. ��

Built upon Lemma 2, we can give the local restricted strong convexity of g(U) on the
set ΩS in the following theorem. There are two differences between the restricted strong
convexity and the weakly strong convexity: (i) the restricted strong convexity removes the
non-uniqueness and (ii) the restricted strong convexity establishes the curvature between any
two points U and V in a local neighborhood of U∗, while (7) only exploits the curvature
between U and the optimum solution.

Theorem 1 LetU∗ = ΩS ∩X ∗ and assume thatU ∈ ΩS andV ∈ ΩS with ‖U−U∗‖F ≤ C

and ‖V − U∗‖F ≤ C, where C = μσ 2
r (U∗)σ 2

r (U∗
S)

100L‖U∗‖32
. Then, we have

g(U) ≥ g(V) + 〈∇g(V),U − V〉 + μσ 2
r (U∗)σ 2

r (U∗
S)

50‖U∗‖22
‖U − V‖2F .
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Proof From the restricted convexity of f (X), we have

f (VVT ) − f (UUT )

≤
〈

∇ f (VVT ),VVT − UUT
〉

− μ

2
‖VVT − UUT ‖2F

=
〈

∇ f (VVT ), (V − U)VT
〉

+
〈

∇ f (VVT ),V(V − U)T
〉

−
〈

∇ f (VVT ), (V − U)(V − U)T
〉

− μ

2
‖VVT − UUT ‖2F

= 2
〈

∇ f (VVT )V,V − U
〉

−
〈

∇ f (VVT ), (V − U)(V − U)T
〉

− μ

2
‖VVT − UUT ‖2F

≤ 2
〈

∇ f (VVT )V,V − U
〉

−
〈

∇ f (VVT ) − ∇ f (X∗), (V − U)(V − U)T
〉

− μ

2
‖VVT − UUT ‖2F .

(10)

where we use ∇ f (X∗) � 0 proved in Lemma 7 and the fact that the inner prod-
uct of two positive semidefinite matrices is nonnegative in the last inequality, i.e.,
〈∇ f (X∗), (V − U)(V − U)T

〉 ≥ 0.ApplyingVonNeumann’s trace inequality andLemma10
to bound the second term, applying Lemmas 2 and 8 to bound the third term, we can have

f (VVT ) − f (UUT )

≤ 2
〈

∇ f (VVT )V,V − U
〉

+ L(‖U∗‖2 + ‖V‖2)‖V − U∗‖F‖V − U‖2F

− (
√
2 − 1)μσ 2

r (U)σ 2
r (US)

9‖U‖22
‖V − U‖2F

≤ 〈∇g(V),V − U〉 −
(

μσ 2
r (U∗)σ 2

r (U∗
S)

23.1‖U∗‖22
− 2.01L‖U∗‖2‖V − U∗‖F

)

‖V − U‖2F ,

where we use Lemma 9 in the last inequality. From the assumption of ‖V − U∗‖F ≤ C , we
can have the conclusion. We leave Lemmas 7, 8, 9 and 10 in “Appendix A”. ��

2.1 Smoothness of function g(U)

Besides the local restricted strong convexity, we can also prove the smoothness of g(U),
which is built in the following theorem.

Theorem 2 Let L̂ = 2‖∇ f (VVT )‖2 + L(‖V‖2 + ‖U‖2)2. Then, we can have

g(U) ≤ g(V) + 〈∇g(V)V,U − V〉 + L̂

2
‖U − V‖2F .

Proof From the restricted Lipschitz smoothness of f and a similar induction to (10), we have

f (UUT ) − f (VVT )

≤
〈

∇ f (VVT ),UUT − VVT
〉

+ L

2
‖UUT − VVT ‖2F

123



110 Machine Learning (2020) 109:103–134

=
〈

∇ f (VVT ), (U − V)(U − V)T
〉

+2
〈

∇ f (VVT )V,U − V
〉

+ L

2
‖UUT − VVT ‖2F .

Applying Von Neumann’s trace inequality to the first term, applying Lemma 10 to the third
term, we can have the conclusion. ��
When restricted in a small neighborhood ofU∗, we can give a better estimate for the smooth-
ness parameter L̂ , as follows. The proof is provided in “Appendix A”.

Corollary 1 Let U∗ = ΩS ∩ X ∗ and assume that Uk,Vk,Zk ∈ ΩS with ‖Vk − U∗‖F ≤ C,
‖Uk −U∗‖F ≤ C and ‖Zk−U∗‖F ≤ C, where C is defined in Theorem 1 andUk,Vk ,Zk are
generated in Algorithm 1, which will be described later. Let Lg = 38L‖U∗‖22+2‖∇ f (X∗)‖2
and η = 1

Lg
. Then, we have

g(Uk+1) ≤ g(Vk) +
〈

∇g(Vk),Uk+1 − Vk
〉

+ Lg

2
‖Uk+1 − Vk‖2F .

3 Accelerated gradient method with alternating constraint

From Theorem 1 and Corollary 1, we know that the objective g(U) behaves locally like a
strongly convex and smooth function when restricted on the set ΩS . Thus, we can use the
classical method for convex programming to solve problem (8), e.g., the accelerated gradient
method3.

However, there remains a practical issue that when solving problem (8), we may get
stuck at a critical point of problem (8) at the boundary of the constraint U ∈ ΩS , which is
not the optimum solution of problem (2). In other words, we may halt before reaching the
acceleration region, i.e., the local neighborhood of the optimum solution of problem (2). To
overcome this trouble, we propose a novel alternating trajectory strategy. Specifically, we
define two sets ΩS1 and ΩS2 as follows

ΩS1 = {U ∈ R
n×r : US1 � εI}, ΩS2 = {U ∈ R

n×r : US2 � εI}
and minimize the objective g(U) along the trajectories of ΩS1 and ΩS2 alternatively, i.e.,
when the iteration number t is odd, we minimize g(U) with the constraint of U ∈ ΩS1 , and
when t is even, we minimize g(U) with the constraint of U ∈ ΩS2 . Intuitively, when the
iterates approach the boundary of ΩS1 , we cancel the constraint of positive definiteness on
US1 and put it on US2 . Fortunately, with this strategy we can cancel the negative influence of
the constraint. We require that both the two index sets S1 and S2 are of size r and S1∩ S2 = ∅
such thatU∗

S1
andU∗

S2
are of full rank. Given proper S1 and S2, we can prove that the method

globally converges to a critical point of problem (2). i.e., a point with ∇g(U) = 0, rather
than a critical point of problem (8) at the boundary of the constraint.

We describe our method in Algorithm 1. We use Nesterov’s acceleration scheme in the
inner loop with finite K iterations and restart the acceleration scheme at each outer iteration.
At the end of each outer iteration, we change the constraint and transform Ut,K+1 ∈ ΩS

to a new point Ut+1,0 ∈ ΩS′ via polar decomposition such that g(Ut,K+1) = g(Ut+1,0).

3 However, it is still more challenging than convex programming since we should guarantee that all the
variables in Theorem 1 belong to ΩS , while it is not required in convex programming. So the conclusion in
Necoara et al. (2019) cannot be applied to problem (8) since we cannot obtain yk+1 ∈ ΩS given xk+1 ∈ ΩS
and xk ∈ ΩS because yk+1 is not a convex combination of xk+1 and xk .
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At step (12), we need to project Z ≡ Zt,k − η
θk

∇g(Vt,k) onto ΩS . Let AΣAT be the

eigenvalue decomposition of
ZS+ZT

S
2 and Σ̂ = diag([max{ε,Σ1,1}, . . . ,max{ε,Σr ,r }]), then

Zt,k+1
S = AΣ̂AT and Zt,k+1

−S = Z−S . At step (14), θk+1 is computed by θk+1 =
√

θ4k +4θ2k −θ2k

2 .
At the end of each outer iteration, we need to compute the polar decomposition. Let AΣBT

be the SVD of Ut,K+1
S′ , then we can set H = AΣAT and Q = ABT . In Algorithm 1, we

predefine S1 and S2 and fix them during the iterations. In Sect. 3.1 we will discuss how to
find S1 and S2 using some local information.

At last, let’s compare the per-iteration cost ofAlgorithm1with themethods operating onX
space. Both the eigenvalue decomposition and polar decomposition required in Algorithm 1
perform on the submatrices of size r×r , which need O(r3) operations. Thus, the per-iteration
complexity of Algorithm 1 is O(nr + r3). As a comparison, the methods operating on X
space require at least the top-r singular value/vectors, which need O(n2r) operations for
the deterministic algorithms and O(n2 log r) for randomized algorithms (Halko et al. 2011).
Thus, our method is more efficient at each iteration when r � n, especially when r is upper
bounded by a constant independent on n.

Algorithm 1 Accelerated Gradient Descent with Alternating Constraint

Initialize Z0,0 = U0,0 ∈ ΩS2 , η, K, ε.
for t = 0, 1, 2, . . . do

θ0 = 1.
for k = 0, 1, . . . , K do

Vt,k = (1 − θk )U
t,k + θkZ

t,k . (11)

Zt,k+1 = argminZ∈ΩS

〈

∇g(Vt,k ),Z
〉

+ θk

2η

∥

∥

∥Z − Zt,k
∥

∥

∥

2

F
, S=

{

S1, if t is odd,
S2, if t is even.

