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Abstract
We consider a novel stochastic multi-armed bandit problem called good arm identification
(GAI), where a good arm is defined as an arm with expected reward greater than or equal
to a given threshold. GAI is a pure-exploration problem in which a single agent repeats a
process of outputting an arm as soon as it is identified as a good one before confirming
the other arms are actually not good. The objective of GAI is to minimize the number of
samples for each process. We find that GAI faces a new kind of dilemma, the exploration-
exploitation dilemma of confidence, which is different from the best arm identification. As a
result, an efficient design of algorithms for GAI is quite different from that for the best arm
identification. We derive a lower bound on the sample complexity of GAI that is tight up to
the logarithmic factor O(log 1

δ
) for acceptance error rate δ. We also develop an algorithm

whose sample complexity almost matches the lower bound. We also confirm experimentally
that our proposed algorithm outperforms naive algorithms in synthetic settings based on a
conventional bandit problem and clinical trial researches for rheumatoid arthritis.

Keywords Thresholding bandits · Multi-armed bandits · Reinforcement learning · Machine
learning

1 Introduction

The stochastic multi-armed bandit (MAB) problem is one of the most fundamental problems
for sequential decision-making under uncertainty (Sutton and Barto 1998). It is regarded as
a subfield of reinforcement learning in which an agent aims to acquire a policy to select
the best-rewarding action via trial and error. In the stochastic MAB problem, a single agent
repeatedly plays K slot machines called arms, where an arm generates a stochastic reward
when pulled. At each round t , the agent pulls arm i ∈ [K ] = {1, 2, . . . , K } and then observes
an i.i.d. reward Xi (t) from distribution νi with expectation μi ∈ [0, 1].
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One of the most classic MAB formulations is the cumulative regret minimization (Lai and
Robbins 1985; Auer et al. 2002), where the agent tries to maximize the cumulative reward
over the fixed number of trials. In this setting, the agent faces the exploration-exploitation
dilemma of reward, where the exploration means that the agent pulls seemingly suboptimal
arms to discover the arm whose expected reward is largest, and the exploitation indicates
that the agent pulls the currently best arm to increase the cumulative reward. The related
frameworks can be widely applied to various real-world problems such as clinical trials
(Grieve and Krams 2005; Genovese et al. 2013; Choy et al. 2013; Curtis et al. 2015; Liu et al.
2017) and personalized recommendations (Tang et al. 2015).

Another classic branch of the MAB problem is the best arm identification (Kaufmann
et al. 2016; Kalyanakrishnan et al. 2012), which is a pure-exploration problem that the agent
tries to identify the best arm a∗ = argmaxi∈{1,2,...,K }μi . So far, the conceptual idea of
the best arm identification has also been successfully applied to many kinds of real-world
problems (Koenig and Law 1985; Schmidt et al. 2006; Zhou et al. 2014; Jun et al. 2016).
Recently, the thresholding bandit problem was proposed (Locatelli et al. 2016) as a variant
of pure-explorationMAB formulations. In the thresholding bandit problem, the agent tries to
correctly partition all the K arms into good arms and bad arms, where a good arm is defined
as an arm whose expected reward is greater than or equal to a given threshold ξ > 0, and a
bad arm is defined as an arm whose expected reward is lower than the threshold ξ . However,
in practice, neither correctly partitioning all the K arms nor exactly identifying the very best
arm is always needed; rather, finding some of reasonably good arms as fast as possible is
often more useful.

Take a problemof personalized recommendations for example. The objective is to increase
our profit by sending direct emails recommending personalized items. In this problem, timely
recommendation is a key, because the best sellers in the past are not necessarily the best sellers
in the future. Now, there arise three troubles if this problem is formulated as the best arm
identification or the thresholding bandit problem. First, an inflation of exploration costs could
break out when the purchase probabilities of the multiple best sellers are much close with
each other. Although this trouble can be partly relaxed by the ε-best arm identification (Even-
Dar et al. 2006), in which an arm with expectation greater than or equal to maxi∈[K ] μi −
ε is also acceptable, the tolerance parameter ε has to be set very conservatively. Second,
recommending even the best sellers is not a good idea if the “best” purchase probability is
too small considering the advertising costs. Third, it needlessly increases exploration costs
to partition all items into good (or profitable) items and bad (or not profitable) items, if it
is enough to find only some good items to increase our profit. For the above reasons, the
formulation of the personalized recommendation problem as the best arm identification or
the thresholding bandit problem is not necessarily effective.

Similar troubles also occur in clinical trials for finding drugs (Kim et al. 2011) or for
finding appropriate doses of a drug (Grieve and Krams 2005; Genovese et al. 2013; Choy
et al. 2013; Curtis et al. 2015; Liu et al. 2017), where the number of patients is extremely
limited. In such a case, it is vitally important to find some drugs or doses with satisfactory
effect as fast as possible rather than either to classify all drugs or doses into satisfactory ones
and others or to identify the exactly best ones.

In this paper, we propose a new bandit framework named good arm identification (GAI),
where a good arm is defined as an arm whose expected reward is greater than or equal to
a given threshold. We formulate GAI as a pure-exploration problem in the fixed confidence
setting, which is often considered in conventional pure-exploration problems. In the fixed
confidence setting, an acceptance error rate δ is fixed in advance, andweminimize the number
of pulling arms needed to assure the correctness of the output with probability greater than
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or equal to 1 − δ. In GAI, a single agent repeats a process of outputting an arm as soon as
the agent identifies it as a good one with error probability at most δ. If it is found that there
remain no good arms, then the agent stops working. Although the agent does not face the
exploration-exploitation dilemma of reward since GAI is a pure-exploration problem, the
agent suffers from a new kind of dilemma, that is the exploration-exploitation dilemma of
confidence, where the exploration means that the agent pulls other arms than the currently
best one in order to discover the arm that the agent can identify as a good one with the least
arm-pulls, and the exploitation indicates that the agent pulls the currently best arm to increase
the confidence on the goodness.

To address the dilemma of confidence, we propose a Hybrid algorithm for the Dilemma
of Confidence (HDoC). The sampling strategy of HDoC is based on the upper confidence
bound (UCB) algorithm for the cumulative regret minimization (Auer et al. 2002), and the
identification rule (that is, the criterion to output an armas a good one) ofHDoC is based on the
lower confidence bound (LCB) for the best arm identification (Kalyanakrishnan et al. 2012).
In addition, we show that a lower bound on the sample complexity for GAI is �(λ log 1

δ
),

and HDoC can find λ good arms within O
(
λ log 1

δ
+ (K − λ) log log 1

δ

)
samples. This result

suggests that HDoC is superior to naive algorithms based on conventional pure-exploration
problems, because they require O

(
K log 1

δ

)
samples.

