
Machine Learning (2019) 108:575–594
https://doi.org/10.1007/s10994-018-5729-x

Improved linear embeddings via Lagrange duality

Kshiteej Sheth1 · Dinesh Garg1 · Anirban Dasgupta1

Received: 10 December 2017 / Accepted: 12 June 2018 / Published online: 28 June 2018
© The Author(s) 2018

Abstract
Near isometric orthogonal embeddings to lower dimensions are a fundamental tool in data
science and machine learning. In this paper, we present the construction of such embeddings
thatminimizes themaximumdistortion for a given set of points.We formulate the problemas a
non convex constrained optimization problem.We first construct a primal relaxation and then
use the theory of Lagrange duality to create a dual relaxation. We also suggest a polynomial
time algorithm based on the theory of convex optimization to solve the dual relaxation
provably. We provide a theoretical upper bound on the approximation guarantees for our
algorithm, which depends only on the spectral properties of the dataset. We experimentally
demonstrate the superiority of our algorithm compared to baselines in terms of the scalability
and the ability to achieve lower distortion.

Keywords Near isometric embeddings · Dimensionality reduction · Convex and
non-convex optimization · Convex relaxation

1 Introduction

One of the fundamental tasks in data science, machine learning, and signal processing appli-
cations involving high dimensional data is to embed the data into lower dimensional spaces
while preserving pairwise distances (aka similarities) between the data points. Applications
include clustering (Badoiu et al. 2002), neighborhood preserving projections and hashing
(Indyk andMotwani 1998) among others. Such embeddings are calledNear isometric embed-
dings. Formally, given a set of data points {ui }ri=1 where ui ∈ R

d ∀ i ∈ [r], the goal is to
find a function f : Rd �→ R

k , where k << d , which satisfies,

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmaan..

B Kshiteej Sheth
kshiteej.sheth@iitgn.ac.in

Dinesh Garg
dgarg@iitgn.ac.in

Anirban Dasgupta
anirbandg@iitgn.ac.in

1 Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5729-x&domain=pdf

576 Machine Learning (2019) 108:575–594

1 − ε ≤ ‖ f (ui) − f (u j)‖22
‖ui − u j‖22

≤ 1 + ε ∀i, j ∈ [r] (1)

for a small enough ε. Intuitively, it is clear that there is a trade-off between the projected
dimension (k) and the maximum distortion (ε).

A widely celebrated result of Johnson and Lindenstrauss (1984) says that for a given set
of points, an appropriately scaled random linear transformation from R

d to R
k can achieve

a distortion of ε for k = O(log(r)/ε2), with high probability. Such data oblivious linear
embeddings are popularly known as JL embeddings. Further, it was shown by Alon (2003)
and Jayram and Woodruff (2013) that such bounds are tight. That means, there exists a set
of r points that necessarily require �(log(r)/ε2) dimensions in order to be embedded with
distortion at most ε. This finding leaves an open question of whether one can project the data
into an even lower dimensional space by exploiting the geometry of the dataset, while having
distortion no more than ε. Principal Component Analysis (PCA), while being the de-facto
data dependent method for constructing low-dimensional representations, minimizes only
the average distortion over the entire set of points. Individual data points can still have an
arbitrary distortion under PCA.

Motivated by these observations, we address the question of how to construct a data-
dependent orthogonal linear embedding with minimal distortion. An orthonormal linear
embedding corresponds to an orthogonal projection of Rd onto a k-dimensional subspace.
When the distortion is under some specified threshold, we call such an embedding a near
isometric orthogonal linear embedding. One immediate consequence of the orthogonal pro-
jection is that the upper bound of inequality (1) becomes trivially 1 (an orthogonal projection
can never increase the length of a vector).

Grant et al. (2013) formulated the same problem as a non-convex optimization problem
and suggested a semidefinite programming (SDP) based relaxation. Further, they proposed
two rounding schemes for the SDP solution to get an approximate solution of the original
problem. Their method does have a provable guarantee (either a O(k + 1) approximation,
or a bi-criteria one) but is computationally quite expensive as observed in our experimenta-
tions. This is potentially due to the large number of constraints in the corresponding SDP
relaxation. Luo et al. (2016) and Bah et al. (2014) also introduced heuristic algorithms for
learning near isometric linear embeddings which are not necessarily orthonormal. The main
issue with these algorithms is that the optimization algorithms proposed by them do not
come with any convergence or approximation guarantees. Luo et al. (2016) report that their
optimization algorithms might get stuck into local minima because their objective functions
are not convex. Still, we do compare our algorithm with these two algorithms. In summary,
the key contributions of this paper are as follows.

1. We take adifferent approach to approximately solve the non-convexoptimizationproblem
(referred to as the primal problem). In Sect. 2, we first develop a relaxation of this primal
problem (referred to as the relaxed primal problem) and then construct its Lagrangian
dual (referred to as the relaxed dual problem). Our relaxed primal problem remains a non-
convex problem but our relaxed dual becomes a convex problem. We solve the relaxed
dual problem by a projected gradient algorithm and find a dual optimal solution. We then
find the primal feasible solution corresponding to this dual optimal solution. We call this
overall procedure as LELD (Linear Embeddings via Lagrange Duality).

2. In Sect. 2.2, we show that the solution of the relaxed primal problem corresponding to
the relaxed dual optimal solution is indeed a feasible and an approximate solution of the
original primal problem.

123

Machine Learning (2019) 108:575–594 577

3. In Sect. 2.3, we prove a theoretical upper bound on the ratio of distortion achieved by
LELD to the optimal distortion. This bound depends on the spectral properties of the
given dataset. Using this theoretical bound, we argue that for a well-behaved dataset, our
distortion always remains within 2 times the optimal distortion. Also, our distortion starts
approaching close to the optimal distortion as the rank of the dataset starts increasing
from 2. Formally, we prove the following key theorem (referred to as Theorem 1) in
Sect. 2.3.
Theorem 1

1 ≤ εALG

p∗ ≤ 1

1 − σ 2
1
n

=
(
1 − σ 2

1

σ 2
1 + σ 2

2 + . . . + σ 2
l

)−1

≤ 1

1 − κ2

l

where, εALG is the distortion achieved by LELD, p∗ is the optimal distortion, n = (r
2

)
where r is the number of data-points, l is the rank of the data matrix, σ1 ≥ σ2 ≥ . . . ≥
σl > 0 are the non-zero singular values of the data matrix, and κ = σ1/σl .

4. Our relaxed dual problem has fewer constraints (fewer than the primal), which makes
solving the dual relaxation computationally efficient.

5. We experimentally verify that LELD takes less time and achieves lower distortion com-
pared to Grant et al. (2013), Luo et al. (2016) and Bah et al. (2014) in most cases.