(12)

Ut,k+1 = (1 − θk )U
t,k + θkZ

t,k+1. (13)

compute θk+1 from
1 − θk+1

θ2k+1

= 1

θ2k

. (14)

end for
Let HQ = Ut,K+1

S′ be its polar decomposition and Zt+1,0 = Ut+1,0 = Ut,K+1QT , where S′ =
{

S2, if S = S1,
S1, if S = S2.

end for

3.1 Finding the index sets S1 and S2

In this section, we consider how to find the index sets S1 and S2. S1 ∩ S2 = ∅ can be easily
satisfied and we only need to ensure that U∗

S1
and U∗

S2
are of full rank. Suppose that we have

some initializer U0 close to U∗. We want to use U0 to find such S1 and S2. We first discuss
how to select one index set S based on U0. We can use the volume sampling subset selection
algorithm (Guruswami and Sinop 2012; Avron and Boutsidis 2013), which can select S such

that σr (U0
S) ≥ σr (U0)√

2r(n−r+1)
with probability of 1 − δ′ in O(nr3 log(1/δ′)) operations. Then,

we can bound σr (U∗
S) in the following lemma since U0 is close to U∗.
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Lemma 3 If ‖U0 −U∗‖F ≤ 0.01σr (U∗) and ‖U0
S −U∗

S‖F ≤ 0.99σr (U∗)
2
√
2r(n−r+1)

, then for the index

set S returned by the volume sampling subset selection algorithm performed on U0 after
O(nr3 log(1/δ′)) operations, we have σr (U∗

S) ≥ 0.99σr (U∗)
2
√
2r(n−r+1)

with probability of 1 − δ′.

Proof Form Theorem 3.11 in (Avron and Boutsidis 2013), we have σr (U0
S) ≥ σr (U0)√

2r(n−r+1)

with probability of 1 − δ′ after O(nr3 log(1/δ′)) operations. So we can obtain

σr (U0
S) − σr (U∗

S) ≤ ‖U0
S − U∗

S‖F ≤ 0.99σr (U∗)
2
√
2r(n − r + 1)

≤ σr (U0)

2
√
2r(n − r + 1)

≤ σr (U0
S)

2
,

which leads to

σr (U∗
S) ≥ σr (U0

S)

2
≥ σr (U0)

2
√
2r(n − r + 1)

≥ 0.99σr (U∗)
2
√
2r(n − r + 1)

,

where we use 0.99σr (U∗) ≤ σr (U0), which is proved in Lemma 9 in “Appendix A”. ��
In the column selection problem and its variants, existing algorithms (please see Avron

and Boutsidis 2013 and the references therein) can only find one index set. Our purpose is to
find both S1 and S2. We believe that this is a challenging target in the theoretical computer
science community. In our applications, since n � r , we may expect that the rank of U0

−S1

is not influenced after dropping r rows from U0. Thus, we can use the procedure discussed

above again to find S2 from U0
−S1

. From Lemma 3, we have σr (U0
S1

) ≥ σr (U0)√
2r(n−r+1)

and

σr (U0
S2

) ≥ σr (U0
−S1

)√
2r(n−2r+1)

. In the asymmetric case, this challenge disappears. Please see the
details in Sect. 7. We show in experiments that Algorithm 1 works well even for the simple
choice of S1 = {1, . . . , r} and S2 = {r + 1, . . . , 2r}. The discussion of finding S1 and S2 in
this section is only for the theoretical purpose.

3.2 Initialization

Our theorem ensures the accelerated linear convergence given that the initial point U0 ∈
ΩS2 is within the local neighborhood of the optimum solution, with radius C defined in
Theorem 1. We use the initialization strategy in Bhojanapalli et al. (2016a). Specifically,

let X0 = Project+
( −∇ f (0)

‖∇ f (0)−∇ f (11T )‖F
)

and V0V0T be the best rank-r approximation of X0,

where Project+ means the projection operator onto the semidefinite cone. Then, Bhojanapalli

et al. (2016a) proved ‖V0 − PX ∗(V0)‖F ≤ 4
√
2r‖U∗‖22
σr (U∗)

√

L2

μ2 − 2μ
L + 1. Let HQ = V0

S2
be

its polar decomposition and U0 = V0QT . Then, U0 belongs to ΩS2 . Although this strategy
does not produce an initial point close enough to the target, we show in experiments that our
method performs well in practice. It should be noted that for the gradient descent method to
solve the general problem (2), the initialization strategy in Bhojanapalli et al. (2016a) also
does not satisfy the requirement of the theorems in Bhojanapalli et al. (2016a) for the general
objective f .

4 Accelerated convergence rate analysis

In this section, we prove the local accelerated linear convergence rate of Algorithm 1.We first
consider the inner loop. It uses the classical accelerated gradient method to solve problem
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(8) with fixed index set S for finite K iterations. Thanks to the stronger curvature built in
Theorem 1 and the smoothness in Corollary 1, we can use the standard proof framework to
analyze the inner loop, e.g., Tseng (2008). Some slight modifications are needed since we
should ensure that all the iterates belong to the local neighborhood of U∗. We present the
result in the following lemma and give its proof sketch. For simplicity, we omit the outer
iteration number t .

Lemma 4 Let U∗ = ΩS ∩ X ∗ and assume that U0 ∈ ΩS with ε ≤ 0.99σr (U∗
S′) and ‖U0 −

U∗‖F ≤ C. Let η = 1
Lg
, where C is defined in Theorem 1 and Lg is defined in Corollary 1.

Then, we have σr (U
K+1
S′ ) ≥ ε, ‖UK+1 − U∗‖F ≤ C and

g(UK+1) − g(U∗) ≤ 2

(K + 1)2η

∥

∥U∗ − U0
∥

∥

2
F .

Proof We follow four step to prove the lemma.

Step 1 We can easily check that if U0 ∈ ΩS , then all the iterates of {Uk,Vk,Zk} belong to
ΩS by 0 ≤ θk ≤ 1, the convexity of ΩS and the convex combinations in (11) and (13).

Step 2Consider the k-th iteration. If ‖Vk −U∗‖F ≤ C , ‖Zk −U∗‖F ≤ C and ‖Uk −U∗‖F ≤
C , then Theorem 1 and Corollary 1 hold. From the standard analysis of the accelerated
gradient method for convex programming, e.g., Proposition 1 in Tseng (2008), we can have

1

θ2k

(

g(Uk+1) − g(U∗)
)

+ 1

2η
‖Zk+1 − U∗‖2F

≤ 1

θ2k−1

(

g(Uk) − g(U∗)
)

+ 1

2η
‖Zk − U∗‖2F .

(15)

Step 3 Since Theorem 1 and Corollary 1 hold only in a local neighbourhood of U∗, we need
to check that {Uk,Vk,Zk} belongs to this neighborhood for all the iterations, which can be
easily done via induction. In fact, from (15) and the convexity combinations in (11) and (13),
we know that if the following conditions hold,

‖Vk − U∗‖F ≤ C, ‖Uk − U∗‖F ≤ C, ‖Zk − U∗‖F ≤ C,

1

θ2k−1

(

g(Uk) − g(U∗)
)

+ 1

2η
‖Zk − U∗‖2F ≤ C2

2η
,

then we can have

‖Vk+1 − U∗‖F ≤ C, ‖Uk+1 − U∗‖F ≤ C, ‖Zk+1 − U∗‖F ≤ C,

1

θ2k

(

g(Uk+1) − g(U∗)
)

+ 1

2η
‖Zk+1 − U∗‖2F ≤ C2

2η
.

Step 4 From 1
θ−1

= 0 and Step 3, we know (15) holds for all the iterations. Thus, we have

g(UK+1) − g(U∗) ≤ θ2K

2η

∥

∥Z0 − U∗∥
∥

2
F ≤ 2

(K + 1)2η
‖Z0 − U∗‖2F ,

where we use θk ≤ 2
k+1 from 1−θk+1

θ2k+1
= 1

θ2k
and θ0 = 1.

On the other hand, from the perturbation theorem of singular values, we have

σr (U∗
S′) − σr (U

K+1
S′ ) ≤ ‖UK+1

S′ − U∗
S′ ‖F ≤ ‖UK+1 − U∗‖F ≤ C ≤ 0.01σr (U∗

S′),
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which leads to σr (U
K+1
S′ ) ≥ 0.99σr (U∗

S′) ≥ ε. ��
Now we consider the outer loop of Algorithm 1. Based on Lemma 4, the second order

growth property (5) and the perturbation theory of polar decomposition, we can establish the
exponentially decreasing of ‖Ut,0 − Ut,∗‖F in the following lemma.

Lemma 5 Let Ut,∗ = ΩS ∩ X ∗ and Ut+1,∗ = ΩS′ ∩ X ∗ and assume that Ut,0 ∈ ΩS with
ε ≤ 0.99σr (U

t,∗
S′ ) and ‖Ut,0 − Ut,∗‖F ≤ C. Let K + 1 = 28‖U∗‖2√

ημσr (U∗)min{σr (U∗
S1

),σr (U∗
S2

)} .