For the personalized recommendation problem, the GAI approach is more appropriate,
because the agent can quickly identify good items since the agent only focuses onfinding good
items rather than identifying the best item (as in the best arm identification) and bad items
(as in the thresholding bandit). Certainly, there exists a possibility that the recommended
item does not possess the best purchase probabilities. However, that does not necessarily
matter when customers’ interests and item repositories undergo frequent changes, because
identifying the exactly best item requires too many samples, and thus we cannot do that in
practice. In addition, thanks to the absolute comparison, not the relative comparison, the
inflation of exploration costs does not break out even if the purchase probabilities are close
to each other, and then the agent can refrain from recommending items when the purchase
probabilities are too small.

Our contributions can be summarized as four folds. First, we formulate a novel pure-
exploration problem called GAI and find there is a new kind of dilemma, that is, the
exploration-exploitation dilemma of confidence. Second, we derive a lower bound for GAI
in the fixed confidence setting. Third, we propose the HDoC algorithm and show that an
upper bound on the sample complexity of HDoC almost matches the lower bound. Fourth,
we experimentally demonstrate that HDoC outperforms two naive algorithms derived from
other pure exploration problems in synthetic settings based on the thresholding bandit prob-
lem (Locatelli et al. 2016) and the clinical trial researches for rheumatoid arthritis (Genovese
et al. 2013; Choy et al. 2013; Curtis et al. 2015; Liu et al. 2017).

2 Good arm identification

In this section, we first formulate GAI as a pure exploration problem in the fixed confidence
setting. Next, we derive a lower bound on the sample complexity for GAI. We give the
notation list in Table 1.
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Table 1 Notation list

K Number of arms

m Number of good arms (unknown)

m̂ Number of arms that the agent outputs before outputting ⊥ (NULL)

δ Acceptance error rate

ξ Threshold determining whether arms are good or not

a(t) Pulled arm at round t

μi Expected reward of arm i (unknown)

μ̂i (t) Empirical mean of the rewards of arm i by the end of round t

μ̂i,n Empirical mean of the rewards when arm i has been pulled n times

Ni (t) Number of samples of arm i which has been pulled by the end of round t

τλ Round that agent identifies λ good arms

τstop Round that agent outputs ⊥ (NULL)

μ̃i (t) = μ̂i (t) +
√

log t
2Ni (t)

μi (t) = μ̂i (t) +
√

log(4K N2
i (t)/δ)

2N2
i (t)

μi (t) = μ̂i (t) −
√

log(4K N2
i (t)/δ)

2Ni (t)
Δi = |μi − ξ |
Δi, j = μi − μ j

Δ = min

{
min
i∈[K ]Δi , min

λ∈[K−1]Δλ,λ+1/2

}

ni = 1
(Δi−ε)2

log

(
4
√
K/δ

(Δi−ε)2
log 5

√
K/δ

(Δi−ε)2

)

2.1 Problem formulation

Let K be the number of arms, ξ ∈ (0, 1) be a threshold and δ > 0 be an acceptance error
rate. Each arm i ∈ [K ] = {1, 2, . . . , K } is associated with Bernoulli distribution νi with
mean μi . The parameters {μi }Ki=1 are unknown to the agent. We define a good arm as an arm
whose expected reward is greater than or equal to threshold ξ . The number of good arms is
denoted by m which is unknown to the agent and, without loss of generality, we assume an
indexing of the arms such that

μ1 ≥ μ2 ≥ · · · ≥ μm ≥ ξ ≥ μm+1 ≥ · · · ≥ μK .

The agent is naturally unaware of this indexing. At each round t , the agent pulls an arm
a(t) ∈ [K ] and receives an i.i.d. reward drawn from distribution νa(t). The agent outputs an
arm when it is identified as a good one. The agent repeats this process until there remain no
good arms, where the stopping time is denoted by τstop. To be more precise, the agent outputs
â1, â2, . . . , âm̂ as good arms (which are different from each other) at rounds τ1, τ2, . . . , τm̂ ,
respectively, where m̂ is the number of arms that the agent outputs as good ones. The agent
stopsworking after outputting⊥ (NULL) at round τstop when the agent finds that there remain
no good arms. If all arms are identified as good ones, then the agent stops after outputting
âK and ⊥ together at the same round. For λ > m̂ we define τλ = τstop. Now, we introduce
the definitions of (λ, δ)-PAC (Probably Approximately Correct) and δ-PAC.
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Definition 1 ((λ, δ)-PAC) An algorithm satisfying the following conditions is called (λ, δ)-
PAC: if there are at least λ good arms then P[{m̂ < λ} ∪ ⋃

i∈{â1,â2,...,âλ}{μi < ξ}] ≤ δ and
if there are less than λ good arms then P[m̂ ≥ λ] ≤ δ.

Definition 2 (δ-PAC) An algorithm is called δ-PAC if the algorithm is (λ, δ)-PAC for all
λ ∈ [K ].

The agent aims to minimize {τ1, τ2, . . . , τstop} simultaneously by a δ-PAC algorithm. On
the other hand, theminimization of τstop corresponds to the thresholding bandit if we consider
the fixed confidence setting.

As we can easily see from these definitions, the condition for a (λ, δ)-PAC algorithm is
weaker than that for a δ-PAC algorithm. Thus, there is a possibility that we can construct a
good algorithm tominimize τλ by using a (λ, δ)-PACalgorithm rather than a δ-PACalgorithm
if a specific value of λ is considered. Nevertheless, we will show that the lower bound on τλ

for (λ, δ)-PAC algorithms can be achieved by a δ-PAC algorithm without knowledge of λ.

2.2 Lower bound on the sample complexity

We give a lower bound on the sample complexity for GAI. This proof is given in Sect. 5.

Theorem 1 Under any (λ, δ)-PAC algorithm, if there are m ≥ λ good arms, then

E[τλ] ≥
(

λ∑

i=1

1

d(μi , ξ)
log

1

2δ

)

− m

d(μλ, ξ)
, (1)

where d(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)) is the binary relative entropy,
with convention that d(0, 0) = d(1, 1) = 0.

This lower bound on the sample complexity for GAI is given in terms of top-λ expectations
{μi }λi=1. In the next section we confirm that this lower bound is tight up to the logarithmic
factor O(log 1

δ
).