2 Duality for linear embeddings

Let {ui }ri=1 be a given dataset where ui ∈ R
d ∀ i ∈ [r]. Asmentioned in the previous section,

our goal is to orthogonally project (aka embed) these data into a subspace of dimension k.
Because the projection is linear aswell as orthogonal, the required condition for near isometric
embedding becomes

1 − ε ≤ ‖P(ui − u j)‖22
‖ui − u j‖22

∀i < j ∈ [r]

where, P is the required linear map. In light of this inequality, we do the following—compute
the normalized pairwise differences given by

(
ui − u j

)
/‖(ui − u j

)‖ for every pair (i, j),
where i < j; (i, j) ∈ [r], and then orthogonally project them to preserve their squared
lengths. This way, we get

(r
2

)
vectors each being unit length. If we let n = (r

2

)
then, we can

denote such vectors by x1, x2, . . . , xn and our goal becomes to orthogonally project them
so as to preserve their squared lengths. For this, we let v1
= 0, v2
= 0, . . . , vk
= 0 be some
orthogonal basis vectors of a k-dimensional subspace Sk of Rd . Further, let V be a d × k
matrix whose columns are given by the orthogonal basis vectors v1, v2, . . . , vk . Let x̃i ∈ Sk
be the vector obtained by projecting xi orthogonally into the space Sk . Then, reducing the
ε in (1) is equivalent to minimizing a real number ε such that the distortion of each of the
xi ’s after projection is less than ε. Here, the distortion is given by the squared length of the
residual vector (xi − x̃i), which would be equal to 1 − ‖x̃i‖2. Formally, it can be stated as
the following optimization problem which we refer to as the Primal problem.

123

578 Machine Learning (2019) 108:575–594

Minimize
v1
=0,...,vk
=0,ε

ε

subject to 1 − ‖V�xi‖22 ≤ ε, ∀i = 1, . . . , n

v�
j v j = 1, ∀ j = 1, . . . , k

v�
j vm = 0, ∀ j
= m (Primal)

The last two constraints force the matrix V to be orthonormal. The first constraint, on the
other hand, identifies the vector for which 1 − ‖x̃i‖2 is maximum. The objective function
tries to minimize 1 − ‖x̃i‖2 for such a vector. Observe that whenever V is an orthogonal
matrix, we have ‖x̃i‖2 = ‖V�xi‖2 ≤ 1 for each i = 1, . . . , n. Let p∗ be the optimal value
of the above problem. It is easy to verify that 0 ≤ p∗ ≤ 1.

2.1 Lagrangian dual

The (Primal) problem is a non-convex optimization problem as the feasible region forms a
non-convex set. Thus, we cannot hope to solve this problem efficiently and hence we aim for
approximate solutions.

For this, we momentarily ignore the last equality constraint in the (Primal) problem,
which enforces the orthogonality of the v j ’s, and consider the following Relaxed Primal
problem. We will later prove that in spite of this relaxation, we will reach a solution in which
the vectors are indeed orthogonal, thereby satisfying the constraints of the (Primal) problem
and justifying the effectiveness of our approach.

Minimize
v1
=0,...,vk
=0,ε

ε

subject to 1 − ‖V�xi‖22 ≤ ε, ∀i = 1, . . . , n

v�
j v j = 1, ∀ j = 1, . . . , k (Relaxed Primal)

We now state a lemma that will be used later, we omit the proof as it is fairly straightforward.

Lemma 1 Let p̂∗ be the optimal value of the (Relaxed Primal). Then, the following holds.

(A) p̂∗ ≤ p∗ ≤ 1.
(B) If an optimal solution of the (Relaxed Primal) problem satisfies the constraints of the

(Primal) problem then that solutionmust be anoptimal solution for the (Primal) problem.

Note, the constraint v�
j v j = 1 forces both Primal as well as (Relaxed Primal) problems

to be non-convex. The reason being following—any norm is a convex function and the level
set of a norm is a non-convex set. This motivates us to work with the Lagrangian dual of the
(Relaxed Primal) and develop a strategy to get an approximate solution of the (Primal).

2.2 Dual of relaxed primal

The Lagrangian dual for the (Relaxed Primal) will always be a convex program irrespective of
the non-convexity of the (Relaxed Primal). For this, we write down the Lagrangian function

123

Machine Learning (2019) 108:575–594 579

of the (Relaxed Primal) as follows:

L(v1, . . . , vk, ε, λ1, . . . , λn, μ1, . . . , μk)

= ε +
∑n

i=1
λi

(
1 − ‖V�xi‖22 − ε

)
+

∑k

j=1
μ j

(
v�
j v j − 1

)
(2)

Observe that v1, . . . , vk, ε are the primal variables and λ1, . . . , λn, μ1, . . . , μk are the dual
variables.

The dual is given by, g(λ,μ) = argmin
v1
=,...,vk
=0,ε

L(v1, . . . , vk, ε, λ1, . . . λn, μ1, . . . , μk).

For any set of {λi , λi ≥ 0}, we define M = ∑n
i=1 λi xi x�

i = X�diag(λ1, . . . , λn)X. The
following lemma characterizes the dual solution in terms of this matrix M .

Lemma 2 Define M = ∑n
i=1 λi xi x�

i = X�diag(λ1, . . . , λn)X. Then for any given values
of dual variables (λ1, . . . , λn, μ1, . . . , μk), λi ≥ 0, we have

g(λ,μ) =

⎧⎪⎨
⎪⎩
1 − ∑k

j=1 μ j : If ∑n
i=1 λi = 1 and {μ j }kj=1

are the top-k eigenvalues of M

−∞ or undefined : Otherwise
And, the top-k eigenvectors of the matrix M are the minimizers of Lagrangian function.

Proof In order to get the dual function, we set the gradient of Lagrangian function (with
respect to primal variables) to be zero. This gives us the following conditions:

∂L/∂v j = 2μ jv j − 2
(∑n

i=1
λi xi x�

i

)
v j = 0 (3)

∂L/∂ε = 1 −
∑n

i=1
λi = 0 (4)

Using the definition of matrix M , we first rewrite the expression for Lagrangian as follows.

L = ε
(
1 −

∑n

i=1
λi

)
+

∑n

i=1
λi −

∑k

j=1
μ j

−
∑k

j=1
v�
j

(
M − μ j I

)
v j (5)

The minimum value of the Lagrangian has to satisfy the first-order conditions that we get by
setting the gradient of Lagrangian function (with respect to the primal variables) to be zero.
This gives us the following conditions.

∂L/∂v j = 2μ jv j − 2
(∑n

i=1
λi xi x�

i

)
v j = 0 (6)

∂L/∂ε = 1 −
∑n

i=1
λi = 0 (7)

By looking at these conditions, the following claims follow.

1. From Eq. (7),
∑n

i=1 λi = 1. An alternative argument could be as follows: since ε is
unconstrained, if

∑n
i=1 λi
= 1, then it is possible to set ε such that g(λ,μ) = −∞.