Then, we can have Ut+1,0 ∈ ΩS′ and

‖Ut+1,0 − Ut+1,∗‖F ≤ 1

4
‖Ut,0 − Ut,∗‖F . (16)

Proof We follow four steps to prove the lemma.

Step 1 From Lemma 4, we have σr (U
t,K+1
S′ ) ≥ ε, ‖Ut,K+1 − Ut,∗‖F ≤ C and

g(Ut,K+1) − g(Ut,∗) ≤ 2

(K + 1)2η
‖Ut,0 − Ut,∗‖2F . (17)

From Algorithm 1, we have σr (U
t+1,0
S′ ) = σr (U

t,K+1
S′ ). So Ut+1,0

S′ � εI and Ut+1,0 ∈ ΩS′ .

Step 2 From Lemma 11 in “Appendix B”, we have

g(Ut,K+1) − g(Ut,∗) ≥ 0.4μσ 2
r (Ut,∗)‖Ut,K+1 − Ût,∗‖2F , (18)

where Ût,∗ = PX ∗(Ut,K+1) = Ut,∗R and R = argminRRT =I‖Ut,∗R − Ut,K+1‖2F .
Step 3 Given (17) and (18), in order to prove (16), we only need to lower bound ‖Ut,K+1 −
Ût,∗‖F by ‖Ut+1,0 − Ut+1,∗‖F .

From Algorithm 1, we know that HQ = Ut,K+1
S′ is the unique polar decomposition of

Ut,K+1
S′ and Ut+1,0 = Ut,K+1QT . Let H∗Q∗ = Ût,∗

S′ be its unique polar decomposition and

Ut+1,∗ = Ût,∗(Q∗)T , then Ut+1,∗ ∈ ΩS′ ∩ X ∗. From the perturbation theorem of polar
decomposition in Lemma 1, we have

‖Q − Q∗‖F ≤ 2

σr (Û
t,∗
S′ )

‖Ut,K+1
S′ − Ût,∗

S′ ‖F .

Similar to (9), we have

‖Ut+1,0 − Ut+1,∗‖F
= ‖Ut,K+1QT − Ût,∗(Q∗)T ‖F
= ‖Ut,K+1QT − Ût,∗QT + Ût,∗QT − Ût,∗(Q∗)T ‖F
≤ ‖Ut,K+1 − Ût,∗‖F + ‖Ût,∗‖2‖Q − Q∗‖F
≤ 3‖Ut,∗‖2

σr (U
t,∗
S′ )

‖Ut,K+1 − Ût,∗‖F .

(19)

Step 4 Combining (17), (18) and (19), we have

‖Ut+1,0 − Ut+1,∗‖F
≤ 3‖Ut,∗‖2

σr (U
t,∗
S′ )

‖Ut,K+1 − Ût,∗‖F
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≤ 3‖Ut,∗‖2
σr (U

t,∗
S′ )

√
5√

ημ(K + 1)σr (Ut,∗)
‖Ut,0 − Ut,∗‖F

≤ 7‖Ut,∗‖2√
ημ(K + 1)σr (Ut,∗)min{σr (Ut,∗

S ), σr (U
t,∗
S′ )}‖U

t,0 − Ut,∗‖F .

From the setting of K + 1, we can have the conclusion. ��

From Lemma 5, we can give the accelerated convergence rate in the following theorem.
The proof is provided in “Appendix B”. We contain several assumptions in Theorem 3. For
the trajectories, we assume that we can find two disjoint sets S1 and S2 such that σr (U∗

S1
) and

σr (U∗
S2

) are as large as possible (please see Sect. 3.1 for the discussion). For the initialization,

we assume that we can find an initial point U0,0 close enough to U0,∗ (please see Sect. 3.2
for the discussion). Then, we can prove that when the outer iteration number t is odd, Ut,k

belongs to ΩS1 and the iterates converge to the optimum solution of ΩS1 ∩ X ∗. When t is
even, the iterates belong to ΩS2 and converge to another optimum solution of ΩS2 ∩ X ∗. In
our algorithm, we set η and K based on a reliable knowledge on ‖U∗‖2, σr (U∗) and σr (U∗

S).
As suggested by Bhojanapalli et al. (2016a), Park et al. (2018), they can be estimated by
‖U0‖2, σr (U0) and σr (U0

S)−up to constants−since U0 is close to U∗.

Theorem 3 Let Ut,∗ = ΩS1 ∩ X ∗ when t is odd and Ut,∗ = ΩS2 ∩ X ∗ when t is
even. Assume that U∗ ∈ X ∗ and U0,0 ∈ ΩS2 with ‖U0,0 − U0,∗‖F ≤ C and ε ≤
min{0.99σr (U∗

S1
), 0.99σr (U∗

S2
)}. Then, we have

‖Ut+1,0 − Ut+1,∗‖F ≤
(

1 − 1

6

√

μg

Lg

)(t+1)(K+1)

‖U0,0 − U∗‖F ,

and

g(Ut+1,0) − g(U∗) ≤ Lg

(

1 − 1

6

√

μg

Lg

)2(t+1)(K+1)

‖U0,0 − U∗‖2F ,

where μg = μσ 2
r (U∗)min{σ 2

r (U∗
S1

),σ 2
r (U∗

S2
)}

25‖U∗‖22
, Lg = 38L‖U∗‖22 + 2‖∇ f (X∗)‖2 and C =

μσ 2
r (U∗)min{σ 2

r (U∗
S1

),σ 2
r (U∗

S2
)}

100L‖U∗‖32
.

4.1 Comparison to the gradient descent

Bhojanapalli et al. (2016a) used the gradient descent to solve problem (2), which consists of
the following recursion:

Uk+1 = Uk − η∇g(Uk).

With the restricted strong convexity and smoothness of f (X), Bhojanapalli et al. (2016a)
proved the linear convergence of gradient descent in the form of

‖UN+1 − PX ∗(UN+1)‖2F

≤
(

1 − σ 2
r (U∗)
‖U∗‖22

μ

L + ‖∇ f (X∗)‖2/‖U∗‖22

)N

‖U0 − PX ∗(U0)‖2F .
(20)
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Table 1 Convergence rate comparisons of the gradient descent method (GD) and accelerated gradient descent
method (AGD)

Method Convex problem Nonconvex problem (2)

GD
(

L−μ
L+μ

)N
(Nesterov 2004)

(

1 − σ2
r (U∗)

‖U∗‖22
μ

L+‖∇ f (X∗)‖2/‖U∗‖22

)N
(Bhojanapalli et al. 2016a)

AGD
(

1 −
√

μ
L

)N
(Nesterov 2004)

(

1 − σr (U∗)min{σr (U∗
S1

),σr (U∗
S2

)}
‖U∗‖22

√

μ

L+‖∇ f (X∗)‖2/‖U∗‖22

)N

=
(

1 − σ2
r (U∗)

‖U∗‖22

√

μ

nr(L+‖∇ f (X∗)‖2/‖U∗‖22)

)N

As a comparison, from Theorem 3, our method converges linearly within the error

of

(

1 − σr (U∗)min{σr (U∗
S1

),σr (U∗
S2

)}
‖U∗‖22

√

μ

L+‖∇ f (X∗)‖2/‖U∗‖22

)N

, where N is the total number of

inner iterations. From Lemma 3, we know σr (U∗
S) ≈ 1√

rn
σr (U∗) in the worst case and

it is tight (Avron and Boutsidis 2013). Thus, our method has the convergence rate of
(

1 − σ 2
r (U∗)
‖U∗‖22

√

μ

nr(L+‖∇ f (X∗)‖2/‖U∗‖22)

)N

in the worst case. When the function f is ill-

conditioned, i.e., L
μ

≥ nr , our method outperforms the gradient descent. This phenomenon
is similar to the case observed in the stochastic optimization community: the non-accelerated
methods such as SDCA (Shalev-Shwartz and Zhang 2013), SVRG (Xiao and Zhang 2014)

and SAG (Schmidt et al. 2017) have the complexity of O
(

L
μ
log 1

ε

)

while the accelerated

methods such as Accelerated SDCA (Shalev-Shwartz and Zhang 2016), Catalyst (Lin et al.

2015) and Katyusha (Allen-Zhu 2017) have the complexity of O
(√

mL
μ

log 1
ε

)

, where m is

the sample size. The latter is tight when L
μ

≥ m for stochastic programming (Woodworth and
Srebro 2016). In matrix completion, the optimal sample complexity is O(rn log n) (Candès
and Recht 2009). It is unclear whether our convergence rate for problem (2) is tight or there
exists a faster method. We leave it as an open problem.

For better reference, we summarize the comparisons in Table 1. We can see that our

method has the same optimal dependence on
√

L
μ
as convex programming.