3 Algorithms

In this section, we first consider naive algorithms based on other pure-exploration problems.
Next, we propose an algorithm for GAI and bound its sample complexity from above. Pseudo
codes of all the algorithms are described inAlgorithm1. These algorithms can be decomposed
into two components: a sampling strategy and an identification criterion. A sampling strategy
is a policy to decide which arm the agent pulls. An identification criterion is a policy for the
agent to decidewhether arms are good or bad. All the algorithms adopt the same identification
criterion of Lines 5–11 in Algorithm 1, which is based on the Lower Confidence Bound
(LCB) for the best arm identification Kalyanakrishnan et al. (2012). See Remark 3 at the end
of Sect. 3.2 for other choices of identification criteria.

3.1 Naive algorithms

We consider two naive algorithms: the Lower and Upper Confidence Bounds algorithm for
GAI (LUCB-G), which is based on the LUCB algorithm for the best arm identification
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(Kalyanakrishnan et al. 2012) and the Anytime Parameter-free Thresholding algorithm for
GAI (APT-G), which is based on the APT algorithm for the thresholding bandit problem
(Locatelli et al. 2016). In both algorithms, the sampling strategy is the same as the original
algorithms. These algorithms sample all arms at the same order O

(
log 1

δ

)
.

3.2 Proposed algorithm

We propose a Hybrid algorithm for the Dilemma of Confidence (HDoC). The sampling
strategy of HDoC is based on the UCB score of the cumulative regret minimization (Auer
et al. 2002). As we will see later, the algorithm stops within t = O(log 1

δ
) rounds with high

probability. Thus, the second term of the UCB score of HDoC in (2) is O
(√

log log(1/δ)
Ni (t)

)
,

whereas that of LUCB-G in (3) is O
(√

log(1/δ)
Ni (t)

)
. Therefore, the HDoC algorithm pulls

the currently best arm more frequently than LUCB-G, which means that HDoC puts more
emphasis on exploitation than exploration.

Algorithm 1 HDoC / LUCB-G / APT-G
1: Input: a threshold ξ , an acceptance error rate δ

and a set of arms A ← [K ].
2: Pull each arm once.
3: repeat
4: HDoC: Pull arm â∗ = arg maxi∈Aμ̃i (t) for

μ̃i (t) = μ̂i (t) +
√

log t

2Ni (t)
. (2)

LUCB-G: Pull arm â∗ = arg maxi∈Aμi (t) for

μi (t) = μ̂i (t) +
√
log(4K N2

i (t)/δ)

2Ni (t)
. (3)

.APT-G: Pull arm â∗ = arg mini∈Aβi (t) for

βi (t) = √
Ni (t) |ξ − μ̂i (t)| .

5: if μâ∗ (t) = μ̂â∗ (t) −
√

log(4K N2
â∗ (t)/δ)

2Nâ∗ (t) ≥ ξ then

6: Output â∗ as a good arm.
7: Delete â∗ fromA.
8: end if

9: if μâ∗ = μ̂â∗ (t) +
√

log(4K N2
â∗ (t)/δ)

2Nâ∗ (t) < ξ then

10: Delete â∗ fromA.
11: end if
12: until μi < ξ, ∀i ∈ A .

The correctness of the output of the HDoC algorithm can be verified by the following
theorem, whose proof is given in Appendix A.

123



Machine Learning (2019) 108:721–745 727

Theorem 2 The HDoC algorithm is δ-PAC.

This theorem means that the HDoC algorithm outputs a bad arm with probability at most δ.
Next we give an upper bound on the sample complexity of HDoC. We bound the sample

complexity in terms of Δi = |μi − ξ | and Δi, j = μi − μ j .

Theorem 3 Assume that Δλ,λ+1 > 0. Then, for any λ ≤ m and ε < min{mini∈[K ] Δi ,

Δλ,λ+1/2},

E[τλ] ≤
∑

i∈[λ]
ni +

∑

i∈[K ]\[λ]

(
log(K max j∈[K ] n j )

2(Δλ,i − 2ε)2
+ δni

)
+ K

2− ε2

(mini∈[K ] Δi−ε)2

2ε2

+
K
(
5 + log 1

2ε2

)

4ε2
,

E[τstop] ≤
∑

i∈[K ]
ni + K

2ε2
,

where

ni = 1

(Δi − ε)2
log

(
4
√
K/δ

(Δi − ε)2
log

5
√
K/δ

(Δi − ε)2

)
.

We prove this theorem in Appendix B. The following corollary is straightforward from
this theorem.

Corollary 1 Let Δ = min{mini∈[K ] Δi ,minλ∈[K−1] Δλ,λ+1/2}. Then, for any λ ≤ m,

lim sup
δ→0

E[τλ]
log(1/δ)

≤
∑

i∈[λ]

1

2Δ2
i

, (4)

lim sup
δ→0

E[τstop]
log(1/δ)

≤
∑

i∈[K ]

1

2Δ2
i

, (5)

E[τλ] = O

(
λ log 1

δ
+ (K − λ) log log 1

δ
+ K log K

Δ

Δ2

)

, (6)

E[τstop] = O

(
K log(1/δ) + K log(K/Δ)

Δ2

)
. (7)

Proof Since

lim sup
δ→0

ni
log(1/δ)

= 1

2(Δi − ε)2
,

we obtain (4) and (5) by letting ε ↓ 0. We obtain (6) and (7) by letting ε = Δ/2 in Theorem
3. �

Note that d(μi , ξ) ≥ 2(μi − ξ)2 = 2Δ2
i from Pinsker’s inequality and its coefficient two

cannot be improved. Thus we see that the upper bound in (4) in Corollary 1 is almost optimal
in view of the lower bound in Theorem 1 for sufficiently small δ. The authors believe that the
coefficient 2Δ2

i can be improved to d(μi , ξ) by the techniques in the KL-UCB (Kullback-
Leibler-UCB) algorithm (Cappé et al. 2012) and the Thompson sampling algorithm (Agrawal
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and Goyal 2012), although we use the sampling strategy based on the UCB algorithm (Auer
et al. 2002) for simplicity of the analysis. Eq. (6) means that the sample complexity ofE[τλ]
scales with O(λ log 1

δ
+ (K − λ) log log 1

δ
) for moderately small δ, which is contrasted with

the sample complexity O(K log 1
δ
) for the best arm identification (Kaufmann et al. 2016).

Furthermore, we see from (5) and (7) that theHDoC algorithm reproduces the optimal sample
complexity for the thresholding bandits (Locatelli et al. 2016).