2. Equation (6) implies that for achieving minimum, the primal variables v j must be an
eigenvector of the matrix M = ∑n

i=1 λi xi x�
i whose corresponding eigenvalue is the

dual variable μ j .
We argue that setting μ j to be any value other than the top- j th eigenvalue of the M leads
to g(λ,μ) being either −∞ or undefined. For this, note that under the condition given

123

580 Machine Learning (2019) 108:575–594

by (7), the Lagrangian becomes

1 −
∑k

j=1
μ j −

∑k

j=1
v�
j

(
M − μ j I

)
v j

Without loss of generality, we can assume that μ1 ≥ μ2 ≥ . . . ≥ μk . Suppose γ1 ≥
γ2 ≥ . . . ≥ γd are the eigenvalues of the the matrix M . For contradiction assume that μ1

is not an eigenvalue of the matrix M . Now, let us consider two different cases.

(a) Case of [γ 1 > μ1]: In this case, we can assign v1 to be the scaled eigenvector cor-
responding to the eigenvalue γ1 and that would drive the Lagrangian value towards
−∞. Therefore, in order to avoid the −∞ value for the dual function, we must have
μ1 ≥ γ1.

(b) Case of [μ1 > γ 1]: Under this scenario, we again consider two subcases:
i. Subcase of [γ 1 > μk]: In such a case, by the previous argument, we can again

drive the Lagrangian to −∞ by assigning vk appropriately.
ii. Subcase of [μk > γ 1]: For this subcase, note that matrix

(
M − μ j I

)
would be

a negative definite matrix for each j ∈ [k] and hence v j = 0, ∀ j ∈ [k] will
minimize the Lagrangian. However, all v j cannot simultaneously be zero as per
the constraint. Hence, in this case, the minimum is not defined within the (open)
set of {v j , ∀ j v j
= 0}.

Thus, we can conclude that μ1 should be equal to γ1 in order to make sure that the dual
function is well defined and has a finite value. This also means that v1 has to be the top
eigenvector of M . We can inductively apply the same argument for the other μ j also to
get the desired claim.

�
Lemma 2 suggests that the vectors v1
= 0, . . . , vk
= 0 which minimize the Lagrangian

must be the top-k eigenvectors of the matrix M and in such a case, the dual function can be
given as follows g(λ,μ) = 1 − ∑k

i=1 μ j where, μ j is top j th eigenvalue of the matrix M .
The dual optimization problem for the (Relaxed Primal), thus becomes

Maximize
λ,μ

g(λ,μ) = 1 −
∑k

j=1
μ j

subject to

μ j is top j th eigenvalue of M, ∀ j = 1, . . . , k∑n

i=1
λi = 1

λi ≥ 0, ∀i = 1, . . . , n (Relaxed Dual)

Let d̂∗ be the optimal value of the (Relaxed Dual) problem. In what follows, we state a few
key observations with regard to the above primal-dual formulation discussed so far.

Lemma 3 For the given (Primal), (Relaxed Primal), and (Relaxed Dual) programs, the
following hold true.

(A) d̂∗ ≤ p̂∗ ≤ p∗ ≤ 1
(B) If (λ,μ) is a feasible solution of the (Relaxed Dual), then 0 ≤ μ j , ∀ j ∈ [k] and

0 ≤ ∑k
j=1 μk ≤ Tr(M) = ∑n

i=1 λi = 1.

123

Machine Learning (2019) 108:575–594 581

(C) Rank(M) ≤ Rank(X�X) = Rank(X).
(D) Let (λ∗,μ∗) be the point of optimality for the (Relaxed Dual) problem. Then the top-k

eigenvectors v∗
1, . . . , v

∗
k of M = ∑n

i=1 λ∗
i xi x

�
i = λ∗X�X satisfy,

(a) These vectors minimize L(v1, . . . , vk, ε, λ∗
1, . . . , λ

∗
n, μ

∗
1, . . . , μ

∗
k).

(b) These vectors form a feasible solution for both (Relaxed Primal) and (Primal) prob-
lems thus allowing us to use vectors obtained from the (RelaxedDual) as approximate
solutions of the (Primal).

(c) Let εALG be the (Relaxed Primal) objective function value (which is also the value
for the (Primal) objective function) corresponding to the feasible solution v∗

1, . . . , v
∗
k

then we must have p∗ ≤ εALG ≤ 1.

Proof Part (A): The inequalities follow from weak duality theorem and the fact that p̂∗ is
the optimal solution of the (Relaxed Primal) problem, whereas p∗ is the optimal solution of
the (Primal) problem. The last inequality follows from Lemma 1.
Part (B): Let (λ,μ) be a feasible solution for (Relaxed Dual) problem then by Lemma 2, we
can claim that μ j ≥ 0 because μ j must be an eigenvalue of the matrix M and this matrix is
always positive semidefinite. Further, notice that

Tr(M) = Tr(
∑n

i=1
λi xi x�

i)

=
∑n

i=1
λi T r(xi x�

i) =
∑n

i=1
λi T r(x�

i xi) =
∑n

i=1
λi = 1

where, the last part of the equation follows from the fact that vectors xi are unit vectors.
Further, if (λ,μ) is a feasible solution for (Relaxed Dual) then we must also have∑k

j=1
μ j ≤

∑d

j=1
μ j = Tr(M) = 1 (8)

where, μ(k+1), . . . , μd are the bottom (d − k) eigenvalues of the matrix M . This proves part
(B) of the lemma.
Part (C): This part follows from standard results in linear algebra.
Part (D): Let (λ∗,μ∗) be the point of optimality for the (Relaxed Dual) problem. Let
v∗
1, . . . , v

∗
k be the top-k eigenvectors of the matrix M = ∑n

i=1 λ∗
i xi x

�
i = λ∗X�X. Because

(λ∗,μ∗) is an optimal solution for the (Relaxed Dual) problem, it must be a feasible solution
also for the same problem. This would mean that μ∗

j , ∀ j ∈ [k] must be top- j th eigenvalue

of the matrix M = ∑n
i=1 λ∗

i xi x
�
i . Therefore, by Lemma 2, we can say that the vectors

v∗
1, . . . , v

∗
k must minimize the Lagrangian L(v1, . . . , vk, Z , λ∗

1, . . . , λ
∗
n, μ

∗
1, . . . , μ

∗
k). The

feasibility of the vectors v∗
1, . . . , v

∗
k for Primal and (Relaxed Primal) problems is trivial due

to the fact that these vectors are orthonormal basis vectors. The first part of the inequality
p∗ ≤ ε∗ ≤ 1 is trivial because p∗ is optimal. The second part of this inequality follows from
the second inequality given in part (B) of this lemma. �

2.3 Approximate solution of (Primal) problem

Recall that Primal is a non-convex optimization problem. We analyze the approximation
factor of the following version of our algorithm.

123

582 Machine Learning (2019) 108:575–594

Approximation Algorithm:

1. We first find an optimal solution (λ∗,μ∗) for the (Relaxed Dual) problem.
2. Next, we find the top-k eigenvectors v∗

1, . . . , v
∗
k of M = ∑n

i=1 λ∗
i xi x

�
i and treat them

as an approximate solution for the original (Primal) problem. Note, these eigenvectors
form a feasible solution for the Primal and (Relaxed Primal) problems (Lemma 3).