4.1.1 Dropping the dependence on n

Our convergence rate has an additional dependence on n compared with the gradient descent
method. It comes from σr (U∗

S), i.e., Lemma 2. In fact, we use a loose relaxation in the

last inequality of (9), i.e., 2‖U‖2
σr (US)

‖V̂S − US‖F ≤ 2‖U‖2
σr (US)

‖V̂ − U‖F . Since US ∈ R
r×r and

U ∈ R
n×r , a more suitable estimation should be

2‖U‖2
σr (US)

‖V̂S − US‖F ≈ 2‖U‖2
σr (US)

√

r

n
‖V̂ − U‖F ≈ 2r‖U‖2

σr (U)
‖V̂ − U‖F . (21)

In practice, (21) holds when the entries of Ut,k and Vt,k converge nearly equally fast to
those of Ut,∗, which may be expected in practice. Thus, under the condition of (21), our
convergence rate can be improved to
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(

1 − σ 2
r (U∗)

r‖U∗‖22

√

μ

L + ‖∇ f (X∗)‖2/‖U∗‖22

)N

.

We numerically verify (21) in Sect. 8.4.

4.1.2 Examples with ill-conditioned objective f

Although the condition number L
μ
approximate to 1 for some famous problems in machine

learning, e.g., matrix regression and matrix completion (Chen and Wainwright 2015), we
can still find many problems with ill-conditioned objective, especially in the computer vision
applications. We give the example of low rank representation (LRR) (Liu et al. 2013). The
LRR model is a famous model in computer vision. It can be formulated as

min
X

rank(X) s.t . DX = A,

where A is the observed data and D is a dictionary that linearly spans the data space. We can
reformulate the problem as follows:

min
X

‖DX − A‖2F s.t . rank(X) ≤ r .

We know L/μ = κ(DTD), i.e., the condition number of DTD. If we generate D ∈ R
n×n as

a random matrix with normal distribution, then E
[

logκ(D)
] ∼ logn as n → ∞ Edelman

(1988) and thus E
[

L
μ

]

∼ n2. We numerically verify on MATLAB that if n = 1000, then L
μ

is of the order 107, which is much larger than O(n).
Another example is the reduced rank logistic generalized linear model (RR-LGLM) Yee

and Hastie (2000), She (2013). Assume that A are all binary and denote D = [d1, . . . ,dn]T
and X = [x1, . . . , xn]. RR-LGLAM minimizes

min
X

−
n

∑

i=1

n
∑

j=1

(

Ai, jdTi x j − log
(

1 + exp(dTi x j )
))

s.t . rank(X) ≤ r .

The Hessian of the objective is diag(DTG1D, . . . ,DTGnD), whereG j is the n × n diagonal

matrix whose i-th component is
exp(dTi x j )

(1+exp(dTi x j ))
2 . Thus, L/μ is at least κ(DTD). As discussed

above, it may be much larger than n. Other similar examples can be found in Wagner and
Zuk (2015) and Liu and Li (2016).

5 Global convergence

In this section, we study the global convergence of Algorithm 1 without the assumption that
f (X) is restricted strongly convex. We allow the algorithm to start from any initializer. Since
we have no information about U∗ when U0 is far from U∗, we use an adaptive index sets
selection procedure for Algorithm 1. That is to say, after each inner loop, we check whether
σr (U

t,K+1
S′ ) ≥ ε holds. If not, we select the new index set S′ using the volume sampling

subset selection algorithm.
Wefirst consider the inner loop and establish Lemma 6.We drop the outer iteration number

t for simplicity and leave the proof in “Appendix C”.
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Lemma 6 Assume that {Uk,Vk} is bounded and U0 ∈ ΩS. Let η ≤ 1−β2
max

L̂(2βmax+1)+2γ
,

where L̂ = 2D + 4LM2, D = max{‖∇ f (Uk(Uk)T )‖2, ‖∇ f (Vk(Vk)T )‖2,∀k}, M =
max{‖Uk‖2, ‖Vk‖2,∀k}, βmax = max {βk, k = 0, . . . , K }, βk = θk (1−θk−1)

θk−1
and γ is a small

constant. Then, we have

g(UK+1) − g(U0) ≤ −
K
∑

k=0

γ ‖Uk+1 − Uk‖2F .

Nowweconsider the outer loop.As discussed in Sect. 3,when solving problem (8) directly,
we may get stuck at the boundary of the constraint. Thanks to the alternating constraint
strategy, we can cancel the negative influence of the constraint and establish the global
convergence to a critical point of problem (2), which is described in Theorem 4. It establishes

that after at most O
(

1
ε2

log 1
ε

)

operations, UT ,K+1 is an approximate zero gradient point in

the precision of ε. Briefly speaking, since the projection operation in (12) only influences the
rows indicated by the index set S, a simple calculation yields that ‖(∇g(Zt,K+1))−S1‖F ≤
O(ε) and ‖(∇g(Zt,K+1))−S2‖F ≤ O(ε). From S1 ∩ S2 = ∅, we have ‖∇g(Zt,K+1)‖F ≤
‖(∇g(Zt,K+1))−S1‖F + ‖(∇g(Zt,K+1))−S2‖F ≤ O(ε), which explains why the alternating
constraint strategy avoids the boundary of the constraint.

Theorem 4 Assume that {Ut,k,Vt,k} is bounded and σr (U
t,K+1
S′ ) ≥ ε,∀t . Let η be the one

defined in Lemma 6. Then, after at most T = 2 f (Ut,0(Ut,0)T )− f (X∗)
ε2

outer iterations, we have

∥

∥

∥∇g(UT ,K+1)

∥

∥

∥

F
≤ 35ε

ηθK

with probability of 1 − δ. The volume sampling subset selection algorithm needs

O
(

nr3 log
(

f (Ut,0(Ut,0)T )− f (X∗))
δε2

))

operations for each running.

Proof We follow three steps to prove the theorem.

Step 1 Firstly, we bound the difference of two consecutive variables, i.e., Ut,k+1 − Ut,k .
From Lemma 6 we have

γ

K
∑

k=0

‖Ut,k+1 − Ut,k‖2F ≤ g(Ut,0) − g(Ut,K+1).

Summing over t = 0, . . . , T yields

γ

T
∑

t=0

K
∑

k=0

‖Ut,k+1 − Ut,k‖2F ≤
T
∑

t=0

(

g(Ut,0) − g(Ut,K+1)
)

=
T
∑

t=0

(

g(Ut,0) − g(Ut+1,0)
) ≤ g(Ut,0) − f (U∗U∗T ).

So after T = 2 g(Ut,0)− f (X∗)
ε2

outer iterations, we must have

K
∑

k=0

‖Ut,k+1 − Ut,k‖2F +
K
∑

k=0

‖Ut+1,k+1 − Ut+1,k‖2F ≤ ε2 (22)
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for some t < T . Thus, we can bound ‖Ut ′,k+1 − Ut ′,k‖F by ε, where t ′ = t or t ′ =
t + 1. Moreover, from Lemma 13 in “Appendix C”, we can bound ‖Ut ′,k+1 − Zt ′,k+1‖F ,
‖Zt ′,k+1 − Zt ′,k‖F and ‖Zt ′,k+1 − Vt ′,k‖F by ε

θk
.

Step 2 Secondly, we bound parts of elements of the gradient, i.e.,
(∇g(Zt,K+1)

)

−S1 and
(∇g(Zt,K+1)

)

−S2 .
From the optimality condition of (12), we have

−θk

η

(

Zt ′,k+1 − Zt ′,k
)

+ ∇g(Zt ′,k+1) − ∇g(Vt ′,k) ∈ ∇g(Zt ′,k+1) + ∂ IΩS j
(Zt ′,k+1)

for j = 1 when t ′ = t and j = 2 when t ′ = t + 1. From Lemmas 10 and 13, we can easily
check that

∥

∥

∥

∥

−θk

η

(

Zt ′,k+1 − Zt ′,k
)

+ ∇g(Zt ′,k+1) − ∇g(Vt ′,k)

∥

∥

∥

∥

F
≤ 14ε

ηθk
.

Thus, we obtain

dist
(

0,∇g(Zt ′,k+1) + ∂ IΩS j
(Zt ′,k+1)

)

≤ 14ε

ηθk
,∀k = 0, . . . , K .

Since ∂ IΩS j
(Zt ′,k+1) has zero elements for the rows indicated by the indexes out of S j , we

can have
∥

∥

∥

∥

(

∇g(Zt,K+1)
)

−S1

∥

∥

∥

∥

F
≤ 14ε

ηθK
, (23)

and
∥

∥

∥

(∇g(Zt+1,1)
)

−S2

∥

∥

∥

F
≤ 14ε

ηθK
, (24)

On the other hand,
∥

∥

∥

(∇g(Zt+1,0)
)

−S2

∥

∥

∥

F
−

∥

∥

∥

(∇g(Zt+1,1)
)

−S2

∥

∥

∥

F

≤
∥

∥

∥

(∇g(Zt+1,0) − ∇g(Zt+1,1)
)

−S2

∥

∥

∥

F

≤ ∥

∥∇g(Zt+1,0) − ∇g(Zt+1,1)
∥

∥

F ≤ L̂‖Zt+1,0 − Zt+1,1‖F ≤ 5L̂ε

θK
,

(25)

where we use Lemma 13 in the last inequality. Combing (24) and (25), we can obtain
∥

∥

∥

(∇g(Zt+1,0)
)

−S2

∥

∥

∥

F
≤ 19ε

ηθK
.