Remark 1 We can easily extend GAI in a Bernoulli setting to GAI in a Gaussian setting
with known variance σ 2. In the proofs of Theorems 2 and 3, we used the assumption of the
Bernoulli reward only in Hoeffding’s inequality expressed as

P[μ̂i,n ≤ μi − ε] ≤ e−2nε2 ,

where μ̂i,n is the empirical mean of the rewards when arm i has been pulled n times. When
each reward follows aGaussian distributionwith variance σ 2, the distribution of the empirical
mean is evaluated as

P[μ̂i,n ≤ μi − ε] ≤ e− nε2

2σ2

by Cramér’s inequality. By this replacement the score of HDoC becomes μ̃i (t) = μ̂i (t) +
√

2σ 2 log t
Ni (t)

, the score of LUCB-G becomes μi (t) = μ̂i (t)+
√

2σ 2 log(4K N2
i (t)/δ)

Ni (t)
and the score

for identifying good arms becomesμ
i
(t) = μ̂i (t)−

√
2σ 2 log(4K N2

i (t)/δ)
Ni (t)

in a Gaussian setting

given variance σ 2, while the score of APT-G in a Gaussian setting is the same as the score
of APT-G in a Bernoulli setting.

Remark 2 Theorem 2 and the evalution of τstop in Theorem 3 do not depend on the sampling
strategy and only use the fact that the identification criterion is given by Lines 5–11 in
Algorithm 1. Thus, these results still hold even if we use the LUCB-G andAPT-G algorithms.

Remark 3 The evaluation of the error probability is based on the union bound over all rounds
t ∈ N, and the identification criterion in Lines 5–11 in Algorithm 1 is designed for this
evaluation. The use of the union bound does not worsen the asymptotic analysis for δ → 0
and we use this identification criterion to obtain a simple sample complexity bound. On the
other hand, it is known that the empirical performance can be considerably improved by, for
example, the bound based on the law of iterated logarithm in Jamieson et al. (2014) that can
avoid the union bound. We can also use an identification criterion based on such a bound
to improve empirical performance but this does not affect the result of relative comparison
since we use the same identification criterion between algorithms with different sampling
strategies.

3.3 Gap between lower and upper bounds

As we can see from Theorem 3 and its proof, an arm i > λ (that is, an arm other than top-λ
ones) is pulled roughly O(

log log(1/δ)
Δλ,i

) times until HDoC outputs λ good arms. On the other

hand, the lower bound in Theorem 1 only considers O(log 1
δ
) term and does not depend

on arms i > λ. Therefore, in the case where (K − λ) is very large compared to 1
δ
(more

specifically, in the case of K −λ = �
(

log(1/δ)
log log(1/δ)

)
), there still exists a gap between the lower
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bound in (1) and the upper bound in (6). Furthermore, the bound in (6) becomes meaningless
when Δλ,λ+1 ≈ 0. In fact, the O(log log 1

δ
) term for small Δλ,λ+1 is not negligible in some

cases as we will see experimentally in Sect. 4.
To fill this gap, it is necessary to consider the following difference between the cumulative

regret minimization andGAI. Let us consider the case of pulling two good armswith the same
expected rewards. In the cumulative regret minimization, which of these two arms is pulled
makes no difference in the reward and, for example, it suffices for pulling these two arms
alternately. On the other hand in GAI, the agent should output one of these good arms as fast
as possible; hence, it is desirable to pull one of these equivalent arms with a biased frequency.
However, the bias in the numbers of samples between seemingly equivalent arms increases
the risk to miss an actually better arm and this dilemma becomes a specific difficulty in GAI.
The proposed algorithm, HDoC, is not designed to cope with this difficulty and, improving
O(log log 1

δ
) term from this viewpoint is important future work.

4 Numerical experiments

In this section we experimentally compare the performance of HDoC with that of LUCB-G
and APT-G. In all experiments, each arm is pulled five times as burn-in and the results are
the averages over 1,000 independent runs.

4.1 Threshold settings

We consider three settings named Threshold 1–3, which are based on Experiment 1–2 in
Locatelli et al. (2016) and Experiment 4 in Mukherjee et al. (2017).

Threshold 1 (Three group setting) Ten Bernoulli arms with mean μ1:3 = 0.1, μ4:7 =
0.35 + 0.1 · (0 : 3) and μ8:10 = 0.9, and threshold ξ = 0.5, where (i : j) denotes {i, i +
1, i + 2, . . . , j − 1, j}.

Threshold 2 (Arithmetically progressive setting) Six Bernoulli arms with mean μ1:6 =
0.1 · (1 : 6) and threshold ξ = 0.35.

Threshold 3 (Close-to-threshold setting) Ten Bernoulli arms with mean μ1:3 = 0.55 and
μ4:10 = 0.45 and threshold ξ = 0.5.

4.2 Medical settings

We also consider two medical settings of dose-finding in clinical trials as GAI. In general,
the dose of a drug is quite important. Although high doses are usually more effective than
low doses, low doses can be effective than high doses because high doses often cause bad
side effects. Therefore, it is desirable to list various doses of a drug with satisfactory effect,
which can be formulated as GAI. We considered two instances of the dose-finding problem
based on Genovese et al. (2013) and Liu et al. (2017) as Medical 1–2, respectively, specified
as follows. In both settings, the threshold ξ corresponds to the satisfactory effect.

Medical 1 (Dose-finding of secukinumab for rheumatoid arthritis with satisfactory effect)
Five Bernoulli arms with mean μ1 = 0.36, μ2 = 0.34, μ3 = 0.469, μ4 = 0.465, μ5 =
0.537, and threshold ξ = 0.5.

Here, μ1, μ2, . . . , μ5 represent placebo, secukinumab 25mg, 75mg, 150mg and 300mg,
respectively. The expected reward indicates American College of Rheumatology 20%
Response (ACR20) at week 16 given in (Genovese et al. 2013, Table 2).
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Fig. 1 Number-of-round plots of HDoC, LUCB-G and the lower bound for log 1
δ

= 5, 10, . . . , 50 in Medical
2

Medical 2 (Dose-finding of GSK654321 for rheumatoid arthritis with satisfactory effect)
Seven Gaussian arms with mean μ1 = 0.5, μ2 = 0.7, μ3 = 1.6, μ4 = 1.8, μ5 = 1.2,
μ6 = 1.0 and μ7 = 0.6 with variance σ 2 = 1.44 and threshold ξ = 1.2.