In this section, we try to develop a theoretical bound on the quality of such an approximate
solution for the original (Primal). For this, note that the objective function value for both
(Relaxed Primal) and (Primal) problems is identical for the feasible solution (v∗

1, . . . , v
∗
k)

obtained by the method suggested above.Moreover, this value is given by εALG = max
i=1,...,n

φi ,

whereφi = 1−‖V∗�xi‖22 andV∗ is amatrix comprising of the top-k eigenvectors v∗
1, . . . , v

∗
k

of the matrix M as its columns. The following inequality follows trivially from the above
fact and Lemma 3 part (A).

p̂∗ ≤ p∗ ≤ εALG ≤ 1 (9)

Further, note that for the above algorithm, the optimal objective function value for the
(Relaxed Dual) would be d̂∗ = 1 − ∑k

j=1 μ∗
j , where μ∗

j is the j th-top eigenvalue of
the matrix M. By combining the Inequality (9) with Lemma 3 part (A), we can say that

εALG

p∗ ≤ εALG

d̂∗ ≤ 1

1 − ∑k
j=1 μ∗

j

(10)

In order to obtain a meaningful upper bound on the above inequality, we recall the definition
of matrixX whose size is n×d , and whose rows are unit length data vectors x1, x2, . . . , xn .
Suppose σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0 are singular values of the matrix X out of which only

are non-zero, where
 ≤ d is the rank of the data matrix X. The following theorem gives us
the bound on the approximation ratio of our proposed algorithm, where κ is the ratio of the
highest singular value to the lowest non-zero singular value for the matrixX, i.e., κ = σ1/σ
.

Theorem 1 The approximation algorithm described above offers the following approxima-
tion guarantees.

εALG

p∗ ≤ 1

1 − σ 2
1
n

=
(
1 − σ 2

1

σ 2
1 + σ 2

2 + . . . + σ 2
l

)−1

≤ 1

1 − κ2

l

(11)

Proof As per Inequality (10), in order to prove the claim of this theorem, it suffices to get
an upper bound on the quantity

∑k
j=1 μ∗

j . Thus, our goal is to get an upper bound on the

sum of the top-k singular values of the matrixM. For this, we note thatM = X��X, where
� = diag(λ1, . . . , λn),

∑n
i=1 λi = 1, and λi ≥ 0 ∀i . Let the SVD of the matrix X� be

X� = U�Ṽ�, whereU is a d×d orthogonal matrix,� is a d×d diagonal matrix containing
σ1, σ2, . . . , σd on its diagonal, and Ṽ is an n × d matrix having orthonormal column vectors
ṽ1, ṽ2, . . . , ṽd . Recall that, we have used the symbol V to denote the solution of the primal
problem which is a d × k matrix and hence we are using a different symbol Ṽ� to denote
the left singular vectors of the matrix X�.

By using the SVD of the matrixX�, we can rewrite the expression for matrixM as below.

M = U�Ṽ��Ṽ�U� (12)

123

Machine Learning (2019) 108:575–594 583

Recall that matrix M is a PSD matrix and hence, we must have∑k

j=1
μ j ≤

∑d

j=1
μ j = Tr(M) (13)

By making use of Eq. (12), the above inequality can be written as∑k

j=1
μ j ≤ Tr(U�Ṽ��Ṽ�U�) = Tr(�Ṽ��Ṽ�) (14)

From the definition of the Relaxed Dual, we can write∑k

j=1
μ∗

j = Min
�

(∑k

j=1
μ j

)
≤ Min

�

(
Tr(�Ṽ��Ṽ�)

)
(15)

In lieu of the fact that � is a diagonal matrix having λ1, . . . , λn on its diagonal, where∑
i λi = 1 and λ ≥ 0, and ṽ1, ṽ2, . . . , ṽd are orthonormal column vectors of the matrix Ṽ,

it is not difficult to see that the i th diagonal entry of the matrix �Ṽ��Ṽ� can be given by[
�Ṽ��Ṽ�

]
i i

= σ 2
i

(̃
v2i1λ1 + ṽ2i2λ2 + . . . + ṽ2inλn

)
(16)

where, we follow the convention that

Ṽ� =

⎡
⎢⎢⎢⎢⎣

ṽ
�
1

. . .

ṽ
�
d

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ṽ11 ṽ12 . . . ṽ1n

. . .

ṽd1 ṽd2 . . . ṽdn

⎤
⎥⎥⎥⎥⎦ (17)

This would imply that

Tr
(
�Ṽ��Ṽ�

)
=

∑d

i=1
σ 2
i

(̃
v2i1λ1 + ṽ2i2λ2 + . . . + ṽ2inλn

)
(18)

= λ1

(∑d

i=1
σ 2
i ṽ2i1

)
+ λ2

(∑d

i=1
σ 2
i ṽ2i2

)
+ . . . + λn

(∑d

i=1
σ 2
i ṽ2in

)
(19)

Substituting Eq. (19) into the Inequality (15) would give us the following inequality.∑k

i=1
μ∗

j ≤ Min
j=1,...,n

∑d

i=1
σ 2
i ṽ2i j ≤ Min

j=1,...,n

∑d

i=1
σ 2
i ṽ2i j

= σ 2
1 Min

j=1,...,n

(
ṽ21 j + ṽ22 j + . . . + ṽ2d j

)
Again, because of the fact that ṽ1, ṽ2, . . . , ṽd are orthonormal column vectors of the matrix
Ṽ, we can write ∑n

j=1

(
ṽ21 j + ṽ22 j + . . . + ṽ2d j

)
= 1 (20)

This implies that∑k

i=1
μ∗

j ≤ σ 2
1 Min

j=1,...,n

(
ṽ21 j + ṽ22 j + . . . + ṽ2d j

)
≤ σ 2

1 /n (21)

This gives us the first part of the inequality in the theorem. In order to get the second part of
the inequality, we note that the following relation is easy to verify.

n = Tr
(
XX�)

= Tr
(
V�U�U�V�)

= σ 2
1 + σ 2

2 + . . . + σ 2
l (22)

123

584 Machine Learning (2019) 108:575–594

Substituting the above equation into the Inequality (21) would yield the second desired
inequality in the theorem’s statement. The last inequality in the theorem statement follows
from the definition of κ for the matrix X� as given by, κ = σ1/σl . �

Below are some interesting and useful insights about our algorithm that one can easily
derive with the help of Theorem 1.

– The above theorem bounds the gap between the primal objective value corresponding to
our approximate solution and the unknown optimal primal objective value.

– The approximation bound given in Theorem 1 depends on the spectral properties of the
input dataset. For example, if the given dataset X is well-behaved, that is κ = 1, then we
obtain the approximation factor of l

l−1 which is bounded above by 2 assuming
 ≥ 2.
– Further, in such a case, this bound starts approaching towards 1 as the rank of the data

matrix increases (of course, the dimension d of the data has to increases first for
 to
increase). Thus, we can say that for a well-behaved dataset of full rank in very large
dimensions, our algorithm offers a nearly optimal solution for the problem of length
preserving orthogonal projections of the data.