Since Zt+1,0 = Zt,K+1QT for some orthogonal Q, we can have

19ε

ηθK
≥
∥

∥

∥

(∇g(Zt+1,0)
)

−S2

∥

∥

∥

F
=

∥

∥

∥

∥

(

∇g(Zt,K+1)QT
)

−S2

∥

∥

∥

∥

F

=
∥

∥

∥

∥

(

∇g(Zt,K+1)
)

−S2
QT

∥

∥

∥

∥

F
=

∥

∥

∥

∥

(

∇g(Zt,K+1)
)

−S2

∥

∥

∥

∥

F
.

(26)

Step 3We bound all the elements of the gradient. Recall that we require S1 ∩ S2 = ∅. Thus,
we have −S1 ∪ −S2 = {1, 2, . . . , n}. Then, from (23) and (26), we have

∥

∥

∥∇g(Zt,K+1)

∥

∥

∥

F
≤

∥

∥

∥

∥

(

∇g(Zt,K+1)
)

−S1

∥

∥

∥

∥

F
+

∥

∥

∥

∥

(

∇g(Zt,K+1)
)

−S2

∥

∥

∥

∥

F
≤ 33ε

ηθK
.
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At last, we can bound
∥

∥∇g(Ut,K+1)
∥

∥

F from Lemmas 10 and 13.
From the Algorithm, we know that the index set is selected at most T times. The volume

sampling subset selection algorithm succeeds with the probability of 1 − δ′. So the Algo-
rithm succeeds with the probability at least of 1 − T δ′ = 1 − δ. On the other hand, the
volume sampling subset selection algorithm needs O

(

nr3 log
( 1

δ′
)) = O

(

nr3 log
( T

δ

)) =
O

(

nr3 log
(

f (Ut,0(Ut,0)T )− f (U∗U∗T ))

δε2

))

operations. ��

6 Minimizing (2) directly without the constraint

Someone may doubt the necessity of the constraint in problem (8) and they wonder the
performance of the classical accelerated gradient method to minimize problem (2) directly.
In this case, the classical accelerated gradient method (Nesterov 1983, 1988; Tseng 2008)
becomes

Vk = (1 − θk)Uk + θkZk, (27)

Zk+1 = Zk − η∇g(Vk), (28)

Uk+1 = (1 − θk)Uk + θkZk+1, (29)

and it is equivalent to

Vk = Uk + βk(Uk − Uk−1), (30)

Uk+1 = Vk − η∇g(Vk). (31)

whereβk is defined in Lemma 6.Another choice is a constant ofβ < 1. Theorem5 establishes
the convergence rate for the above two recursions. We leave the proof in “Appendix D”.

Theorem 5 Assume that U∗ ∈ X ∗ and Vk ∈ R
n×r satisfy ‖Vk − PX ∗(Vk)‖F ≤

min
{

0.01σr (U∗), μσ 2
r (U∗)

6L‖U∗‖2
}

. Let η be the one in Lemma 6. Then, we can have

g(Uk+1) + ν‖Uk+1 − Uk‖2F − g(U∗)

≤ 1

1 + γ
5

η2μσ2r (U∗)
+ν

[

g(Uk) + ν‖Uk − Uk−1‖2F − g(U∗)
]

.

where γ = 1−β2
max

4η − βmax L̂
2 − L̂

4 > 0 and ν = 1+β2
max

4η − L̂
4 > 0.

Consider the case that βk is a constant. Then, we know that all of the constants γ, ν, L̂
and 1

η
are of the order O

(

L‖U∗‖22 + ‖∇ f (X∗)‖2
)

. Thus, the convergence rate of recursion
(30), (31) is in the form of

(

1 − μσ 2
r (U∗)

L‖U∗‖22 + ‖∇ f (X∗)‖2

)N

,

which is the same as that of the gradient descent method in (20). Thus, although the conver-
gence of the classical accelerated gradient method for problem (2) can be proved, it is not
easy to build the acceleration upon the gradient descent. As a comparison, Algorithm 1 has
a theoretical better dependence on the condition number of L

μ
. Thus, the reformulation of

problem (2) to a constrained one is necessary to prove acceleration.

123



Machine Learning (2020) 109:103–134 121

7 The asymmetric case

In this section, we consider the asymmetric case of problem (1):

min
˜X∈Rn×m

f (˜X), (32)

where there exists a minimizer ˜X∗ of rank-r . We follow Park et al. (2018) to assume
∇ f (˜X∗) = 0. In the asymmetric case, we can factorize ˜X = ˜U˜VT and reformulate problem
(32) as a similar problem to (2). Moreover, we follow Park et al. (2018), Wang et al. (2017)
to regularize the objective and force the solution pair (˜U,˜V) to be balanced. Otherwise, the
problem may be ill-conditioned since

( 1
δ
˜U
)

(δ˜V) is also a factorization of ˜U˜VT for any large
δ (Park et al. 2018). Specifically, we consider the following problem

min
˜U∈Rn×r ,˜V∈Rm×r

f (˜U˜VT ) + μ

8
‖˜UT

˜U − ˜VT
˜V‖2F . (33)

Let ˜X∗ = AΣBT be its SVD. Then, (˜U∗ = A
√

Σ,˜V∗ = B
√

Σ) is a minimizer of problem

(33). Define a stacked matrix U =
(

˜U
˜V

)

and let X = UUT =
(

˜U˜UT
˜U˜VT

˜V˜UT
˜V˜VT

)

. Then we can

write the objective in (33) in the form of f̂ (X), defined as f̂ (X) = f (˜U˜VT )+ μ
8 ‖˜U˜UT ‖2F +

μ
8 ‖˜V˜VT ‖2F − μ

4 ‖˜U˜VT ‖2F . Since f is restricted μ-strongly convex, we can easily check that

f̂ (X) is restricted μ
4 -strongly convex. On the other hand, we know that f̂ (X) is restricted

(

L + μ
2

)

-smooth. Applying the conclusions on the symmetric case to f̂ (X), we can apply
Algorithm 1 to the asymmetric case. From Theorem 3, we can get the convergence rate.
Moreover, since σi (X∗) = 2σi (˜X∗),

∇ f̂ (X∗) =
(

0 ∇ f (˜X∗)
∇ f (˜X∗)T 0

)

+ μ

4

(

˜U∗
−˜V∗

)

(

˜U∗T ,−˜V∗T )

=μ

4

(

˜U∗
−˜V∗

)

(

˜U∗T ,−˜V∗T )

and ‖∇ f̂ (X∗)‖2 = μ
4 ‖X∗‖2, where X∗ =

(

˜U∗
˜U∗T

˜U∗
˜V∗T

˜V∗
˜U∗T ˜V∗

˜V∗T

)

, we can simplify the worst

case convergence rate to
(

1 − σr (˜X∗)
‖˜X∗‖2

√

μ
(m+n)r L

)N
. As a comparison, the rate of the gradient

descent is
(

1 − σr (˜X∗)
‖˜X∗‖2

μ
L

)N
(Park et al. 2018).

In the asymmetric case, both ˜U∗ and ˜V∗ are of full rank. Otherwise, rank(˜X∗) < r .
Thus, we can select the index set S1 from ˜U0 and select S2 from ˜V0 with the guarantee of

σr (˜U0
S1

) ≥ σr (˜U0)√
2r(n−r+1)

and σr (˜V0
S2

) ≥ σr (˜V0)√
2r(m−r+1)

.

8 Experiments

In this section, we test the efficiency of the proposed accelerated gradient descent (AGD)
method on Matrix Completion, One Bit Matrix Completion and Matrix Regression.
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8.1 Matrix completion

In matrix completion (Rohde and Tsybakov 2011; Koltchinsii et al. 2011; Negahban and
Wainwright 2012), the goal is to recover the low rank matrix X∗ based on a set of randomly
observed entries O from X∗. The traditional matrix completion problem is to solve the
following model:

min
X

1

2

∑

(i, j)∈O
(Xi, j − X∗

i, j )
2, s.t . rank(X) ≤ r .

We consider the asymmetric case and solve the following model:

min
˜U∈Rn×r ,˜V∈Rm×r

1

2

∑

(i, j)∈O
((˜U˜VT )i, j − X∗

i, j )
2 + 1

200
‖˜UT

˜U − ˜VT
˜V‖2F .

We set r = 10 and test the algorithms on the Movielen-10M, Movielen-20M and Netflix
data sets. The corresponding observedmatrices are of size 69878×10677with o% = 1.34%,
138493 × 26744 with o% = 0.54% and 480189 × 17770 with o% = 1.18%, respectively,
where o% means the percentage of the observed entries. We compare AGD and AGD-adp
(AGD with adaptive index sets selection) with GD and several variants of the original

AGD:
1. AGD-original1: The classical AGD with recursions of (30), (31).
2. AGD-original1-r: AGD-original1 with restart.

3. AGD-original1-f: AGD-original1 with fixed βk of
√
L−√

μ√
L+√

μ
.

4. AGD-original2: The classical AGD with recursions of (27)–(29).
5. AGD-original2-r: AGD-original2 with restart.
6. AGD-original2-f: AGD-original2 with fixed θ .