Here, μ1, μ2, . . . , μ7 represent the positive effect1 of placebo, the dose of GSK654321
0.03, 0.3, 10, 20 and 30 mg/kg, respectively, where GSK654321 (Liu et al. 2017) is a devel-
oping drug with nonlinear dose-response, which is based on the real drug GSK315234 (Choy
et al. 2013). The expected reward indicates change from the baseline in Δ Disease Activity
Score 28 (DAS28) given in (Liu et al. 2017, Profile 4). The threshold ξ = 1.2 is based on
Curtis et al. (2015).

4.3 Results

First we compare HDoC, LUCB-G and APT-G for acceptance error rates δ = 0.05, 0.005.
Tables 2 and 3 show the averages and standard deviations of τ1, τ2, . . . , τλ and τstop for these
algorithms. In most settings, HDoC outperforms LUCB-G and APT-G. In particular, the
number of samples required for APT-G is very large compared to those required for HDoC
or LUCB-G, and the stopping times of all algorithms are close as discussed in Remark 2.
The results verify that HDoC addresses GAI more efficiently than LUCB-G or APT-G.

In Medical 2, we can easily see τ3, τstop = +∞ with high probability since the expected
reward μ5 is equal to the threshold ξ . Moreover, APT-G fails to work completely, since it
prefers to pull an arm whose expected reward is closest to the threshold ξ and selects the
arm with mean μ5 almost all the times. In fact, Tables 2, 3 show that APT-G cannot identify
even one good armwithin 100,000 arm-pulls whereas HDoC and LUCB-G can identify some
good arms reasonably even in such a case.

1 The original values (smaller than zero) in Liu et al. (2017) represent the negative effect and we inverted the
sign to denote the positive effect.
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As shown in Tables 2, 3, the performance of HDoC is almost the same as that of LUCB-G
in Medical 2, where the expectations of the arms are very close to each other, taking the
variance σ 2 into consideration. Figure 1 shows the result of an experiment to investigate
the behavior of HDoC and LUCB-G for Medical 2 in more detail, where τ1, τ2 are plotted
for (possibly unrealistically) small δ. Here “Lower bound” in the figure is the asymptotic

lower bound
∑λ

i=1
2σ 2 log(1/δ)

Δ2
i

of τλ for normal distributions (see Theorem 1 and Remark 1).

Since the result of HDoC asymptotically approaches to the lower bound, the O(log 1
δ
) term

of the sample complexity of HDoC is almost optimal, and the results show that the effect of
O(log log 1

δ
) term is not negligible for practical acceptance error rates such as δ = 0.05 and

0.005.

5 Proof of Theorem 1

In this section, we prove Theorem 1 based on the following proposition on the expected
number of samples to distinguish two sets of reward distributions.

Proposition 1 (Lemma 1 in Kaufmann et al. 2016) Let ν and ν′ be two bandit models with
K arms such that for all i , the distributions νi and ν′

i are mutually absolutely continuous.
For any almost-surely finite stopping time σ and event E ,

K∑

i=1

E[Ni (σ )]KL(νi , ν
′
i ) ≥ d(Pν[E],Pν′ [E]) ,

where KL(νi , ν j ) is the Kullback-Leibler divergence between distributions νi and ν j , and
d(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)) is the binary relative entropy, with
convention that d(0, 0) = d(1, 1) = 0.

Standard proofs on the best arm identification problems set E as an event such that P[E] ≥
1− δ under any δ-PAC algorithm. On the other hand, we leaveP[E] to range from 0 to 1 and
establish a lower bound as a minimization problem over P[E].
Proof of Theorem 1 Fix j ∈ [m] and consider a set of Bernoulli distributions {ν′

i }with expec-
tations {μ′

i } given by

μ′
i =

{
ξ − ε , if i = j,

μi , if i ∈ [K ] \ { j}.

Let E j = { j ∈ {âi }min{λ,m̂}
i=1 } and p j = P

[
j ∈ {âi }min{λ,m̂}

i=1

]
under {νi }. Since j is not a good

arm under {ν′
i }, we obtain from Proposition 1 that

E[N j ]d j ≥ d(p j ,min{δ, p j })
= max

{
p j log

1

min{δ, p j } − h(p j ) + (1 − p j ) log
1

1 − min{δ, p j } , 0
}

≥ max

{
p j log

1

min{δ, p j } − log 2, 0

}

≥ max

{
p j log

1

δ
− log 2, 0

}
,
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where we set di = d(μi , ξ − ε) and h(p) = −p log p − (1 − p) log(1 − p) ≤ log 2 is the
binary entropy function.

Here note that
m∑

i=1

pi = Eν

[
|[m] ∩ {âi }min{λ,m̂}

i=1 |
]

≥ λPν[{{âi }min{λ,m̂}
i=1 ⊂ [m]}, m̂ ≥ λ] ≥ λ(1 − δ)

under any (λ, δ)-PAC algorithm. Thus we have

K∑

i=1

E[Ni ] ≥
m∑

i=1

E[Ni ] ≥ C∗ ,

where C∗ is the optimal value of the optimization problem

(P1) minimize
m∑

i=1

1

di
max

{
pi log

1

δ
− log 2, 0

}
, subject to

m∑

i=1

pi ≥ λ(1 − δ) ,

0 ≤ pi ≤ 1 , ∀i ∈ [m],
which is equivalent to the linear programming problem

(P2) minimize
m∑

i=1

xi
di

, subject to
m∑

i=1

pi ≥ λ(1 − δ) ,

xi ≥ pi log
1

δ
− log 2 , ∀i ∈ [m] ,

0 ≤ pi ≤ 1 , xi ≥ 0 , ∀i ∈ [m] .
The dual problem of (P2) is given by

(P′
2) maximize λ(1 − δ)α − (log 2)

m∑

i=1

βi −
m∑

i=1

γi

subject to βi ≤ 1

di
, ∀i ∈ [m] ,

α − βi log
1

δ
− γi ≤ 0 , ∀i ∈ [m] ,

α, βi , γi ≥ 0 , ∀i ∈ [m] .
Here consider the feasible solution of (P′

2) given by

α = 1

dλ

log
1

δ
, βi =

{
1
di

, i ≤ λ,
1
dλ

, i > λ,
γi =

{(
1
dλ

− 1
di

)
log 1

δ
, i ≤ λ,

0, i > λ,

which attains the objective function

λ(1 − δ)

dλ

log
1

δ
− (log 2)

⎛

⎝
∑

i≤λ

1

di
+ m − λ

dλ

⎞

⎠−
∑

i≤λ

(
1

dλ

− 1

di

)
log

1

δ

=
∑

i≤λ

(
1

di
log

1

δ
− log 2

di

)
− λδ

dλ

log
1

δ
− (m − λ) log 2

dλ
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≥
∑

i≤λ

1

di
log

1

2δ
− λ

dλ

− (m − λ) log 2

dλ

by sup
0<δ≤1

δ log(1/δ) = 1/e < 1

≥
∑

i≤λ

1

di
log

1

2δ
− m

dλ

.