3 Projected gradient ascent

We now give a provable algorithm to get an optimal solution of the Relaxed Dual problem,
which we call Projected Gradient Ascent. Note that our overall algorithm LELD is the
combination of Projected Gradient Ascent to get the optimal solution of the Relaxed Dual
and the Approximation Algorithm described in Sect. 2.3 to get a feasible solution of the
Primal from the optimal solution of the Relaxed Dual. Since the dual formulation is always
a convex program (Boyd and Vandenberghe 2004), the objective function of the Relaxed
Dual is concave in the dual variables and the feasible set formed by the constraint set is
a convex set C ⊂ R

n . In each iteration, Projected Gradient Ascent essentially performs a
gradient ascent update on the dual variables λi , i = 1, . . . , n and then projects the update
back onto the convex setC. Note that we need not worry about the dual variablesμ j because
for any assignment of the variables λi , the values of the μ j get determined because of the
first constraint in the (Relaxed Dual) problem. Therefore, we perform gradient ascent only
on the λi variables.

Observe that the feasible region of the λi variables forms the standard probability simplex
in Rn . Because of this, we make use of the Simplex Projection algorithm proposed by Wang
and Carreira-Perpinan (2013) for the purpose of performing the projection step in each
iteration of our algorithm.This algorithm runs in timeO(d log(d)) time.Wecall the projection
step of this algorithm as (ProjC).

The pseudo code for Projected Gradient Ascent is given in the form of Algorithm 1. In line
number 5 (and also 7) of this code, we compute the (Primal) objective function value ε for
two different dual feasible solutions, namely λ(t+1) and λbest . Note that the last if-else
statement identifies the better of the two solutions (in terms of the primal objective function
value). The routine ProjC(·) is given in Algorithm 2.

Now, we present a key lemma related to the gradient of the (Relaxed Dual) objective.

Lemma 4 (Dual gradient) If λ(t) is not an optimal solution of (Relaxed Dual) problem then
for
 = 1, . . . , n, the
th coordinate of the gradient vector ∇g

(
λ(t),μ(t)

)
is given by

∂g
(
λ(t),μ(t)

)
/∂λ

(t)

 = −

∑k

j=1
‖x�

 v
(t)
j ‖2 (23)

123

Machine Learning (2019) 108:575–594 585

Algorithm 1: Projected Gradient Ascent
Input : xi , i = 1, . . . , n

Initialize: λ0i = λbesti = 1/n ∀i ∈ [n]
1 for t = 1, . . . , T do

2 Compute ∇g(λ, μ)) for (λ, μ) =
(
λ(t), μ(t)

)
by making use of Lemma 4;

3 λ̃
(t+1) ← λ(t) + η∇g(λ(t), μ(t));

4 λ(t+1) ← ProjC
(̃
λ
(t+1)

)
;

5 if
(
ε for λ(t+1)

)
<

(
ε for λbest

)
then

6 λbest = λ(t+1)

7 if
(
ε for λbest

)
<

(
ε for 1

T
∑T

t=1 λ
(t))

then

Output : λbest

8 else

Output : 1
T

∑T
t=1 λ

(t)

Algorithm 2: ProjC(·)
Input : λ ∈ R

n

Objective: Find argmin
λ̃∈C

‖̃λ − λ‖2

1 Sort coordinated of λ into λ(1) ≥ . . . λ(n);

2 ρ ← max
j∈[n]

{
λ(j) +

(
1 − ∑ j

i=1 λ(i)

)
/ j

}
;

3 α ← (1/ρ)
(
1 − ∑ρ

i=1 λ(i)
)
;

Output : λ̃ such that λ̃i = max(λi + α, 0) ∀i ∈ [n]

Proof Note, the gradient vector ∇g
(
λ(t),μ(t)

)
would be

∂g
(
λ(t),μ(t)

)
/∂λ(t) = ∂

(
1 −

∑k

j=1
μ

(t)
j

)
/∂λ(t)

The
th coordinate of this ascent direction can be given by

∂g
(
λ(t),μ(t)

)
/∂λ

(t)

 = −∂

(∑k

j=1
μ

(t)
j

)
/∂λ

(t)

 ,∀
 ∈ [n]

Let v(t)
1 , . . . v

(t)
k are the top-k eigenvectors of the matrixM(λ(t)) then the above equation can

be written as

∂g
(
λ(t),μ(t)

)
/∂λ

(t)

 = −∂

(∑k

j=1
v

(t)
j

�
M(λ(t))v

(t)
j

)
/∂λ

(t)

Recall thatM(λ(t)) = ∑n
i=1 λ

(t)
i xi x�

i . Substituting this expression forM(λ(t)) in the previ-
ous equation gives us the following relation.

123

586 Machine Learning (2019) 108:575–594

∂g
(
λ(t),μ(t)

)
/∂λ

(t)

 = −∑k

j=1 v
(t)
j

�
(x
x�

)v
(t)
j

−2
∑k

j=1
∑n

i=1 λ
(t)
i

(
∂v

(t)
j /∂λ

(t)

)�
(xi x�

i)v
(t)
j

= −∑k
j=1‖x�

 v
(t)
j ‖2 − 2

∑k
j=1

(
∂v

(t)
j /∂λ

(t)

)�
M(λ(t))v

(t)
j

= −∑k
j=1‖x�

 v
(t)
j ‖2 − 2

∑k
j=1 μ

(t)
j

(
∂v

(t)
j /∂λ

(t)

)�
v

(t)
j

The last term in the above expression would be zero because(
∂v

(t)
j /∂λ

(t)

)�
v

(t)
j = 0, ∀ j ∈ [k]; ∀
 ∈ [n]

This fact follows from the another fact that v(t)
j , ∀ j = 1, . . . , k are eigenvectors and hence

we must have v
(t)
j

�
v

(t)
j = 1. Now differentiating this relation on both the sides with respect

to λ
 would give us the desired fact. �

3.1 Convergence guarantees

In this section, we show that Projected Gradient Ascent converges to the optimal solution of
the Relaxed Dual. For this, we just recall here a known result (Theorem 2) in the literature
of convex optimization. Readers can refer to Theorem 3.2. in Bubeck (2015) for the proof of
this result. Here, we have adopted this result for the case of concave functions.

Theorem 2 (Bubeck 2015) Consider a convex optimization problem, where the objective
function f (x) is a concave function that needs to be maximized over a feasible convex set
C ∈ R

n. Further, let f (x) and C satisfy the following conditions, where L, D, η > 0 are
constants.

1. ‖∇ f (x)‖2 ≤ L
2. ‖x − y‖2 ≤ D; ∀x, y ∈ C
3. η = D/(L

√
T)

Let x∗ be the optimal solution of this problem. If we run the projected gradient algorithm on
this problem for T iterations with step size η then following bound holds.

f (x∗) − LD/
√
T ≤ f

(∑T

t=1
xt/T

)
(24)

The above theorem essentially states that the average of all iterates can get arbitrarily close
to the maximum as we increase T . One can verify that our (Relaxed Dual) problem satisfies
all the conditions of the above theorem with the following values of D and L .