Let XO be the observed data and AΣBT be its SVD. We initialize ˜U = A:,1:r
√

Σ1:r ,1:r
and ˜V = B:,1:r

√

Σ1:r ,1:r for all the compared methods. Since XO is sparse, it is efficient to
find the top r singular values and the corresponding singular vectors for large-scale matrices
(Larsen 1998). We tune the best step sizes of η = 5 × 10−5, 4 × 10−5 and 1 × 10−5 for
all the compared methods on the three data sets, respectively. For AGD, we set ε = 10−10,
S1 = {1 : r} and S2 = {r + 1 : 2r} for simplicity. We set K = 100 for AGD, AGD-adp
and the original AGD with restart. We run the compared methods 500 iterations for the
Movielen-10M and Movielen-20M data sets and 1000 iterations for the Netflix data set.

The top part of Fig. 1 plots the curves of the training RMSE v.s. time (seconds).We can see
that AGD is faster than GD. The performances of AGD, AGD-adp and the original AGD are
similar. In fact, inAGD-adp,we observe that the index sets do not change during the iterations.
Thus, the condition of σr (U

t,K+1
S′ ) ≥ ε ∀t in Theorem 4 holds. The original AGD performs

almost equally fast as our modified AGD in practice. However, it has an inferior convergence
rate theoretically. The bottom part of Fig. 1 plots the curves of the testing RMSE v.s. time.
Besides GD, we also compare AGD with LMaFit (Wen et al. 2012), Soft-ALS (Hastie et al.
2015) andMSS (Xu et al. 2017). They all solve a factorization based nonconvexmodel. From
Fig. 1 we can see that AGD achieves the lowest testing RMSE with the fastest speed.

8.2 One bit matrix completion

In one bit matrix completion (Davenport et al. 2014), the sign of a random subset from the
unknown low rank matrix X∗ is observed, instead of observing the actual entries. Given a
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(a) (b) (c)

Fig. 1 Top: Compare the training RMSE of GD, AGD, AGD-adp and several variants of the original AGD.
Bottom: Compare the testing RMSE of GD, AGD, LMaFit, Soft-ALS and MSS

probability density function f , e.g., the logistic function f (x) = ex
1+ex , we observe the sign

of x as +1 with probability f (x) and observe the sign as −1 with probability 1− f (x). The
training objective is to minimize the negative log-likelihood:

min
X

−
∑

(i, j)∈O
{1Yi, j=1log( f (Xi, j )) + 1Yi, j=−1log(1 − f (Xi, j ))}, s.t . rank(X) ≤ r .

In this section, we solve the following model:

min
˜U,˜V

−
∑

(i, j)∈O

{

1Yi, j=1log( f ((˜U˜VT )i, j )) + 1Yi, j=−1log(1 − f ((˜U˜VT )i, j ))
}

+ 1

200
‖˜UT

˜U − ˜VT
˜V‖2F .

We use the data sets of Movielen-10M, Movielen-20M and Netflix. We set Yi, j = 1 if the
(i, j)-th observation is larger than the average of all observations and Yi, j = −1, otherwise.
We set r = 5 and η = 0.001, 0.001, 0.0005 for all the compared methods on the three data
sets. The other experimental setting is the same asMatrix Completion.We run all themethods
for 500 iterations. Figure 2 plots the curves of the objective value v.s. time (seconds) and
we can see that AGD is also faster than GD. The performances of AGD, AGD-adp and the
original AGD are nearly the same.

8.3 Matrix regression

In matrix regression (Recht et al. 2010; Negahban and Wainwright 2011), the goal is to
estimate the unknown low rank matrix X∗ from a set of measurements y = A(X∗) + ε,
where A is a linear operator and ε is the noise. A reasonable estimation of X∗ is to solve the
following rank constrained problem:

min
X

f (X) = 1

2
‖A(X) − y‖2F , s.t . rank(X) ≤ r .
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(a) (b) (c)

Fig. 2 Compare AGD and AGD-adp with GD and several variants of the original AGD on the One Bit Matrix
Completion problem
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Fig. 3 Compare AGD with GD and several variants of the original AGD on the Matrix Regression problem

We consider the symmetric case of X and solve the following nonconvex model:

min
U∈Rn×r

f (U) = 1

2
‖A(UUT ) − y‖2F .

We follow (Bhojanapalli et al. 2016a) to use the permuted and sub-sampled noiselets (Waters
et al. 2011) for the linear operatorA andU∗ is generated from the normalGaussian distribution
without noise. We set r = 10 and test different n with n = 512, 1024 and 2048. We
fix the number of measurements to 4nr and follow (Bhojanapalli et al. 2016a) to use the

initializer from the eigenvalue decomposition of X0+(X0)T

2 for all the compared methods,

where X0 = Project+
( −∇ f (0)

‖∇ f (0)−∇ f (11T )‖F
)

. We set η = 5, 10 and 20 for all the compared

methods for n = 512, 1024 and 2048, respectively. In AGD, we set ε = 10−10, K = 10,
S1 = {1 : r} and S2 = {r + 1 : 2r}. Figure 3 plots the curves of the objective value v.s. time
(seconds). We run all the compared methods for 300 iterations. We can see that AGD and
the original AGD with restart perform almost equally fast. AGD runs faster than GD and the
original AGD without restart.

8.4 Verifying (21) in practice

In this section, we verify that the conditions of ‖Ût,k
S − U∗

S‖F ≤ c
√

r
n ‖Ût,k − U∗‖F and

‖V̂t,k
S − U∗

S‖F ≤ c
√

r
n ‖V̂t,k − U∗‖F in (21) hold in our experiments, where Ût,k = Ut,kR

withR = argminR∈Rr×r ,RRT =I‖Ut,kR−U∗‖2F and V̂t,k is defined similarly. We use the final
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Table 2 Testing the order of
‖Ût,k

S −U∗
S‖F

‖Ût,k−U∗‖F
and

‖V̂t,k
S −U∗

S‖F
‖V̂t,k−U∗‖F

Problem Data
‖Ût,k

S −U∗
S‖F

‖Ût,k−U∗‖F
‖V̂t,k

S −U∗
S‖F

‖V̂t,k−U∗‖F
√

r
n

Max Average Min Max Average Min

MR 512 0.1536 0.1521 0.1505 0.1536 0.1521 0.1505 0.1398

1024 0.0984 0.0939 0.0894 0.0984 0.0939 0.0894 0.0988

2048 0.0715 0.0681 0.0648 0.0715 0.0681 0.0648 0.0699

1bit-MC 512 0.0344 0.0086 0.0021 0.0344 0.0086 0.0017 0.0079

1024 0.0330 0.0077 0.0022 0.0329 0.0077 0.0020 0.0055

2048 0.0189 0.0103 0.0068 0.0151 0.0103 0.0062 0.0032

MC 512 0.0664 0.0280 0.0191 0.0664 0.0280 0.0191 0.0111

1024 0.0569 0.0230 0.0151 0.0569 0.0230 0.0139 0.0078

2048 0.0346 0.0191 0.0105 0.0346 0.0190 0.0104 0.0045

output UT ,K+1 as U∗. Table 2 lists the results. We can see that
‖Ût,k

S −U∗
S‖F

‖Ût,k−U∗‖F and
‖V̂t,k

S −U∗
S‖F

‖V̂t,k−U∗‖F
have the same order as

√

r
n .

9 Conclusions

In this paper, we study the factorization based low rank optimization. A linearly convergent
accelerated gradient method with alternating constraint is proposed with the optimal depen-
dence on the condition number of

√
L/μ as convex programming. As far as we know, this

is the first work with the provable optimal dependence on
√
L/μ for this kind of nonconvex

problems. Globally, the convergence to a critical point is proved.
There are two problems unsolved in this paper. 1. How to find two distinct sets S1 and S2

such that σr (US1) and σr (US2) are as large as possible? 2. How to find the initial point close
enough to the optimum solution for the general problems with large condition number?
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(grant no. 2015CB352502), National Natural Science Foundation (NSF) of China (grant nos. 61625301 and
61731018), Beijing Academy of Artificial Intelligence, Qualcomm and Microsoft Research Asia.

Appendix A

Lemma 7 For problem (1) and its minimizer X∗, we have

∇ f (X∗) � 0.

Proof Introduce the Lagrange function

L(X,Λ) = f (X) + 〈Λ,X〉 .

Since X∗ is the minimizer of problem (1), we know that there exists Λ∗ such that

∇ f (X∗) + Λ∗ = 0,
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〈

Λ∗,X∗〉 = 0, X∗ � 0, Λ∗ � 0.

Thus, we can have the conclusion. ��
Lemma 8 (Tu et al. 2016) For any U ∈ R

n×r ,V ∈ R
n×r , let R = argminRRT =I‖VR−U‖2F

and V̂ = VR. Then, we can have

‖VVT − UUT ‖2F ≥ (2
√
2 − 2)σ 2

r (U)‖V̂ − U‖2F .

Lemma 9 (Bhojanapalli et al. 2016a) Assume that ‖U−U∗‖F ≤ 0.01σr (U∗). Then, we can
have

0.99σr (U∗) ≤ σr (U) ≤ 1.01σr (U∗),
0.99‖U∗‖2 ≤ ‖U‖2 ≤ 1.01‖U∗‖2.