Since the objective function of a feasible solution for the dual problem (P′
2) of (P2) is always

smaller than the optimal value C∗ of (P2), we have
m∑

i=1

E[Ni ] ≥ C∗

≥
∑

i≤λ

1

di
log

1

2δ
− m

dλ

=
∑

i≤λ

1

d(μi , ξ − ε)
log

1

2δ
− m

d(μλ, ξ − ε)
.

We complete the proof by letting ε ↓ 0. �

6 Conclusion

In this paper, we considered and discussed a new multi-armed bandit problem called good
arm identification (GAI). The objective of GAI is to minimize not only the total number
of samples to identify all good arms but also the number of samples until identifying λ

good arms for each λ = 1, 2, . . ., where a good arm is an arm whose expected reward is
greater than or equal to threshold ξ . Even though GAI, which is a pure-exploration problem,
does not face the exploration-exploitation dilemma of reward, GAI encounters a new kind
of dilemma: the exploration-exploitation dilemma of confidence. We derived a lower bound
on the sample complexity of GAI, developed an efficient algorithm, HDoC, and then we
theoretically showed the sample complexity of HDoC almost matches the lower bound. We
also experimentally demonstrated that HDoC outperforms algorithms based on other pure-
exploration problems in the three settings based on the thresholding bandit and two settings
based on the dose-finding problem in the clinical trials.
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A Proof of Theorem 2

In this appendix we prove Theorem 2 based on the following lemma.

Lemma 1

P

[
⋃

n∈N
{μi,n < ξ}

]

≤ δ

K
, for any i ∈ [m] ,
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P

[
⋃

n∈N
{μ

i,n
≥ ξ}

]

≤ δ

K
, for any i ∈ [K ] \ [m] .

Proof For any i ∈ [m] ,

P

[
⋃

n∈N
{μi,n < ξ}

]

≤
∑

n∈N
P
[
μi,n < ξ

]

≤
∑

n∈N
P
[
μi,n < μi

]
by μi ≥ ξ for i ∈ [m]

≤
∑

n∈N
e
−2n

(√
log(4Kn2/δ)

2n

)2

by Hoeffding’s inequality

=
∑

n∈N

δ

4Kn2

= π2δ

24K
by

∑

n∈N

1

n2
= π2

6

≤ δ

K
.

For any i ∈ [K ] \ [m] , the same argument holds. �
Proof of Theorem 2 We show that HDoC is (λ, δ)-PAC for arbitrary λ ∈ [K ].

First we consider the case that there are more than or equal to λ good arms and show

P

⎡

⎣{m̂ < λ} ∪
⋃

i∈{â1,â2,...,âλ}
{μi < ξ}

⎤

⎦ ≤ δ. (8)

Since we are now considering the case m ≥ λ, the event {m̂ < λ} implies that at least one
good arm j ∈ [m] is regarded as a bad arm, that is, {μ

j,n
≤ ξ} occurs for some j ∈ [m] and

n ∈ N. Thus we have

P[m̂ < λ] ≤
∑

j∈[m]
P

[
⋃

n∈N
{μ j,n < ξ}

]

≤
∑

j∈[m]

δ

K
by Lemma 1

≤ mδ

K
. (9)

On the other hand, since the event
⋃

i∈{â1,â2,...,âλ}{μi < ξ} implies that j ∈ {âi }λi=1 for some
bad arm j ∈ [K ] \ [m], we have

P

⎡

⎣
⋃

i∈{â1,â2,...,âλ}
{μi < ξ}

⎤

⎦ ≤
∑

j∈[K ]\[m]
P[ j ∈ {âi }λi=1]

≤
∑

j∈[K ]\[m]
P

[
⋃

n∈N
{μ

j,n
≥ ξ}

]
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≤ (K − m)δ

K
(10)

in the same way as (9). We obtain (8) by putting (9) and (10) together.
Next we consider the case that the number of good arms m is less than λ and show

P[m̂ ≥ λ] ≤ δ . (11)

Since there are at most m < λ good arms, the event {m̂ ≥ λ} implies that j ∈ {âi }λi=1 for
some j ∈ [K ] \ [λ]. Thus, in the same way as (10) we have

P
[
m̂ ≥ λ

] ≤
∑

j∈[K ]\[m]
P[ j ∈ {âi }λi=1]

≤ (K − m)δ

K
≤ δ ,

which proves (11). �

B Proof of Theorem 3

In this appendix, we prove Theorem 3 based on the following lemmas, and we define T =
K maxi∈[K ]�ni + 2�.
Lemma 2 If n ≥ ni then

P[μ
i,n

≤ ξ ] ≤ e−2nε2 , ∀i ∈ [m] , (12)

P[μi,n ≥ ξ ] ≤ e−2nε2 , ∀i ∈ [K ] \ [m] . (13)

Proof We only show (12) for i ∈ [m]. Eq. (13) for i ∈ [K ] \ [m] is exactly the same. From
Hoeffding’s inequality it suffices to show that for n ≥ ni

√
log(4Kn2/δ)

2n
≤ μi − ξ − ε = Δi − ε .

We write c = (Δi − ε)2 ≤ 1 in the following for notational simplicity. Then we can express
n ≥ ni as

n = 1

c
log

4t
√
K/δ

c

for some t > log 5
√
K/δ
c > log(5

√
2) > 1. Then

√
log(4Kn2/δ)

2n
≤ Δi − ε ⇔ log(4Kn2/δ) ≤ 2cn

⇔ log
4K

(
log 4t

√
K/δ
c

)2

c2δ
≤ log

16t2K

c2δ

⇔ log
4t

√
K/δ

c
≤ 2t
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⇐ log
4
√
K/δ

c
+ t − 1 ≤ 2t by log x ≤ x − 1

⇔ log
4
√
K/δ

ec
≤ t . (14)

We obtain the lemma since t > log 5
√
K/δ
c satisfies (14). �

Lemma 3

E

[ ∞∑

n=1

1[μ
i,n

≤ ξ ]
]

≤ ni + 1

2ε2
, ∀i ∈ [m] ,

E

[ ∞∑

n=1

1[μi,n ≥ ξ ]
]

≤ ni + 1

2ε2
, ∀i ∈ [K ] \ [m] .