1. In the feasible set of the (Relaxed Dual) problem, the variables μ get uniquely frozen
once we freeze the values of λ. Therefore, we can view the dual function g(λ,μ) as
function of λ only, that is g(λ,μ) = g(μ(λ)).

2. According to Lemma 4, for the
th-coordinate of the gradient of dual function, we have
|∇g(μ(λ))
| = ∑k

j=1‖x�

 v j‖22 ≤ ∑d

j=1‖x�

 v j‖22 = 1 because all

{
v j

}d
j=1 form an

orthogonal basis of Rd and the projection of any unit length data point x
 on these
vectors will have unit length. This implies that ‖∇g(μ(λ))‖2 ≤ √

n and thus L = √
n

for our case.

123

Machine Learning (2019) 108:575–594 587

3. The maximum value of ‖x − y‖2 for any x, y ∈ C will be
√
2 as the farthest points on

the probability simplex will be any of its two corners and the distance between them will
be

√
2. Thus, D = √

2 for our case.

Note that the above convergence guarantee is for the average iterate. In Algorithm 1, we
compare the primal objective function value at the average iterate with the value at the best
iterate so far (Step 7 of Algorithm 1), and output the one for which the primal objective
function value is lower. Therefore, the theoretical guarantees of the Theorem 2 remain valid
for the output of Algorithm 1.

3.2 Computational complexity of our algorithm

In this section we present an analysis of the time taken by our projected gradient algorithm to
converge. In order to get δ-close to the optimum according to Eq. (24), that is, f (x∗) − δ ≤
f
(∑T

t=1 xt/T
)
, the number of iterations required T will be equal to (LD)2/δ2. Now, per

iteration of the projected gradient descent, we first need to form the d × d matrix M which
can be done in O(nd2) time. We then compute the top k-eigenvectors of a d × d matrix
which cannot take more than O(d3) time. Then, to calculate each coordinate of the gradient
it takes O(d + k) = O(d) time and thus for calculating the entire gradient it takes O(nd)

time. Then it takes O(d log(d)) time to compute the projection onto the simplex. Thus, the
overall time taken is O((LD)2(nd2 + d3 + nd + d log d)/δ2) = O((LD)2(d3 + nd2)/δ2).
It is to be noted that this is an upper bound on the time taken by our algorithm and the actual
implementation of our algorithm will take much less time due to the presence of optimized
routines in MATLAB (readers can find the details in Sect. 5 on experiments) which compute
the top-k eigenvectors much faster than O(d3).

4 Key insights of our algorithm

In this section, we highlight some important insights regarding the problem and our approach.

1. The proposed (Relaxed Dual) problem has far fewer constraints compared to both the
Primal and (Relaxed Primal) problems. Contrary to this, the baseline formulation of
Grant et al. (2013) is a SDP relaxation of the (Primal) problem and because of which
they have one constraint per data point. As mentioned in our experiments section, this
fact is one of the main reasons that the SDP based algorithms proposed by Grant et al.
(2013) do not scale as well as our algorithm with an increasing number of data points.

2. Themain computation in each iteration of Projected Gradient Ascent involves dual gradi-
ent computation and computing a projection onto the probability simplex. The gradient
calculation requires the top-k eigenvectors of M(λ) which can be computed quickly
because k << d in anydimensionality reduction problem.Further,we also use a fast algo-
rithm for projection onto the probability simplex as described earlier. All these together
make our scheme very fast.

5 Experiments

In this section, we present the results of our experiments wherein, we have compared the
performance of LELD with six baseline algorithms. The first two baselines are PCA and

123

588 Machine Learning (2019) 108:575–594

Table 1 Details of the datasets and the hyper-parameters used in our experiments

Dataset Dimension (d) Input size (n) Iterations (T) Stepsize (η)

MNIST (Digits 2, 4, 5, 7) 784 1035 120 0.004

MNIST (Digits 2, 4, 5, 7) 784 5050 120 0.0018

MNIST (Digits 2, 4, 5, 7) 784 10,011 120 0.00129

MNIST (Digits 2, 4, 5, 7) 784 50,086 120 0.00057

MNIST (Digits 2, 4, 5, 7) 784 100,128 120 0.0004

20 Newsgroup (Atheism and MSWindows Misc.) 8000 1034 120 0.004

Random Projections (Random for short). The next two baselines are both based on the algo-
rithms given in Grant et al. (2013). These are based on semidefinite programming relaxations
of the (Primal) problem and are named SDP+RR and SDP+DR depending on whether the
rounding algorithm used to obtain a solution of the original problem from the SDP solution
is randomized (RR) or deterministic (DR). The final baselines are the Fast Adaptive Metric
Learning (FAML) algorithm of Bah et al. (2014) and the Fromax Algorithm of Luo et al.
(2016), both of which are heuristics to learn a linear transformation (without the orthogo-
nality constraints) that approximately preserves pairwise distances. These algorithms do not
come with any convergence or approximation guarantees. So that the comparison between
the algorithms is done in a fair manner, we consider the orthonormal basis of the column
span of the linear transformations returned by these algorithms as projection matrices.

All our experiments were performed usingMATLAB on amachine having an 8-Core Intel
i7 processor and 64GB RAM. The details of the datasets used in our experiments and values
of various hyper-parameters used by our algorithm are summarized in Table 1.

The goal of our experiments is to compare the algorithms in terms of the quality of the
solution (as measured by the value of the (Primal) objective function), and the time taken by
the respective algorithms. We fixed the number of iterations for LELD to be 120, the learning
rate η is then chosen as per Theorem 2.

Recall that Random and PCA are not iterative algorithms and hence there we have not
placed time restrictions on them. On the other hand, LELD and the baselines—FAML,
Fromax, SDP+RR and SDP+DR are iterative in nature and thus, to do a fair comparison,
we fix an appropriate clock time restriction. In our experiments, we allow FAML, SDP+RR
and SDP+DR methods to run till convergence in the case of 1K sized datasets. We give 10×
time taken by LELD to Fromax on the 1K sized datasets as this algorithm does not seem
to converge. However, when we run our experiments on the 5 and 10K sized datasets, we
allowed all the baseline algorithms to take 3× the time taken by LELD. Similarly, for the
case of the 50 and 100K sized datasets, we offered the same time to the baselines as LELD.
Note that FAML and Fromax could not fit into our memory when running the experiments
on the 100K sized datasets. Thus, we could not compare with them on these datasets. We
selected some of these time restrictions for the SDP+RR and SDP+DR methods because we
observed that running these baselines until their stopping criteria was practically infeasible
for the larger datasets.We put similar restrictions on the other baselines for a fair comparison.
This observation itself underscores the scalability of LELD compared to these baselines. We
have highlighted this point in Sect. 4. We first describe our experimental setup and data.