Lemma 10 For any U,V ∈ R
n×r , we have

‖UUT − VVT ‖F ≤ (‖U‖2 + ‖V‖2)‖U − V‖F , (34)

‖∇ f (VVT ) − ∇ f (U∗U∗T )‖2 ≤ L(‖V‖2 + ‖U∗‖2)‖V − U∗‖F , (35)

‖∇g(U) − ∇g(V)‖F ≤
(

L‖U‖2(‖U‖2 + ‖V‖2) + ‖∇ f (VVT )‖2
)

‖U − V‖F .

(36)

Proof For the first inequality, we have

‖UUT − VVT ‖F
≤ ‖UUT − UVT ‖F + ‖UVT − VVT ‖F
≤ ‖U‖2‖U − V‖F + ‖V‖2‖U − V‖F
= (‖U‖2 + ‖V‖2)‖U − V‖F .

For the second one, we have

‖∇ f (VVT ) − f (U∗U∗T )‖F ≤ L‖VVT − U∗U∗T ‖F
≤ L(‖V‖2 + ‖U∗‖2)‖V − U∗‖F ,

where we use (34). For the third one, we have

‖∇ f (UUT )U − ∇ f (VVT )V‖F
≤ ‖∇ f (UUT )U − ∇ f (VVT )U‖F + ‖∇ f (VVT )U − ∇ f (VVT )V‖F
≤ ‖U‖2‖∇ f (UUT ) − ∇ f (VVT )‖F + ‖∇ f (VVT )‖2‖U − V‖F
≤ L‖U‖2(‖U‖2 + ‖V‖2)‖U − V‖F + ‖∇ f (VVT )‖2‖U − V‖F ,

where we use the restricted smoothness of f and (34) in the last inequality. ��
Now we give the proof of Corollary 1.

Proof From Lemma 9 and the assumptions, we have

‖U − U∗‖F ≤ 0.01σr (U∗),
‖US − U∗

S‖F ≤ 0.01σr (U∗
S),

0.99σr (U∗) ≤ σr (U) ≤ 1.01σr (U∗),
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0.99‖U∗‖2 ≤ ‖U‖2 ≤ 1.01‖U∗‖2,
0.99σr (U∗

S) ≤ σr (US) ≤ 1.01σr (U∗
S),

0.99‖U∗
S‖2 ≤ ‖US‖2 ≤ 1.01‖U∗

S‖2,
where U can be Uk , Vk and Zk . From (35), we have

‖∇ f (Vk(Vk)T )‖2 ≤ ‖∇ f (Vk(Vk)T ) − ∇ f (X∗)‖2 + ‖∇ f (X∗)‖2
≤ 2.01L‖U∗‖2‖Vk − U∗‖F + ‖∇ f (X∗)‖2 ≤ 0.0201L‖U∗‖22 + ‖∇ f (X∗)‖2,

(37)

where we use ‖Vk − U∗‖F ≤ 0.01‖U∗‖2. On the other hand, let

Ẑk+1 = Zk − η

θk
∇g(Vk)

then we have Zk+1 = ProjectΩS
(Ẑk+1) and

‖Ẑk+1‖2 ≤ ‖Zk‖2 + 2η

θk
‖∇ f (Vk(Vk)T )‖2‖Vk‖2

≤ 1.01‖U∗‖2
(

1 + (0.0402L‖U∗‖22 + 2‖∇ f (X∗)‖2)η
θk

)

≤ 1.01‖U∗‖2
(

1 + 1

θk

)

,

where we use ‖Zk‖2 ≤ 1.01‖U∗‖2, ‖Vk‖2 ≤ 1.01‖U∗‖2, (37) and the setting of η. Let
Ω̂S = {US ∈ R

r×r : US � εI}, then
Project

Ω̂S
(Ẑk+1

S )

= argminU∈Ω̂S
‖U − Ẑk+1

S ‖2F

= argminU∈Ω̂S

∥

∥

∥

∥

∥

U − Ẑk+1
S + (Ẑk+1

S )T

2
− Ẑk+1

S − (Ẑk+1
S )T

2

∥

∥

∥

∥

∥

2

F

= argminU∈Ω̂S

∥

∥

∥

∥

∥

U − Ẑk+1
S + (Ẑk+1

S )T

2

∥

∥

∥

∥

∥

2

F

+
∥

∥

∥

∥

∥

Ẑk+1
S − (Ẑk+1

S )T

2

∥

∥

∥

∥

∥

2

F

,

where we use trace(AB) = 0 if A = AT and B = −BT , and U = UT from U ∈ Ω̂S . Let

UΣUT be the eigenvalue decomposition of
Ẑk+1
S +(Ẑk+1

S )T

2 and Σ̂i,i = max{ε,Σi,i }. Then
Project

Ω̂S
(Ẑk+1

S ) = UΣ̂UT and

‖Project
Ω̂S

(Ẑk+1
S )‖2 = max{ε,Σ1,1}

≤ max

{

ε,

∥

∥

∥

∥

∥

Ẑk+1
S + (Ẑk+1

S )T

2

∥

∥

∥

∥

∥

2

}

≤ max
{

ε, ‖Ẑk+1
S ‖2

}

,

where Σ1,1 is the largest eigenvalue of
Ẑk+1
S +(Ẑk+1

S )T

2 . Then, we have

‖Zk+1‖2 ≤ ‖Zk+1
S ‖2 + ‖Zk+1

−S ‖2
= ‖Project

Ω̂S
(Ẑk+1

S )‖2 + ‖Ẑk+1
−S ‖2

≤ max
{

ε, ‖Ẑk+1
S ‖2

}

+ ‖Ẑk+1
−S ‖2
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≤ max
{

ε, ‖Ẑk+1‖2
}

+ ‖Ẑk+1‖2
≤ 2max

{

ε, ‖Ẑk+1‖2
}

and

‖Uk+1‖2 ≤ (1 − θk)‖Uk‖2 + θk‖Zk+1‖2
≤ 1.01(1 − θk)‖U∗‖2 + 2θk max

{

ε, 1.01‖U∗‖2
(

1 + 1

θk

)}

≤ 1.01(1 − θk)‖U∗‖2 + max
{

2ε, 1.01‖U∗‖2 (2 + 2)
}

≤ 5.05‖U∗‖2,
where we use (13) in the first inequality, 0 ≤ θk ≤ 1 in the third and forth inequality and
‖U∗‖2 ≥ ‖U∗

S‖2 ≥ σr (U∗
S) ≥ ε in the last inequality. So

‖∇ f (Vk(Vk)T )‖2 + L(‖Vk‖2 + ‖Uk+1‖2)2
2

≤ 0.0201L‖U∗‖22 + ‖∇ f (X∗)‖2 + L(6.06‖U∗‖2)2
2

≤ Lg

2
.

From Theorem 2, we can have the conclusion. ��

Appendix B

Lemma 11 Assume that U∗ ∈ X ∗. Then, for any U, we have

g(U) − g(U∗) ≥ 0.4μσ 2
r (U∗)‖PX ∗(U) − U‖2F .

Proof From (10), we have

f (U∗U∗T ) − f (UUT )

≤ 2
〈

∇ f (U∗U∗T )U∗,U∗ − U
〉

−
〈

∇ f (U∗U∗T ), (U∗ − U)(U∗ − U)T
〉

−μ

2
‖U∗U∗T − UUT ‖2F .

Since U∗ is a minimizer of problem (2), we have ∇ f (U∗U∗T )U∗ = 0. From
〈∇ f (U∗U∗T ),

(U∗ − U)(U∗ − U)T
〉 ≥ 0 and Lemma 8, we can have the conclusion. ��

Now we give the proof of Theorem 3.

Proof From (16), we have

‖Ut+1,0 − Ut+1,∗‖F
≤

(

1

4

)t+1

‖U0,0 − U0,∗‖F

=
(

4
−

√
ημσr (U∗)min{σr (U∗

S1
),σr (U∗

S2
)}

28‖U∗‖2

)(t+1)(K+1)

‖U0,0 − U0,∗‖F

≤
(

1 −
√

ημσr (U∗)min{σr (U∗
S1

), σr (U∗
S2

)}
28‖U∗‖2

)(t+1)(K+1)

‖U0,0 − U0,∗‖F ,
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where we use 4−x ≤ e−x ≤ 1 − x .
From Theorem 2 and ∇g(Ut+1,∗) = 0, we have

g(Ut+1,0) − g(U∗) = g(Ut+1,0) − g(Ut+1,∗) ≤ Lg

2
‖Ut+1,0 − Ut+1,∗‖2F ,

which leads to the conclusion. ��

Appendix C

Proof of Lemma 6.

Proof We can easily check that βmax < 1 due to βk ≤ 1 − θk−1 and the fact that K a finite
constant. From Theorem 2, we have

g(Uk+1) ≤ g(Uk) +
〈

∇g(Uk),Uk+1 − Uk
〉

+ L̂

2
‖Uk+1 − Uk‖2F

= g(Uk) +
〈

∇g(Uk) − ∇g(Vk),Uk+1 − Uk
〉

+
〈

∇g(Vk),Uk+1 − Uk
〉

+ L̂

2
‖Uk+1 − Uk‖2F .