Proof If arm i ∈ [m] then

E

[ ∞∑

n=1

1[μ
i,n

≤ ξ ]
]

≤ E

⎡

⎣
ni∑

n=1

1 +
∞∑

n=ni+1

1[μ
i,n

≤ ξ ]
⎤

⎦

≤ ni +
∞∑

n=1

P[μ
i,n

< ξ ]

≤ ni +
∞∑

n=1

e−2nε2

≤ ni + 1

e2ε2 − 1

≤ ni + 1

2ε2
.

If arm i ∈ [K ] \ [m] then

E

[ ∞∑

n=1

1[μi,n ≥ ξ ]
]

≤ E

⎡

⎣
ni∑

n=1

1 +
∞∑

n=ni+1

1[μi,n ≥ ξ ]
⎤

⎦

≤ ni +
∞∑

n=1

P[μi,n ≥ ξ ]

≤ ni +
∞∑

n=1

e−2nε2

≤ ni + 1

e2ε2 − 1

≤ ni + 1

2ε2
.

�
Lemma 4

E

[ ∞∑

t=1

1[a(t) ∈ [λ]] +
T∑

t=1

1
[
a(t) /∈ [λ], μ̃∗(t) ≥ μλ − ε

]
]
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≤
∑

i∈[λ]
ni +

∑

i∈[K ]\[λ]

log T

2(Δλ,i − 2ε)2
+ K

2ε2
. (15)

Proof For the first term of (15) we have

∞∑

t=1

1[a(t) ∈ [λ]] ≤
∑

i∈[λ]

∞∑

t=1

1[a(t) = i]

=
∑

i∈[λ]

∞∑

t=1

∞∑

n=1

1[a(t) = i, Ni (t) = n] . (16)

Since the event {a(t) = i, Ni (t) = n} occurs for at most one t ∈ N we have

∞∑

t=1

∞∑

n=1

1[a(t) = i, Ni (t) = n] ≤
∞∑

n=1

1

[ ∞⋃

t=1

{a(t) = i, Ni (t) = n}
]

≤
∞∑

n=1

1
[
μ
i,n

≤ ξ
]

. (17)

By combining (16) and (17) with Lemma 3 we obtain

E

[ ∞∑

t=1

1[a(t) ∈ [λ]]
]

≤
∑

i∈[λ]

(
ni + 1

2ε2

)
. (18)

Next we consider the second term of (15). By using the same argument as (16) we obtain
for i /∈ [λ] that

T∑

t=1

1[a(t) = i, μ̃∗(t) ≥ μλ − ε]

≤
T∑

n=1

1

[
T⋃

t=1

{a(t) = i, μ̃∗(t) ≥ μλ − ε, Ni (t) = n}
]

≤
T∑

n=1

1

[
T⋃

t=1

{μ̃∗(t) = μ̃i (t) ≥ μλ − ε, Ni (t) = n}
]

≤
T∑

n=1

1

[

μ̂i,n +
√
log T

2n
≥ μλ − ε

]

≤
T∑

n=1

1

[

μ̂i,n +
√
log T

2n
≥ μi + Δλ,i − ε

]

≤
log T

2(Δλ,i−2ε)2∑

n=1

1 +
T∑

n= log T
2(Δλ,i−2ε)2

+1

1

[
μ̂i,n +

√√√√
log T

2 · log T
2(Δλ,i−2ε)2

≥ μi + Δλ,i − ε

]

= log T

2(Δλ,i − 2ε)2
+

T∑

n= log T
2(Δλ,i−2ε)2

+1

1
[
μ̂i,n ≥ μi + ε

]
.
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By taking the expectation we have

E

[
T∑

t=1

1[a(t) = i, μ̃∗(t) ≥ μλ − ε]
]

≤ log T

2(Δλ,i − 2ε)2
+

∞∑

n=1

P[μ̂i,n ≥ μi + ε]

≤ log T

2(Δλ,i − 2ε)2
+

∞∑

n=1

e−2nε2 (19)

= log T

2(Δλ,i − 2ε)2
+ 1

e2ε2 − 1

≤ log T

2(Δλ,i − 2ε)2
+ 1

2ε2
, (20)

where (19) follows from Hoeffding’s inequality. We complete the proof by combining (18)
with (20). �

Lemma 5

E

[ ∞∑

t=T+1

1[t ≤ τλ]

]

≤ K
2− ε2

(mini∈[K ] Δi−ε)2

2ε2
.

Proof Note that at the t-th round some arm is pulled at least �(t −1)/K � times. Furthermore,
Ni (t) ≥ �(t − 1)/K � implies that the arm i is still in A(t) when the arm i is pulled �(t −
1)/K � − 1 times. Thus we have

∞∑

t=T+1

1[t ≤ τλ] ≤
m∑

i=1

∞∑

t=T+1

1[Ni (t) ≥ �(t − 1)/K �, t ≤ τλ]

≤
m∑

i=1

∞∑

t=T+1

1
[
μ
i,�(t−1)/K �−1

≤ ξ
]
+

K∑

i=m+1

∞∑

t=T+1

1
[
μi,�(t−1)/K �−1≥ξ

]
.

(21)

From the definition of T = K maxi∈[K ]�ni + 2�, we have �(t − 1)/K � − 1 ≥ ni for all
i ∈ [K ]. Thus, the expectation of (21) is bounded by Lemma 2 as

E

[ ∞∑

t=T+1

1[t ≤ τλ]

]

≤ K
∞∑

t=T+1

e−2ε2(�(t−1)/K �−1)

≤ K
∞∑

t=T+1

e−2ε2((t−1)/K−1)

= K e−2ε2((T−1)/K−1)

e2ε2/K − 1
by
∑∞

i=1
e−ai = 1

ea − 1
f ora > 0

≤ K e−2ε2(maxi ni−2)

e2ε2/K − 1
by T = Kmaxi∈[K ]�ni + 2�

≤ K e
− 2ε2

(mini∈[K ] Δi−ε)2
(log

√
K )

e2ε2/K − 1
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= K
1− ε2(log

√
K )

(mini∈[K ] Δi−ε)2

e2ε2/K − 1

≤ K
2− ε2

(mini∈[K ] Δi−ε)2

2ε2
, (22)

where (22) follows from

ni ≥ 1

(Δi − ε)2
log
(
4
√
K log 5

√
K
)

≥ log
√
K

(Δi − ε)2
+ log

(
4 log 5

√
2
)