MNIST Dataset: MNIST dataset (LeCun et al. 2010) contains images of handwritten digits
in the range of 0 − 9. For our experiments, we considered each 28× 28 gray scale image as
a 784 dimensional vector.

123

Machine Learning (2019) 108:575–594 589

For the MNIST dataset, we consider images of the digits 2, 4, 5, and 7. For each of these,
we first randomly sampled a certain number of vectors and then computed the pairwise
normalized differences of these sampled images to obtain a collection of unit length vectors.

In our experiments, for each of these four digits, we generated five datasets with different
numbers of pairwise differences—1, 5, 10, 50 and 100K.We created 5 variants for each such
dataset by changing the seed of the randomization used in picking the images. For each of
these variants, we ran LELD and the baseline algorithms. Figures 1 and 2 report the average
of the results of each algorithm on the 5 variants of each dataset, alongwith standard deviation
bars.

Note that for each plot in Figs. 1 and 2, the x-axis corresponds to the embedding dimension
(k) of the datasets which we have varied as 5, 7, 10, 15, 20, 30, and 40. The y-axis in each
of these plots corresponds to the quality of the solution (i.e., maximum distortion) offered
by the different algorithms. For the 1K data size, the absolute differences in the algorithms
are very small, and hence we plot the % improvement. Only for the 1K size in the first
column of Fig. 1, does the y-axis correspond to the %-improvement of LELD relative to
the baseline algorithms. By % improvement, we mean 100 × (εbaseline − εALG) /εbaseline,
where εbaseline is the maximum distortion offered by the baseline algorithm and εALG is the
same quantity for LELD. The higher the ratio, the lower the distortion of LELD is relative to
the baseline, and a negative value of this ratiomeans LELD offers an inferior solution than the
baseline algorithm. From the plots, it is obvious that the distortion by LELD can be smaller
than Fromax and FAML by upto 30–40%. The performance of SDP-DR and SDP+RR is
better in the smaller dataset. But neither of them ran to completion in the larger datasets, and
hence the corresponding curves are fixed. Note that we have not compared our results with
the Random and PCA baselines for the case of the 1K dataset because both LELD as well
as the baselines perform far more superior than Random and PCA.

Finally, to make a compelling case in favor of LELD, we also conducted an additional
experiment where we simply ran the SDP+DR algorithm on the 5K dataset until its conver-
gence so as to ensure that these algorithms do not converge only after a bit more time than
what was given to them. Figure 3 depicts the results of this experiment. We performed this
experiment only for the digit 5 and the projection dimensions of 10, 15, and 30. From these
plots, it is clear that the SDP+DR algorithm (SDP+RR is anyways slower than SDP+DR)
indeed takes significantly more times to converge compared to the time offered by us during
our experiments. This rules out the possibility of these algorithms converging quickly by
giving slightly more time than what is offered by us in our experiments.
20 Newsgroup Dataset: We repeated the same experimental setup for a different dataset,
namely 20 Newsgroups. This dataset has a much larger feature dimension (i.e., 8000) as
compared to MNIST. For this dataset, we picked two categories—Atheism, MS-Windows
Misc. Our dataset size for each category was 1K. This time, we offered 3× time to the
baselines as compared to the time taken by LELD. In a manner similar to the plots for the
1K sized MNIST datasets given in Fig. 1 (column 1), the plots in Fig. 2 (column 3) show the
percentage improvement of LELD compared to the baseline algorithms for the case of 20
Newsgroup dataset. This shows that LELD scales well with an increase in d . This is because
we only need the top-k eigenvectors of the matrixM ∈ R

d×d in each iteration. However for
smaller dimensions, LELD seems to perform poorly compared to FAML.

Performance on Downstream Learning Tasks—Classification, Retrieval, Clustering, and
Visualization: To demonstrate the effectiveness of such embeddings, we experimented with
tasks that depend on the local and global geometry around each data point. First we took 100
samples of the digit 2 and the digit 4 each and projected the 200 datapoints into 30 dimen-

123

590 Machine Learning (2019) 108:575–594

Fig. 1 Performance of the proposed algorithm relative to baseline methods on MNIST dataset. Columns 1,
2, and 3 correspond to dataset size of 1, 5 and 10K, respectively. The rows from top to bottom correspond to
MNIST digit 2, 4, 5, and 7, respectively

sions using LELD, FAML, Fromax, SDP+RR and SDP+DR. We thus got different datasets
of 200 points in 30 dimensions corresponding to each of the embedding algorithms. For each
of these datasets, we performed k-Nearest Neighbor classification (k = 10) by taking the
first 75 samples of digit 2 and the first 75 samples of digit 4 points as a training set and
the rest as a test set. We report the accuracy on each of the test set corresponding to each
embedding algorithm in Table 3. From these results, we can observe that LELD, FAML and
Fromax, which have lower distortion compared to SDP+RR/DR, lead to higher classification
accuracy. Next, we consider the task of Nearest Neighbor retrieval. For each of the datasets
obtained by projecting the 200 points using the different embedding algorithms, we use the
same train and test set split and for each point in the test set we find its 10 nearest neighbors
in the corresponding training set. For each point in the test set we consider its 10 nearest
neighbors in the original 784 dimensions to be its true nearest neighbors. Now, for each of the
test sets obtained using different embedding algorithms we report the average of the number

123

Machine Learning (2019) 108:575–594 591

Fig. 2 Performance of the proposed algorithm relative to baseline methods on MNIST and 20 Newsgroup
datasets. Columns 1 and 2 correspond to MNIST dataset size of 50 and 100K, respectively. The rows from
top to bottom correspond to MNIST digit 2, 4, 5, and 7, respectively. The last column corresponds to the 20
Newsgroup dataset of size 1K. Rows 1 and 2 of the last column correspond to Atheism and MS-Windows
Misc, respectively

Fig. 3 Max distortion versus running time for SDP+DR method on MNIST digit 5 having dataset size of 5K
and projection dimensions of 10, 15 and 30. We have plotted m on the x axis where the time given to SDP+DR
is m×time taken by LELD

123

592 Machine Learning (2019) 108:575–594

Table 2 Comparison of the various aspects of each baseline algorithm

Algorithm Running time Approximation (εALG/εOPT) Convergence

LELD O((LD)2(d3 + nd2)/δ2) 1/(1 − κ2/l) Guaranteed to converge

SDP+RR No analysis provided∗ O(log n) Guaranteed to converge

SDP+DR No analysis provided∗ k + 1 Guaranteed to converge

FAML No analysis provided No guarantee No guarantee

Fromax No analysis provided No guarantee No guarantee

*These use the NuMax algorithm of Hegde et al. (2015) to solve their SDPs and since the NuMax algorithm
does not have a global runtime analysis, we have mentioned here that no analysis has been provided

Table 3 Impact of embeddings on different tasks

Task LELD FAML Fromax SDP+RR SDP+DR

NN classification (accuracy)-200 points 97.9% 97.9% 95.9% 69.9% 80%

NN classification (accuracy)-320 points 100% 98.7% 97.4% 67.5% 58.7%

NN-retrieval (precision)-200 points 39% 36% 30.6% 6.6% 4.6%

NN-retrieval (precision)-320 points 32.6% 27.7% 26.8% 1.6% 1.2%

k-means clustering (purity)-200 points 0.94 0.95 0.955 0.52 0.5

k-means clustering (purity)-320 points 0.96 0.96 0.96 0.53 0.53

of true neighbors retrieved per data-point in the lower dimension in Table 3. Since LELD has
the highest precision followed by FAML, Fromax, SDP+RR, and finally SDP+DR, we can
observe that embeddings that have a lower distortion preserve more neighborhood informa-
tion of the data-points which can aid in accurate retrieval in lower dimensions and thus in a
lower amount of time.