Applying the inequality of 〈u, v〉 ≤ ‖u‖‖v‖, Lemma 10 and the inequality of 2‖u‖‖v‖ ≤
α‖u‖2 + 1

α
‖v‖2 to the second term, we can have

g(Uk+1) ≤ g(Uk) + L̂

2

(

α‖Uk − Vk‖2F + 1

α
‖Uk+1 − Uk‖2F

)

+
〈

∇g(Vk),Uk+1 − Uk
〉

+ L̂

2
‖Uk+1 − Uk‖2F .

Applying Lemma 12 in “Appendix C” to bound the third term, we can have

g(Uk+1) − g(Uk)

≤ L̂α

2
‖Uk − Vk‖2F + L̂

2α
‖Uk+1 − Uk‖2F + 1

2η
‖Uk − Vk‖2F

− 1

2η
‖Uk − Uk+1‖2F + L̂

2
‖Uk+1 − Uk‖2F

= β2
k

(

1

2η
+ L̂α

2

)

‖Uk − Uk−1‖2F −
(

1

2η
− L̂

2
− L̂

2α

)

‖Uk+1 − Uk‖2F

(38)

for all k = 1, 2, . . . , K , where we use Vk − Uk = βk(Uk − Uk−1) proved in Lemma 12.
Specially, from U0 = V0 we have

g(U1) ≤ g(U0) −
(

1

2η
− L̂

2
− L̂

2α

)

‖U1 − U0‖2F . (39)

Summing (38) over k = 1, 2, . . . , K and (39), we have

g(UK+1) − g(U0)
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≤ −
K
∑

k=0

((

1

2η
− L̂

2
− L̂

2α

)

− β2
k+1

(

1

2η
+ L̂α

2

))

‖Uk+1 − Uk‖2F .

Letting α = 1/βmax, from the setting of η, we have the desired conclusion. ��
Lemma 12 For Algorithm 1, we have

〈

∇g(Vk),Uk+1 − Uk
〉

≤ 1

2η
‖Uk − Vk‖2F − 1

2η
‖Uk − Uk+1‖2F .

and

Vk = Uk + βk(Uk − Uk−1).

Proof From the optimality condition of (12), we have

0 ∈ θk

η

(

Zk+1 − Zk
)

+ ∇g(Vk) + ∂ IΩS (Z
k+1).

Since ΩS is a convex set, we have

IΩS (U) ≥ IΩS (Z
k+1) −

〈

θk

η

(

Zk+1 − Zk
)

+ ∇g(Vk),U − Zk+1
〉

,∀U ∈ ΩS

and

θk

η

〈

Zk+1 − Zk,U − Zk+1
〉

≥ −
〈

∇g(Vk),U − Zk+1
〉

,∀U ∈ ΩS . (40)

With some simple computations, we have
〈

∇g(Vk),Uk+1 − Uk
〉

= θk

〈

∇g(Vk),Zk+1 − Uk
〉

(from (13))

≤ θ2k

η

〈

Zk+1 − Zk,Uk − Zk+1
〉

(from (40))

= θk

η

〈

Zk+1 − Zk,Uk − Uk+1
〉

(from (13))

= 1

η

〈

Uk+1 − Vk,Uk − Uk+1
〉

(from (11) and (13))

= 1

2η

[

‖Uk − Vk‖2F − ‖Uk+1 − Vk‖2F − ‖Uk − Uk+1‖2F
]

≤ 1

2η
‖Uk − Vk‖2F − 1

2η
‖Uk − Uk+1‖2F .

From (11) and (13), we have

Vk = (1 − θk)Uk + θk

θk−1
(Uk − (1 − θk−1)Uk−1) = Uk + θk(1 − θk−1)

θk−1
(Uk − Uk−1),

which leads to the second conclusion. ��
Lemma 13 Under the assumptions in Theorem 4, if (22) holds, then we have ‖Ut ′,k+1 −
Zt ′,k+1‖F ≤ 2ε

θk
, ‖Zt ′,k+1 − Zt ′,k‖F ≤ 5ε

θk
and ‖Zt ′,k+1 − Vt ′,k‖F ≤ 9ε

θk
for t ′ = t or

t ′ = t + 1.
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Proof From (22), for t ′ = t or t + 1 and ∀k = 0, . . . , K , we can have the following easy-to-
check inequalities.

Ut ′,0 = Vt ′,0 = Zt ′,0, (41)

‖Ut ′,k+1 − Ut ′,k‖F ≤ ε, (42)

‖Zt ′,k+1 − Ut ′,k‖F ≤ ε

θk
, (from (13)) (43)

‖Ut ′,k+1 − Zt ′,k+1‖F ≤ ε + ε

θk
, (from (42) and (43)) (44)

‖Vt ′,k+1 − Ut ′,k+1‖F ≤ θk+1

(

ε + ε

θk

)

, (from (11) and (44)) (45)

‖Zt ′,k+1 − Zt ′,k‖F ≤ ε + ε

θk
+ ε + ε

θk−1
+ ε, (from (42) and (44)) (46)

‖Zt ′,k+1 − Vt ′,k‖F ≤ ε + ε

θk
+ (2 + θk)

(

ε + ε

θk−1

)

+ ε, ((46), (44), (45)) (47)

From θk ≤ θk−1 ≤ 1, we can have the conclusions. ��

Appendix D

Lemma 14 Assume that U∗ ∈ X ∗ and V ∈ R
n×r satisfy ‖V − PX ∗(V)‖F ≤

min
{

0.01σr (U∗), μσ 2
r (U∗)

6L‖U∗‖2
}

. Then, we have

‖V − PX ∗(V)‖F ≤ 5

μσ 2
r (U∗)

‖∇g(V)‖F .

Proof Similar to the proof of Theorem 1, we have

g(U∗) = g(PX ∗(V))

≥ g(V) + 〈∇g(V), PX ∗(V) − V〉 + 0.2μσ 2
r (U∗)‖V − PX ∗(V)‖2F ,

(48)

where we use Lemma 8 to bound ‖VVT − PX ∗(V)(PX ∗(V))T ‖2F . Since g(U∗) ≤ g(V), we
can have

0.2μσ 2
r (U∗)‖V − PX ∗(V)‖2F ≤ 〈∇g(V),V − PX ∗(V)〉

≤ ‖∇g(V)‖F‖V − PX ∗(V)‖F ,

which leads to the conclusion. ��
Lemma 15 Under the assumptions of Lemma 6, we have

g(Uk+1) + ν‖Uk+1 − Uk‖2F
≤ g(Uk) + ν‖Uk − Uk−1‖2F − γ

(

‖Uk − Uk−1‖2F + ‖Uk+1 − Uk‖2F
)

,

where γ = 1−β2
max

4η − βmax L̂
2 − L̂

4 > 0 and ν = 1+β2
max

4η − L̂
4 > 0.

Proof Letting α = 1
βmax

in (38), we can have the conclusion. ��
Now we give the proof of Theorem 5.
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Proof Denote Û∗ = PX ∗(Vk). From Theorem 2, we can have

g(Uk+1)

≤ g(Vk) +
〈

∇g(Vk),Uk+1 − Vk
〉

+ L̂

2
‖Uk+1 − Vk‖2F

= g(Vk) +
〈

∇g(Vk), Û∗ − Vk
〉

+
〈

∇g(Vk),Uk+1 − Û∗〉 + L̂

2
‖Uk+1 − Vk‖2F

≤ g(Û∗) +
〈

∇g(Vk),Uk+1 − Û∗〉 + L̂

2
‖Uk+1 − Vk‖2F

= g(Û∗) + 1

η

〈

Vk − Uk+1,Uk+1 − Û∗〉 + L̂

2
‖Uk+1 − Vk‖2F

≤ g(Û∗) + 1

η

〈

Vk − Uk+1,Vk − Û∗〉

≤ g(Û∗) + 1

η
‖Vk − Uk+1‖F‖Vk − Û∗‖F

≤ g(Û∗) + 5

ημσ 2
r (U∗)

‖Vk − Uk+1‖F‖∇g(Vk)‖F

= g(Û∗) + 5

η2μσ 2
r (U∗)

‖Uk+1 − Vk‖2F

= g(Û∗) + 5

η2μσ 2
r (U∗)

‖Uk+1 − Uk − βk(Uk − Uk−1)‖2F

≤ g(Û∗) + 5

η2μσ 2
r (U∗)

(

‖Uk+1 − Uk‖2F + ‖Uk − Uk−1‖2F
)

,

where we use (48) in the second inequality, (31) in the second equality, η < 1
L̂
in the third

inequality, Lemma 14 in the fifth inequality, (30) in the forth equality and βmax < 1 in the
last inequality. So we have

g(Uk+1) + ν‖Uk+1 − Uk‖2F − g(U∗)

≤
(

5

η2μσ 2
r (U∗)

+ ν

)

(

‖Uk+1 − Uk‖2F + ‖Uk − Uk−1‖2F
)

.
(49)

Combing Lemma 15 and (49), we can have the conclusion. ��
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