≥ log
√
K

(Δi − ε)2
+ 2.05 .

i

�

Lemma 6

E

[ ∞∑

t=1

1
[
a(t) /∈ [λ], t ≤ τλ, μ̃∗(t) < μλ − ε

]
]

≤ 3K

4ε2
+ K log 1

2ε2

4ε2
+ δ

∑

i∈[K ]\[λ]
ni

Proof The summation is decomposed into

∞∑

t=1

1
[
a(t) /∈ [λ], t ≤ τλ, μ̃∗(t) < μλ − ε

]

≤
T∑

t=1

1[μ̃∗(t) < μ∗ − ε, [λ] ∩ A(t) �= ∅] +
T∑

t=1

1[a(t) /∈ [λ], t ≤ τλ, [λ] ∩ A(t) = ∅] ,
(23)

where A(t) = {i ∈ [K ] : μ
i
(t) < ξ ≤ μi (t)}. From definition μ̃∗(t) = maxi∈A(t) μ̃i (t) the

first term of (23) is evaluated as

T∑

t=1

1
[
μ̃∗(t) < μλ − ε, [λ] ∩ A(t) �= ∅]

≤
∑

i∈[λ]

T∑

t=1

1
[
μ̃∗(t) < μλ − ε, i ∈ A(t)

]

≤
λ∑

i=1

T∑

t=1

1
[
μ̃i (t) < μλ − ε

]

≤
λ∑

i=1

T∑

n=1

T∑

t=1

1[μ̃i (t) < μλ − ε, Ni (t) = n]

≤
λ∑

i=1

T∑

n=1

T∑

t=1

1

[

μ̂i (t) +
√
log t

2n
< μλ − ε, Ni (t) = n

]
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≤
λ∑

i=1

T∑

n=1

T∑

t=1

1[t < e2n(μ̂i,n−μλ+ε)2 , μ̂i,n < μλ − ε]

≤
λ∑

i=1

T∑

n=1

e2n(μ̂i,n−μλ+ε)21[μ̂i,n < μλ − ε] . (24)

Let Pi,n(x) = P[μ̂i,n < x]. Then the expectation of the inner summation of (24) is bounded
by

T∑

n=1

E[e2n(μ̂i,n−μλ+ε)21[μ̂i,n < μλ − ε]]

≤
T∑

n=1

∫ μλ−ε

0
e2n(x−μλ+ε)2dPi,n(x)

=
T∑

n=1

(
[e2n(x−μλ+ε)2 Pi,n(x)]μλ−ε

0 − 4n
∫ μλ−ε

0
(x − μλ + ε)e2n(x−μλ+ε)2 Pi,n(x)dx

)

by integration by parts

≤
T∑

n=1

(
e−2nε2 − 4n

∫ μλ−ε

0
(x − μλ + ε)e2n(x−μλ+ε)2 e−2n(x−μλ)2dx

)

by Hoeffding’s inequality

=
T∑

n=1

(
e−2nε2 + 4ne−2nε2

∫ μλ−ε

0
(μλ − ε − x)e4nε(x−μλ+ε)dx

)

≤
∞∑

n=1

e−2nε2
(
1 + 1

4nε2

)

= 1

e2ε2 − 1
+ − log(1 − e−2ε2 )

4ε2
by − log(1 − x) =

∑∞
n=1

xn

n

= 1

e2ε2 − 1
+

2ε2 + log
(

1
e2ε2−1

)

4ε2

≤ 1

2ε2
+ 1

2
+ log 1

2ε2

4ε2

≤ 5

8ε2
+ log 1

2ε2

4ε2
by ε <

1

2
. (25)

Combining (24) with (25) we obtain

E

[
T∑

t=1

1[μ̃∗(t) < μ∗ − ε, [λ] ∩ A(t) �= ∅]
]

≤ 5K

8ε2
+ K log 1

2ε2

4ε2
. (26)

Next we bound the second term of (23). Note that {t ≤ τλ, [λ] ∩ A(t) = ∅} implies that
μ j (t

′) ≤ ξ occured for some j ∈ [λ] and t ′ < t . Thus we have
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T∑

t=1

1[a(t) /∈ [λ], t ≤ τλ, [λ] ∩ A(t) = ∅]

≤
∑

i∈[K ]\[λ]

T∑

t=1

1

⎡

⎣a(t) = i,
⋃

j∈[λ]

⋃

t ′<t

{μ j (t
′) ≤ ξ}

⎤

⎦

≤
∑

i∈[K ]\[λ]

T∑

t=1

1[a(t) = i]

⎛

⎝
∑

j∈[λ]
1

[
⋃

t

{μ j (t) ≤ ξ}
]⎞

⎠

≤
∑

i∈[K ]\[λ]

T∑

n=1

1
[
μi,n ≥ ξ

]
⎛

⎝
∑

j∈[λ]
1

[
⋃

t

{μ j (t) ≤ ξ}
]⎞

⎠ , (27)

where we used the same argument as (17) in (27). We can bound the expectation of (27) by
Lemma 1 and 3 as

T∑

t=1

1[a(t) /∈ [λ], t ≤ τλ, [λ] ∩ A(t) = ∅] ≤ λδ

K

⎛

⎝
∑

i∈[K ]\[λ]
ni + K − λ

2ε2

⎞

⎠

≤ δ
∑

i∈[K ]\[λ]
ni + K

8ε2
by λ(K − λ) ≤ K 2/4 .

(28)

We obtain the lemma by putting (23), (26) and (28) together. �

Proof of Theorem 3 The stopping time is decomposed into

τλ =
∞∑

t=1

1[a(t) ∈ [λ], t ≤ τλ] +
∞∑

t=1

1[a(t) /∈ [λ], t ≤ τλ]

≤
∞∑

t=1

1[a(t) ∈ [λ]]

+
∞∑

t=1

1
[
a(t) /∈ [λ], t ≤ τλ, μ̃∗(t) ≥ μλ − ε

] ∞∑

t=1

1
[
a(t) /∈ [λ], t ≤ τλ, μ̃∗(t) < μλ − ε

]

≤
∞∑

t=1

1[a(t) ∈ [λ]]

+
T∑

t=1

1
[
a(t) /∈ [λ], μ̃∗(t)≥ μλ − ε

]+
∞∑

t=T+1

1[t ≤ τλ]

+
∞∑

t=1

1
[
a(t) /∈ [λ], t ≤ τλ, μ̃∗(t) < μλ − ε

]
.

Lemmas 4–6 bound the expectation of these terms, which complete the proof. �
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