Next we consider the task of clustering. We again start with the 200 data-points in 784
dimensions and their projection into 30 dimensions using the various embedding algorithms.
We do not perform any train-test split in this task. For each of the set of projected datasets, we
perform k-Means clustering using Lloyd’s algorithmwith 2 clusters and report the Puritymet-
ric in Table 2. To compute Purity, a standard metric in the Information Retrieval community,
each cluster is assigned to the digit which ismost frequent in the cluster, and then the accuracy
of this clustering is measured by counting the number of correctly assigned data-points and
dividing by the total size of the dataset. Formally, Purity(ω,C) = 1/N

∑2
i=1 max

j
|wi ∩C j |,

where N is the size of the dataset (N = 200 in our case), w = {w1,w2} is the set of clusters
and C = {C1,C2} is the set of classes (w={2, 4} in our case). If a clustering is good then
the purity will be close to 1 and if it is bad it will be close to 0. From the results in Table 3,
we can see that LELD, FAML and Fromax lead to clusterings of higher quality followed
by SDP+RR and SDP+DR. Thus we can observe that low distortion embeddings produce
clusterings of higher purity. We also repeat the above experiments for 160 samples of the
digit 2 and 160 samples of the digit 4 (total 320 points). The train-test split considered for
Classification and Retrieval is as follows: the first 120 samples of digit 2 and the first 120
samples of digit 4 are training images and the rest are test images.

Lastly, to make a visual comparison between the quality of the embeddings obtained by
LELD and the baselines, we used the t-SNE visualization algorithm. Figure 4 depicts such a
visualization where we first visualize the MNIST data in the original 784 dimensional space

123

Machine Learning (2019) 108:575–594 593

Fig. 4 t-SNE visualizations of the MNIST data in original space and 40 dimensional projected space using
LELD as well as baseline methods

and then visualize its embedding in 40 dimensional space obtained via LELD, SDP+DR,
SDP+RR, FAML, Fromax and PCA.We do so just for a qualitative comparison. From Fig. 4,
it appears that SDP+RR and SDP+DR distort the point clouds more as compared to LELD
but FAML and Fromax seem to do a comparable job.

6 Conclusion

In this paper, we have presented LELD, a novel Lagrange duality based method to con-
struct near isometric orthonormal linear embeddings. Our proposed algorithm reduces the
dimension of the datawhile achieving lower distortion than the state-of-the-art baselinemeth-
ods and is also computationally efficient. We have also given theoretical guarantees for the
approximation quality offered by our algorithm. Our bound suggests that for certain input
datasets, our algorithm offers near optimal solution of the problem. Our proposed theoretical
guarantee depends on the spectral properties of the input data and hence the key question that
we leave open is to obtain a data independent bound for the same. Another important future
direction is to assess the impact of the Column Generation heuristic proposed by Hegde et al.
(2015) for scaling LELD to bigger datasets with more data-points.

Acknowledgements A part of this work for Dinesh Garg and Anirban Dasgupta was supported by the SERB-
DST Early Career Research Grant No. ECR/2016/002035. The authors declare that they have no conflict of
interest. Finally, the authors sincerely want to thank Dr. Chinmay Hegde of Iowa State University for sharing
his code of SDP+RR and SDP+DR algorithms.

References

Alon, N. (2003). Problems and results in extremal combinatorics. Discrete Mathematics, 273(1–3), 31–53.
Badoiu, M., Har-Peled, S., & Indyk, P. (2002). Approximate clustering via core-sets. In Proceedings of the

34th annual ACM symposium on theory of computing (STOC), May 19–21, 2002, Montréal, Québec,
Canada (pp. 250–257).

Bah, B., Becker, S., Cevher, V., & Gozcu, B. (2014). Metric learning with rank and sparsity constraints. In
IEEE international conference on acoustics, speech and signal processing (ICASSP 2014), Florence,
Italy, May 4–9, 2014 (pp. 21–25).

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

123

594 Machine Learning (2019) 108:575–594

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends in Machine
Learning, 8(3–4), 231–357.

Grant, E., Hegde, C., & Indyk, P. (2013). Nearly optimal linear embeddings into very low dimensions. In IEEE
global conference on signal and information processing, GlobalSIP 2013, Austin, TX, USA, December
3–5, 2013 (pp. 973–976).

Hegde, C., Sankaranarayanan, A. C., Yin, W., & Baraniuk, R. G. (2015). Numax: A convex approach for
learning near-isometric linear embeddings. IEEETransactions on Signal Processing, 63(22), 6109–6121.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimension-
ality. In Proceedings of the thirtieth annual ACM symposium on the theory of computing (STOC), Dallas,
Texas, USA, May 23–26, 1998 (pp. 604–613).

Jayram, T. S., &Woodruff, D. P. (2013). Optimal bounds for Johnson–Lindenstrauss transforms and streaming
problems with subconstant error. ACM Transactions on Algorithms (TALG), 9(3), 261–2617.

Johnson, W., B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert space. In Con-
ference in modern analysis and probability (pp. 189–206).

LeCun, Y., Cortes, C., & Burges, C. J. (2010). MNIST handwritten digit database. AT&T Labs (online). http://
yann.lecun.com/exdb/mnist, 2.

Luo, J., Shapiro, K., Shi, Hao-Jun, M., Yang, Q., & Zhu, K. (2016). Practical algorithms for learning near-
isometric linear embeddings. arXiv preprint arXiv:1601.00062.

Wang, W., & Carreira-Perpinan, M. A. (2013). Projection onto the probability simplex: An efficient algorithm
with a simple proof, and an application. arXiv preprint arXiv:1309.1541.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1601.00062
http://arxiv.org/abs/1309.1541

	Improved linear embeddings via Lagrange duality
	Abstract
	1 Introduction
	2 Duality for linear embeddings
	2.1 Lagrangian dual
	2.2 Dual of relaxed primal
	2.3 Approximate solution of (Primal) problem

	3 Projected gradient ascent
	3.1 Convergence guarantees
	3.2 Computational complexity of our algorithm

	4 Key insights of our algorithm
	5 Experiments
	6 Conclusion
	Acknowledgements
	References

